]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/exit.c
ptrace: kill trivial tracehooks
[mirror_ubuntu-zesty-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
73 }
74 list_del_rcu(&p->thread_group);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
91
92 posix_cpu_timers_exit(tsk);
93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty;
96 sig->tty = NULL;
97 } else {
98 /*
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
102 */
103 if (unlikely(has_group_leader_pid(tsk)))
104 posix_cpu_timers_exit_group(tsk);
105
106 /*
107 * If there is any task waiting for the group exit
108 * then notify it:
109 */
110 if (sig->notify_count > 0 && !--sig->notify_count)
111 wake_up_process(sig->group_exit_task);
112
113 if (tsk == sig->curr_target)
114 sig->curr_target = next_thread(tsk);
115 /*
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
124 */
125 sig->utime = cputime_add(sig->utime, tsk->utime);
126 sig->stime = cputime_add(sig->stime, tsk->stime);
127 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 sig->min_flt += tsk->min_flt;
129 sig->maj_flt += tsk->maj_flt;
130 sig->nvcsw += tsk->nvcsw;
131 sig->nivcsw += tsk->nivcsw;
132 sig->inblock += task_io_get_inblock(tsk);
133 sig->oublock += task_io_get_oublock(tsk);
134 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
136 }
137
138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead);
140
141 /*
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
144 */
145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
148
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty);
154 }
155 }
156
157 static void delayed_put_task_struct(struct rcu_head *rhp)
158 {
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
160
161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
164 }
165
166
167 void release_task(struct task_struct * p)
168 {
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials. But shut RCU-lockdep up */
174 rcu_read_lock();
175 atomic_dec(&__task_cred(p)->user->processes);
176 rcu_read_unlock();
177
178 proc_flush_task(p);
179
180 write_lock_irq(&tasklist_lock);
181 ptrace_release_task(p);
182 __exit_signal(p);
183
184 /*
185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.)
188 */
189 zap_leader = 0;
190 leader = p->group_leader;
191 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
192 BUG_ON(task_detached(leader));
193 do_notify_parent(leader, leader->exit_signal);
194 /*
195 * If we were the last child thread and the leader has
196 * exited already, and the leader's parent ignores SIGCHLD,
197 * then we are the one who should release the leader.
198 *
199 * do_notify_parent() will have marked it self-reaping in
200 * that case.
201 */
202 zap_leader = task_detached(leader);
203
204 /*
205 * This maintains the invariant that release_task()
206 * only runs on a task in EXIT_DEAD, just for sanity.
207 */
208 if (zap_leader)
209 leader->exit_state = EXIT_DEAD;
210 }
211
212 write_unlock_irq(&tasklist_lock);
213 release_thread(p);
214 call_rcu(&p->rcu, delayed_put_task_struct);
215
216 p = leader;
217 if (unlikely(zap_leader))
218 goto repeat;
219 }
220
221 /*
222 * This checks not only the pgrp, but falls back on the pid if no
223 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
224 * without this...
225 *
226 * The caller must hold rcu lock or the tasklist lock.
227 */
228 struct pid *session_of_pgrp(struct pid *pgrp)
229 {
230 struct task_struct *p;
231 struct pid *sid = NULL;
232
233 p = pid_task(pgrp, PIDTYPE_PGID);
234 if (p == NULL)
235 p = pid_task(pgrp, PIDTYPE_PID);
236 if (p != NULL)
237 sid = task_session(p);
238
239 return sid;
240 }
241
242 /*
243 * Determine if a process group is "orphaned", according to the POSIX
244 * definition in 2.2.2.52. Orphaned process groups are not to be affected
245 * by terminal-generated stop signals. Newly orphaned process groups are
246 * to receive a SIGHUP and a SIGCONT.
247 *
248 * "I ask you, have you ever known what it is to be an orphan?"
249 */
250 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
251 {
252 struct task_struct *p;
253
254 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
255 if ((p == ignored_task) ||
256 (p->exit_state && thread_group_empty(p)) ||
257 is_global_init(p->real_parent))
258 continue;
259
260 if (task_pgrp(p->real_parent) != pgrp &&
261 task_session(p->real_parent) == task_session(p))
262 return 0;
263 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
264
265 return 1;
266 }
267
268 int is_current_pgrp_orphaned(void)
269 {
270 int retval;
271
272 read_lock(&tasklist_lock);
273 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
274 read_unlock(&tasklist_lock);
275
276 return retval;
277 }
278
279 static int has_stopped_jobs(struct pid *pgrp)
280 {
281 int retval = 0;
282 struct task_struct *p;
283
284 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
285 if (!task_is_stopped(p))
286 continue;
287 retval = 1;
288 break;
289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
290 return retval;
291 }
292
293 /*
294 * Check to see if any process groups have become orphaned as
295 * a result of our exiting, and if they have any stopped jobs,
296 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
297 */
298 static void
299 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
300 {
301 struct pid *pgrp = task_pgrp(tsk);
302 struct task_struct *ignored_task = tsk;
303
304 if (!parent)
305 /* exit: our father is in a different pgrp than
306 * we are and we were the only connection outside.
307 */
308 parent = tsk->real_parent;
309 else
310 /* reparent: our child is in a different pgrp than
311 * we are, and it was the only connection outside.
312 */
313 ignored_task = NULL;
314
315 if (task_pgrp(parent) != pgrp &&
316 task_session(parent) == task_session(tsk) &&
317 will_become_orphaned_pgrp(pgrp, ignored_task) &&
318 has_stopped_jobs(pgrp)) {
319 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
320 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
321 }
322 }
323
324 /**
325 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
326 *
327 * If a kernel thread is launched as a result of a system call, or if
328 * it ever exits, it should generally reparent itself to kthreadd so it
329 * isn't in the way of other processes and is correctly cleaned up on exit.
330 *
331 * The various task state such as scheduling policy and priority may have
332 * been inherited from a user process, so we reset them to sane values here.
333 *
334 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
335 */
336 static void reparent_to_kthreadd(void)
337 {
338 write_lock_irq(&tasklist_lock);
339
340 ptrace_unlink(current);
341 /* Reparent to init */
342 current->real_parent = current->parent = kthreadd_task;
343 list_move_tail(&current->sibling, &current->real_parent->children);
344
345 /* Set the exit signal to SIGCHLD so we signal init on exit */
346 current->exit_signal = SIGCHLD;
347
348 if (task_nice(current) < 0)
349 set_user_nice(current, 0);
350 /* cpus_allowed? */
351 /* rt_priority? */
352 /* signals? */
353 memcpy(current->signal->rlim, init_task.signal->rlim,
354 sizeof(current->signal->rlim));
355
356 atomic_inc(&init_cred.usage);
357 commit_creds(&init_cred);
358 write_unlock_irq(&tasklist_lock);
359 }
360
361 void __set_special_pids(struct pid *pid)
362 {
363 struct task_struct *curr = current->group_leader;
364
365 if (task_session(curr) != pid)
366 change_pid(curr, PIDTYPE_SID, pid);
367
368 if (task_pgrp(curr) != pid)
369 change_pid(curr, PIDTYPE_PGID, pid);
370 }
371
372 static void set_special_pids(struct pid *pid)
373 {
374 write_lock_irq(&tasklist_lock);
375 __set_special_pids(pid);
376 write_unlock_irq(&tasklist_lock);
377 }
378
379 /*
380 * Let kernel threads use this to say that they allow a certain signal.
381 * Must not be used if kthread was cloned with CLONE_SIGHAND.
382 */
383 int allow_signal(int sig)
384 {
385 if (!valid_signal(sig) || sig < 1)
386 return -EINVAL;
387
388 spin_lock_irq(&current->sighand->siglock);
389 /* This is only needed for daemonize()'ed kthreads */
390 sigdelset(&current->blocked, sig);
391 /*
392 * Kernel threads handle their own signals. Let the signal code
393 * know it'll be handled, so that they don't get converted to
394 * SIGKILL or just silently dropped.
395 */
396 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
397 recalc_sigpending();
398 spin_unlock_irq(&current->sighand->siglock);
399 return 0;
400 }
401
402 EXPORT_SYMBOL(allow_signal);
403
404 int disallow_signal(int sig)
405 {
406 if (!valid_signal(sig) || sig < 1)
407 return -EINVAL;
408
409 spin_lock_irq(&current->sighand->siglock);
410 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
411 recalc_sigpending();
412 spin_unlock_irq(&current->sighand->siglock);
413 return 0;
414 }
415
416 EXPORT_SYMBOL(disallow_signal);
417
418 /*
419 * Put all the gunge required to become a kernel thread without
420 * attached user resources in one place where it belongs.
421 */
422
423 void daemonize(const char *name, ...)
424 {
425 va_list args;
426 sigset_t blocked;
427
428 va_start(args, name);
429 vsnprintf(current->comm, sizeof(current->comm), name, args);
430 va_end(args);
431
432 /*
433 * If we were started as result of loading a module, close all of the
434 * user space pages. We don't need them, and if we didn't close them
435 * they would be locked into memory.
436 */
437 exit_mm(current);
438 /*
439 * We don't want to have TIF_FREEZE set if the system-wide hibernation
440 * or suspend transition begins right now.
441 */
442 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
443
444 if (current->nsproxy != &init_nsproxy) {
445 get_nsproxy(&init_nsproxy);
446 switch_task_namespaces(current, &init_nsproxy);
447 }
448 set_special_pids(&init_struct_pid);
449 proc_clear_tty(current);
450
451 /* Block and flush all signals */
452 sigfillset(&blocked);
453 sigprocmask(SIG_BLOCK, &blocked, NULL);
454 flush_signals(current);
455
456 /* Become as one with the init task */
457
458 daemonize_fs_struct();
459 exit_files(current);
460 current->files = init_task.files;
461 atomic_inc(&current->files->count);
462
463 reparent_to_kthreadd();
464 }
465
466 EXPORT_SYMBOL(daemonize);
467
468 static void close_files(struct files_struct * files)
469 {
470 int i, j;
471 struct fdtable *fdt;
472
473 j = 0;
474
475 /*
476 * It is safe to dereference the fd table without RCU or
477 * ->file_lock because this is the last reference to the
478 * files structure. But use RCU to shut RCU-lockdep up.
479 */
480 rcu_read_lock();
481 fdt = files_fdtable(files);
482 rcu_read_unlock();
483 for (;;) {
484 unsigned long set;
485 i = j * __NFDBITS;
486 if (i >= fdt->max_fds)
487 break;
488 set = fdt->open_fds->fds_bits[j++];
489 while (set) {
490 if (set & 1) {
491 struct file * file = xchg(&fdt->fd[i], NULL);
492 if (file) {
493 filp_close(file, files);
494 cond_resched();
495 }
496 }
497 i++;
498 set >>= 1;
499 }
500 }
501 }
502
503 struct files_struct *get_files_struct(struct task_struct *task)
504 {
505 struct files_struct *files;
506
507 task_lock(task);
508 files = task->files;
509 if (files)
510 atomic_inc(&files->count);
511 task_unlock(task);
512
513 return files;
514 }
515
516 void put_files_struct(struct files_struct *files)
517 {
518 struct fdtable *fdt;
519
520 if (atomic_dec_and_test(&files->count)) {
521 close_files(files);
522 /*
523 * Free the fd and fdset arrays if we expanded them.
524 * If the fdtable was embedded, pass files for freeing
525 * at the end of the RCU grace period. Otherwise,
526 * you can free files immediately.
527 */
528 rcu_read_lock();
529 fdt = files_fdtable(files);
530 if (fdt != &files->fdtab)
531 kmem_cache_free(files_cachep, files);
532 free_fdtable(fdt);
533 rcu_read_unlock();
534 }
535 }
536
537 void reset_files_struct(struct files_struct *files)
538 {
539 struct task_struct *tsk = current;
540 struct files_struct *old;
541
542 old = tsk->files;
543 task_lock(tsk);
544 tsk->files = files;
545 task_unlock(tsk);
546 put_files_struct(old);
547 }
548
549 void exit_files(struct task_struct *tsk)
550 {
551 struct files_struct * files = tsk->files;
552
553 if (files) {
554 task_lock(tsk);
555 tsk->files = NULL;
556 task_unlock(tsk);
557 put_files_struct(files);
558 }
559 }
560
561 #ifdef CONFIG_MM_OWNER
562 /*
563 * Task p is exiting and it owned mm, lets find a new owner for it
564 */
565 static inline int
566 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
567 {
568 /*
569 * If there are other users of the mm and the owner (us) is exiting
570 * we need to find a new owner to take on the responsibility.
571 */
572 if (atomic_read(&mm->mm_users) <= 1)
573 return 0;
574 if (mm->owner != p)
575 return 0;
576 return 1;
577 }
578
579 void mm_update_next_owner(struct mm_struct *mm)
580 {
581 struct task_struct *c, *g, *p = current;
582
583 retry:
584 if (!mm_need_new_owner(mm, p))
585 return;
586
587 read_lock(&tasklist_lock);
588 /*
589 * Search in the children
590 */
591 list_for_each_entry(c, &p->children, sibling) {
592 if (c->mm == mm)
593 goto assign_new_owner;
594 }
595
596 /*
597 * Search in the siblings
598 */
599 list_for_each_entry(c, &p->real_parent->children, sibling) {
600 if (c->mm == mm)
601 goto assign_new_owner;
602 }
603
604 /*
605 * Search through everything else. We should not get
606 * here often
607 */
608 do_each_thread(g, c) {
609 if (c->mm == mm)
610 goto assign_new_owner;
611 } while_each_thread(g, c);
612
613 read_unlock(&tasklist_lock);
614 /*
615 * We found no owner yet mm_users > 1: this implies that we are
616 * most likely racing with swapoff (try_to_unuse()) or /proc or
617 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
618 */
619 mm->owner = NULL;
620 return;
621
622 assign_new_owner:
623 BUG_ON(c == p);
624 get_task_struct(c);
625 /*
626 * The task_lock protects c->mm from changing.
627 * We always want mm->owner->mm == mm
628 */
629 task_lock(c);
630 /*
631 * Delay read_unlock() till we have the task_lock()
632 * to ensure that c does not slip away underneath us
633 */
634 read_unlock(&tasklist_lock);
635 if (c->mm != mm) {
636 task_unlock(c);
637 put_task_struct(c);
638 goto retry;
639 }
640 mm->owner = c;
641 task_unlock(c);
642 put_task_struct(c);
643 }
644 #endif /* CONFIG_MM_OWNER */
645
646 /*
647 * Turn us into a lazy TLB process if we
648 * aren't already..
649 */
650 static void exit_mm(struct task_struct * tsk)
651 {
652 struct mm_struct *mm = tsk->mm;
653 struct core_state *core_state;
654
655 mm_release(tsk, mm);
656 if (!mm)
657 return;
658 /*
659 * Serialize with any possible pending coredump.
660 * We must hold mmap_sem around checking core_state
661 * and clearing tsk->mm. The core-inducing thread
662 * will increment ->nr_threads for each thread in the
663 * group with ->mm != NULL.
664 */
665 down_read(&mm->mmap_sem);
666 core_state = mm->core_state;
667 if (core_state) {
668 struct core_thread self;
669 up_read(&mm->mmap_sem);
670
671 self.task = tsk;
672 self.next = xchg(&core_state->dumper.next, &self);
673 /*
674 * Implies mb(), the result of xchg() must be visible
675 * to core_state->dumper.
676 */
677 if (atomic_dec_and_test(&core_state->nr_threads))
678 complete(&core_state->startup);
679
680 for (;;) {
681 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
682 if (!self.task) /* see coredump_finish() */
683 break;
684 schedule();
685 }
686 __set_task_state(tsk, TASK_RUNNING);
687 down_read(&mm->mmap_sem);
688 }
689 atomic_inc(&mm->mm_count);
690 BUG_ON(mm != tsk->active_mm);
691 /* more a memory barrier than a real lock */
692 task_lock(tsk);
693 tsk->mm = NULL;
694 up_read(&mm->mmap_sem);
695 enter_lazy_tlb(mm, current);
696 /* We don't want this task to be frozen prematurely */
697 clear_freeze_flag(tsk);
698 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
699 atomic_dec(&mm->oom_disable_count);
700 task_unlock(tsk);
701 mm_update_next_owner(mm);
702 mmput(mm);
703 }
704
705 /*
706 * When we die, we re-parent all our children.
707 * Try to give them to another thread in our thread
708 * group, and if no such member exists, give it to
709 * the child reaper process (ie "init") in our pid
710 * space.
711 */
712 static struct task_struct *find_new_reaper(struct task_struct *father)
713 __releases(&tasklist_lock)
714 __acquires(&tasklist_lock)
715 {
716 struct pid_namespace *pid_ns = task_active_pid_ns(father);
717 struct task_struct *thread;
718
719 thread = father;
720 while_each_thread(father, thread) {
721 if (thread->flags & PF_EXITING)
722 continue;
723 if (unlikely(pid_ns->child_reaper == father))
724 pid_ns->child_reaper = thread;
725 return thread;
726 }
727
728 if (unlikely(pid_ns->child_reaper == father)) {
729 write_unlock_irq(&tasklist_lock);
730 if (unlikely(pid_ns == &init_pid_ns))
731 panic("Attempted to kill init!");
732
733 zap_pid_ns_processes(pid_ns);
734 write_lock_irq(&tasklist_lock);
735 /*
736 * We can not clear ->child_reaper or leave it alone.
737 * There may by stealth EXIT_DEAD tasks on ->children,
738 * forget_original_parent() must move them somewhere.
739 */
740 pid_ns->child_reaper = init_pid_ns.child_reaper;
741 }
742
743 return pid_ns->child_reaper;
744 }
745
746 /*
747 * Any that need to be release_task'd are put on the @dead list.
748 */
749 static void reparent_leader(struct task_struct *father, struct task_struct *p,
750 struct list_head *dead)
751 {
752 list_move_tail(&p->sibling, &p->real_parent->children);
753
754 if (task_detached(p))
755 return;
756 /*
757 * If this is a threaded reparent there is no need to
758 * notify anyone anything has happened.
759 */
760 if (same_thread_group(p->real_parent, father))
761 return;
762
763 /* We don't want people slaying init. */
764 p->exit_signal = SIGCHLD;
765
766 /* If it has exited notify the new parent about this child's death. */
767 if (!p->ptrace &&
768 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
769 do_notify_parent(p, p->exit_signal);
770 if (task_detached(p)) {
771 p->exit_state = EXIT_DEAD;
772 list_move_tail(&p->sibling, dead);
773 }
774 }
775
776 kill_orphaned_pgrp(p, father);
777 }
778
779 static void forget_original_parent(struct task_struct *father)
780 {
781 struct task_struct *p, *n, *reaper;
782 LIST_HEAD(dead_children);
783
784 write_lock_irq(&tasklist_lock);
785 /*
786 * Note that exit_ptrace() and find_new_reaper() might
787 * drop tasklist_lock and reacquire it.
788 */
789 exit_ptrace(father);
790 reaper = find_new_reaper(father);
791
792 list_for_each_entry_safe(p, n, &father->children, sibling) {
793 struct task_struct *t = p;
794 do {
795 t->real_parent = reaper;
796 if (t->parent == father) {
797 BUG_ON(t->ptrace);
798 t->parent = t->real_parent;
799 }
800 if (t->pdeath_signal)
801 group_send_sig_info(t->pdeath_signal,
802 SEND_SIG_NOINFO, t);
803 } while_each_thread(p, t);
804 reparent_leader(father, p, &dead_children);
805 }
806 write_unlock_irq(&tasklist_lock);
807
808 BUG_ON(!list_empty(&father->children));
809
810 list_for_each_entry_safe(p, n, &dead_children, sibling) {
811 list_del_init(&p->sibling);
812 release_task(p);
813 }
814 }
815
816 /*
817 * Send signals to all our closest relatives so that they know
818 * to properly mourn us..
819 */
820 static void exit_notify(struct task_struct *tsk, int group_dead)
821 {
822 int signal;
823 void *cookie;
824
825 /*
826 * This does two things:
827 *
828 * A. Make init inherit all the child processes
829 * B. Check to see if any process groups have become orphaned
830 * as a result of our exiting, and if they have any stopped
831 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
832 */
833 forget_original_parent(tsk);
834 exit_task_namespaces(tsk);
835
836 write_lock_irq(&tasklist_lock);
837 if (group_dead)
838 kill_orphaned_pgrp(tsk->group_leader, NULL);
839
840 /* Let father know we died
841 *
842 * Thread signals are configurable, but you aren't going to use
843 * that to send signals to arbitrary processes.
844 * That stops right now.
845 *
846 * If the parent exec id doesn't match the exec id we saved
847 * when we started then we know the parent has changed security
848 * domain.
849 *
850 * If our self_exec id doesn't match our parent_exec_id then
851 * we have changed execution domain as these two values started
852 * the same after a fork.
853 */
854 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
855 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
856 tsk->self_exec_id != tsk->parent_exec_id))
857 tsk->exit_signal = SIGCHLD;
858
859 signal = tracehook_notify_death(tsk, &cookie, group_dead);
860 if (signal >= 0)
861 signal = do_notify_parent(tsk, signal);
862
863 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
864
865 /* mt-exec, de_thread() is waiting for group leader */
866 if (unlikely(tsk->signal->notify_count < 0))
867 wake_up_process(tsk->signal->group_exit_task);
868 write_unlock_irq(&tasklist_lock);
869
870 /* If the process is dead, release it - nobody will wait for it */
871 if (signal == DEATH_REAP)
872 release_task(tsk);
873 }
874
875 #ifdef CONFIG_DEBUG_STACK_USAGE
876 static void check_stack_usage(void)
877 {
878 static DEFINE_SPINLOCK(low_water_lock);
879 static int lowest_to_date = THREAD_SIZE;
880 unsigned long free;
881
882 free = stack_not_used(current);
883
884 if (free >= lowest_to_date)
885 return;
886
887 spin_lock(&low_water_lock);
888 if (free < lowest_to_date) {
889 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
890 "left\n",
891 current->comm, free);
892 lowest_to_date = free;
893 }
894 spin_unlock(&low_water_lock);
895 }
896 #else
897 static inline void check_stack_usage(void) {}
898 #endif
899
900 NORET_TYPE void do_exit(long code)
901 {
902 struct task_struct *tsk = current;
903 int group_dead;
904
905 profile_task_exit(tsk);
906
907 WARN_ON(atomic_read(&tsk->fs_excl));
908 WARN_ON(blk_needs_flush_plug(tsk));
909
910 if (unlikely(in_interrupt()))
911 panic("Aiee, killing interrupt handler!");
912 if (unlikely(!tsk->pid))
913 panic("Attempted to kill the idle task!");
914
915 /*
916 * If do_exit is called because this processes oopsed, it's possible
917 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
918 * continuing. Amongst other possible reasons, this is to prevent
919 * mm_release()->clear_child_tid() from writing to a user-controlled
920 * kernel address.
921 */
922 set_fs(USER_DS);
923
924 ptrace_event(PTRACE_EVENT_EXIT, code);
925
926 validate_creds_for_do_exit(tsk);
927
928 /*
929 * We're taking recursive faults here in do_exit. Safest is to just
930 * leave this task alone and wait for reboot.
931 */
932 if (unlikely(tsk->flags & PF_EXITING)) {
933 printk(KERN_ALERT
934 "Fixing recursive fault but reboot is needed!\n");
935 /*
936 * We can do this unlocked here. The futex code uses
937 * this flag just to verify whether the pi state
938 * cleanup has been done or not. In the worst case it
939 * loops once more. We pretend that the cleanup was
940 * done as there is no way to return. Either the
941 * OWNER_DIED bit is set by now or we push the blocked
942 * task into the wait for ever nirwana as well.
943 */
944 tsk->flags |= PF_EXITPIDONE;
945 set_current_state(TASK_UNINTERRUPTIBLE);
946 schedule();
947 }
948
949 exit_irq_thread();
950
951 exit_signals(tsk); /* sets PF_EXITING */
952 /*
953 * tsk->flags are checked in the futex code to protect against
954 * an exiting task cleaning up the robust pi futexes.
955 */
956 smp_mb();
957 raw_spin_unlock_wait(&tsk->pi_lock);
958
959 if (unlikely(in_atomic()))
960 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
961 current->comm, task_pid_nr(current),
962 preempt_count());
963
964 acct_update_integrals(tsk);
965 /* sync mm's RSS info before statistics gathering */
966 if (tsk->mm)
967 sync_mm_rss(tsk, tsk->mm);
968 group_dead = atomic_dec_and_test(&tsk->signal->live);
969 if (group_dead) {
970 hrtimer_cancel(&tsk->signal->real_timer);
971 exit_itimers(tsk->signal);
972 if (tsk->mm)
973 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
974 }
975 acct_collect(code, group_dead);
976 if (group_dead)
977 tty_audit_exit();
978 if (unlikely(tsk->audit_context))
979 audit_free(tsk);
980
981 tsk->exit_code = code;
982 taskstats_exit(tsk, group_dead);
983
984 exit_mm(tsk);
985
986 if (group_dead)
987 acct_process();
988 trace_sched_process_exit(tsk);
989
990 exit_sem(tsk);
991 exit_files(tsk);
992 exit_fs(tsk);
993 check_stack_usage();
994 exit_thread();
995
996 /*
997 * Flush inherited counters to the parent - before the parent
998 * gets woken up by child-exit notifications.
999 *
1000 * because of cgroup mode, must be called before cgroup_exit()
1001 */
1002 perf_event_exit_task(tsk);
1003
1004 cgroup_exit(tsk, 1);
1005
1006 if (group_dead)
1007 disassociate_ctty(1);
1008
1009 module_put(task_thread_info(tsk)->exec_domain->module);
1010
1011 proc_exit_connector(tsk);
1012
1013 /*
1014 * FIXME: do that only when needed, using sched_exit tracepoint
1015 */
1016 ptrace_put_breakpoints(tsk);
1017
1018 exit_notify(tsk, group_dead);
1019 #ifdef CONFIG_NUMA
1020 task_lock(tsk);
1021 mpol_put(tsk->mempolicy);
1022 tsk->mempolicy = NULL;
1023 task_unlock(tsk);
1024 #endif
1025 #ifdef CONFIG_FUTEX
1026 if (unlikely(current->pi_state_cache))
1027 kfree(current->pi_state_cache);
1028 #endif
1029 /*
1030 * Make sure we are holding no locks:
1031 */
1032 debug_check_no_locks_held(tsk);
1033 /*
1034 * We can do this unlocked here. The futex code uses this flag
1035 * just to verify whether the pi state cleanup has been done
1036 * or not. In the worst case it loops once more.
1037 */
1038 tsk->flags |= PF_EXITPIDONE;
1039
1040 if (tsk->io_context)
1041 exit_io_context(tsk);
1042
1043 if (tsk->splice_pipe)
1044 __free_pipe_info(tsk->splice_pipe);
1045
1046 validate_creds_for_do_exit(tsk);
1047
1048 preempt_disable();
1049 exit_rcu();
1050 /* causes final put_task_struct in finish_task_switch(). */
1051 tsk->state = TASK_DEAD;
1052 schedule();
1053 BUG();
1054 /* Avoid "noreturn function does return". */
1055 for (;;)
1056 cpu_relax(); /* For when BUG is null */
1057 }
1058
1059 EXPORT_SYMBOL_GPL(do_exit);
1060
1061 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1062 {
1063 if (comp)
1064 complete(comp);
1065
1066 do_exit(code);
1067 }
1068
1069 EXPORT_SYMBOL(complete_and_exit);
1070
1071 SYSCALL_DEFINE1(exit, int, error_code)
1072 {
1073 do_exit((error_code&0xff)<<8);
1074 }
1075
1076 /*
1077 * Take down every thread in the group. This is called by fatal signals
1078 * as well as by sys_exit_group (below).
1079 */
1080 NORET_TYPE void
1081 do_group_exit(int exit_code)
1082 {
1083 struct signal_struct *sig = current->signal;
1084
1085 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1086
1087 if (signal_group_exit(sig))
1088 exit_code = sig->group_exit_code;
1089 else if (!thread_group_empty(current)) {
1090 struct sighand_struct *const sighand = current->sighand;
1091 spin_lock_irq(&sighand->siglock);
1092 if (signal_group_exit(sig))
1093 /* Another thread got here before we took the lock. */
1094 exit_code = sig->group_exit_code;
1095 else {
1096 sig->group_exit_code = exit_code;
1097 sig->flags = SIGNAL_GROUP_EXIT;
1098 zap_other_threads(current);
1099 }
1100 spin_unlock_irq(&sighand->siglock);
1101 }
1102
1103 do_exit(exit_code);
1104 /* NOTREACHED */
1105 }
1106
1107 /*
1108 * this kills every thread in the thread group. Note that any externally
1109 * wait4()-ing process will get the correct exit code - even if this
1110 * thread is not the thread group leader.
1111 */
1112 SYSCALL_DEFINE1(exit_group, int, error_code)
1113 {
1114 do_group_exit((error_code & 0xff) << 8);
1115 /* NOTREACHED */
1116 return 0;
1117 }
1118
1119 struct wait_opts {
1120 enum pid_type wo_type;
1121 int wo_flags;
1122 struct pid *wo_pid;
1123
1124 struct siginfo __user *wo_info;
1125 int __user *wo_stat;
1126 struct rusage __user *wo_rusage;
1127
1128 wait_queue_t child_wait;
1129 int notask_error;
1130 };
1131
1132 static inline
1133 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1134 {
1135 if (type != PIDTYPE_PID)
1136 task = task->group_leader;
1137 return task->pids[type].pid;
1138 }
1139
1140 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1141 {
1142 return wo->wo_type == PIDTYPE_MAX ||
1143 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1144 }
1145
1146 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1147 {
1148 if (!eligible_pid(wo, p))
1149 return 0;
1150 /* Wait for all children (clone and not) if __WALL is set;
1151 * otherwise, wait for clone children *only* if __WCLONE is
1152 * set; otherwise, wait for non-clone children *only*. (Note:
1153 * A "clone" child here is one that reports to its parent
1154 * using a signal other than SIGCHLD.) */
1155 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1156 && !(wo->wo_flags & __WALL))
1157 return 0;
1158
1159 return 1;
1160 }
1161
1162 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1163 pid_t pid, uid_t uid, int why, int status)
1164 {
1165 struct siginfo __user *infop;
1166 int retval = wo->wo_rusage
1167 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1168
1169 put_task_struct(p);
1170 infop = wo->wo_info;
1171 if (infop) {
1172 if (!retval)
1173 retval = put_user(SIGCHLD, &infop->si_signo);
1174 if (!retval)
1175 retval = put_user(0, &infop->si_errno);
1176 if (!retval)
1177 retval = put_user((short)why, &infop->si_code);
1178 if (!retval)
1179 retval = put_user(pid, &infop->si_pid);
1180 if (!retval)
1181 retval = put_user(uid, &infop->si_uid);
1182 if (!retval)
1183 retval = put_user(status, &infop->si_status);
1184 }
1185 if (!retval)
1186 retval = pid;
1187 return retval;
1188 }
1189
1190 /*
1191 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1192 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1193 * the lock and this task is uninteresting. If we return nonzero, we have
1194 * released the lock and the system call should return.
1195 */
1196 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1197 {
1198 unsigned long state;
1199 int retval, status, traced;
1200 pid_t pid = task_pid_vnr(p);
1201 uid_t uid = __task_cred(p)->uid;
1202 struct siginfo __user *infop;
1203
1204 if (!likely(wo->wo_flags & WEXITED))
1205 return 0;
1206
1207 if (unlikely(wo->wo_flags & WNOWAIT)) {
1208 int exit_code = p->exit_code;
1209 int why;
1210
1211 get_task_struct(p);
1212 read_unlock(&tasklist_lock);
1213 if ((exit_code & 0x7f) == 0) {
1214 why = CLD_EXITED;
1215 status = exit_code >> 8;
1216 } else {
1217 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1218 status = exit_code & 0x7f;
1219 }
1220 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1221 }
1222
1223 /*
1224 * Try to move the task's state to DEAD
1225 * only one thread is allowed to do this:
1226 */
1227 state = xchg(&p->exit_state, EXIT_DEAD);
1228 if (state != EXIT_ZOMBIE) {
1229 BUG_ON(state != EXIT_DEAD);
1230 return 0;
1231 }
1232
1233 traced = ptrace_reparented(p);
1234 /*
1235 * It can be ptraced but not reparented, check
1236 * !task_detached() to filter out sub-threads.
1237 */
1238 if (likely(!traced) && likely(!task_detached(p))) {
1239 struct signal_struct *psig;
1240 struct signal_struct *sig;
1241 unsigned long maxrss;
1242 cputime_t tgutime, tgstime;
1243
1244 /*
1245 * The resource counters for the group leader are in its
1246 * own task_struct. Those for dead threads in the group
1247 * are in its signal_struct, as are those for the child
1248 * processes it has previously reaped. All these
1249 * accumulate in the parent's signal_struct c* fields.
1250 *
1251 * We don't bother to take a lock here to protect these
1252 * p->signal fields, because they are only touched by
1253 * __exit_signal, which runs with tasklist_lock
1254 * write-locked anyway, and so is excluded here. We do
1255 * need to protect the access to parent->signal fields,
1256 * as other threads in the parent group can be right
1257 * here reaping other children at the same time.
1258 *
1259 * We use thread_group_times() to get times for the thread
1260 * group, which consolidates times for all threads in the
1261 * group including the group leader.
1262 */
1263 thread_group_times(p, &tgutime, &tgstime);
1264 spin_lock_irq(&p->real_parent->sighand->siglock);
1265 psig = p->real_parent->signal;
1266 sig = p->signal;
1267 psig->cutime =
1268 cputime_add(psig->cutime,
1269 cputime_add(tgutime,
1270 sig->cutime));
1271 psig->cstime =
1272 cputime_add(psig->cstime,
1273 cputime_add(tgstime,
1274 sig->cstime));
1275 psig->cgtime =
1276 cputime_add(psig->cgtime,
1277 cputime_add(p->gtime,
1278 cputime_add(sig->gtime,
1279 sig->cgtime)));
1280 psig->cmin_flt +=
1281 p->min_flt + sig->min_flt + sig->cmin_flt;
1282 psig->cmaj_flt +=
1283 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1284 psig->cnvcsw +=
1285 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1286 psig->cnivcsw +=
1287 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1288 psig->cinblock +=
1289 task_io_get_inblock(p) +
1290 sig->inblock + sig->cinblock;
1291 psig->coublock +=
1292 task_io_get_oublock(p) +
1293 sig->oublock + sig->coublock;
1294 maxrss = max(sig->maxrss, sig->cmaxrss);
1295 if (psig->cmaxrss < maxrss)
1296 psig->cmaxrss = maxrss;
1297 task_io_accounting_add(&psig->ioac, &p->ioac);
1298 task_io_accounting_add(&psig->ioac, &sig->ioac);
1299 spin_unlock_irq(&p->real_parent->sighand->siglock);
1300 }
1301
1302 /*
1303 * Now we are sure this task is interesting, and no other
1304 * thread can reap it because we set its state to EXIT_DEAD.
1305 */
1306 read_unlock(&tasklist_lock);
1307
1308 retval = wo->wo_rusage
1309 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1310 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1311 ? p->signal->group_exit_code : p->exit_code;
1312 if (!retval && wo->wo_stat)
1313 retval = put_user(status, wo->wo_stat);
1314
1315 infop = wo->wo_info;
1316 if (!retval && infop)
1317 retval = put_user(SIGCHLD, &infop->si_signo);
1318 if (!retval && infop)
1319 retval = put_user(0, &infop->si_errno);
1320 if (!retval && infop) {
1321 int why;
1322
1323 if ((status & 0x7f) == 0) {
1324 why = CLD_EXITED;
1325 status >>= 8;
1326 } else {
1327 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1328 status &= 0x7f;
1329 }
1330 retval = put_user((short)why, &infop->si_code);
1331 if (!retval)
1332 retval = put_user(status, &infop->si_status);
1333 }
1334 if (!retval && infop)
1335 retval = put_user(pid, &infop->si_pid);
1336 if (!retval && infop)
1337 retval = put_user(uid, &infop->si_uid);
1338 if (!retval)
1339 retval = pid;
1340
1341 if (traced) {
1342 write_lock_irq(&tasklist_lock);
1343 /* We dropped tasklist, ptracer could die and untrace */
1344 ptrace_unlink(p);
1345 /*
1346 * If this is not a detached task, notify the parent.
1347 * If it's still not detached after that, don't release
1348 * it now.
1349 */
1350 if (!task_detached(p)) {
1351 do_notify_parent(p, p->exit_signal);
1352 if (!task_detached(p)) {
1353 p->exit_state = EXIT_ZOMBIE;
1354 p = NULL;
1355 }
1356 }
1357 write_unlock_irq(&tasklist_lock);
1358 }
1359 if (p != NULL)
1360 release_task(p);
1361
1362 return retval;
1363 }
1364
1365 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1366 {
1367 if (ptrace) {
1368 if (task_is_stopped_or_traced(p) &&
1369 !(p->jobctl & JOBCTL_LISTENING))
1370 return &p->exit_code;
1371 } else {
1372 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1373 return &p->signal->group_exit_code;
1374 }
1375 return NULL;
1376 }
1377
1378 /**
1379 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1380 * @wo: wait options
1381 * @ptrace: is the wait for ptrace
1382 * @p: task to wait for
1383 *
1384 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1385 *
1386 * CONTEXT:
1387 * read_lock(&tasklist_lock), which is released if return value is
1388 * non-zero. Also, grabs and releases @p->sighand->siglock.
1389 *
1390 * RETURNS:
1391 * 0 if wait condition didn't exist and search for other wait conditions
1392 * should continue. Non-zero return, -errno on failure and @p's pid on
1393 * success, implies that tasklist_lock is released and wait condition
1394 * search should terminate.
1395 */
1396 static int wait_task_stopped(struct wait_opts *wo,
1397 int ptrace, struct task_struct *p)
1398 {
1399 struct siginfo __user *infop;
1400 int retval, exit_code, *p_code, why;
1401 uid_t uid = 0; /* unneeded, required by compiler */
1402 pid_t pid;
1403
1404 /*
1405 * Traditionally we see ptrace'd stopped tasks regardless of options.
1406 */
1407 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1408 return 0;
1409
1410 if (!task_stopped_code(p, ptrace))
1411 return 0;
1412
1413 exit_code = 0;
1414 spin_lock_irq(&p->sighand->siglock);
1415
1416 p_code = task_stopped_code(p, ptrace);
1417 if (unlikely(!p_code))
1418 goto unlock_sig;
1419
1420 exit_code = *p_code;
1421 if (!exit_code)
1422 goto unlock_sig;
1423
1424 if (!unlikely(wo->wo_flags & WNOWAIT))
1425 *p_code = 0;
1426
1427 uid = task_uid(p);
1428 unlock_sig:
1429 spin_unlock_irq(&p->sighand->siglock);
1430 if (!exit_code)
1431 return 0;
1432
1433 /*
1434 * Now we are pretty sure this task is interesting.
1435 * Make sure it doesn't get reaped out from under us while we
1436 * give up the lock and then examine it below. We don't want to
1437 * keep holding onto the tasklist_lock while we call getrusage and
1438 * possibly take page faults for user memory.
1439 */
1440 get_task_struct(p);
1441 pid = task_pid_vnr(p);
1442 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1443 read_unlock(&tasklist_lock);
1444
1445 if (unlikely(wo->wo_flags & WNOWAIT))
1446 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1447
1448 retval = wo->wo_rusage
1449 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1450 if (!retval && wo->wo_stat)
1451 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1452
1453 infop = wo->wo_info;
1454 if (!retval && infop)
1455 retval = put_user(SIGCHLD, &infop->si_signo);
1456 if (!retval && infop)
1457 retval = put_user(0, &infop->si_errno);
1458 if (!retval && infop)
1459 retval = put_user((short)why, &infop->si_code);
1460 if (!retval && infop)
1461 retval = put_user(exit_code, &infop->si_status);
1462 if (!retval && infop)
1463 retval = put_user(pid, &infop->si_pid);
1464 if (!retval && infop)
1465 retval = put_user(uid, &infop->si_uid);
1466 if (!retval)
1467 retval = pid;
1468 put_task_struct(p);
1469
1470 BUG_ON(!retval);
1471 return retval;
1472 }
1473
1474 /*
1475 * Handle do_wait work for one task in a live, non-stopped state.
1476 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1477 * the lock and this task is uninteresting. If we return nonzero, we have
1478 * released the lock and the system call should return.
1479 */
1480 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1481 {
1482 int retval;
1483 pid_t pid;
1484 uid_t uid;
1485
1486 if (!unlikely(wo->wo_flags & WCONTINUED))
1487 return 0;
1488
1489 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1490 return 0;
1491
1492 spin_lock_irq(&p->sighand->siglock);
1493 /* Re-check with the lock held. */
1494 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1495 spin_unlock_irq(&p->sighand->siglock);
1496 return 0;
1497 }
1498 if (!unlikely(wo->wo_flags & WNOWAIT))
1499 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1500 uid = task_uid(p);
1501 spin_unlock_irq(&p->sighand->siglock);
1502
1503 pid = task_pid_vnr(p);
1504 get_task_struct(p);
1505 read_unlock(&tasklist_lock);
1506
1507 if (!wo->wo_info) {
1508 retval = wo->wo_rusage
1509 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1510 put_task_struct(p);
1511 if (!retval && wo->wo_stat)
1512 retval = put_user(0xffff, wo->wo_stat);
1513 if (!retval)
1514 retval = pid;
1515 } else {
1516 retval = wait_noreap_copyout(wo, p, pid, uid,
1517 CLD_CONTINUED, SIGCONT);
1518 BUG_ON(retval == 0);
1519 }
1520
1521 return retval;
1522 }
1523
1524 /*
1525 * Consider @p for a wait by @parent.
1526 *
1527 * -ECHILD should be in ->notask_error before the first call.
1528 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1529 * Returns zero if the search for a child should continue;
1530 * then ->notask_error is 0 if @p is an eligible child,
1531 * or another error from security_task_wait(), or still -ECHILD.
1532 */
1533 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1534 struct task_struct *p)
1535 {
1536 int ret = eligible_child(wo, p);
1537 if (!ret)
1538 return ret;
1539
1540 ret = security_task_wait(p);
1541 if (unlikely(ret < 0)) {
1542 /*
1543 * If we have not yet seen any eligible child,
1544 * then let this error code replace -ECHILD.
1545 * A permission error will give the user a clue
1546 * to look for security policy problems, rather
1547 * than for mysterious wait bugs.
1548 */
1549 if (wo->notask_error)
1550 wo->notask_error = ret;
1551 return 0;
1552 }
1553
1554 /* dead body doesn't have much to contribute */
1555 if (p->exit_state == EXIT_DEAD)
1556 return 0;
1557
1558 /* slay zombie? */
1559 if (p->exit_state == EXIT_ZOMBIE) {
1560 /*
1561 * A zombie ptracee is only visible to its ptracer.
1562 * Notification and reaping will be cascaded to the real
1563 * parent when the ptracer detaches.
1564 */
1565 if (likely(!ptrace) && unlikely(p->ptrace)) {
1566 /* it will become visible, clear notask_error */
1567 wo->notask_error = 0;
1568 return 0;
1569 }
1570
1571 /* we don't reap group leaders with subthreads */
1572 if (!delay_group_leader(p))
1573 return wait_task_zombie(wo, p);
1574
1575 /*
1576 * Allow access to stopped/continued state via zombie by
1577 * falling through. Clearing of notask_error is complex.
1578 *
1579 * When !@ptrace:
1580 *
1581 * If WEXITED is set, notask_error should naturally be
1582 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1583 * so, if there are live subthreads, there are events to
1584 * wait for. If all subthreads are dead, it's still safe
1585 * to clear - this function will be called again in finite
1586 * amount time once all the subthreads are released and
1587 * will then return without clearing.
1588 *
1589 * When @ptrace:
1590 *
1591 * Stopped state is per-task and thus can't change once the
1592 * target task dies. Only continued and exited can happen.
1593 * Clear notask_error if WCONTINUED | WEXITED.
1594 */
1595 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1596 wo->notask_error = 0;
1597 } else {
1598 /*
1599 * If @p is ptraced by a task in its real parent's group,
1600 * hide group stop/continued state when looking at @p as
1601 * the real parent; otherwise, a single stop can be
1602 * reported twice as group and ptrace stops.
1603 *
1604 * If a ptracer wants to distinguish the two events for its
1605 * own children, it should create a separate process which
1606 * takes the role of real parent.
1607 */
1608 if (likely(!ptrace) && p->ptrace &&
1609 same_thread_group(p->parent, p->real_parent))
1610 return 0;
1611
1612 /*
1613 * @p is alive and it's gonna stop, continue or exit, so
1614 * there always is something to wait for.
1615 */
1616 wo->notask_error = 0;
1617 }
1618
1619 /*
1620 * Wait for stopped. Depending on @ptrace, different stopped state
1621 * is used and the two don't interact with each other.
1622 */
1623 ret = wait_task_stopped(wo, ptrace, p);
1624 if (ret)
1625 return ret;
1626
1627 /*
1628 * Wait for continued. There's only one continued state and the
1629 * ptracer can consume it which can confuse the real parent. Don't
1630 * use WCONTINUED from ptracer. You don't need or want it.
1631 */
1632 return wait_task_continued(wo, p);
1633 }
1634
1635 /*
1636 * Do the work of do_wait() for one thread in the group, @tsk.
1637 *
1638 * -ECHILD should be in ->notask_error before the first call.
1639 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1640 * Returns zero if the search for a child should continue; then
1641 * ->notask_error is 0 if there were any eligible children,
1642 * or another error from security_task_wait(), or still -ECHILD.
1643 */
1644 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1645 {
1646 struct task_struct *p;
1647
1648 list_for_each_entry(p, &tsk->children, sibling) {
1649 int ret = wait_consider_task(wo, 0, p);
1650 if (ret)
1651 return ret;
1652 }
1653
1654 return 0;
1655 }
1656
1657 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1658 {
1659 struct task_struct *p;
1660
1661 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1662 int ret = wait_consider_task(wo, 1, p);
1663 if (ret)
1664 return ret;
1665 }
1666
1667 return 0;
1668 }
1669
1670 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1671 int sync, void *key)
1672 {
1673 struct wait_opts *wo = container_of(wait, struct wait_opts,
1674 child_wait);
1675 struct task_struct *p = key;
1676
1677 if (!eligible_pid(wo, p))
1678 return 0;
1679
1680 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1681 return 0;
1682
1683 return default_wake_function(wait, mode, sync, key);
1684 }
1685
1686 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1687 {
1688 __wake_up_sync_key(&parent->signal->wait_chldexit,
1689 TASK_INTERRUPTIBLE, 1, p);
1690 }
1691
1692 static long do_wait(struct wait_opts *wo)
1693 {
1694 struct task_struct *tsk;
1695 int retval;
1696
1697 trace_sched_process_wait(wo->wo_pid);
1698
1699 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1700 wo->child_wait.private = current;
1701 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1702 repeat:
1703 /*
1704 * If there is nothing that can match our critiera just get out.
1705 * We will clear ->notask_error to zero if we see any child that
1706 * might later match our criteria, even if we are not able to reap
1707 * it yet.
1708 */
1709 wo->notask_error = -ECHILD;
1710 if ((wo->wo_type < PIDTYPE_MAX) &&
1711 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1712 goto notask;
1713
1714 set_current_state(TASK_INTERRUPTIBLE);
1715 read_lock(&tasklist_lock);
1716 tsk = current;
1717 do {
1718 retval = do_wait_thread(wo, tsk);
1719 if (retval)
1720 goto end;
1721
1722 retval = ptrace_do_wait(wo, tsk);
1723 if (retval)
1724 goto end;
1725
1726 if (wo->wo_flags & __WNOTHREAD)
1727 break;
1728 } while_each_thread(current, tsk);
1729 read_unlock(&tasklist_lock);
1730
1731 notask:
1732 retval = wo->notask_error;
1733 if (!retval && !(wo->wo_flags & WNOHANG)) {
1734 retval = -ERESTARTSYS;
1735 if (!signal_pending(current)) {
1736 schedule();
1737 goto repeat;
1738 }
1739 }
1740 end:
1741 __set_current_state(TASK_RUNNING);
1742 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1743 return retval;
1744 }
1745
1746 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1747 infop, int, options, struct rusage __user *, ru)
1748 {
1749 struct wait_opts wo;
1750 struct pid *pid = NULL;
1751 enum pid_type type;
1752 long ret;
1753
1754 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1755 return -EINVAL;
1756 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1757 return -EINVAL;
1758
1759 switch (which) {
1760 case P_ALL:
1761 type = PIDTYPE_MAX;
1762 break;
1763 case P_PID:
1764 type = PIDTYPE_PID;
1765 if (upid <= 0)
1766 return -EINVAL;
1767 break;
1768 case P_PGID:
1769 type = PIDTYPE_PGID;
1770 if (upid <= 0)
1771 return -EINVAL;
1772 break;
1773 default:
1774 return -EINVAL;
1775 }
1776
1777 if (type < PIDTYPE_MAX)
1778 pid = find_get_pid(upid);
1779
1780 wo.wo_type = type;
1781 wo.wo_pid = pid;
1782 wo.wo_flags = options;
1783 wo.wo_info = infop;
1784 wo.wo_stat = NULL;
1785 wo.wo_rusage = ru;
1786 ret = do_wait(&wo);
1787
1788 if (ret > 0) {
1789 ret = 0;
1790 } else if (infop) {
1791 /*
1792 * For a WNOHANG return, clear out all the fields
1793 * we would set so the user can easily tell the
1794 * difference.
1795 */
1796 if (!ret)
1797 ret = put_user(0, &infop->si_signo);
1798 if (!ret)
1799 ret = put_user(0, &infop->si_errno);
1800 if (!ret)
1801 ret = put_user(0, &infop->si_code);
1802 if (!ret)
1803 ret = put_user(0, &infop->si_pid);
1804 if (!ret)
1805 ret = put_user(0, &infop->si_uid);
1806 if (!ret)
1807 ret = put_user(0, &infop->si_status);
1808 }
1809
1810 put_pid(pid);
1811
1812 /* avoid REGPARM breakage on x86: */
1813 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1814 return ret;
1815 }
1816
1817 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1818 int, options, struct rusage __user *, ru)
1819 {
1820 struct wait_opts wo;
1821 struct pid *pid = NULL;
1822 enum pid_type type;
1823 long ret;
1824
1825 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1826 __WNOTHREAD|__WCLONE|__WALL))
1827 return -EINVAL;
1828
1829 if (upid == -1)
1830 type = PIDTYPE_MAX;
1831 else if (upid < 0) {
1832 type = PIDTYPE_PGID;
1833 pid = find_get_pid(-upid);
1834 } else if (upid == 0) {
1835 type = PIDTYPE_PGID;
1836 pid = get_task_pid(current, PIDTYPE_PGID);
1837 } else /* upid > 0 */ {
1838 type = PIDTYPE_PID;
1839 pid = find_get_pid(upid);
1840 }
1841
1842 wo.wo_type = type;
1843 wo.wo_pid = pid;
1844 wo.wo_flags = options | WEXITED;
1845 wo.wo_info = NULL;
1846 wo.wo_stat = stat_addr;
1847 wo.wo_rusage = ru;
1848 ret = do_wait(&wo);
1849 put_pid(pid);
1850
1851 /* avoid REGPARM breakage on x86: */
1852 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1853 return ret;
1854 }
1855
1856 #ifdef __ARCH_WANT_SYS_WAITPID
1857
1858 /*
1859 * sys_waitpid() remains for compatibility. waitpid() should be
1860 * implemented by calling sys_wait4() from libc.a.
1861 */
1862 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1863 {
1864 return sys_wait4(pid, stat_addr, options, NULL);
1865 }
1866
1867 #endif