]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/exit.c
Merge branch 'timers-for-linus-ntp' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <linux/perf_counter.h>
52 #include <trace/events/sched.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (thread_group_leader(p)) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 list_del_init(&p->sibling);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 struct sighand_struct *sighand;
84
85 BUG_ON(!sig);
86 BUG_ON(!atomic_read(&sig->count));
87
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
95 /*
96 * If there is any task waiting for the group exit
97 * then notify it:
98 */
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
101
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
104 /*
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
113 */
114 sig->utime = cputime_add(sig->utime, task_utime(tsk));
115 sig->stime = cputime_add(sig->stime, task_stime(tsk));
116 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 task_io_accounting_add(&sig->ioac, &tsk->ioac);
124 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
125 sig = NULL; /* Marker for below. */
126 }
127
128 __unhash_process(tsk);
129
130 /*
131 * Do this under ->siglock, we can race with another thread
132 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 */
134 flush_sigqueue(&tsk->pending);
135
136 tsk->signal = NULL;
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 if (sig) {
143 flush_sigqueue(&sig->shared_pending);
144 taskstats_tgid_free(sig);
145 /*
146 * Make sure ->signal can't go away under rq->lock,
147 * see account_group_exec_runtime().
148 */
149 task_rq_unlock_wait(tsk);
150 __cleanup_signal(sig);
151 }
152 }
153
154 static void delayed_put_task_struct(struct rcu_head *rhp)
155 {
156 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
157
158 #ifdef CONFIG_PERF_COUNTERS
159 WARN_ON_ONCE(tsk->perf_counter_ctxp);
160 #endif
161 trace_sched_process_free(tsk);
162 put_task_struct(tsk);
163 }
164
165
166 void release_task(struct task_struct * p)
167 {
168 struct task_struct *leader;
169 int zap_leader;
170 repeat:
171 tracehook_prepare_release_task(p);
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials */
174 atomic_dec(&__task_cred(p)->user->processes);
175
176 proc_flush_task(p);
177
178 write_lock_irq(&tasklist_lock);
179 tracehook_finish_release_task(p);
180 __exit_signal(p);
181
182 /*
183 * If we are the last non-leader member of the thread
184 * group, and the leader is zombie, then notify the
185 * group leader's parent process. (if it wants notification.)
186 */
187 zap_leader = 0;
188 leader = p->group_leader;
189 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
190 BUG_ON(task_detached(leader));
191 do_notify_parent(leader, leader->exit_signal);
192 /*
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
196 *
197 * do_notify_parent() will have marked it self-reaping in
198 * that case.
199 */
200 zap_leader = task_detached(leader);
201
202 /*
203 * This maintains the invariant that release_task()
204 * only runs on a task in EXIT_DEAD, just for sanity.
205 */
206 if (zap_leader)
207 leader->exit_state = EXIT_DEAD;
208 }
209
210 write_unlock_irq(&tasklist_lock);
211 release_thread(p);
212 call_rcu(&p->rcu, delayed_put_task_struct);
213
214 p = leader;
215 if (unlikely(zap_leader))
216 goto repeat;
217 }
218
219 /*
220 * This checks not only the pgrp, but falls back on the pid if no
221 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
222 * without this...
223 *
224 * The caller must hold rcu lock or the tasklist lock.
225 */
226 struct pid *session_of_pgrp(struct pid *pgrp)
227 {
228 struct task_struct *p;
229 struct pid *sid = NULL;
230
231 p = pid_task(pgrp, PIDTYPE_PGID);
232 if (p == NULL)
233 p = pid_task(pgrp, PIDTYPE_PID);
234 if (p != NULL)
235 sid = task_session(p);
236
237 return sid;
238 }
239
240 /*
241 * Determine if a process group is "orphaned", according to the POSIX
242 * definition in 2.2.2.52. Orphaned process groups are not to be affected
243 * by terminal-generated stop signals. Newly orphaned process groups are
244 * to receive a SIGHUP and a SIGCONT.
245 *
246 * "I ask you, have you ever known what it is to be an orphan?"
247 */
248 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
249 {
250 struct task_struct *p;
251
252 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
253 if ((p == ignored_task) ||
254 (p->exit_state && thread_group_empty(p)) ||
255 is_global_init(p->real_parent))
256 continue;
257
258 if (task_pgrp(p->real_parent) != pgrp &&
259 task_session(p->real_parent) == task_session(p))
260 return 0;
261 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
262
263 return 1;
264 }
265
266 int is_current_pgrp_orphaned(void)
267 {
268 int retval;
269
270 read_lock(&tasklist_lock);
271 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
272 read_unlock(&tasklist_lock);
273
274 return retval;
275 }
276
277 static int has_stopped_jobs(struct pid *pgrp)
278 {
279 int retval = 0;
280 struct task_struct *p;
281
282 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
283 if (!task_is_stopped(p))
284 continue;
285 retval = 1;
286 break;
287 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
288 return retval;
289 }
290
291 /*
292 * Check to see if any process groups have become orphaned as
293 * a result of our exiting, and if they have any stopped jobs,
294 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
295 */
296 static void
297 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
298 {
299 struct pid *pgrp = task_pgrp(tsk);
300 struct task_struct *ignored_task = tsk;
301
302 if (!parent)
303 /* exit: our father is in a different pgrp than
304 * we are and we were the only connection outside.
305 */
306 parent = tsk->real_parent;
307 else
308 /* reparent: our child is in a different pgrp than
309 * we are, and it was the only connection outside.
310 */
311 ignored_task = NULL;
312
313 if (task_pgrp(parent) != pgrp &&
314 task_session(parent) == task_session(tsk) &&
315 will_become_orphaned_pgrp(pgrp, ignored_task) &&
316 has_stopped_jobs(pgrp)) {
317 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
318 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
319 }
320 }
321
322 /**
323 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324 *
325 * If a kernel thread is launched as a result of a system call, or if
326 * it ever exits, it should generally reparent itself to kthreadd so it
327 * isn't in the way of other processes and is correctly cleaned up on exit.
328 *
329 * The various task state such as scheduling policy and priority may have
330 * been inherited from a user process, so we reset them to sane values here.
331 *
332 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333 */
334 static void reparent_to_kthreadd(void)
335 {
336 write_lock_irq(&tasklist_lock);
337
338 ptrace_unlink(current);
339 /* Reparent to init */
340 current->real_parent = current->parent = kthreadd_task;
341 list_move_tail(&current->sibling, &current->real_parent->children);
342
343 /* Set the exit signal to SIGCHLD so we signal init on exit */
344 current->exit_signal = SIGCHLD;
345
346 if (task_nice(current) < 0)
347 set_user_nice(current, 0);
348 /* cpus_allowed? */
349 /* rt_priority? */
350 /* signals? */
351 memcpy(current->signal->rlim, init_task.signal->rlim,
352 sizeof(current->signal->rlim));
353
354 atomic_inc(&init_cred.usage);
355 commit_creds(&init_cred);
356 write_unlock_irq(&tasklist_lock);
357 }
358
359 void __set_special_pids(struct pid *pid)
360 {
361 struct task_struct *curr = current->group_leader;
362
363 if (task_session(curr) != pid)
364 change_pid(curr, PIDTYPE_SID, pid);
365
366 if (task_pgrp(curr) != pid)
367 change_pid(curr, PIDTYPE_PGID, pid);
368 }
369
370 static void set_special_pids(struct pid *pid)
371 {
372 write_lock_irq(&tasklist_lock);
373 __set_special_pids(pid);
374 write_unlock_irq(&tasklist_lock);
375 }
376
377 /*
378 * Let kernel threads use this to say that they
379 * allow a certain signal (since daemonize() will
380 * have disabled all of them by default).
381 */
382 int allow_signal(int sig)
383 {
384 if (!valid_signal(sig) || sig < 1)
385 return -EINVAL;
386
387 spin_lock_irq(&current->sighand->siglock);
388 sigdelset(&current->blocked, sig);
389 if (!current->mm) {
390 /* Kernel threads handle their own signals.
391 Let the signal code know it'll be handled, so
392 that they don't get converted to SIGKILL or
393 just silently dropped */
394 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
395 }
396 recalc_sigpending();
397 spin_unlock_irq(&current->sighand->siglock);
398 return 0;
399 }
400
401 EXPORT_SYMBOL(allow_signal);
402
403 int disallow_signal(int sig)
404 {
405 if (!valid_signal(sig) || sig < 1)
406 return -EINVAL;
407
408 spin_lock_irq(&current->sighand->siglock);
409 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
410 recalc_sigpending();
411 spin_unlock_irq(&current->sighand->siglock);
412 return 0;
413 }
414
415 EXPORT_SYMBOL(disallow_signal);
416
417 /*
418 * Put all the gunge required to become a kernel thread without
419 * attached user resources in one place where it belongs.
420 */
421
422 void daemonize(const char *name, ...)
423 {
424 va_list args;
425 sigset_t blocked;
426
427 va_start(args, name);
428 vsnprintf(current->comm, sizeof(current->comm), name, args);
429 va_end(args);
430
431 /*
432 * If we were started as result of loading a module, close all of the
433 * user space pages. We don't need them, and if we didn't close them
434 * they would be locked into memory.
435 */
436 exit_mm(current);
437 /*
438 * We don't want to have TIF_FREEZE set if the system-wide hibernation
439 * or suspend transition begins right now.
440 */
441 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
442
443 if (current->nsproxy != &init_nsproxy) {
444 get_nsproxy(&init_nsproxy);
445 switch_task_namespaces(current, &init_nsproxy);
446 }
447 set_special_pids(&init_struct_pid);
448 proc_clear_tty(current);
449
450 /* Block and flush all signals */
451 sigfillset(&blocked);
452 sigprocmask(SIG_BLOCK, &blocked, NULL);
453 flush_signals(current);
454
455 /* Become as one with the init task */
456
457 daemonize_fs_struct();
458 exit_files(current);
459 current->files = init_task.files;
460 atomic_inc(&current->files->count);
461
462 reparent_to_kthreadd();
463 }
464
465 EXPORT_SYMBOL(daemonize);
466
467 static void close_files(struct files_struct * files)
468 {
469 int i, j;
470 struct fdtable *fdt;
471
472 j = 0;
473
474 /*
475 * It is safe to dereference the fd table without RCU or
476 * ->file_lock because this is the last reference to the
477 * files structure.
478 */
479 fdt = files_fdtable(files);
480 for (;;) {
481 unsigned long set;
482 i = j * __NFDBITS;
483 if (i >= fdt->max_fds)
484 break;
485 set = fdt->open_fds->fds_bits[j++];
486 while (set) {
487 if (set & 1) {
488 struct file * file = xchg(&fdt->fd[i], NULL);
489 if (file) {
490 filp_close(file, files);
491 cond_resched();
492 }
493 }
494 i++;
495 set >>= 1;
496 }
497 }
498 }
499
500 struct files_struct *get_files_struct(struct task_struct *task)
501 {
502 struct files_struct *files;
503
504 task_lock(task);
505 files = task->files;
506 if (files)
507 atomic_inc(&files->count);
508 task_unlock(task);
509
510 return files;
511 }
512
513 void put_files_struct(struct files_struct *files)
514 {
515 struct fdtable *fdt;
516
517 if (atomic_dec_and_test(&files->count)) {
518 close_files(files);
519 /*
520 * Free the fd and fdset arrays if we expanded them.
521 * If the fdtable was embedded, pass files for freeing
522 * at the end of the RCU grace period. Otherwise,
523 * you can free files immediately.
524 */
525 fdt = files_fdtable(files);
526 if (fdt != &files->fdtab)
527 kmem_cache_free(files_cachep, files);
528 free_fdtable(fdt);
529 }
530 }
531
532 void reset_files_struct(struct files_struct *files)
533 {
534 struct task_struct *tsk = current;
535 struct files_struct *old;
536
537 old = tsk->files;
538 task_lock(tsk);
539 tsk->files = files;
540 task_unlock(tsk);
541 put_files_struct(old);
542 }
543
544 void exit_files(struct task_struct *tsk)
545 {
546 struct files_struct * files = tsk->files;
547
548 if (files) {
549 task_lock(tsk);
550 tsk->files = NULL;
551 task_unlock(tsk);
552 put_files_struct(files);
553 }
554 }
555
556 #ifdef CONFIG_MM_OWNER
557 /*
558 * Task p is exiting and it owned mm, lets find a new owner for it
559 */
560 static inline int
561 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
562 {
563 /*
564 * If there are other users of the mm and the owner (us) is exiting
565 * we need to find a new owner to take on the responsibility.
566 */
567 if (atomic_read(&mm->mm_users) <= 1)
568 return 0;
569 if (mm->owner != p)
570 return 0;
571 return 1;
572 }
573
574 void mm_update_next_owner(struct mm_struct *mm)
575 {
576 struct task_struct *c, *g, *p = current;
577
578 retry:
579 if (!mm_need_new_owner(mm, p))
580 return;
581
582 read_lock(&tasklist_lock);
583 /*
584 * Search in the children
585 */
586 list_for_each_entry(c, &p->children, sibling) {
587 if (c->mm == mm)
588 goto assign_new_owner;
589 }
590
591 /*
592 * Search in the siblings
593 */
594 list_for_each_entry(c, &p->parent->children, sibling) {
595 if (c->mm == mm)
596 goto assign_new_owner;
597 }
598
599 /*
600 * Search through everything else. We should not get
601 * here often
602 */
603 do_each_thread(g, c) {
604 if (c->mm == mm)
605 goto assign_new_owner;
606 } while_each_thread(g, c);
607
608 read_unlock(&tasklist_lock);
609 /*
610 * We found no owner yet mm_users > 1: this implies that we are
611 * most likely racing with swapoff (try_to_unuse()) or /proc or
612 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
613 */
614 mm->owner = NULL;
615 return;
616
617 assign_new_owner:
618 BUG_ON(c == p);
619 get_task_struct(c);
620 /*
621 * The task_lock protects c->mm from changing.
622 * We always want mm->owner->mm == mm
623 */
624 task_lock(c);
625 /*
626 * Delay read_unlock() till we have the task_lock()
627 * to ensure that c does not slip away underneath us
628 */
629 read_unlock(&tasklist_lock);
630 if (c->mm != mm) {
631 task_unlock(c);
632 put_task_struct(c);
633 goto retry;
634 }
635 mm->owner = c;
636 task_unlock(c);
637 put_task_struct(c);
638 }
639 #endif /* CONFIG_MM_OWNER */
640
641 /*
642 * Turn us into a lazy TLB process if we
643 * aren't already..
644 */
645 static void exit_mm(struct task_struct * tsk)
646 {
647 struct mm_struct *mm = tsk->mm;
648 struct core_state *core_state;
649
650 mm_release(tsk, mm);
651 if (!mm)
652 return;
653 /*
654 * Serialize with any possible pending coredump.
655 * We must hold mmap_sem around checking core_state
656 * and clearing tsk->mm. The core-inducing thread
657 * will increment ->nr_threads for each thread in the
658 * group with ->mm != NULL.
659 */
660 down_read(&mm->mmap_sem);
661 core_state = mm->core_state;
662 if (core_state) {
663 struct core_thread self;
664 up_read(&mm->mmap_sem);
665
666 self.task = tsk;
667 self.next = xchg(&core_state->dumper.next, &self);
668 /*
669 * Implies mb(), the result of xchg() must be visible
670 * to core_state->dumper.
671 */
672 if (atomic_dec_and_test(&core_state->nr_threads))
673 complete(&core_state->startup);
674
675 for (;;) {
676 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
677 if (!self.task) /* see coredump_finish() */
678 break;
679 schedule();
680 }
681 __set_task_state(tsk, TASK_RUNNING);
682 down_read(&mm->mmap_sem);
683 }
684 atomic_inc(&mm->mm_count);
685 BUG_ON(mm != tsk->active_mm);
686 /* more a memory barrier than a real lock */
687 task_lock(tsk);
688 tsk->mm = NULL;
689 up_read(&mm->mmap_sem);
690 enter_lazy_tlb(mm, current);
691 /* We don't want this task to be frozen prematurely */
692 clear_freeze_flag(tsk);
693 task_unlock(tsk);
694 mm_update_next_owner(mm);
695 mmput(mm);
696 }
697
698 /*
699 * When we die, we re-parent all our children.
700 * Try to give them to another thread in our thread
701 * group, and if no such member exists, give it to
702 * the child reaper process (ie "init") in our pid
703 * space.
704 */
705 static struct task_struct *find_new_reaper(struct task_struct *father)
706 {
707 struct pid_namespace *pid_ns = task_active_pid_ns(father);
708 struct task_struct *thread;
709
710 thread = father;
711 while_each_thread(father, thread) {
712 if (thread->flags & PF_EXITING)
713 continue;
714 if (unlikely(pid_ns->child_reaper == father))
715 pid_ns->child_reaper = thread;
716 return thread;
717 }
718
719 if (unlikely(pid_ns->child_reaper == father)) {
720 write_unlock_irq(&tasklist_lock);
721 if (unlikely(pid_ns == &init_pid_ns))
722 panic("Attempted to kill init!");
723
724 zap_pid_ns_processes(pid_ns);
725 write_lock_irq(&tasklist_lock);
726 /*
727 * We can not clear ->child_reaper or leave it alone.
728 * There may by stealth EXIT_DEAD tasks on ->children,
729 * forget_original_parent() must move them somewhere.
730 */
731 pid_ns->child_reaper = init_pid_ns.child_reaper;
732 }
733
734 return pid_ns->child_reaper;
735 }
736
737 /*
738 * Any that need to be release_task'd are put on the @dead list.
739 */
740 static void reparent_thread(struct task_struct *father, struct task_struct *p,
741 struct list_head *dead)
742 {
743 if (p->pdeath_signal)
744 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
745
746 list_move_tail(&p->sibling, &p->real_parent->children);
747
748 if (task_detached(p))
749 return;
750 /*
751 * If this is a threaded reparent there is no need to
752 * notify anyone anything has happened.
753 */
754 if (same_thread_group(p->real_parent, father))
755 return;
756
757 /* We don't want people slaying init. */
758 p->exit_signal = SIGCHLD;
759
760 /* If it has exited notify the new parent about this child's death. */
761 if (!p->ptrace &&
762 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
763 do_notify_parent(p, p->exit_signal);
764 if (task_detached(p)) {
765 p->exit_state = EXIT_DEAD;
766 list_move_tail(&p->sibling, dead);
767 }
768 }
769
770 kill_orphaned_pgrp(p, father);
771 }
772
773 static void forget_original_parent(struct task_struct *father)
774 {
775 struct task_struct *p, *n, *reaper;
776 LIST_HEAD(dead_children);
777
778 exit_ptrace(father);
779
780 write_lock_irq(&tasklist_lock);
781 reaper = find_new_reaper(father);
782
783 list_for_each_entry_safe(p, n, &father->children, sibling) {
784 p->real_parent = reaper;
785 if (p->parent == father) {
786 BUG_ON(p->ptrace);
787 p->parent = p->real_parent;
788 }
789 reparent_thread(father, p, &dead_children);
790 }
791 write_unlock_irq(&tasklist_lock);
792
793 BUG_ON(!list_empty(&father->children));
794
795 list_for_each_entry_safe(p, n, &dead_children, sibling) {
796 list_del_init(&p->sibling);
797 release_task(p);
798 }
799 }
800
801 /*
802 * Send signals to all our closest relatives so that they know
803 * to properly mourn us..
804 */
805 static void exit_notify(struct task_struct *tsk, int group_dead)
806 {
807 int signal;
808 void *cookie;
809
810 /*
811 * This does two things:
812 *
813 * A. Make init inherit all the child processes
814 * B. Check to see if any process groups have become orphaned
815 * as a result of our exiting, and if they have any stopped
816 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
817 */
818 forget_original_parent(tsk);
819 exit_task_namespaces(tsk);
820
821 write_lock_irq(&tasklist_lock);
822 if (group_dead)
823 kill_orphaned_pgrp(tsk->group_leader, NULL);
824
825 /* Let father know we died
826 *
827 * Thread signals are configurable, but you aren't going to use
828 * that to send signals to arbitary processes.
829 * That stops right now.
830 *
831 * If the parent exec id doesn't match the exec id we saved
832 * when we started then we know the parent has changed security
833 * domain.
834 *
835 * If our self_exec id doesn't match our parent_exec_id then
836 * we have changed execution domain as these two values started
837 * the same after a fork.
838 */
839 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
840 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
841 tsk->self_exec_id != tsk->parent_exec_id))
842 tsk->exit_signal = SIGCHLD;
843
844 signal = tracehook_notify_death(tsk, &cookie, group_dead);
845 if (signal >= 0)
846 signal = do_notify_parent(tsk, signal);
847
848 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
849
850 /* mt-exec, de_thread() is waiting for us */
851 if (thread_group_leader(tsk) &&
852 tsk->signal->group_exit_task &&
853 tsk->signal->notify_count < 0)
854 wake_up_process(tsk->signal->group_exit_task);
855
856 write_unlock_irq(&tasklist_lock);
857
858 tracehook_report_death(tsk, signal, cookie, group_dead);
859
860 /* If the process is dead, release it - nobody will wait for it */
861 if (signal == DEATH_REAP)
862 release_task(tsk);
863 }
864
865 #ifdef CONFIG_DEBUG_STACK_USAGE
866 static void check_stack_usage(void)
867 {
868 static DEFINE_SPINLOCK(low_water_lock);
869 static int lowest_to_date = THREAD_SIZE;
870 unsigned long free;
871
872 free = stack_not_used(current);
873
874 if (free >= lowest_to_date)
875 return;
876
877 spin_lock(&low_water_lock);
878 if (free < lowest_to_date) {
879 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
880 "left\n",
881 current->comm, free);
882 lowest_to_date = free;
883 }
884 spin_unlock(&low_water_lock);
885 }
886 #else
887 static inline void check_stack_usage(void) {}
888 #endif
889
890 NORET_TYPE void do_exit(long code)
891 {
892 struct task_struct *tsk = current;
893 int group_dead;
894
895 profile_task_exit(tsk);
896
897 WARN_ON(atomic_read(&tsk->fs_excl));
898
899 if (unlikely(in_interrupt()))
900 panic("Aiee, killing interrupt handler!");
901 if (unlikely(!tsk->pid))
902 panic("Attempted to kill the idle task!");
903
904 tracehook_report_exit(&code);
905
906 /*
907 * We're taking recursive faults here in do_exit. Safest is to just
908 * leave this task alone and wait for reboot.
909 */
910 if (unlikely(tsk->flags & PF_EXITING)) {
911 printk(KERN_ALERT
912 "Fixing recursive fault but reboot is needed!\n");
913 /*
914 * We can do this unlocked here. The futex code uses
915 * this flag just to verify whether the pi state
916 * cleanup has been done or not. In the worst case it
917 * loops once more. We pretend that the cleanup was
918 * done as there is no way to return. Either the
919 * OWNER_DIED bit is set by now or we push the blocked
920 * task into the wait for ever nirwana as well.
921 */
922 tsk->flags |= PF_EXITPIDONE;
923 set_current_state(TASK_UNINTERRUPTIBLE);
924 schedule();
925 }
926
927 exit_irq_thread();
928
929 exit_signals(tsk); /* sets PF_EXITING */
930 /*
931 * tsk->flags are checked in the futex code to protect against
932 * an exiting task cleaning up the robust pi futexes.
933 */
934 smp_mb();
935 spin_unlock_wait(&tsk->pi_lock);
936
937 if (unlikely(in_atomic()))
938 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
939 current->comm, task_pid_nr(current),
940 preempt_count());
941
942 acct_update_integrals(tsk);
943
944 group_dead = atomic_dec_and_test(&tsk->signal->live);
945 if (group_dead) {
946 hrtimer_cancel(&tsk->signal->real_timer);
947 exit_itimers(tsk->signal);
948 }
949 acct_collect(code, group_dead);
950 if (group_dead)
951 tty_audit_exit();
952 if (unlikely(tsk->audit_context))
953 audit_free(tsk);
954
955 tsk->exit_code = code;
956 taskstats_exit(tsk, group_dead);
957
958 exit_mm(tsk);
959
960 if (group_dead)
961 acct_process();
962 trace_sched_process_exit(tsk);
963
964 exit_sem(tsk);
965 exit_files(tsk);
966 exit_fs(tsk);
967 check_stack_usage();
968 exit_thread();
969 cgroup_exit(tsk, 1);
970
971 if (group_dead && tsk->signal->leader)
972 disassociate_ctty(1);
973
974 module_put(task_thread_info(tsk)->exec_domain->module);
975 if (tsk->binfmt)
976 module_put(tsk->binfmt->module);
977
978 proc_exit_connector(tsk);
979
980 /*
981 * Flush inherited counters to the parent - before the parent
982 * gets woken up by child-exit notifications.
983 */
984 perf_counter_exit_task(tsk);
985
986 exit_notify(tsk, group_dead);
987 #ifdef CONFIG_NUMA
988 mpol_put(tsk->mempolicy);
989 tsk->mempolicy = NULL;
990 #endif
991 #ifdef CONFIG_FUTEX
992 if (unlikely(!list_empty(&tsk->pi_state_list)))
993 exit_pi_state_list(tsk);
994 if (unlikely(current->pi_state_cache))
995 kfree(current->pi_state_cache);
996 #endif
997 /*
998 * Make sure we are holding no locks:
999 */
1000 debug_check_no_locks_held(tsk);
1001 /*
1002 * We can do this unlocked here. The futex code uses this flag
1003 * just to verify whether the pi state cleanup has been done
1004 * or not. In the worst case it loops once more.
1005 */
1006 tsk->flags |= PF_EXITPIDONE;
1007
1008 if (tsk->io_context)
1009 exit_io_context();
1010
1011 if (tsk->splice_pipe)
1012 __free_pipe_info(tsk->splice_pipe);
1013
1014 preempt_disable();
1015 /* causes final put_task_struct in finish_task_switch(). */
1016 tsk->state = TASK_DEAD;
1017 schedule();
1018 BUG();
1019 /* Avoid "noreturn function does return". */
1020 for (;;)
1021 cpu_relax(); /* For when BUG is null */
1022 }
1023
1024 EXPORT_SYMBOL_GPL(do_exit);
1025
1026 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1027 {
1028 if (comp)
1029 complete(comp);
1030
1031 do_exit(code);
1032 }
1033
1034 EXPORT_SYMBOL(complete_and_exit);
1035
1036 SYSCALL_DEFINE1(exit, int, error_code)
1037 {
1038 do_exit((error_code&0xff)<<8);
1039 }
1040
1041 /*
1042 * Take down every thread in the group. This is called by fatal signals
1043 * as well as by sys_exit_group (below).
1044 */
1045 NORET_TYPE void
1046 do_group_exit(int exit_code)
1047 {
1048 struct signal_struct *sig = current->signal;
1049
1050 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1051
1052 if (signal_group_exit(sig))
1053 exit_code = sig->group_exit_code;
1054 else if (!thread_group_empty(current)) {
1055 struct sighand_struct *const sighand = current->sighand;
1056 spin_lock_irq(&sighand->siglock);
1057 if (signal_group_exit(sig))
1058 /* Another thread got here before we took the lock. */
1059 exit_code = sig->group_exit_code;
1060 else {
1061 sig->group_exit_code = exit_code;
1062 sig->flags = SIGNAL_GROUP_EXIT;
1063 zap_other_threads(current);
1064 }
1065 spin_unlock_irq(&sighand->siglock);
1066 }
1067
1068 do_exit(exit_code);
1069 /* NOTREACHED */
1070 }
1071
1072 /*
1073 * this kills every thread in the thread group. Note that any externally
1074 * wait4()-ing process will get the correct exit code - even if this
1075 * thread is not the thread group leader.
1076 */
1077 SYSCALL_DEFINE1(exit_group, int, error_code)
1078 {
1079 do_group_exit((error_code & 0xff) << 8);
1080 /* NOTREACHED */
1081 return 0;
1082 }
1083
1084 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1085 {
1086 struct pid *pid = NULL;
1087 if (type == PIDTYPE_PID)
1088 pid = task->pids[type].pid;
1089 else if (type < PIDTYPE_MAX)
1090 pid = task->group_leader->pids[type].pid;
1091 return pid;
1092 }
1093
1094 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1095 struct task_struct *p)
1096 {
1097 int err;
1098
1099 if (type < PIDTYPE_MAX) {
1100 if (task_pid_type(p, type) != pid)
1101 return 0;
1102 }
1103
1104 /* Wait for all children (clone and not) if __WALL is set;
1105 * otherwise, wait for clone children *only* if __WCLONE is
1106 * set; otherwise, wait for non-clone children *only*. (Note:
1107 * A "clone" child here is one that reports to its parent
1108 * using a signal other than SIGCHLD.) */
1109 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1110 && !(options & __WALL))
1111 return 0;
1112
1113 err = security_task_wait(p);
1114 if (err)
1115 return err;
1116
1117 return 1;
1118 }
1119
1120 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1121 int why, int status,
1122 struct siginfo __user *infop,
1123 struct rusage __user *rusagep)
1124 {
1125 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1126
1127 put_task_struct(p);
1128 if (!retval)
1129 retval = put_user(SIGCHLD, &infop->si_signo);
1130 if (!retval)
1131 retval = put_user(0, &infop->si_errno);
1132 if (!retval)
1133 retval = put_user((short)why, &infop->si_code);
1134 if (!retval)
1135 retval = put_user(pid, &infop->si_pid);
1136 if (!retval)
1137 retval = put_user(uid, &infop->si_uid);
1138 if (!retval)
1139 retval = put_user(status, &infop->si_status);
1140 if (!retval)
1141 retval = pid;
1142 return retval;
1143 }
1144
1145 /*
1146 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1147 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1148 * the lock and this task is uninteresting. If we return nonzero, we have
1149 * released the lock and the system call should return.
1150 */
1151 static int wait_task_zombie(struct task_struct *p, int options,
1152 struct siginfo __user *infop,
1153 int __user *stat_addr, struct rusage __user *ru)
1154 {
1155 unsigned long state;
1156 int retval, status, traced;
1157 pid_t pid = task_pid_vnr(p);
1158 uid_t uid = __task_cred(p)->uid;
1159
1160 if (!likely(options & WEXITED))
1161 return 0;
1162
1163 if (unlikely(options & WNOWAIT)) {
1164 int exit_code = p->exit_code;
1165 int why, status;
1166
1167 get_task_struct(p);
1168 read_unlock(&tasklist_lock);
1169 if ((exit_code & 0x7f) == 0) {
1170 why = CLD_EXITED;
1171 status = exit_code >> 8;
1172 } else {
1173 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1174 status = exit_code & 0x7f;
1175 }
1176 return wait_noreap_copyout(p, pid, uid, why,
1177 status, infop, ru);
1178 }
1179
1180 /*
1181 * Try to move the task's state to DEAD
1182 * only one thread is allowed to do this:
1183 */
1184 state = xchg(&p->exit_state, EXIT_DEAD);
1185 if (state != EXIT_ZOMBIE) {
1186 BUG_ON(state != EXIT_DEAD);
1187 return 0;
1188 }
1189
1190 traced = ptrace_reparented(p);
1191
1192 if (likely(!traced)) {
1193 struct signal_struct *psig;
1194 struct signal_struct *sig;
1195 struct task_cputime cputime;
1196
1197 /*
1198 * The resource counters for the group leader are in its
1199 * own task_struct. Those for dead threads in the group
1200 * are in its signal_struct, as are those for the child
1201 * processes it has previously reaped. All these
1202 * accumulate in the parent's signal_struct c* fields.
1203 *
1204 * We don't bother to take a lock here to protect these
1205 * p->signal fields, because they are only touched by
1206 * __exit_signal, which runs with tasklist_lock
1207 * write-locked anyway, and so is excluded here. We do
1208 * need to protect the access to p->parent->signal fields,
1209 * as other threads in the parent group can be right
1210 * here reaping other children at the same time.
1211 *
1212 * We use thread_group_cputime() to get times for the thread
1213 * group, which consolidates times for all threads in the
1214 * group including the group leader.
1215 */
1216 thread_group_cputime(p, &cputime);
1217 spin_lock_irq(&p->parent->sighand->siglock);
1218 psig = p->parent->signal;
1219 sig = p->signal;
1220 psig->cutime =
1221 cputime_add(psig->cutime,
1222 cputime_add(cputime.utime,
1223 sig->cutime));
1224 psig->cstime =
1225 cputime_add(psig->cstime,
1226 cputime_add(cputime.stime,
1227 sig->cstime));
1228 psig->cgtime =
1229 cputime_add(psig->cgtime,
1230 cputime_add(p->gtime,
1231 cputime_add(sig->gtime,
1232 sig->cgtime)));
1233 psig->cmin_flt +=
1234 p->min_flt + sig->min_flt + sig->cmin_flt;
1235 psig->cmaj_flt +=
1236 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1237 psig->cnvcsw +=
1238 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1239 psig->cnivcsw +=
1240 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1241 psig->cinblock +=
1242 task_io_get_inblock(p) +
1243 sig->inblock + sig->cinblock;
1244 psig->coublock +=
1245 task_io_get_oublock(p) +
1246 sig->oublock + sig->coublock;
1247 task_io_accounting_add(&psig->ioac, &p->ioac);
1248 task_io_accounting_add(&psig->ioac, &sig->ioac);
1249 spin_unlock_irq(&p->parent->sighand->siglock);
1250 }
1251
1252 /*
1253 * Now we are sure this task is interesting, and no other
1254 * thread can reap it because we set its state to EXIT_DEAD.
1255 */
1256 read_unlock(&tasklist_lock);
1257
1258 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1259 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1260 ? p->signal->group_exit_code : p->exit_code;
1261 if (!retval && stat_addr)
1262 retval = put_user(status, stat_addr);
1263 if (!retval && infop)
1264 retval = put_user(SIGCHLD, &infop->si_signo);
1265 if (!retval && infop)
1266 retval = put_user(0, &infop->si_errno);
1267 if (!retval && infop) {
1268 int why;
1269
1270 if ((status & 0x7f) == 0) {
1271 why = CLD_EXITED;
1272 status >>= 8;
1273 } else {
1274 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1275 status &= 0x7f;
1276 }
1277 retval = put_user((short)why, &infop->si_code);
1278 if (!retval)
1279 retval = put_user(status, &infop->si_status);
1280 }
1281 if (!retval && infop)
1282 retval = put_user(pid, &infop->si_pid);
1283 if (!retval && infop)
1284 retval = put_user(uid, &infop->si_uid);
1285 if (!retval)
1286 retval = pid;
1287
1288 if (traced) {
1289 write_lock_irq(&tasklist_lock);
1290 /* We dropped tasklist, ptracer could die and untrace */
1291 ptrace_unlink(p);
1292 /*
1293 * If this is not a detached task, notify the parent.
1294 * If it's still not detached after that, don't release
1295 * it now.
1296 */
1297 if (!task_detached(p)) {
1298 do_notify_parent(p, p->exit_signal);
1299 if (!task_detached(p)) {
1300 p->exit_state = EXIT_ZOMBIE;
1301 p = NULL;
1302 }
1303 }
1304 write_unlock_irq(&tasklist_lock);
1305 }
1306 if (p != NULL)
1307 release_task(p);
1308
1309 return retval;
1310 }
1311
1312 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1313 {
1314 if (ptrace) {
1315 if (task_is_stopped_or_traced(p))
1316 return &p->exit_code;
1317 } else {
1318 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1319 return &p->signal->group_exit_code;
1320 }
1321 return NULL;
1322 }
1323
1324 /*
1325 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1326 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1327 * the lock and this task is uninteresting. If we return nonzero, we have
1328 * released the lock and the system call should return.
1329 */
1330 static int wait_task_stopped(int ptrace, struct task_struct *p,
1331 int options, struct siginfo __user *infop,
1332 int __user *stat_addr, struct rusage __user *ru)
1333 {
1334 int retval, exit_code, *p_code, why;
1335 uid_t uid = 0; /* unneeded, required by compiler */
1336 pid_t pid;
1337
1338 if (!(options & WUNTRACED))
1339 return 0;
1340
1341 exit_code = 0;
1342 spin_lock_irq(&p->sighand->siglock);
1343
1344 p_code = task_stopped_code(p, ptrace);
1345 if (unlikely(!p_code))
1346 goto unlock_sig;
1347
1348 exit_code = *p_code;
1349 if (!exit_code)
1350 goto unlock_sig;
1351
1352 if (!unlikely(options & WNOWAIT))
1353 *p_code = 0;
1354
1355 /* don't need the RCU readlock here as we're holding a spinlock */
1356 uid = __task_cred(p)->uid;
1357 unlock_sig:
1358 spin_unlock_irq(&p->sighand->siglock);
1359 if (!exit_code)
1360 return 0;
1361
1362 /*
1363 * Now we are pretty sure this task is interesting.
1364 * Make sure it doesn't get reaped out from under us while we
1365 * give up the lock and then examine it below. We don't want to
1366 * keep holding onto the tasklist_lock while we call getrusage and
1367 * possibly take page faults for user memory.
1368 */
1369 get_task_struct(p);
1370 pid = task_pid_vnr(p);
1371 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1372 read_unlock(&tasklist_lock);
1373
1374 if (unlikely(options & WNOWAIT))
1375 return wait_noreap_copyout(p, pid, uid,
1376 why, exit_code,
1377 infop, ru);
1378
1379 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1380 if (!retval && stat_addr)
1381 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1382 if (!retval && infop)
1383 retval = put_user(SIGCHLD, &infop->si_signo);
1384 if (!retval && infop)
1385 retval = put_user(0, &infop->si_errno);
1386 if (!retval && infop)
1387 retval = put_user((short)why, &infop->si_code);
1388 if (!retval && infop)
1389 retval = put_user(exit_code, &infop->si_status);
1390 if (!retval && infop)
1391 retval = put_user(pid, &infop->si_pid);
1392 if (!retval && infop)
1393 retval = put_user(uid, &infop->si_uid);
1394 if (!retval)
1395 retval = pid;
1396 put_task_struct(p);
1397
1398 BUG_ON(!retval);
1399 return retval;
1400 }
1401
1402 /*
1403 * Handle do_wait work for one task in a live, non-stopped state.
1404 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1405 * the lock and this task is uninteresting. If we return nonzero, we have
1406 * released the lock and the system call should return.
1407 */
1408 static int wait_task_continued(struct task_struct *p, int options,
1409 struct siginfo __user *infop,
1410 int __user *stat_addr, struct rusage __user *ru)
1411 {
1412 int retval;
1413 pid_t pid;
1414 uid_t uid;
1415
1416 if (!unlikely(options & WCONTINUED))
1417 return 0;
1418
1419 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1420 return 0;
1421
1422 spin_lock_irq(&p->sighand->siglock);
1423 /* Re-check with the lock held. */
1424 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1425 spin_unlock_irq(&p->sighand->siglock);
1426 return 0;
1427 }
1428 if (!unlikely(options & WNOWAIT))
1429 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1430 uid = __task_cred(p)->uid;
1431 spin_unlock_irq(&p->sighand->siglock);
1432
1433 pid = task_pid_vnr(p);
1434 get_task_struct(p);
1435 read_unlock(&tasklist_lock);
1436
1437 if (!infop) {
1438 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1439 put_task_struct(p);
1440 if (!retval && stat_addr)
1441 retval = put_user(0xffff, stat_addr);
1442 if (!retval)
1443 retval = pid;
1444 } else {
1445 retval = wait_noreap_copyout(p, pid, uid,
1446 CLD_CONTINUED, SIGCONT,
1447 infop, ru);
1448 BUG_ON(retval == 0);
1449 }
1450
1451 return retval;
1452 }
1453
1454 /*
1455 * Consider @p for a wait by @parent.
1456 *
1457 * -ECHILD should be in *@notask_error before the first call.
1458 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1459 * Returns zero if the search for a child should continue;
1460 * then *@notask_error is 0 if @p is an eligible child,
1461 * or another error from security_task_wait(), or still -ECHILD.
1462 */
1463 static int wait_consider_task(struct task_struct *parent, int ptrace,
1464 struct task_struct *p, int *notask_error,
1465 enum pid_type type, struct pid *pid, int options,
1466 struct siginfo __user *infop,
1467 int __user *stat_addr, struct rusage __user *ru)
1468 {
1469 int ret = eligible_child(type, pid, options, p);
1470 if (!ret)
1471 return ret;
1472
1473 if (unlikely(ret < 0)) {
1474 /*
1475 * If we have not yet seen any eligible child,
1476 * then let this error code replace -ECHILD.
1477 * A permission error will give the user a clue
1478 * to look for security policy problems, rather
1479 * than for mysterious wait bugs.
1480 */
1481 if (*notask_error)
1482 *notask_error = ret;
1483 return 0;
1484 }
1485
1486 if (likely(!ptrace) && unlikely(p->ptrace)) {
1487 /*
1488 * This child is hidden by ptrace.
1489 * We aren't allowed to see it now, but eventually we will.
1490 */
1491 *notask_error = 0;
1492 return 0;
1493 }
1494
1495 if (p->exit_state == EXIT_DEAD)
1496 return 0;
1497
1498 /*
1499 * We don't reap group leaders with subthreads.
1500 */
1501 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1502 return wait_task_zombie(p, options, infop, stat_addr, ru);
1503
1504 /*
1505 * It's stopped or running now, so it might
1506 * later continue, exit, or stop again.
1507 */
1508 *notask_error = 0;
1509
1510 if (task_stopped_code(p, ptrace))
1511 return wait_task_stopped(ptrace, p, options,
1512 infop, stat_addr, ru);
1513
1514 return wait_task_continued(p, options, infop, stat_addr, ru);
1515 }
1516
1517 /*
1518 * Do the work of do_wait() for one thread in the group, @tsk.
1519 *
1520 * -ECHILD should be in *@notask_error before the first call.
1521 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1522 * Returns zero if the search for a child should continue; then
1523 * *@notask_error is 0 if there were any eligible children,
1524 * or another error from security_task_wait(), or still -ECHILD.
1525 */
1526 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1527 enum pid_type type, struct pid *pid, int options,
1528 struct siginfo __user *infop, int __user *stat_addr,
1529 struct rusage __user *ru)
1530 {
1531 struct task_struct *p;
1532
1533 list_for_each_entry(p, &tsk->children, sibling) {
1534 /*
1535 * Do not consider detached threads.
1536 */
1537 if (!task_detached(p)) {
1538 int ret = wait_consider_task(tsk, 0, p, notask_error,
1539 type, pid, options,
1540 infop, stat_addr, ru);
1541 if (ret)
1542 return ret;
1543 }
1544 }
1545
1546 return 0;
1547 }
1548
1549 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1550 enum pid_type type, struct pid *pid, int options,
1551 struct siginfo __user *infop, int __user *stat_addr,
1552 struct rusage __user *ru)
1553 {
1554 struct task_struct *p;
1555
1556 /*
1557 * Traditionally we see ptrace'd stopped tasks regardless of options.
1558 */
1559 options |= WUNTRACED;
1560
1561 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1562 int ret = wait_consider_task(tsk, 1, p, notask_error,
1563 type, pid, options,
1564 infop, stat_addr, ru);
1565 if (ret)
1566 return ret;
1567 }
1568
1569 return 0;
1570 }
1571
1572 static long do_wait(enum pid_type type, struct pid *pid, int options,
1573 struct siginfo __user *infop, int __user *stat_addr,
1574 struct rusage __user *ru)
1575 {
1576 DECLARE_WAITQUEUE(wait, current);
1577 struct task_struct *tsk;
1578 int retval;
1579
1580 trace_sched_process_wait(pid);
1581
1582 add_wait_queue(&current->signal->wait_chldexit,&wait);
1583 repeat:
1584 /*
1585 * If there is nothing that can match our critiera just get out.
1586 * We will clear @retval to zero if we see any child that might later
1587 * match our criteria, even if we are not able to reap it yet.
1588 */
1589 retval = -ECHILD;
1590 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1591 goto end;
1592
1593 current->state = TASK_INTERRUPTIBLE;
1594 read_lock(&tasklist_lock);
1595 tsk = current;
1596 do {
1597 int tsk_result = do_wait_thread(tsk, &retval,
1598 type, pid, options,
1599 infop, stat_addr, ru);
1600 if (!tsk_result)
1601 tsk_result = ptrace_do_wait(tsk, &retval,
1602 type, pid, options,
1603 infop, stat_addr, ru);
1604 if (tsk_result) {
1605 /*
1606 * tasklist_lock is unlocked and we have a final result.
1607 */
1608 retval = tsk_result;
1609 goto end;
1610 }
1611
1612 if (options & __WNOTHREAD)
1613 break;
1614 tsk = next_thread(tsk);
1615 BUG_ON(tsk->signal != current->signal);
1616 } while (tsk != current);
1617 read_unlock(&tasklist_lock);
1618
1619 if (!retval && !(options & WNOHANG)) {
1620 retval = -ERESTARTSYS;
1621 if (!signal_pending(current)) {
1622 schedule();
1623 goto repeat;
1624 }
1625 }
1626
1627 end:
1628 current->state = TASK_RUNNING;
1629 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1630 if (infop) {
1631 if (retval > 0)
1632 retval = 0;
1633 else {
1634 /*
1635 * For a WNOHANG return, clear out all the fields
1636 * we would set so the user can easily tell the
1637 * difference.
1638 */
1639 if (!retval)
1640 retval = put_user(0, &infop->si_signo);
1641 if (!retval)
1642 retval = put_user(0, &infop->si_errno);
1643 if (!retval)
1644 retval = put_user(0, &infop->si_code);
1645 if (!retval)
1646 retval = put_user(0, &infop->si_pid);
1647 if (!retval)
1648 retval = put_user(0, &infop->si_uid);
1649 if (!retval)
1650 retval = put_user(0, &infop->si_status);
1651 }
1652 }
1653 return retval;
1654 }
1655
1656 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1657 infop, int, options, struct rusage __user *, ru)
1658 {
1659 struct pid *pid = NULL;
1660 enum pid_type type;
1661 long ret;
1662
1663 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1664 return -EINVAL;
1665 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1666 return -EINVAL;
1667
1668 switch (which) {
1669 case P_ALL:
1670 type = PIDTYPE_MAX;
1671 break;
1672 case P_PID:
1673 type = PIDTYPE_PID;
1674 if (upid <= 0)
1675 return -EINVAL;
1676 break;
1677 case P_PGID:
1678 type = PIDTYPE_PGID;
1679 if (upid <= 0)
1680 return -EINVAL;
1681 break;
1682 default:
1683 return -EINVAL;
1684 }
1685
1686 if (type < PIDTYPE_MAX)
1687 pid = find_get_pid(upid);
1688 ret = do_wait(type, pid, options, infop, NULL, ru);
1689 put_pid(pid);
1690
1691 /* avoid REGPARM breakage on x86: */
1692 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1693 return ret;
1694 }
1695
1696 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1697 int, options, struct rusage __user *, ru)
1698 {
1699 struct pid *pid = NULL;
1700 enum pid_type type;
1701 long ret;
1702
1703 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1704 __WNOTHREAD|__WCLONE|__WALL))
1705 return -EINVAL;
1706
1707 if (upid == -1)
1708 type = PIDTYPE_MAX;
1709 else if (upid < 0) {
1710 type = PIDTYPE_PGID;
1711 pid = find_get_pid(-upid);
1712 } else if (upid == 0) {
1713 type = PIDTYPE_PGID;
1714 pid = get_task_pid(current, PIDTYPE_PGID);
1715 } else /* upid > 0 */ {
1716 type = PIDTYPE_PID;
1717 pid = find_get_pid(upid);
1718 }
1719
1720 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1721 put_pid(pid);
1722
1723 /* avoid REGPARM breakage on x86: */
1724 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1725 return ret;
1726 }
1727
1728 #ifdef __ARCH_WANT_SYS_WAITPID
1729
1730 /*
1731 * sys_waitpid() remains for compatibility. waitpid() should be
1732 * implemented by calling sys_wait4() from libc.a.
1733 */
1734 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735 {
1736 return sys_wait4(pid, stat_addr, options, NULL);
1737 }
1738
1739 #endif