]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/exit.c
Merge tag 'leds-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel...
[mirror_ubuntu-jammy-kernel.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *tty;
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead)
107 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
114 /*
115 * If there is any task waiting for the group exit
116 * then notify it:
117 */
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
120
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
123 }
124
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
127
128 /*
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
133 */
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
150
151 /*
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 */
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
158
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
164 }
165 exit_task_sigqueue_cache(tsk);
166 }
167
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171
172 perf_event_delayed_put(tsk);
173 trace_sched_process_free(tsk);
174 put_task_struct(tsk);
175 }
176
177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179 if (refcount_dec_and_test(&task->rcu_users))
180 call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182
183 void release_task(struct task_struct *p)
184 {
185 struct task_struct *leader;
186 struct pid *thread_pid;
187 int zap_leader;
188 repeat:
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
192 atomic_dec(&__task_cred(p)->user->processes);
193 rcu_read_unlock();
194
195 cgroup_release(p);
196
197 write_lock_irq(&tasklist_lock);
198 ptrace_release_task(p);
199 thread_pid = get_pid(p->thread_pid);
200 __exit_signal(p);
201
202 /*
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
206 */
207 zap_leader = 0;
208 leader = p->group_leader;
209 if (leader != p && thread_group_empty(leader)
210 && leader->exit_state == EXIT_ZOMBIE) {
211 /*
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
215 */
216 zap_leader = do_notify_parent(leader, leader->exit_signal);
217 if (zap_leader)
218 leader->exit_state = EXIT_DEAD;
219 }
220
221 write_unlock_irq(&tasklist_lock);
222 seccomp_filter_release(p);
223 proc_flush_pid(thread_pid);
224 put_pid(thread_pid);
225 release_thread(p);
226 put_task_struct_rcu_user(p);
227
228 p = leader;
229 if (unlikely(zap_leader))
230 goto repeat;
231 }
232
233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235 int ret = 0;
236 struct task_struct *task;
237
238 rcu_read_lock();
239
240 /*
241 * Order condition vs @task, such that everything prior to the load
242 * of @task is visible. This is the condition as to why the user called
243 * rcuwait_wake() in the first place. Pairs with set_current_state()
244 * barrier (A) in rcuwait_wait_event().
245 *
246 * WAIT WAKE
247 * [S] tsk = current [S] cond = true
248 * MB (A) MB (B)
249 * [L] cond [L] tsk
250 */
251 smp_mb(); /* (B) */
252
253 task = rcu_dereference(w->task);
254 if (task)
255 ret = wake_up_process(task);
256 rcu_read_unlock();
257
258 return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261
262 /*
263 * Determine if a process group is "orphaned", according to the POSIX
264 * definition in 2.2.2.52. Orphaned process groups are not to be affected
265 * by terminal-generated stop signals. Newly orphaned process groups are
266 * to receive a SIGHUP and a SIGCONT.
267 *
268 * "I ask you, have you ever known what it is to be an orphan?"
269 */
270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
272 {
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
279 continue;
280
281 if (task_pgrp(p->real_parent) != pgrp &&
282 task_session(p->real_parent) == task_session(p))
283 return 0;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return 1;
287 }
288
289 int is_current_pgrp_orphaned(void)
290 {
291 int retval;
292
293 read_lock(&tasklist_lock);
294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 read_unlock(&tasklist_lock);
296
297 return retval;
298 }
299
300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 struct task_struct *p;
303
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309 return false;
310 }
311
312 /*
313 * Check to see if any process groups have become orphaned as
314 * a result of our exiting, and if they have any stopped jobs,
315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316 */
317 static void
318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
322
323 if (!parent)
324 /* exit: our father is in a different pgrp than
325 * we are and we were the only connection outside.
326 */
327 parent = tsk->real_parent;
328 else
329 /* reparent: our child is in a different pgrp than
330 * we are, and it was the only connection outside.
331 */
332 ignored_task = NULL;
333
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 }
341 }
342
343 #ifdef CONFIG_MEMCG
344 /*
345 * A task is exiting. If it owned this mm, find a new owner for the mm.
346 */
347 void mm_update_next_owner(struct mm_struct *mm)
348 {
349 struct task_struct *c, *g, *p = current;
350
351 retry:
352 /*
353 * If the exiting or execing task is not the owner, it's
354 * someone else's problem.
355 */
356 if (mm->owner != p)
357 return;
358 /*
359 * The current owner is exiting/execing and there are no other
360 * candidates. Do not leave the mm pointing to a possibly
361 * freed task structure.
362 */
363 if (atomic_read(&mm->mm_users) <= 1) {
364 WRITE_ONCE(mm->owner, NULL);
365 return;
366 }
367
368 read_lock(&tasklist_lock);
369 /*
370 * Search in the children
371 */
372 list_for_each_entry(c, &p->children, sibling) {
373 if (c->mm == mm)
374 goto assign_new_owner;
375 }
376
377 /*
378 * Search in the siblings
379 */
380 list_for_each_entry(c, &p->real_parent->children, sibling) {
381 if (c->mm == mm)
382 goto assign_new_owner;
383 }
384
385 /*
386 * Search through everything else, we should not get here often.
387 */
388 for_each_process(g) {
389 if (g->flags & PF_KTHREAD)
390 continue;
391 for_each_thread(g, c) {
392 if (c->mm == mm)
393 goto assign_new_owner;
394 if (c->mm)
395 break;
396 }
397 }
398 read_unlock(&tasklist_lock);
399 /*
400 * We found no owner yet mm_users > 1: this implies that we are
401 * most likely racing with swapoff (try_to_unuse()) or /proc or
402 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
403 */
404 WRITE_ONCE(mm->owner, NULL);
405 return;
406
407 assign_new_owner:
408 BUG_ON(c == p);
409 get_task_struct(c);
410 /*
411 * The task_lock protects c->mm from changing.
412 * We always want mm->owner->mm == mm
413 */
414 task_lock(c);
415 /*
416 * Delay read_unlock() till we have the task_lock()
417 * to ensure that c does not slip away underneath us
418 */
419 read_unlock(&tasklist_lock);
420 if (c->mm != mm) {
421 task_unlock(c);
422 put_task_struct(c);
423 goto retry;
424 }
425 WRITE_ONCE(mm->owner, c);
426 task_unlock(c);
427 put_task_struct(c);
428 }
429 #endif /* CONFIG_MEMCG */
430
431 /*
432 * Turn us into a lazy TLB process if we
433 * aren't already..
434 */
435 static void exit_mm(void)
436 {
437 struct mm_struct *mm = current->mm;
438 struct core_state *core_state;
439
440 exit_mm_release(current, mm);
441 if (!mm)
442 return;
443 sync_mm_rss(mm);
444 /*
445 * Serialize with any possible pending coredump.
446 * We must hold mmap_lock around checking core_state
447 * and clearing tsk->mm. The core-inducing thread
448 * will increment ->nr_threads for each thread in the
449 * group with ->mm != NULL.
450 */
451 mmap_read_lock(mm);
452 core_state = mm->core_state;
453 if (core_state) {
454 struct core_thread self;
455
456 mmap_read_unlock(mm);
457
458 self.task = current;
459 if (self.task->flags & PF_SIGNALED)
460 self.next = xchg(&core_state->dumper.next, &self);
461 else
462 self.task = NULL;
463 /*
464 * Implies mb(), the result of xchg() must be visible
465 * to core_state->dumper.
466 */
467 if (atomic_dec_and_test(&core_state->nr_threads))
468 complete(&core_state->startup);
469
470 for (;;) {
471 set_current_state(TASK_UNINTERRUPTIBLE);
472 if (!self.task) /* see coredump_finish() */
473 break;
474 freezable_schedule();
475 }
476 __set_current_state(TASK_RUNNING);
477 mmap_read_lock(mm);
478 }
479 mmgrab(mm);
480 BUG_ON(mm != current->active_mm);
481 /* more a memory barrier than a real lock */
482 task_lock(current);
483 /*
484 * When a thread stops operating on an address space, the loop
485 * in membarrier_private_expedited() may not observe that
486 * tsk->mm, and the loop in membarrier_global_expedited() may
487 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
488 * rq->membarrier_state, so those would not issue an IPI.
489 * Membarrier requires a memory barrier after accessing
490 * user-space memory, before clearing tsk->mm or the
491 * rq->membarrier_state.
492 */
493 smp_mb__after_spinlock();
494 local_irq_disable();
495 current->mm = NULL;
496 membarrier_update_current_mm(NULL);
497 enter_lazy_tlb(mm, current);
498 local_irq_enable();
499 task_unlock(current);
500 mmap_read_unlock(mm);
501 mm_update_next_owner(mm);
502 mmput(mm);
503 if (test_thread_flag(TIF_MEMDIE))
504 exit_oom_victim();
505 }
506
507 static struct task_struct *find_alive_thread(struct task_struct *p)
508 {
509 struct task_struct *t;
510
511 for_each_thread(p, t) {
512 if (!(t->flags & PF_EXITING))
513 return t;
514 }
515 return NULL;
516 }
517
518 static struct task_struct *find_child_reaper(struct task_struct *father,
519 struct list_head *dead)
520 __releases(&tasklist_lock)
521 __acquires(&tasklist_lock)
522 {
523 struct pid_namespace *pid_ns = task_active_pid_ns(father);
524 struct task_struct *reaper = pid_ns->child_reaper;
525 struct task_struct *p, *n;
526
527 if (likely(reaper != father))
528 return reaper;
529
530 reaper = find_alive_thread(father);
531 if (reaper) {
532 pid_ns->child_reaper = reaper;
533 return reaper;
534 }
535
536 write_unlock_irq(&tasklist_lock);
537
538 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
539 list_del_init(&p->ptrace_entry);
540 release_task(p);
541 }
542
543 zap_pid_ns_processes(pid_ns);
544 write_lock_irq(&tasklist_lock);
545
546 return father;
547 }
548
549 /*
550 * When we die, we re-parent all our children, and try to:
551 * 1. give them to another thread in our thread group, if such a member exists
552 * 2. give it to the first ancestor process which prctl'd itself as a
553 * child_subreaper for its children (like a service manager)
554 * 3. give it to the init process (PID 1) in our pid namespace
555 */
556 static struct task_struct *find_new_reaper(struct task_struct *father,
557 struct task_struct *child_reaper)
558 {
559 struct task_struct *thread, *reaper;
560
561 thread = find_alive_thread(father);
562 if (thread)
563 return thread;
564
565 if (father->signal->has_child_subreaper) {
566 unsigned int ns_level = task_pid(father)->level;
567 /*
568 * Find the first ->is_child_subreaper ancestor in our pid_ns.
569 * We can't check reaper != child_reaper to ensure we do not
570 * cross the namespaces, the exiting parent could be injected
571 * by setns() + fork().
572 * We check pid->level, this is slightly more efficient than
573 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
574 */
575 for (reaper = father->real_parent;
576 task_pid(reaper)->level == ns_level;
577 reaper = reaper->real_parent) {
578 if (reaper == &init_task)
579 break;
580 if (!reaper->signal->is_child_subreaper)
581 continue;
582 thread = find_alive_thread(reaper);
583 if (thread)
584 return thread;
585 }
586 }
587
588 return child_reaper;
589 }
590
591 /*
592 * Any that need to be release_task'd are put on the @dead list.
593 */
594 static void reparent_leader(struct task_struct *father, struct task_struct *p,
595 struct list_head *dead)
596 {
597 if (unlikely(p->exit_state == EXIT_DEAD))
598 return;
599
600 /* We don't want people slaying init. */
601 p->exit_signal = SIGCHLD;
602
603 /* If it has exited notify the new parent about this child's death. */
604 if (!p->ptrace &&
605 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
606 if (do_notify_parent(p, p->exit_signal)) {
607 p->exit_state = EXIT_DEAD;
608 list_add(&p->ptrace_entry, dead);
609 }
610 }
611
612 kill_orphaned_pgrp(p, father);
613 }
614
615 /*
616 * This does two things:
617 *
618 * A. Make init inherit all the child processes
619 * B. Check to see if any process groups have become orphaned
620 * as a result of our exiting, and if they have any stopped
621 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
622 */
623 static void forget_original_parent(struct task_struct *father,
624 struct list_head *dead)
625 {
626 struct task_struct *p, *t, *reaper;
627
628 if (unlikely(!list_empty(&father->ptraced)))
629 exit_ptrace(father, dead);
630
631 /* Can drop and reacquire tasklist_lock */
632 reaper = find_child_reaper(father, dead);
633 if (list_empty(&father->children))
634 return;
635
636 reaper = find_new_reaper(father, reaper);
637 list_for_each_entry(p, &father->children, sibling) {
638 for_each_thread(p, t) {
639 RCU_INIT_POINTER(t->real_parent, reaper);
640 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
641 if (likely(!t->ptrace))
642 t->parent = t->real_parent;
643 if (t->pdeath_signal)
644 group_send_sig_info(t->pdeath_signal,
645 SEND_SIG_NOINFO, t,
646 PIDTYPE_TGID);
647 }
648 /*
649 * If this is a threaded reparent there is no need to
650 * notify anyone anything has happened.
651 */
652 if (!same_thread_group(reaper, father))
653 reparent_leader(father, p, dead);
654 }
655 list_splice_tail_init(&father->children, &reaper->children);
656 }
657
658 /*
659 * Send signals to all our closest relatives so that they know
660 * to properly mourn us..
661 */
662 static void exit_notify(struct task_struct *tsk, int group_dead)
663 {
664 bool autoreap;
665 struct task_struct *p, *n;
666 LIST_HEAD(dead);
667
668 write_lock_irq(&tasklist_lock);
669 forget_original_parent(tsk, &dead);
670
671 if (group_dead)
672 kill_orphaned_pgrp(tsk->group_leader, NULL);
673
674 tsk->exit_state = EXIT_ZOMBIE;
675 if (unlikely(tsk->ptrace)) {
676 int sig = thread_group_leader(tsk) &&
677 thread_group_empty(tsk) &&
678 !ptrace_reparented(tsk) ?
679 tsk->exit_signal : SIGCHLD;
680 autoreap = do_notify_parent(tsk, sig);
681 } else if (thread_group_leader(tsk)) {
682 autoreap = thread_group_empty(tsk) &&
683 do_notify_parent(tsk, tsk->exit_signal);
684 } else {
685 autoreap = true;
686 }
687
688 if (autoreap) {
689 tsk->exit_state = EXIT_DEAD;
690 list_add(&tsk->ptrace_entry, &dead);
691 }
692
693 /* mt-exec, de_thread() is waiting for group leader */
694 if (unlikely(tsk->signal->notify_count < 0))
695 wake_up_process(tsk->signal->group_exit_task);
696 write_unlock_irq(&tasklist_lock);
697
698 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
699 list_del_init(&p->ptrace_entry);
700 release_task(p);
701 }
702 }
703
704 #ifdef CONFIG_DEBUG_STACK_USAGE
705 static void check_stack_usage(void)
706 {
707 static DEFINE_SPINLOCK(low_water_lock);
708 static int lowest_to_date = THREAD_SIZE;
709 unsigned long free;
710
711 free = stack_not_used(current);
712
713 if (free >= lowest_to_date)
714 return;
715
716 spin_lock(&low_water_lock);
717 if (free < lowest_to_date) {
718 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
719 current->comm, task_pid_nr(current), free);
720 lowest_to_date = free;
721 }
722 spin_unlock(&low_water_lock);
723 }
724 #else
725 static inline void check_stack_usage(void) {}
726 #endif
727
728 void __noreturn do_exit(long code)
729 {
730 struct task_struct *tsk = current;
731 int group_dead;
732
733 /*
734 * We can get here from a kernel oops, sometimes with preemption off.
735 * Start by checking for critical errors.
736 * Then fix up important state like USER_DS and preemption.
737 * Then do everything else.
738 */
739
740 WARN_ON(blk_needs_flush_plug(tsk));
741
742 if (unlikely(in_interrupt()))
743 panic("Aiee, killing interrupt handler!");
744 if (unlikely(!tsk->pid))
745 panic("Attempted to kill the idle task!");
746
747 /*
748 * If do_exit is called because this processes oopsed, it's possible
749 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
750 * continuing. Amongst other possible reasons, this is to prevent
751 * mm_release()->clear_child_tid() from writing to a user-controlled
752 * kernel address.
753 */
754 force_uaccess_begin();
755
756 if (unlikely(in_atomic())) {
757 pr_info("note: %s[%d] exited with preempt_count %d\n",
758 current->comm, task_pid_nr(current),
759 preempt_count());
760 preempt_count_set(PREEMPT_ENABLED);
761 }
762
763 profile_task_exit(tsk);
764 kcov_task_exit(tsk);
765
766 ptrace_event(PTRACE_EVENT_EXIT, code);
767
768 validate_creds_for_do_exit(tsk);
769
770 /*
771 * We're taking recursive faults here in do_exit. Safest is to just
772 * leave this task alone and wait for reboot.
773 */
774 if (unlikely(tsk->flags & PF_EXITING)) {
775 pr_alert("Fixing recursive fault but reboot is needed!\n");
776 futex_exit_recursive(tsk);
777 set_current_state(TASK_UNINTERRUPTIBLE);
778 schedule();
779 }
780
781 io_uring_files_cancel(tsk->files);
782 exit_signals(tsk); /* sets PF_EXITING */
783
784 /* sync mm's RSS info before statistics gathering */
785 if (tsk->mm)
786 sync_mm_rss(tsk->mm);
787 acct_update_integrals(tsk);
788 group_dead = atomic_dec_and_test(&tsk->signal->live);
789 if (group_dead) {
790 /*
791 * If the last thread of global init has exited, panic
792 * immediately to get a useable coredump.
793 */
794 if (unlikely(is_global_init(tsk)))
795 panic("Attempted to kill init! exitcode=0x%08x\n",
796 tsk->signal->group_exit_code ?: (int)code);
797
798 #ifdef CONFIG_POSIX_TIMERS
799 hrtimer_cancel(&tsk->signal->real_timer);
800 exit_itimers(tsk->signal);
801 #endif
802 if (tsk->mm)
803 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
804 }
805 acct_collect(code, group_dead);
806 if (group_dead)
807 tty_audit_exit();
808 audit_free(tsk);
809
810 tsk->exit_code = code;
811 taskstats_exit(tsk, group_dead);
812
813 exit_mm();
814
815 if (group_dead)
816 acct_process();
817 trace_sched_process_exit(tsk);
818
819 exit_sem(tsk);
820 exit_shm(tsk);
821 exit_files(tsk);
822 exit_fs(tsk);
823 if (group_dead)
824 disassociate_ctty(1);
825 exit_task_namespaces(tsk);
826 exit_task_work(tsk);
827 exit_thread(tsk);
828
829 /*
830 * Flush inherited counters to the parent - before the parent
831 * gets woken up by child-exit notifications.
832 *
833 * because of cgroup mode, must be called before cgroup_exit()
834 */
835 perf_event_exit_task(tsk);
836
837 sched_autogroup_exit_task(tsk);
838 cgroup_exit(tsk);
839
840 /*
841 * FIXME: do that only when needed, using sched_exit tracepoint
842 */
843 flush_ptrace_hw_breakpoint(tsk);
844
845 exit_tasks_rcu_start();
846 exit_notify(tsk, group_dead);
847 proc_exit_connector(tsk);
848 mpol_put_task_policy(tsk);
849 #ifdef CONFIG_FUTEX
850 if (unlikely(current->pi_state_cache))
851 kfree(current->pi_state_cache);
852 #endif
853 /*
854 * Make sure we are holding no locks:
855 */
856 debug_check_no_locks_held();
857
858 if (tsk->io_context)
859 exit_io_context(tsk);
860
861 if (tsk->splice_pipe)
862 free_pipe_info(tsk->splice_pipe);
863
864 if (tsk->task_frag.page)
865 put_page(tsk->task_frag.page);
866
867 validate_creds_for_do_exit(tsk);
868
869 check_stack_usage();
870 preempt_disable();
871 if (tsk->nr_dirtied)
872 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
873 exit_rcu();
874 exit_tasks_rcu_finish();
875
876 lockdep_free_task(tsk);
877 do_task_dead();
878 }
879 EXPORT_SYMBOL_GPL(do_exit);
880
881 void complete_and_exit(struct completion *comp, long code)
882 {
883 if (comp)
884 complete(comp);
885
886 do_exit(code);
887 }
888 EXPORT_SYMBOL(complete_and_exit);
889
890 SYSCALL_DEFINE1(exit, int, error_code)
891 {
892 do_exit((error_code&0xff)<<8);
893 }
894
895 /*
896 * Take down every thread in the group. This is called by fatal signals
897 * as well as by sys_exit_group (below).
898 */
899 void
900 do_group_exit(int exit_code)
901 {
902 struct signal_struct *sig = current->signal;
903
904 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
905
906 if (signal_group_exit(sig))
907 exit_code = sig->group_exit_code;
908 else if (!thread_group_empty(current)) {
909 struct sighand_struct *const sighand = current->sighand;
910
911 spin_lock_irq(&sighand->siglock);
912 if (signal_group_exit(sig))
913 /* Another thread got here before we took the lock. */
914 exit_code = sig->group_exit_code;
915 else {
916 sig->group_exit_code = exit_code;
917 sig->flags = SIGNAL_GROUP_EXIT;
918 zap_other_threads(current);
919 }
920 spin_unlock_irq(&sighand->siglock);
921 }
922
923 do_exit(exit_code);
924 /* NOTREACHED */
925 }
926
927 /*
928 * this kills every thread in the thread group. Note that any externally
929 * wait4()-ing process will get the correct exit code - even if this
930 * thread is not the thread group leader.
931 */
932 SYSCALL_DEFINE1(exit_group, int, error_code)
933 {
934 do_group_exit((error_code & 0xff) << 8);
935 /* NOTREACHED */
936 return 0;
937 }
938
939 struct waitid_info {
940 pid_t pid;
941 uid_t uid;
942 int status;
943 int cause;
944 };
945
946 struct wait_opts {
947 enum pid_type wo_type;
948 int wo_flags;
949 struct pid *wo_pid;
950
951 struct waitid_info *wo_info;
952 int wo_stat;
953 struct rusage *wo_rusage;
954
955 wait_queue_entry_t child_wait;
956 int notask_error;
957 };
958
959 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
960 {
961 return wo->wo_type == PIDTYPE_MAX ||
962 task_pid_type(p, wo->wo_type) == wo->wo_pid;
963 }
964
965 static int
966 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
967 {
968 if (!eligible_pid(wo, p))
969 return 0;
970
971 /*
972 * Wait for all children (clone and not) if __WALL is set or
973 * if it is traced by us.
974 */
975 if (ptrace || (wo->wo_flags & __WALL))
976 return 1;
977
978 /*
979 * Otherwise, wait for clone children *only* if __WCLONE is set;
980 * otherwise, wait for non-clone children *only*.
981 *
982 * Note: a "clone" child here is one that reports to its parent
983 * using a signal other than SIGCHLD, or a non-leader thread which
984 * we can only see if it is traced by us.
985 */
986 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
987 return 0;
988
989 return 1;
990 }
991
992 /*
993 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
994 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
995 * the lock and this task is uninteresting. If we return nonzero, we have
996 * released the lock and the system call should return.
997 */
998 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
999 {
1000 int state, status;
1001 pid_t pid = task_pid_vnr(p);
1002 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1003 struct waitid_info *infop;
1004
1005 if (!likely(wo->wo_flags & WEXITED))
1006 return 0;
1007
1008 if (unlikely(wo->wo_flags & WNOWAIT)) {
1009 status = p->exit_code;
1010 get_task_struct(p);
1011 read_unlock(&tasklist_lock);
1012 sched_annotate_sleep();
1013 if (wo->wo_rusage)
1014 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1015 put_task_struct(p);
1016 goto out_info;
1017 }
1018 /*
1019 * Move the task's state to DEAD/TRACE, only one thread can do this.
1020 */
1021 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1022 EXIT_TRACE : EXIT_DEAD;
1023 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1024 return 0;
1025 /*
1026 * We own this thread, nobody else can reap it.
1027 */
1028 read_unlock(&tasklist_lock);
1029 sched_annotate_sleep();
1030
1031 /*
1032 * Check thread_group_leader() to exclude the traced sub-threads.
1033 */
1034 if (state == EXIT_DEAD && thread_group_leader(p)) {
1035 struct signal_struct *sig = p->signal;
1036 struct signal_struct *psig = current->signal;
1037 unsigned long maxrss;
1038 u64 tgutime, tgstime;
1039
1040 /*
1041 * The resource counters for the group leader are in its
1042 * own task_struct. Those for dead threads in the group
1043 * are in its signal_struct, as are those for the child
1044 * processes it has previously reaped. All these
1045 * accumulate in the parent's signal_struct c* fields.
1046 *
1047 * We don't bother to take a lock here to protect these
1048 * p->signal fields because the whole thread group is dead
1049 * and nobody can change them.
1050 *
1051 * psig->stats_lock also protects us from our sub-theads
1052 * which can reap other children at the same time. Until
1053 * we change k_getrusage()-like users to rely on this lock
1054 * we have to take ->siglock as well.
1055 *
1056 * We use thread_group_cputime_adjusted() to get times for
1057 * the thread group, which consolidates times for all threads
1058 * in the group including the group leader.
1059 */
1060 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1061 spin_lock_irq(&current->sighand->siglock);
1062 write_seqlock(&psig->stats_lock);
1063 psig->cutime += tgutime + sig->cutime;
1064 psig->cstime += tgstime + sig->cstime;
1065 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1066 psig->cmin_flt +=
1067 p->min_flt + sig->min_flt + sig->cmin_flt;
1068 psig->cmaj_flt +=
1069 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1070 psig->cnvcsw +=
1071 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1072 psig->cnivcsw +=
1073 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1074 psig->cinblock +=
1075 task_io_get_inblock(p) +
1076 sig->inblock + sig->cinblock;
1077 psig->coublock +=
1078 task_io_get_oublock(p) +
1079 sig->oublock + sig->coublock;
1080 maxrss = max(sig->maxrss, sig->cmaxrss);
1081 if (psig->cmaxrss < maxrss)
1082 psig->cmaxrss = maxrss;
1083 task_io_accounting_add(&psig->ioac, &p->ioac);
1084 task_io_accounting_add(&psig->ioac, &sig->ioac);
1085 write_sequnlock(&psig->stats_lock);
1086 spin_unlock_irq(&current->sighand->siglock);
1087 }
1088
1089 if (wo->wo_rusage)
1090 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1091 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1092 ? p->signal->group_exit_code : p->exit_code;
1093 wo->wo_stat = status;
1094
1095 if (state == EXIT_TRACE) {
1096 write_lock_irq(&tasklist_lock);
1097 /* We dropped tasklist, ptracer could die and untrace */
1098 ptrace_unlink(p);
1099
1100 /* If parent wants a zombie, don't release it now */
1101 state = EXIT_ZOMBIE;
1102 if (do_notify_parent(p, p->exit_signal))
1103 state = EXIT_DEAD;
1104 p->exit_state = state;
1105 write_unlock_irq(&tasklist_lock);
1106 }
1107 if (state == EXIT_DEAD)
1108 release_task(p);
1109
1110 out_info:
1111 infop = wo->wo_info;
1112 if (infop) {
1113 if ((status & 0x7f) == 0) {
1114 infop->cause = CLD_EXITED;
1115 infop->status = status >> 8;
1116 } else {
1117 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1118 infop->status = status & 0x7f;
1119 }
1120 infop->pid = pid;
1121 infop->uid = uid;
1122 }
1123
1124 return pid;
1125 }
1126
1127 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1128 {
1129 if (ptrace) {
1130 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1131 return &p->exit_code;
1132 } else {
1133 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1134 return &p->signal->group_exit_code;
1135 }
1136 return NULL;
1137 }
1138
1139 /**
1140 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1141 * @wo: wait options
1142 * @ptrace: is the wait for ptrace
1143 * @p: task to wait for
1144 *
1145 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1146 *
1147 * CONTEXT:
1148 * read_lock(&tasklist_lock), which is released if return value is
1149 * non-zero. Also, grabs and releases @p->sighand->siglock.
1150 *
1151 * RETURNS:
1152 * 0 if wait condition didn't exist and search for other wait conditions
1153 * should continue. Non-zero return, -errno on failure and @p's pid on
1154 * success, implies that tasklist_lock is released and wait condition
1155 * search should terminate.
1156 */
1157 static int wait_task_stopped(struct wait_opts *wo,
1158 int ptrace, struct task_struct *p)
1159 {
1160 struct waitid_info *infop;
1161 int exit_code, *p_code, why;
1162 uid_t uid = 0; /* unneeded, required by compiler */
1163 pid_t pid;
1164
1165 /*
1166 * Traditionally we see ptrace'd stopped tasks regardless of options.
1167 */
1168 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1169 return 0;
1170
1171 if (!task_stopped_code(p, ptrace))
1172 return 0;
1173
1174 exit_code = 0;
1175 spin_lock_irq(&p->sighand->siglock);
1176
1177 p_code = task_stopped_code(p, ptrace);
1178 if (unlikely(!p_code))
1179 goto unlock_sig;
1180
1181 exit_code = *p_code;
1182 if (!exit_code)
1183 goto unlock_sig;
1184
1185 if (!unlikely(wo->wo_flags & WNOWAIT))
1186 *p_code = 0;
1187
1188 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1189 unlock_sig:
1190 spin_unlock_irq(&p->sighand->siglock);
1191 if (!exit_code)
1192 return 0;
1193
1194 /*
1195 * Now we are pretty sure this task is interesting.
1196 * Make sure it doesn't get reaped out from under us while we
1197 * give up the lock and then examine it below. We don't want to
1198 * keep holding onto the tasklist_lock while we call getrusage and
1199 * possibly take page faults for user memory.
1200 */
1201 get_task_struct(p);
1202 pid = task_pid_vnr(p);
1203 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1204 read_unlock(&tasklist_lock);
1205 sched_annotate_sleep();
1206 if (wo->wo_rusage)
1207 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1208 put_task_struct(p);
1209
1210 if (likely(!(wo->wo_flags & WNOWAIT)))
1211 wo->wo_stat = (exit_code << 8) | 0x7f;
1212
1213 infop = wo->wo_info;
1214 if (infop) {
1215 infop->cause = why;
1216 infop->status = exit_code;
1217 infop->pid = pid;
1218 infop->uid = uid;
1219 }
1220 return pid;
1221 }
1222
1223 /*
1224 * Handle do_wait work for one task in a live, non-stopped state.
1225 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1226 * the lock and this task is uninteresting. If we return nonzero, we have
1227 * released the lock and the system call should return.
1228 */
1229 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1230 {
1231 struct waitid_info *infop;
1232 pid_t pid;
1233 uid_t uid;
1234
1235 if (!unlikely(wo->wo_flags & WCONTINUED))
1236 return 0;
1237
1238 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1239 return 0;
1240
1241 spin_lock_irq(&p->sighand->siglock);
1242 /* Re-check with the lock held. */
1243 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1244 spin_unlock_irq(&p->sighand->siglock);
1245 return 0;
1246 }
1247 if (!unlikely(wo->wo_flags & WNOWAIT))
1248 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1249 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1250 spin_unlock_irq(&p->sighand->siglock);
1251
1252 pid = task_pid_vnr(p);
1253 get_task_struct(p);
1254 read_unlock(&tasklist_lock);
1255 sched_annotate_sleep();
1256 if (wo->wo_rusage)
1257 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1258 put_task_struct(p);
1259
1260 infop = wo->wo_info;
1261 if (!infop) {
1262 wo->wo_stat = 0xffff;
1263 } else {
1264 infop->cause = CLD_CONTINUED;
1265 infop->pid = pid;
1266 infop->uid = uid;
1267 infop->status = SIGCONT;
1268 }
1269 return pid;
1270 }
1271
1272 /*
1273 * Consider @p for a wait by @parent.
1274 *
1275 * -ECHILD should be in ->notask_error before the first call.
1276 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1277 * Returns zero if the search for a child should continue;
1278 * then ->notask_error is 0 if @p is an eligible child,
1279 * or still -ECHILD.
1280 */
1281 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1282 struct task_struct *p)
1283 {
1284 /*
1285 * We can race with wait_task_zombie() from another thread.
1286 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1287 * can't confuse the checks below.
1288 */
1289 int exit_state = READ_ONCE(p->exit_state);
1290 int ret;
1291
1292 if (unlikely(exit_state == EXIT_DEAD))
1293 return 0;
1294
1295 ret = eligible_child(wo, ptrace, p);
1296 if (!ret)
1297 return ret;
1298
1299 if (unlikely(exit_state == EXIT_TRACE)) {
1300 /*
1301 * ptrace == 0 means we are the natural parent. In this case
1302 * we should clear notask_error, debugger will notify us.
1303 */
1304 if (likely(!ptrace))
1305 wo->notask_error = 0;
1306 return 0;
1307 }
1308
1309 if (likely(!ptrace) && unlikely(p->ptrace)) {
1310 /*
1311 * If it is traced by its real parent's group, just pretend
1312 * the caller is ptrace_do_wait() and reap this child if it
1313 * is zombie.
1314 *
1315 * This also hides group stop state from real parent; otherwise
1316 * a single stop can be reported twice as group and ptrace stop.
1317 * If a ptracer wants to distinguish these two events for its
1318 * own children it should create a separate process which takes
1319 * the role of real parent.
1320 */
1321 if (!ptrace_reparented(p))
1322 ptrace = 1;
1323 }
1324
1325 /* slay zombie? */
1326 if (exit_state == EXIT_ZOMBIE) {
1327 /* we don't reap group leaders with subthreads */
1328 if (!delay_group_leader(p)) {
1329 /*
1330 * A zombie ptracee is only visible to its ptracer.
1331 * Notification and reaping will be cascaded to the
1332 * real parent when the ptracer detaches.
1333 */
1334 if (unlikely(ptrace) || likely(!p->ptrace))
1335 return wait_task_zombie(wo, p);
1336 }
1337
1338 /*
1339 * Allow access to stopped/continued state via zombie by
1340 * falling through. Clearing of notask_error is complex.
1341 *
1342 * When !@ptrace:
1343 *
1344 * If WEXITED is set, notask_error should naturally be
1345 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1346 * so, if there are live subthreads, there are events to
1347 * wait for. If all subthreads are dead, it's still safe
1348 * to clear - this function will be called again in finite
1349 * amount time once all the subthreads are released and
1350 * will then return without clearing.
1351 *
1352 * When @ptrace:
1353 *
1354 * Stopped state is per-task and thus can't change once the
1355 * target task dies. Only continued and exited can happen.
1356 * Clear notask_error if WCONTINUED | WEXITED.
1357 */
1358 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1359 wo->notask_error = 0;
1360 } else {
1361 /*
1362 * @p is alive and it's gonna stop, continue or exit, so
1363 * there always is something to wait for.
1364 */
1365 wo->notask_error = 0;
1366 }
1367
1368 /*
1369 * Wait for stopped. Depending on @ptrace, different stopped state
1370 * is used and the two don't interact with each other.
1371 */
1372 ret = wait_task_stopped(wo, ptrace, p);
1373 if (ret)
1374 return ret;
1375
1376 /*
1377 * Wait for continued. There's only one continued state and the
1378 * ptracer can consume it which can confuse the real parent. Don't
1379 * use WCONTINUED from ptracer. You don't need or want it.
1380 */
1381 return wait_task_continued(wo, p);
1382 }
1383
1384 /*
1385 * Do the work of do_wait() for one thread in the group, @tsk.
1386 *
1387 * -ECHILD should be in ->notask_error before the first call.
1388 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1389 * Returns zero if the search for a child should continue; then
1390 * ->notask_error is 0 if there were any eligible children,
1391 * or still -ECHILD.
1392 */
1393 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1394 {
1395 struct task_struct *p;
1396
1397 list_for_each_entry(p, &tsk->children, sibling) {
1398 int ret = wait_consider_task(wo, 0, p);
1399
1400 if (ret)
1401 return ret;
1402 }
1403
1404 return 0;
1405 }
1406
1407 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1408 {
1409 struct task_struct *p;
1410
1411 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1412 int ret = wait_consider_task(wo, 1, p);
1413
1414 if (ret)
1415 return ret;
1416 }
1417
1418 return 0;
1419 }
1420
1421 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1422 int sync, void *key)
1423 {
1424 struct wait_opts *wo = container_of(wait, struct wait_opts,
1425 child_wait);
1426 struct task_struct *p = key;
1427
1428 if (!eligible_pid(wo, p))
1429 return 0;
1430
1431 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1432 return 0;
1433
1434 return default_wake_function(wait, mode, sync, key);
1435 }
1436
1437 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1438 {
1439 __wake_up_sync_key(&parent->signal->wait_chldexit,
1440 TASK_INTERRUPTIBLE, p);
1441 }
1442
1443 static long do_wait(struct wait_opts *wo)
1444 {
1445 struct task_struct *tsk;
1446 int retval;
1447
1448 trace_sched_process_wait(wo->wo_pid);
1449
1450 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1451 wo->child_wait.private = current;
1452 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1453 repeat:
1454 /*
1455 * If there is nothing that can match our criteria, just get out.
1456 * We will clear ->notask_error to zero if we see any child that
1457 * might later match our criteria, even if we are not able to reap
1458 * it yet.
1459 */
1460 wo->notask_error = -ECHILD;
1461 if ((wo->wo_type < PIDTYPE_MAX) &&
1462 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1463 goto notask;
1464
1465 set_current_state(TASK_INTERRUPTIBLE);
1466 read_lock(&tasklist_lock);
1467 tsk = current;
1468 do {
1469 retval = do_wait_thread(wo, tsk);
1470 if (retval)
1471 goto end;
1472
1473 retval = ptrace_do_wait(wo, tsk);
1474 if (retval)
1475 goto end;
1476
1477 if (wo->wo_flags & __WNOTHREAD)
1478 break;
1479 } while_each_thread(current, tsk);
1480 read_unlock(&tasklist_lock);
1481
1482 notask:
1483 retval = wo->notask_error;
1484 if (!retval && !(wo->wo_flags & WNOHANG)) {
1485 retval = -ERESTARTSYS;
1486 if (!signal_pending(current)) {
1487 schedule();
1488 goto repeat;
1489 }
1490 }
1491 end:
1492 __set_current_state(TASK_RUNNING);
1493 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1494 return retval;
1495 }
1496
1497 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1498 int options, struct rusage *ru)
1499 {
1500 struct wait_opts wo;
1501 struct pid *pid = NULL;
1502 enum pid_type type;
1503 long ret;
1504 unsigned int f_flags = 0;
1505
1506 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1507 __WNOTHREAD|__WCLONE|__WALL))
1508 return -EINVAL;
1509 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1510 return -EINVAL;
1511
1512 switch (which) {
1513 case P_ALL:
1514 type = PIDTYPE_MAX;
1515 break;
1516 case P_PID:
1517 type = PIDTYPE_PID;
1518 if (upid <= 0)
1519 return -EINVAL;
1520
1521 pid = find_get_pid(upid);
1522 break;
1523 case P_PGID:
1524 type = PIDTYPE_PGID;
1525 if (upid < 0)
1526 return -EINVAL;
1527
1528 if (upid)
1529 pid = find_get_pid(upid);
1530 else
1531 pid = get_task_pid(current, PIDTYPE_PGID);
1532 break;
1533 case P_PIDFD:
1534 type = PIDTYPE_PID;
1535 if (upid < 0)
1536 return -EINVAL;
1537
1538 pid = pidfd_get_pid(upid, &f_flags);
1539 if (IS_ERR(pid))
1540 return PTR_ERR(pid);
1541
1542 break;
1543 default:
1544 return -EINVAL;
1545 }
1546
1547 wo.wo_type = type;
1548 wo.wo_pid = pid;
1549 wo.wo_flags = options;
1550 wo.wo_info = infop;
1551 wo.wo_rusage = ru;
1552 if (f_flags & O_NONBLOCK)
1553 wo.wo_flags |= WNOHANG;
1554
1555 ret = do_wait(&wo);
1556 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1557 ret = -EAGAIN;
1558
1559 put_pid(pid);
1560 return ret;
1561 }
1562
1563 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1564 infop, int, options, struct rusage __user *, ru)
1565 {
1566 struct rusage r;
1567 struct waitid_info info = {.status = 0};
1568 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1569 int signo = 0;
1570
1571 if (err > 0) {
1572 signo = SIGCHLD;
1573 err = 0;
1574 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1575 return -EFAULT;
1576 }
1577 if (!infop)
1578 return err;
1579
1580 if (!user_write_access_begin(infop, sizeof(*infop)))
1581 return -EFAULT;
1582
1583 unsafe_put_user(signo, &infop->si_signo, Efault);
1584 unsafe_put_user(0, &infop->si_errno, Efault);
1585 unsafe_put_user(info.cause, &infop->si_code, Efault);
1586 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1587 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1588 unsafe_put_user(info.status, &infop->si_status, Efault);
1589 user_write_access_end();
1590 return err;
1591 Efault:
1592 user_write_access_end();
1593 return -EFAULT;
1594 }
1595
1596 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1597 struct rusage *ru)
1598 {
1599 struct wait_opts wo;
1600 struct pid *pid = NULL;
1601 enum pid_type type;
1602 long ret;
1603
1604 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1605 __WNOTHREAD|__WCLONE|__WALL))
1606 return -EINVAL;
1607
1608 /* -INT_MIN is not defined */
1609 if (upid == INT_MIN)
1610 return -ESRCH;
1611
1612 if (upid == -1)
1613 type = PIDTYPE_MAX;
1614 else if (upid < 0) {
1615 type = PIDTYPE_PGID;
1616 pid = find_get_pid(-upid);
1617 } else if (upid == 0) {
1618 type = PIDTYPE_PGID;
1619 pid = get_task_pid(current, PIDTYPE_PGID);
1620 } else /* upid > 0 */ {
1621 type = PIDTYPE_PID;
1622 pid = find_get_pid(upid);
1623 }
1624
1625 wo.wo_type = type;
1626 wo.wo_pid = pid;
1627 wo.wo_flags = options | WEXITED;
1628 wo.wo_info = NULL;
1629 wo.wo_stat = 0;
1630 wo.wo_rusage = ru;
1631 ret = do_wait(&wo);
1632 put_pid(pid);
1633 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1634 ret = -EFAULT;
1635
1636 return ret;
1637 }
1638
1639 int kernel_wait(pid_t pid, int *stat)
1640 {
1641 struct wait_opts wo = {
1642 .wo_type = PIDTYPE_PID,
1643 .wo_pid = find_get_pid(pid),
1644 .wo_flags = WEXITED,
1645 };
1646 int ret;
1647
1648 ret = do_wait(&wo);
1649 if (ret > 0 && wo.wo_stat)
1650 *stat = wo.wo_stat;
1651 put_pid(wo.wo_pid);
1652 return ret;
1653 }
1654
1655 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1656 int, options, struct rusage __user *, ru)
1657 {
1658 struct rusage r;
1659 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1660
1661 if (err > 0) {
1662 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1663 return -EFAULT;
1664 }
1665 return err;
1666 }
1667
1668 #ifdef __ARCH_WANT_SYS_WAITPID
1669
1670 /*
1671 * sys_waitpid() remains for compatibility. waitpid() should be
1672 * implemented by calling sys_wait4() from libc.a.
1673 */
1674 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1675 {
1676 return kernel_wait4(pid, stat_addr, options, NULL);
1677 }
1678
1679 #endif
1680
1681 #ifdef CONFIG_COMPAT
1682 COMPAT_SYSCALL_DEFINE4(wait4,
1683 compat_pid_t, pid,
1684 compat_uint_t __user *, stat_addr,
1685 int, options,
1686 struct compat_rusage __user *, ru)
1687 {
1688 struct rusage r;
1689 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1690 if (err > 0) {
1691 if (ru && put_compat_rusage(&r, ru))
1692 return -EFAULT;
1693 }
1694 return err;
1695 }
1696
1697 COMPAT_SYSCALL_DEFINE5(waitid,
1698 int, which, compat_pid_t, pid,
1699 struct compat_siginfo __user *, infop, int, options,
1700 struct compat_rusage __user *, uru)
1701 {
1702 struct rusage ru;
1703 struct waitid_info info = {.status = 0};
1704 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1705 int signo = 0;
1706 if (err > 0) {
1707 signo = SIGCHLD;
1708 err = 0;
1709 if (uru) {
1710 /* kernel_waitid() overwrites everything in ru */
1711 if (COMPAT_USE_64BIT_TIME)
1712 err = copy_to_user(uru, &ru, sizeof(ru));
1713 else
1714 err = put_compat_rusage(&ru, uru);
1715 if (err)
1716 return -EFAULT;
1717 }
1718 }
1719
1720 if (!infop)
1721 return err;
1722
1723 if (!user_write_access_begin(infop, sizeof(*infop)))
1724 return -EFAULT;
1725
1726 unsafe_put_user(signo, &infop->si_signo, Efault);
1727 unsafe_put_user(0, &infop->si_errno, Efault);
1728 unsafe_put_user(info.cause, &infop->si_code, Efault);
1729 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1730 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1731 unsafe_put_user(info.status, &infop->si_status, Efault);
1732 user_write_access_end();
1733 return err;
1734 Efault:
1735 user_write_access_end();
1736 return -EFAULT;
1737 }
1738 #endif
1739
1740 /**
1741 * thread_group_exited - check that a thread group has exited
1742 * @pid: tgid of thread group to be checked.
1743 *
1744 * Test if the thread group represented by tgid has exited (all
1745 * threads are zombies, dead or completely gone).
1746 *
1747 * Return: true if the thread group has exited. false otherwise.
1748 */
1749 bool thread_group_exited(struct pid *pid)
1750 {
1751 struct task_struct *task;
1752 bool exited;
1753
1754 rcu_read_lock();
1755 task = pid_task(pid, PIDTYPE_PID);
1756 exited = !task ||
1757 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1758 rcu_read_unlock();
1759
1760 return exited;
1761 }
1762 EXPORT_SYMBOL(thread_group_exited);
1763
1764 __weak void abort(void)
1765 {
1766 BUG();
1767
1768 /* if that doesn't kill us, halt */
1769 panic("Oops failed to kill thread");
1770 }
1771 EXPORT_SYMBOL(abort);