]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/exit.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/cpu.h>
18 #include <linux/acct.h>
19 #include <linux/tsacct_kern.h>
20 #include <linux/file.h>
21 #include <linux/fdtable.h>
22 #include <linux/freezer.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/pipe_fs_i.h>
42 #include <linux/audit.h> /* for audit_free() */
43 #include <linux/resource.h>
44 #include <linux/blkdev.h>
45 #include <linux/task_io_accounting_ops.h>
46 #include <linux/tracehook.h>
47 #include <linux/fs_struct.h>
48 #include <linux/userfaultfd_k.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 #include <linux/random.h>
58 #include <linux/rcuwait.h>
59
60 #include <linux/uaccess.h>
61 #include <asm/unistd.h>
62 #include <asm/pgtable.h>
63 #include <asm/mmu_context.h>
64
65 static void __unhash_process(struct task_struct *p, bool group_dead)
66 {
67 nr_threads--;
68 detach_pid(p, PIDTYPE_PID);
69 if (group_dead) {
70 detach_pid(p, PIDTYPE_PGID);
71 detach_pid(p, PIDTYPE_SID);
72
73 list_del_rcu(&p->tasks);
74 list_del_init(&p->sibling);
75 __this_cpu_dec(process_counts);
76 }
77 list_del_rcu(&p->thread_group);
78 list_del_rcu(&p->thread_node);
79 }
80
81 /*
82 * This function expects the tasklist_lock write-locked.
83 */
84 static void __exit_signal(struct task_struct *tsk)
85 {
86 struct signal_struct *sig = tsk->signal;
87 bool group_dead = thread_group_leader(tsk);
88 struct sighand_struct *sighand;
89 struct tty_struct *uninitialized_var(tty);
90 u64 utime, stime;
91
92 sighand = rcu_dereference_check(tsk->sighand,
93 lockdep_tasklist_lock_is_held());
94 spin_lock(&sighand->siglock);
95
96 #ifdef CONFIG_POSIX_TIMERS
97 posix_cpu_timers_exit(tsk);
98 if (group_dead) {
99 posix_cpu_timers_exit_group(tsk);
100 } else {
101 /*
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
105 */
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
108 }
109 #endif
110
111 if (group_dead) {
112 tty = sig->tty;
113 sig->tty = NULL;
114 } else {
115 /*
116 * If there is any task waiting for the group exit
117 * then notify it:
118 */
119 if (sig->notify_count > 0 && !--sig->notify_count)
120 wake_up_process(sig->group_exit_task);
121
122 if (tsk == sig->curr_target)
123 sig->curr_target = next_thread(tsk);
124 }
125
126 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
127 sizeof(unsigned long long));
128
129 /*
130 * Accumulate here the counters for all threads as they die. We could
131 * skip the group leader because it is the last user of signal_struct,
132 * but we want to avoid the race with thread_group_cputime() which can
133 * see the empty ->thread_head list.
134 */
135 task_cputime(tsk, &utime, &stime);
136 write_seqlock(&sig->stats_lock);
137 sig->utime += utime;
138 sig->stime += stime;
139 sig->gtime += task_gtime(tsk);
140 sig->min_flt += tsk->min_flt;
141 sig->maj_flt += tsk->maj_flt;
142 sig->nvcsw += tsk->nvcsw;
143 sig->nivcsw += tsk->nivcsw;
144 sig->inblock += task_io_get_inblock(tsk);
145 sig->oublock += task_io_get_oublock(tsk);
146 task_io_accounting_add(&sig->ioac, &tsk->ioac);
147 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
148 sig->nr_threads--;
149 __unhash_process(tsk, group_dead);
150 write_sequnlock(&sig->stats_lock);
151
152 /*
153 * Do this under ->siglock, we can race with another thread
154 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 */
156 flush_sigqueue(&tsk->pending);
157 tsk->sighand = NULL;
158 spin_unlock(&sighand->siglock);
159
160 __cleanup_sighand(sighand);
161 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
162 if (group_dead) {
163 flush_sigqueue(&sig->shared_pending);
164 tty_kref_put(tty);
165 }
166 }
167
168 static void delayed_put_task_struct(struct rcu_head *rhp)
169 {
170 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171
172 perf_event_delayed_put(tsk);
173 trace_sched_process_free(tsk);
174 put_task_struct(tsk);
175 }
176
177
178 void release_task(struct task_struct *p)
179 {
180 struct task_struct *leader;
181 int zap_leader;
182 repeat:
183 /* don't need to get the RCU readlock here - the process is dead and
184 * can't be modifying its own credentials. But shut RCU-lockdep up */
185 rcu_read_lock();
186 atomic_dec(&__task_cred(p)->user->processes);
187 rcu_read_unlock();
188
189 proc_flush_task(p);
190
191 write_lock_irq(&tasklist_lock);
192 ptrace_release_task(p);
193 __exit_signal(p);
194
195 /*
196 * If we are the last non-leader member of the thread
197 * group, and the leader is zombie, then notify the
198 * group leader's parent process. (if it wants notification.)
199 */
200 zap_leader = 0;
201 leader = p->group_leader;
202 if (leader != p && thread_group_empty(leader)
203 && leader->exit_state == EXIT_ZOMBIE) {
204 /*
205 * If we were the last child thread and the leader has
206 * exited already, and the leader's parent ignores SIGCHLD,
207 * then we are the one who should release the leader.
208 */
209 zap_leader = do_notify_parent(leader, leader->exit_signal);
210 if (zap_leader)
211 leader->exit_state = EXIT_DEAD;
212 }
213
214 write_unlock_irq(&tasklist_lock);
215 release_thread(p);
216 call_rcu(&p->rcu, delayed_put_task_struct);
217
218 p = leader;
219 if (unlikely(zap_leader))
220 goto repeat;
221 }
222
223 /*
224 * Note that if this function returns a valid task_struct pointer (!NULL)
225 * task->usage must remain >0 for the duration of the RCU critical section.
226 */
227 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
228 {
229 struct sighand_struct *sighand;
230 struct task_struct *task;
231
232 /*
233 * We need to verify that release_task() was not called and thus
234 * delayed_put_task_struct() can't run and drop the last reference
235 * before rcu_read_unlock(). We check task->sighand != NULL,
236 * but we can read the already freed and reused memory.
237 */
238 retry:
239 task = rcu_dereference(*ptask);
240 if (!task)
241 return NULL;
242
243 probe_kernel_address(&task->sighand, sighand);
244
245 /*
246 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
247 * was already freed we can not miss the preceding update of this
248 * pointer.
249 */
250 smp_rmb();
251 if (unlikely(task != READ_ONCE(*ptask)))
252 goto retry;
253
254 /*
255 * We've re-checked that "task == *ptask", now we have two different
256 * cases:
257 *
258 * 1. This is actually the same task/task_struct. In this case
259 * sighand != NULL tells us it is still alive.
260 *
261 * 2. This is another task which got the same memory for task_struct.
262 * We can't know this of course, and we can not trust
263 * sighand != NULL.
264 *
265 * In this case we actually return a random value, but this is
266 * correct.
267 *
268 * If we return NULL - we can pretend that we actually noticed that
269 * *ptask was updated when the previous task has exited. Or pretend
270 * that probe_slab_address(&sighand) reads NULL.
271 *
272 * If we return the new task (because sighand is not NULL for any
273 * reason) - this is fine too. This (new) task can't go away before
274 * another gp pass.
275 *
276 * And note: We could even eliminate the false positive if re-read
277 * task->sighand once again to avoid the falsely NULL. But this case
278 * is very unlikely so we don't care.
279 */
280 if (!sighand)
281 return NULL;
282
283 return task;
284 }
285
286 void rcuwait_wake_up(struct rcuwait *w)
287 {
288 struct task_struct *task;
289
290 rcu_read_lock();
291
292 /*
293 * Order condition vs @task, such that everything prior to the load
294 * of @task is visible. This is the condition as to why the user called
295 * rcuwait_trywake() in the first place. Pairs with set_current_state()
296 * barrier (A) in rcuwait_wait_event().
297 *
298 * WAIT WAKE
299 * [S] tsk = current [S] cond = true
300 * MB (A) MB (B)
301 * [L] cond [L] tsk
302 */
303 smp_rmb(); /* (B) */
304
305 /*
306 * Avoid using task_rcu_dereference() magic as long as we are careful,
307 * see comment in rcuwait_wait_event() regarding ->exit_state.
308 */
309 task = rcu_dereference(w->task);
310 if (task)
311 wake_up_process(task);
312 rcu_read_unlock();
313 }
314
315 struct task_struct *try_get_task_struct(struct task_struct **ptask)
316 {
317 struct task_struct *task;
318
319 rcu_read_lock();
320 task = task_rcu_dereference(ptask);
321 if (task)
322 get_task_struct(task);
323 rcu_read_unlock();
324
325 return task;
326 }
327
328 /*
329 * Determine if a process group is "orphaned", according to the POSIX
330 * definition in 2.2.2.52. Orphaned process groups are not to be affected
331 * by terminal-generated stop signals. Newly orphaned process groups are
332 * to receive a SIGHUP and a SIGCONT.
333 *
334 * "I ask you, have you ever known what it is to be an orphan?"
335 */
336 static int will_become_orphaned_pgrp(struct pid *pgrp,
337 struct task_struct *ignored_task)
338 {
339 struct task_struct *p;
340
341 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
342 if ((p == ignored_task) ||
343 (p->exit_state && thread_group_empty(p)) ||
344 is_global_init(p->real_parent))
345 continue;
346
347 if (task_pgrp(p->real_parent) != pgrp &&
348 task_session(p->real_parent) == task_session(p))
349 return 0;
350 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
351
352 return 1;
353 }
354
355 int is_current_pgrp_orphaned(void)
356 {
357 int retval;
358
359 read_lock(&tasklist_lock);
360 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
361 read_unlock(&tasklist_lock);
362
363 return retval;
364 }
365
366 static bool has_stopped_jobs(struct pid *pgrp)
367 {
368 struct task_struct *p;
369
370 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
371 if (p->signal->flags & SIGNAL_STOP_STOPPED)
372 return true;
373 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
374
375 return false;
376 }
377
378 /*
379 * Check to see if any process groups have become orphaned as
380 * a result of our exiting, and if they have any stopped jobs,
381 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
382 */
383 static void
384 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
385 {
386 struct pid *pgrp = task_pgrp(tsk);
387 struct task_struct *ignored_task = tsk;
388
389 if (!parent)
390 /* exit: our father is in a different pgrp than
391 * we are and we were the only connection outside.
392 */
393 parent = tsk->real_parent;
394 else
395 /* reparent: our child is in a different pgrp than
396 * we are, and it was the only connection outside.
397 */
398 ignored_task = NULL;
399
400 if (task_pgrp(parent) != pgrp &&
401 task_session(parent) == task_session(tsk) &&
402 will_become_orphaned_pgrp(pgrp, ignored_task) &&
403 has_stopped_jobs(pgrp)) {
404 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
405 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
406 }
407 }
408
409 #ifdef CONFIG_MEMCG
410 /*
411 * A task is exiting. If it owned this mm, find a new owner for the mm.
412 */
413 void mm_update_next_owner(struct mm_struct *mm)
414 {
415 struct task_struct *c, *g, *p = current;
416
417 retry:
418 /*
419 * If the exiting or execing task is not the owner, it's
420 * someone else's problem.
421 */
422 if (mm->owner != p)
423 return;
424 /*
425 * The current owner is exiting/execing and there are no other
426 * candidates. Do not leave the mm pointing to a possibly
427 * freed task structure.
428 */
429 if (atomic_read(&mm->mm_users) <= 1) {
430 mm->owner = NULL;
431 return;
432 }
433
434 read_lock(&tasklist_lock);
435 /*
436 * Search in the children
437 */
438 list_for_each_entry(c, &p->children, sibling) {
439 if (c->mm == mm)
440 goto assign_new_owner;
441 }
442
443 /*
444 * Search in the siblings
445 */
446 list_for_each_entry(c, &p->real_parent->children, sibling) {
447 if (c->mm == mm)
448 goto assign_new_owner;
449 }
450
451 /*
452 * Search through everything else, we should not get here often.
453 */
454 for_each_process(g) {
455 if (g->flags & PF_KTHREAD)
456 continue;
457 for_each_thread(g, c) {
458 if (c->mm == mm)
459 goto assign_new_owner;
460 if (c->mm)
461 break;
462 }
463 }
464 read_unlock(&tasklist_lock);
465 /*
466 * We found no owner yet mm_users > 1: this implies that we are
467 * most likely racing with swapoff (try_to_unuse()) or /proc or
468 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
469 */
470 mm->owner = NULL;
471 return;
472
473 assign_new_owner:
474 BUG_ON(c == p);
475 get_task_struct(c);
476 /*
477 * The task_lock protects c->mm from changing.
478 * We always want mm->owner->mm == mm
479 */
480 task_lock(c);
481 /*
482 * Delay read_unlock() till we have the task_lock()
483 * to ensure that c does not slip away underneath us
484 */
485 read_unlock(&tasklist_lock);
486 if (c->mm != mm) {
487 task_unlock(c);
488 put_task_struct(c);
489 goto retry;
490 }
491 mm->owner = c;
492 task_unlock(c);
493 put_task_struct(c);
494 }
495 #endif /* CONFIG_MEMCG */
496
497 /*
498 * Turn us into a lazy TLB process if we
499 * aren't already..
500 */
501 static void exit_mm(void)
502 {
503 struct mm_struct *mm = current->mm;
504 struct core_state *core_state;
505
506 mm_release(current, mm);
507 if (!mm)
508 return;
509 sync_mm_rss(mm);
510 /*
511 * Serialize with any possible pending coredump.
512 * We must hold mmap_sem around checking core_state
513 * and clearing tsk->mm. The core-inducing thread
514 * will increment ->nr_threads for each thread in the
515 * group with ->mm != NULL.
516 */
517 down_read(&mm->mmap_sem);
518 core_state = mm->core_state;
519 if (core_state) {
520 struct core_thread self;
521
522 up_read(&mm->mmap_sem);
523
524 self.task = current;
525 self.next = xchg(&core_state->dumper.next, &self);
526 /*
527 * Implies mb(), the result of xchg() must be visible
528 * to core_state->dumper.
529 */
530 if (atomic_dec_and_test(&core_state->nr_threads))
531 complete(&core_state->startup);
532
533 for (;;) {
534 set_current_state(TASK_UNINTERRUPTIBLE);
535 if (!self.task) /* see coredump_finish() */
536 break;
537 freezable_schedule();
538 }
539 __set_current_state(TASK_RUNNING);
540 down_read(&mm->mmap_sem);
541 }
542 mmgrab(mm);
543 BUG_ON(mm != current->active_mm);
544 /* more a memory barrier than a real lock */
545 task_lock(current);
546 current->mm = NULL;
547 up_read(&mm->mmap_sem);
548 enter_lazy_tlb(mm, current);
549 task_unlock(current);
550 mm_update_next_owner(mm);
551 userfaultfd_exit(mm);
552 mmput(mm);
553 if (test_thread_flag(TIF_MEMDIE))
554 exit_oom_victim();
555 }
556
557 static struct task_struct *find_alive_thread(struct task_struct *p)
558 {
559 struct task_struct *t;
560
561 for_each_thread(p, t) {
562 if (!(t->flags & PF_EXITING))
563 return t;
564 }
565 return NULL;
566 }
567
568 static struct task_struct *find_child_reaper(struct task_struct *father)
569 __releases(&tasklist_lock)
570 __acquires(&tasklist_lock)
571 {
572 struct pid_namespace *pid_ns = task_active_pid_ns(father);
573 struct task_struct *reaper = pid_ns->child_reaper;
574
575 if (likely(reaper != father))
576 return reaper;
577
578 reaper = find_alive_thread(father);
579 if (reaper) {
580 pid_ns->child_reaper = reaper;
581 return reaper;
582 }
583
584 write_unlock_irq(&tasklist_lock);
585 if (unlikely(pid_ns == &init_pid_ns)) {
586 panic("Attempted to kill init! exitcode=0x%08x\n",
587 father->signal->group_exit_code ?: father->exit_code);
588 }
589 zap_pid_ns_processes(pid_ns);
590 write_lock_irq(&tasklist_lock);
591
592 return father;
593 }
594
595 /*
596 * When we die, we re-parent all our children, and try to:
597 * 1. give them to another thread in our thread group, if such a member exists
598 * 2. give it to the first ancestor process which prctl'd itself as a
599 * child_subreaper for its children (like a service manager)
600 * 3. give it to the init process (PID 1) in our pid namespace
601 */
602 static struct task_struct *find_new_reaper(struct task_struct *father,
603 struct task_struct *child_reaper)
604 {
605 struct task_struct *thread, *reaper;
606
607 thread = find_alive_thread(father);
608 if (thread)
609 return thread;
610
611 if (father->signal->has_child_subreaper) {
612 unsigned int ns_level = task_pid(father)->level;
613 /*
614 * Find the first ->is_child_subreaper ancestor in our pid_ns.
615 * We can't check reaper != child_reaper to ensure we do not
616 * cross the namespaces, the exiting parent could be injected
617 * by setns() + fork().
618 * We check pid->level, this is slightly more efficient than
619 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
620 */
621 for (reaper = father->real_parent;
622 task_pid(reaper)->level == ns_level;
623 reaper = reaper->real_parent) {
624 if (reaper == &init_task)
625 break;
626 if (!reaper->signal->is_child_subreaper)
627 continue;
628 thread = find_alive_thread(reaper);
629 if (thread)
630 return thread;
631 }
632 }
633
634 return child_reaper;
635 }
636
637 /*
638 * Any that need to be release_task'd are put on the @dead list.
639 */
640 static void reparent_leader(struct task_struct *father, struct task_struct *p,
641 struct list_head *dead)
642 {
643 if (unlikely(p->exit_state == EXIT_DEAD))
644 return;
645
646 /* We don't want people slaying init. */
647 p->exit_signal = SIGCHLD;
648
649 /* If it has exited notify the new parent about this child's death. */
650 if (!p->ptrace &&
651 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
652 if (do_notify_parent(p, p->exit_signal)) {
653 p->exit_state = EXIT_DEAD;
654 list_add(&p->ptrace_entry, dead);
655 }
656 }
657
658 kill_orphaned_pgrp(p, father);
659 }
660
661 /*
662 * This does two things:
663 *
664 * A. Make init inherit all the child processes
665 * B. Check to see if any process groups have become orphaned
666 * as a result of our exiting, and if they have any stopped
667 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
668 */
669 static void forget_original_parent(struct task_struct *father,
670 struct list_head *dead)
671 {
672 struct task_struct *p, *t, *reaper;
673
674 if (unlikely(!list_empty(&father->ptraced)))
675 exit_ptrace(father, dead);
676
677 /* Can drop and reacquire tasklist_lock */
678 reaper = find_child_reaper(father);
679 if (list_empty(&father->children))
680 return;
681
682 reaper = find_new_reaper(father, reaper);
683 list_for_each_entry(p, &father->children, sibling) {
684 for_each_thread(p, t) {
685 t->real_parent = reaper;
686 BUG_ON((!t->ptrace) != (t->parent == father));
687 if (likely(!t->ptrace))
688 t->parent = t->real_parent;
689 if (t->pdeath_signal)
690 group_send_sig_info(t->pdeath_signal,
691 SEND_SIG_NOINFO, t);
692 }
693 /*
694 * If this is a threaded reparent there is no need to
695 * notify anyone anything has happened.
696 */
697 if (!same_thread_group(reaper, father))
698 reparent_leader(father, p, dead);
699 }
700 list_splice_tail_init(&father->children, &reaper->children);
701 }
702
703 /*
704 * Send signals to all our closest relatives so that they know
705 * to properly mourn us..
706 */
707 static void exit_notify(struct task_struct *tsk, int group_dead)
708 {
709 bool autoreap;
710 struct task_struct *p, *n;
711 LIST_HEAD(dead);
712
713 write_lock_irq(&tasklist_lock);
714 forget_original_parent(tsk, &dead);
715
716 if (group_dead)
717 kill_orphaned_pgrp(tsk->group_leader, NULL);
718
719 if (unlikely(tsk->ptrace)) {
720 int sig = thread_group_leader(tsk) &&
721 thread_group_empty(tsk) &&
722 !ptrace_reparented(tsk) ?
723 tsk->exit_signal : SIGCHLD;
724 autoreap = do_notify_parent(tsk, sig);
725 } else if (thread_group_leader(tsk)) {
726 autoreap = thread_group_empty(tsk) &&
727 do_notify_parent(tsk, tsk->exit_signal);
728 } else {
729 autoreap = true;
730 }
731
732 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
733 if (tsk->exit_state == EXIT_DEAD)
734 list_add(&tsk->ptrace_entry, &dead);
735
736 /* mt-exec, de_thread() is waiting for group leader */
737 if (unlikely(tsk->signal->notify_count < 0))
738 wake_up_process(tsk->signal->group_exit_task);
739 write_unlock_irq(&tasklist_lock);
740
741 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
742 list_del_init(&p->ptrace_entry);
743 release_task(p);
744 }
745 }
746
747 #ifdef CONFIG_DEBUG_STACK_USAGE
748 static void check_stack_usage(void)
749 {
750 static DEFINE_SPINLOCK(low_water_lock);
751 static int lowest_to_date = THREAD_SIZE;
752 unsigned long free;
753
754 free = stack_not_used(current);
755
756 if (free >= lowest_to_date)
757 return;
758
759 spin_lock(&low_water_lock);
760 if (free < lowest_to_date) {
761 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
762 current->comm, task_pid_nr(current), free);
763 lowest_to_date = free;
764 }
765 spin_unlock(&low_water_lock);
766 }
767 #else
768 static inline void check_stack_usage(void) {}
769 #endif
770
771 void __noreturn do_exit(long code)
772 {
773 struct task_struct *tsk = current;
774 int group_dead;
775 TASKS_RCU(int tasks_rcu_i);
776
777 profile_task_exit(tsk);
778 kcov_task_exit(tsk);
779
780 WARN_ON(blk_needs_flush_plug(tsk));
781
782 if (unlikely(in_interrupt()))
783 panic("Aiee, killing interrupt handler!");
784 if (unlikely(!tsk->pid))
785 panic("Attempted to kill the idle task!");
786
787 /*
788 * If do_exit is called because this processes oopsed, it's possible
789 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
790 * continuing. Amongst other possible reasons, this is to prevent
791 * mm_release()->clear_child_tid() from writing to a user-controlled
792 * kernel address.
793 */
794 set_fs(USER_DS);
795
796 ptrace_event(PTRACE_EVENT_EXIT, code);
797
798 validate_creds_for_do_exit(tsk);
799
800 /*
801 * We're taking recursive faults here in do_exit. Safest is to just
802 * leave this task alone and wait for reboot.
803 */
804 if (unlikely(tsk->flags & PF_EXITING)) {
805 pr_alert("Fixing recursive fault but reboot is needed!\n");
806 /*
807 * We can do this unlocked here. The futex code uses
808 * this flag just to verify whether the pi state
809 * cleanup has been done or not. In the worst case it
810 * loops once more. We pretend that the cleanup was
811 * done as there is no way to return. Either the
812 * OWNER_DIED bit is set by now or we push the blocked
813 * task into the wait for ever nirwana as well.
814 */
815 tsk->flags |= PF_EXITPIDONE;
816 set_current_state(TASK_UNINTERRUPTIBLE);
817 schedule();
818 }
819
820 exit_signals(tsk); /* sets PF_EXITING */
821 /*
822 * Ensure that all new tsk->pi_lock acquisitions must observe
823 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
824 */
825 smp_mb();
826 /*
827 * Ensure that we must observe the pi_state in exit_mm() ->
828 * mm_release() -> exit_pi_state_list().
829 */
830 raw_spin_unlock_wait(&tsk->pi_lock);
831
832 if (unlikely(in_atomic())) {
833 pr_info("note: %s[%d] exited with preempt_count %d\n",
834 current->comm, task_pid_nr(current),
835 preempt_count());
836 preempt_count_set(PREEMPT_ENABLED);
837 }
838
839 /* sync mm's RSS info before statistics gathering */
840 if (tsk->mm)
841 sync_mm_rss(tsk->mm);
842 acct_update_integrals(tsk);
843 group_dead = atomic_dec_and_test(&tsk->signal->live);
844 if (group_dead) {
845 #ifdef CONFIG_POSIX_TIMERS
846 hrtimer_cancel(&tsk->signal->real_timer);
847 exit_itimers(tsk->signal);
848 #endif
849 if (tsk->mm)
850 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
851 }
852 acct_collect(code, group_dead);
853 if (group_dead)
854 tty_audit_exit();
855 audit_free(tsk);
856
857 tsk->exit_code = code;
858 taskstats_exit(tsk, group_dead);
859
860 exit_mm();
861
862 if (group_dead)
863 acct_process();
864 trace_sched_process_exit(tsk);
865
866 exit_sem(tsk);
867 exit_shm(tsk);
868 exit_files(tsk);
869 exit_fs(tsk);
870 if (group_dead)
871 disassociate_ctty(1);
872 exit_task_namespaces(tsk);
873 exit_task_work(tsk);
874 exit_thread(tsk);
875
876 /*
877 * Flush inherited counters to the parent - before the parent
878 * gets woken up by child-exit notifications.
879 *
880 * because of cgroup mode, must be called before cgroup_exit()
881 */
882 perf_event_exit_task(tsk);
883
884 sched_autogroup_exit_task(tsk);
885 cgroup_exit(tsk);
886
887 /*
888 * FIXME: do that only when needed, using sched_exit tracepoint
889 */
890 flush_ptrace_hw_breakpoint(tsk);
891
892 TASKS_RCU(preempt_disable());
893 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
894 TASKS_RCU(preempt_enable());
895 exit_notify(tsk, group_dead);
896 proc_exit_connector(tsk);
897 mpol_put_task_policy(tsk);
898 #ifdef CONFIG_FUTEX
899 if (unlikely(current->pi_state_cache))
900 kfree(current->pi_state_cache);
901 #endif
902 /*
903 * Make sure we are holding no locks:
904 */
905 debug_check_no_locks_held();
906 /*
907 * We can do this unlocked here. The futex code uses this flag
908 * just to verify whether the pi state cleanup has been done
909 * or not. In the worst case it loops once more.
910 */
911 tsk->flags |= PF_EXITPIDONE;
912
913 if (tsk->io_context)
914 exit_io_context(tsk);
915
916 if (tsk->splice_pipe)
917 free_pipe_info(tsk->splice_pipe);
918
919 if (tsk->task_frag.page)
920 put_page(tsk->task_frag.page);
921
922 validate_creds_for_do_exit(tsk);
923
924 check_stack_usage();
925 preempt_disable();
926 if (tsk->nr_dirtied)
927 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
928 exit_rcu();
929 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
930
931 do_task_dead();
932 }
933 EXPORT_SYMBOL_GPL(do_exit);
934
935 void complete_and_exit(struct completion *comp, long code)
936 {
937 if (comp)
938 complete(comp);
939
940 do_exit(code);
941 }
942 EXPORT_SYMBOL(complete_and_exit);
943
944 SYSCALL_DEFINE1(exit, int, error_code)
945 {
946 do_exit((error_code&0xff)<<8);
947 }
948
949 /*
950 * Take down every thread in the group. This is called by fatal signals
951 * as well as by sys_exit_group (below).
952 */
953 void
954 do_group_exit(int exit_code)
955 {
956 struct signal_struct *sig = current->signal;
957
958 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
959
960 if (signal_group_exit(sig))
961 exit_code = sig->group_exit_code;
962 else if (!thread_group_empty(current)) {
963 struct sighand_struct *const sighand = current->sighand;
964
965 spin_lock_irq(&sighand->siglock);
966 if (signal_group_exit(sig))
967 /* Another thread got here before we took the lock. */
968 exit_code = sig->group_exit_code;
969 else {
970 sig->group_exit_code = exit_code;
971 sig->flags = SIGNAL_GROUP_EXIT;
972 zap_other_threads(current);
973 }
974 spin_unlock_irq(&sighand->siglock);
975 }
976
977 do_exit(exit_code);
978 /* NOTREACHED */
979 }
980
981 /*
982 * this kills every thread in the thread group. Note that any externally
983 * wait4()-ing process will get the correct exit code - even if this
984 * thread is not the thread group leader.
985 */
986 SYSCALL_DEFINE1(exit_group, int, error_code)
987 {
988 do_group_exit((error_code & 0xff) << 8);
989 /* NOTREACHED */
990 return 0;
991 }
992
993 struct wait_opts {
994 enum pid_type wo_type;
995 int wo_flags;
996 struct pid *wo_pid;
997
998 struct siginfo __user *wo_info;
999 int __user *wo_stat;
1000 struct rusage __user *wo_rusage;
1001
1002 wait_queue_t child_wait;
1003 int notask_error;
1004 };
1005
1006 static inline
1007 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1008 {
1009 if (type != PIDTYPE_PID)
1010 task = task->group_leader;
1011 return task->pids[type].pid;
1012 }
1013
1014 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1015 {
1016 return wo->wo_type == PIDTYPE_MAX ||
1017 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1018 }
1019
1020 static int
1021 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1022 {
1023 if (!eligible_pid(wo, p))
1024 return 0;
1025
1026 /*
1027 * Wait for all children (clone and not) if __WALL is set or
1028 * if it is traced by us.
1029 */
1030 if (ptrace || (wo->wo_flags & __WALL))
1031 return 1;
1032
1033 /*
1034 * Otherwise, wait for clone children *only* if __WCLONE is set;
1035 * otherwise, wait for non-clone children *only*.
1036 *
1037 * Note: a "clone" child here is one that reports to its parent
1038 * using a signal other than SIGCHLD, or a non-leader thread which
1039 * we can only see if it is traced by us.
1040 */
1041 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1042 return 0;
1043
1044 return 1;
1045 }
1046
1047 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1048 pid_t pid, uid_t uid, int why, int status)
1049 {
1050 struct siginfo __user *infop;
1051 int retval = wo->wo_rusage
1052 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1053
1054 put_task_struct(p);
1055 infop = wo->wo_info;
1056 if (infop) {
1057 if (!retval)
1058 retval = put_user(SIGCHLD, &infop->si_signo);
1059 if (!retval)
1060 retval = put_user(0, &infop->si_errno);
1061 if (!retval)
1062 retval = put_user((short)why, &infop->si_code);
1063 if (!retval)
1064 retval = put_user(pid, &infop->si_pid);
1065 if (!retval)
1066 retval = put_user(uid, &infop->si_uid);
1067 if (!retval)
1068 retval = put_user(status, &infop->si_status);
1069 }
1070 if (!retval)
1071 retval = pid;
1072 return retval;
1073 }
1074
1075 /*
1076 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1077 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1078 * the lock and this task is uninteresting. If we return nonzero, we have
1079 * released the lock and the system call should return.
1080 */
1081 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1082 {
1083 int state, retval, status;
1084 pid_t pid = task_pid_vnr(p);
1085 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1086 struct siginfo __user *infop;
1087
1088 if (!likely(wo->wo_flags & WEXITED))
1089 return 0;
1090
1091 if (unlikely(wo->wo_flags & WNOWAIT)) {
1092 int exit_code = p->exit_code;
1093 int why;
1094
1095 get_task_struct(p);
1096 read_unlock(&tasklist_lock);
1097 sched_annotate_sleep();
1098
1099 if ((exit_code & 0x7f) == 0) {
1100 why = CLD_EXITED;
1101 status = exit_code >> 8;
1102 } else {
1103 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1104 status = exit_code & 0x7f;
1105 }
1106 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1107 }
1108 /*
1109 * Move the task's state to DEAD/TRACE, only one thread can do this.
1110 */
1111 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1112 EXIT_TRACE : EXIT_DEAD;
1113 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1114 return 0;
1115 /*
1116 * We own this thread, nobody else can reap it.
1117 */
1118 read_unlock(&tasklist_lock);
1119 sched_annotate_sleep();
1120
1121 /*
1122 * Check thread_group_leader() to exclude the traced sub-threads.
1123 */
1124 if (state == EXIT_DEAD && thread_group_leader(p)) {
1125 struct signal_struct *sig = p->signal;
1126 struct signal_struct *psig = current->signal;
1127 unsigned long maxrss;
1128 u64 tgutime, tgstime;
1129
1130 /*
1131 * The resource counters for the group leader are in its
1132 * own task_struct. Those for dead threads in the group
1133 * are in its signal_struct, as are those for the child
1134 * processes it has previously reaped. All these
1135 * accumulate in the parent's signal_struct c* fields.
1136 *
1137 * We don't bother to take a lock here to protect these
1138 * p->signal fields because the whole thread group is dead
1139 * and nobody can change them.
1140 *
1141 * psig->stats_lock also protects us from our sub-theads
1142 * which can reap other children at the same time. Until
1143 * we change k_getrusage()-like users to rely on this lock
1144 * we have to take ->siglock as well.
1145 *
1146 * We use thread_group_cputime_adjusted() to get times for
1147 * the thread group, which consolidates times for all threads
1148 * in the group including the group leader.
1149 */
1150 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1151 spin_lock_irq(&current->sighand->siglock);
1152 write_seqlock(&psig->stats_lock);
1153 psig->cutime += tgutime + sig->cutime;
1154 psig->cstime += tgstime + sig->cstime;
1155 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1156 psig->cmin_flt +=
1157 p->min_flt + sig->min_flt + sig->cmin_flt;
1158 psig->cmaj_flt +=
1159 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1160 psig->cnvcsw +=
1161 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1162 psig->cnivcsw +=
1163 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1164 psig->cinblock +=
1165 task_io_get_inblock(p) +
1166 sig->inblock + sig->cinblock;
1167 psig->coublock +=
1168 task_io_get_oublock(p) +
1169 sig->oublock + sig->coublock;
1170 maxrss = max(sig->maxrss, sig->cmaxrss);
1171 if (psig->cmaxrss < maxrss)
1172 psig->cmaxrss = maxrss;
1173 task_io_accounting_add(&psig->ioac, &p->ioac);
1174 task_io_accounting_add(&psig->ioac, &sig->ioac);
1175 write_sequnlock(&psig->stats_lock);
1176 spin_unlock_irq(&current->sighand->siglock);
1177 }
1178
1179 retval = wo->wo_rusage
1180 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1181 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1182 ? p->signal->group_exit_code : p->exit_code;
1183 if (!retval && wo->wo_stat)
1184 retval = put_user(status, wo->wo_stat);
1185
1186 infop = wo->wo_info;
1187 if (!retval && infop)
1188 retval = put_user(SIGCHLD, &infop->si_signo);
1189 if (!retval && infop)
1190 retval = put_user(0, &infop->si_errno);
1191 if (!retval && infop) {
1192 int why;
1193
1194 if ((status & 0x7f) == 0) {
1195 why = CLD_EXITED;
1196 status >>= 8;
1197 } else {
1198 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1199 status &= 0x7f;
1200 }
1201 retval = put_user((short)why, &infop->si_code);
1202 if (!retval)
1203 retval = put_user(status, &infop->si_status);
1204 }
1205 if (!retval && infop)
1206 retval = put_user(pid, &infop->si_pid);
1207 if (!retval && infop)
1208 retval = put_user(uid, &infop->si_uid);
1209 if (!retval)
1210 retval = pid;
1211
1212 if (state == EXIT_TRACE) {
1213 write_lock_irq(&tasklist_lock);
1214 /* We dropped tasklist, ptracer could die and untrace */
1215 ptrace_unlink(p);
1216
1217 /* If parent wants a zombie, don't release it now */
1218 state = EXIT_ZOMBIE;
1219 if (do_notify_parent(p, p->exit_signal))
1220 state = EXIT_DEAD;
1221 p->exit_state = state;
1222 write_unlock_irq(&tasklist_lock);
1223 }
1224 if (state == EXIT_DEAD)
1225 release_task(p);
1226
1227 return retval;
1228 }
1229
1230 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1231 {
1232 if (ptrace) {
1233 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1234 return &p->exit_code;
1235 } else {
1236 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1237 return &p->signal->group_exit_code;
1238 }
1239 return NULL;
1240 }
1241
1242 /**
1243 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1244 * @wo: wait options
1245 * @ptrace: is the wait for ptrace
1246 * @p: task to wait for
1247 *
1248 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1249 *
1250 * CONTEXT:
1251 * read_lock(&tasklist_lock), which is released if return value is
1252 * non-zero. Also, grabs and releases @p->sighand->siglock.
1253 *
1254 * RETURNS:
1255 * 0 if wait condition didn't exist and search for other wait conditions
1256 * should continue. Non-zero return, -errno on failure and @p's pid on
1257 * success, implies that tasklist_lock is released and wait condition
1258 * search should terminate.
1259 */
1260 static int wait_task_stopped(struct wait_opts *wo,
1261 int ptrace, struct task_struct *p)
1262 {
1263 struct siginfo __user *infop;
1264 int retval, exit_code, *p_code, why;
1265 uid_t uid = 0; /* unneeded, required by compiler */
1266 pid_t pid;
1267
1268 /*
1269 * Traditionally we see ptrace'd stopped tasks regardless of options.
1270 */
1271 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1272 return 0;
1273
1274 if (!task_stopped_code(p, ptrace))
1275 return 0;
1276
1277 exit_code = 0;
1278 spin_lock_irq(&p->sighand->siglock);
1279
1280 p_code = task_stopped_code(p, ptrace);
1281 if (unlikely(!p_code))
1282 goto unlock_sig;
1283
1284 exit_code = *p_code;
1285 if (!exit_code)
1286 goto unlock_sig;
1287
1288 if (!unlikely(wo->wo_flags & WNOWAIT))
1289 *p_code = 0;
1290
1291 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1292 unlock_sig:
1293 spin_unlock_irq(&p->sighand->siglock);
1294 if (!exit_code)
1295 return 0;
1296
1297 /*
1298 * Now we are pretty sure this task is interesting.
1299 * Make sure it doesn't get reaped out from under us while we
1300 * give up the lock and then examine it below. We don't want to
1301 * keep holding onto the tasklist_lock while we call getrusage and
1302 * possibly take page faults for user memory.
1303 */
1304 get_task_struct(p);
1305 pid = task_pid_vnr(p);
1306 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1307 read_unlock(&tasklist_lock);
1308 sched_annotate_sleep();
1309
1310 if (unlikely(wo->wo_flags & WNOWAIT))
1311 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1312
1313 retval = wo->wo_rusage
1314 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1315 if (!retval && wo->wo_stat)
1316 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1317
1318 infop = wo->wo_info;
1319 if (!retval && infop)
1320 retval = put_user(SIGCHLD, &infop->si_signo);
1321 if (!retval && infop)
1322 retval = put_user(0, &infop->si_errno);
1323 if (!retval && infop)
1324 retval = put_user((short)why, &infop->si_code);
1325 if (!retval && infop)
1326 retval = put_user(exit_code, &infop->si_status);
1327 if (!retval && infop)
1328 retval = put_user(pid, &infop->si_pid);
1329 if (!retval && infop)
1330 retval = put_user(uid, &infop->si_uid);
1331 if (!retval)
1332 retval = pid;
1333 put_task_struct(p);
1334
1335 BUG_ON(!retval);
1336 return retval;
1337 }
1338
1339 /*
1340 * Handle do_wait work for one task in a live, non-stopped state.
1341 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1342 * the lock and this task is uninteresting. If we return nonzero, we have
1343 * released the lock and the system call should return.
1344 */
1345 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1346 {
1347 int retval;
1348 pid_t pid;
1349 uid_t uid;
1350
1351 if (!unlikely(wo->wo_flags & WCONTINUED))
1352 return 0;
1353
1354 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1355 return 0;
1356
1357 spin_lock_irq(&p->sighand->siglock);
1358 /* Re-check with the lock held. */
1359 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1360 spin_unlock_irq(&p->sighand->siglock);
1361 return 0;
1362 }
1363 if (!unlikely(wo->wo_flags & WNOWAIT))
1364 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1365 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1366 spin_unlock_irq(&p->sighand->siglock);
1367
1368 pid = task_pid_vnr(p);
1369 get_task_struct(p);
1370 read_unlock(&tasklist_lock);
1371 sched_annotate_sleep();
1372
1373 if (!wo->wo_info) {
1374 retval = wo->wo_rusage
1375 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1376 put_task_struct(p);
1377 if (!retval && wo->wo_stat)
1378 retval = put_user(0xffff, wo->wo_stat);
1379 if (!retval)
1380 retval = pid;
1381 } else {
1382 retval = wait_noreap_copyout(wo, p, pid, uid,
1383 CLD_CONTINUED, SIGCONT);
1384 BUG_ON(retval == 0);
1385 }
1386
1387 return retval;
1388 }
1389
1390 /*
1391 * Consider @p for a wait by @parent.
1392 *
1393 * -ECHILD should be in ->notask_error before the first call.
1394 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1395 * Returns zero if the search for a child should continue;
1396 * then ->notask_error is 0 if @p is an eligible child,
1397 * or still -ECHILD.
1398 */
1399 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1400 struct task_struct *p)
1401 {
1402 /*
1403 * We can race with wait_task_zombie() from another thread.
1404 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1405 * can't confuse the checks below.
1406 */
1407 int exit_state = ACCESS_ONCE(p->exit_state);
1408 int ret;
1409
1410 if (unlikely(exit_state == EXIT_DEAD))
1411 return 0;
1412
1413 ret = eligible_child(wo, ptrace, p);
1414 if (!ret)
1415 return ret;
1416
1417 if (unlikely(exit_state == EXIT_TRACE)) {
1418 /*
1419 * ptrace == 0 means we are the natural parent. In this case
1420 * we should clear notask_error, debugger will notify us.
1421 */
1422 if (likely(!ptrace))
1423 wo->notask_error = 0;
1424 return 0;
1425 }
1426
1427 if (likely(!ptrace) && unlikely(p->ptrace)) {
1428 /*
1429 * If it is traced by its real parent's group, just pretend
1430 * the caller is ptrace_do_wait() and reap this child if it
1431 * is zombie.
1432 *
1433 * This also hides group stop state from real parent; otherwise
1434 * a single stop can be reported twice as group and ptrace stop.
1435 * If a ptracer wants to distinguish these two events for its
1436 * own children it should create a separate process which takes
1437 * the role of real parent.
1438 */
1439 if (!ptrace_reparented(p))
1440 ptrace = 1;
1441 }
1442
1443 /* slay zombie? */
1444 if (exit_state == EXIT_ZOMBIE) {
1445 /* we don't reap group leaders with subthreads */
1446 if (!delay_group_leader(p)) {
1447 /*
1448 * A zombie ptracee is only visible to its ptracer.
1449 * Notification and reaping will be cascaded to the
1450 * real parent when the ptracer detaches.
1451 */
1452 if (unlikely(ptrace) || likely(!p->ptrace))
1453 return wait_task_zombie(wo, p);
1454 }
1455
1456 /*
1457 * Allow access to stopped/continued state via zombie by
1458 * falling through. Clearing of notask_error is complex.
1459 *
1460 * When !@ptrace:
1461 *
1462 * If WEXITED is set, notask_error should naturally be
1463 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1464 * so, if there are live subthreads, there are events to
1465 * wait for. If all subthreads are dead, it's still safe
1466 * to clear - this function will be called again in finite
1467 * amount time once all the subthreads are released and
1468 * will then return without clearing.
1469 *
1470 * When @ptrace:
1471 *
1472 * Stopped state is per-task and thus can't change once the
1473 * target task dies. Only continued and exited can happen.
1474 * Clear notask_error if WCONTINUED | WEXITED.
1475 */
1476 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1477 wo->notask_error = 0;
1478 } else {
1479 /*
1480 * @p is alive and it's gonna stop, continue or exit, so
1481 * there always is something to wait for.
1482 */
1483 wo->notask_error = 0;
1484 }
1485
1486 /*
1487 * Wait for stopped. Depending on @ptrace, different stopped state
1488 * is used and the two don't interact with each other.
1489 */
1490 ret = wait_task_stopped(wo, ptrace, p);
1491 if (ret)
1492 return ret;
1493
1494 /*
1495 * Wait for continued. There's only one continued state and the
1496 * ptracer can consume it which can confuse the real parent. Don't
1497 * use WCONTINUED from ptracer. You don't need or want it.
1498 */
1499 return wait_task_continued(wo, p);
1500 }
1501
1502 /*
1503 * Do the work of do_wait() for one thread in the group, @tsk.
1504 *
1505 * -ECHILD should be in ->notask_error before the first call.
1506 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1507 * Returns zero if the search for a child should continue; then
1508 * ->notask_error is 0 if there were any eligible children,
1509 * or still -ECHILD.
1510 */
1511 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1512 {
1513 struct task_struct *p;
1514
1515 list_for_each_entry(p, &tsk->children, sibling) {
1516 int ret = wait_consider_task(wo, 0, p);
1517
1518 if (ret)
1519 return ret;
1520 }
1521
1522 return 0;
1523 }
1524
1525 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1526 {
1527 struct task_struct *p;
1528
1529 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1530 int ret = wait_consider_task(wo, 1, p);
1531
1532 if (ret)
1533 return ret;
1534 }
1535
1536 return 0;
1537 }
1538
1539 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1540 int sync, void *key)
1541 {
1542 struct wait_opts *wo = container_of(wait, struct wait_opts,
1543 child_wait);
1544 struct task_struct *p = key;
1545
1546 if (!eligible_pid(wo, p))
1547 return 0;
1548
1549 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1550 return 0;
1551
1552 return default_wake_function(wait, mode, sync, key);
1553 }
1554
1555 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1556 {
1557 __wake_up_sync_key(&parent->signal->wait_chldexit,
1558 TASK_INTERRUPTIBLE, 1, p);
1559 }
1560
1561 static long do_wait(struct wait_opts *wo)
1562 {
1563 struct task_struct *tsk;
1564 int retval;
1565
1566 trace_sched_process_wait(wo->wo_pid);
1567
1568 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1569 wo->child_wait.private = current;
1570 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1571 repeat:
1572 /*
1573 * If there is nothing that can match our criteria, just get out.
1574 * We will clear ->notask_error to zero if we see any child that
1575 * might later match our criteria, even if we are not able to reap
1576 * it yet.
1577 */
1578 wo->notask_error = -ECHILD;
1579 if ((wo->wo_type < PIDTYPE_MAX) &&
1580 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1581 goto notask;
1582
1583 set_current_state(TASK_INTERRUPTIBLE);
1584 read_lock(&tasklist_lock);
1585 tsk = current;
1586 do {
1587 retval = do_wait_thread(wo, tsk);
1588 if (retval)
1589 goto end;
1590
1591 retval = ptrace_do_wait(wo, tsk);
1592 if (retval)
1593 goto end;
1594
1595 if (wo->wo_flags & __WNOTHREAD)
1596 break;
1597 } while_each_thread(current, tsk);
1598 read_unlock(&tasklist_lock);
1599
1600 notask:
1601 retval = wo->notask_error;
1602 if (!retval && !(wo->wo_flags & WNOHANG)) {
1603 retval = -ERESTARTSYS;
1604 if (!signal_pending(current)) {
1605 schedule();
1606 goto repeat;
1607 }
1608 }
1609 end:
1610 __set_current_state(TASK_RUNNING);
1611 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1612 return retval;
1613 }
1614
1615 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1616 infop, int, options, struct rusage __user *, ru)
1617 {
1618 struct wait_opts wo;
1619 struct pid *pid = NULL;
1620 enum pid_type type;
1621 long ret;
1622
1623 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1624 __WNOTHREAD|__WCLONE|__WALL))
1625 return -EINVAL;
1626 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1627 return -EINVAL;
1628
1629 switch (which) {
1630 case P_ALL:
1631 type = PIDTYPE_MAX;
1632 break;
1633 case P_PID:
1634 type = PIDTYPE_PID;
1635 if (upid <= 0)
1636 return -EINVAL;
1637 break;
1638 case P_PGID:
1639 type = PIDTYPE_PGID;
1640 if (upid <= 0)
1641 return -EINVAL;
1642 break;
1643 default:
1644 return -EINVAL;
1645 }
1646
1647 if (type < PIDTYPE_MAX)
1648 pid = find_get_pid(upid);
1649
1650 wo.wo_type = type;
1651 wo.wo_pid = pid;
1652 wo.wo_flags = options;
1653 wo.wo_info = infop;
1654 wo.wo_stat = NULL;
1655 wo.wo_rusage = ru;
1656 ret = do_wait(&wo);
1657
1658 if (ret > 0) {
1659 ret = 0;
1660 } else if (infop) {
1661 /*
1662 * For a WNOHANG return, clear out all the fields
1663 * we would set so the user can easily tell the
1664 * difference.
1665 */
1666 if (!ret)
1667 ret = put_user(0, &infop->si_signo);
1668 if (!ret)
1669 ret = put_user(0, &infop->si_errno);
1670 if (!ret)
1671 ret = put_user(0, &infop->si_code);
1672 if (!ret)
1673 ret = put_user(0, &infop->si_pid);
1674 if (!ret)
1675 ret = put_user(0, &infop->si_uid);
1676 if (!ret)
1677 ret = put_user(0, &infop->si_status);
1678 }
1679
1680 put_pid(pid);
1681 return ret;
1682 }
1683
1684 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1685 int, options, struct rusage __user *, ru)
1686 {
1687 struct wait_opts wo;
1688 struct pid *pid = NULL;
1689 enum pid_type type;
1690 long ret;
1691
1692 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1693 __WNOTHREAD|__WCLONE|__WALL))
1694 return -EINVAL;
1695
1696 if (upid == -1)
1697 type = PIDTYPE_MAX;
1698 else if (upid < 0) {
1699 type = PIDTYPE_PGID;
1700 pid = find_get_pid(-upid);
1701 } else if (upid == 0) {
1702 type = PIDTYPE_PGID;
1703 pid = get_task_pid(current, PIDTYPE_PGID);
1704 } else /* upid > 0 */ {
1705 type = PIDTYPE_PID;
1706 pid = find_get_pid(upid);
1707 }
1708
1709 wo.wo_type = type;
1710 wo.wo_pid = pid;
1711 wo.wo_flags = options | WEXITED;
1712 wo.wo_info = NULL;
1713 wo.wo_stat = stat_addr;
1714 wo.wo_rusage = ru;
1715 ret = do_wait(&wo);
1716 put_pid(pid);
1717
1718 return ret;
1719 }
1720
1721 #ifdef __ARCH_WANT_SYS_WAITPID
1722
1723 /*
1724 * sys_waitpid() remains for compatibility. waitpid() should be
1725 * implemented by calling sys_wait4() from libc.a.
1726 */
1727 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1728 {
1729 return sys_wait4(pid, stat_addr, options, NULL);
1730 }
1731
1732 #endif