]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/fork.c
packet: avoid out of bounds read in round robin fanout
[mirror_ubuntu-zesty-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
179 {
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185 kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 struct zone *zone = page_zone(virt_to_page(ti));
218
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
253
254 task_numa_free(tsk);
255 security_task_free(tsk);
256 exit_creds(tsk);
257 delayacct_tsk_free(tsk);
258 put_signal_struct(tsk->signal);
259
260 if (!profile_handoff_task(tsk))
261 free_task(tsk);
262 }
263 EXPORT_SYMBOL_GPL(__put_task_struct);
264
265 void __init __weak arch_task_cache_init(void) { }
266
267 /*
268 * set_max_threads
269 */
270 static void set_max_threads(unsigned int max_threads_suggested)
271 {
272 u64 threads;
273
274 /*
275 * The number of threads shall be limited such that the thread
276 * structures may only consume a small part of the available memory.
277 */
278 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
279 threads = MAX_THREADS;
280 else
281 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
282 (u64) THREAD_SIZE * 8UL);
283
284 if (threads > max_threads_suggested)
285 threads = max_threads_suggested;
286
287 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
288 }
289
290 void __init fork_init(void)
291 {
292 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
293 #ifndef ARCH_MIN_TASKALIGN
294 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
295 #endif
296 /* create a slab on which task_structs can be allocated */
297 task_struct_cachep =
298 kmem_cache_create("task_struct", sizeof(struct task_struct),
299 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
300 #endif
301
302 /* do the arch specific task caches init */
303 arch_task_cache_init();
304
305 set_max_threads(MAX_THREADS);
306
307 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
308 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
309 init_task.signal->rlim[RLIMIT_SIGPENDING] =
310 init_task.signal->rlim[RLIMIT_NPROC];
311 }
312
313 int __weak arch_dup_task_struct(struct task_struct *dst,
314 struct task_struct *src)
315 {
316 *dst = *src;
317 return 0;
318 }
319
320 void set_task_stack_end_magic(struct task_struct *tsk)
321 {
322 unsigned long *stackend;
323
324 stackend = end_of_stack(tsk);
325 *stackend = STACK_END_MAGIC; /* for overflow detection */
326 }
327
328 static struct task_struct *dup_task_struct(struct task_struct *orig)
329 {
330 struct task_struct *tsk;
331 struct thread_info *ti;
332 int node = tsk_fork_get_node(orig);
333 int err;
334
335 tsk = alloc_task_struct_node(node);
336 if (!tsk)
337 return NULL;
338
339 ti = alloc_thread_info_node(tsk, node);
340 if (!ti)
341 goto free_tsk;
342
343 err = arch_dup_task_struct(tsk, orig);
344 if (err)
345 goto free_ti;
346
347 tsk->stack = ti;
348 #ifdef CONFIG_SECCOMP
349 /*
350 * We must handle setting up seccomp filters once we're under
351 * the sighand lock in case orig has changed between now and
352 * then. Until then, filter must be NULL to avoid messing up
353 * the usage counts on the error path calling free_task.
354 */
355 tsk->seccomp.filter = NULL;
356 #endif
357
358 setup_thread_stack(tsk, orig);
359 clear_user_return_notifier(tsk);
360 clear_tsk_need_resched(tsk);
361 set_task_stack_end_magic(tsk);
362
363 #ifdef CONFIG_CC_STACKPROTECTOR
364 tsk->stack_canary = get_random_int();
365 #endif
366
367 /*
368 * One for us, one for whoever does the "release_task()" (usually
369 * parent)
370 */
371 atomic_set(&tsk->usage, 2);
372 #ifdef CONFIG_BLK_DEV_IO_TRACE
373 tsk->btrace_seq = 0;
374 #endif
375 tsk->splice_pipe = NULL;
376 tsk->task_frag.page = NULL;
377
378 account_kernel_stack(ti, 1);
379
380 return tsk;
381
382 free_ti:
383 free_thread_info(ti);
384 free_tsk:
385 free_task_struct(tsk);
386 return NULL;
387 }
388
389 #ifdef CONFIG_MMU
390 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
391 {
392 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
393 struct rb_node **rb_link, *rb_parent;
394 int retval;
395 unsigned long charge;
396
397 uprobe_start_dup_mmap();
398 down_write(&oldmm->mmap_sem);
399 flush_cache_dup_mm(oldmm);
400 uprobe_dup_mmap(oldmm, mm);
401 /*
402 * Not linked in yet - no deadlock potential:
403 */
404 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
405
406 /* No ordering required: file already has been exposed. */
407 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
408
409 mm->total_vm = oldmm->total_vm;
410 mm->shared_vm = oldmm->shared_vm;
411 mm->exec_vm = oldmm->exec_vm;
412 mm->stack_vm = oldmm->stack_vm;
413
414 rb_link = &mm->mm_rb.rb_node;
415 rb_parent = NULL;
416 pprev = &mm->mmap;
417 retval = ksm_fork(mm, oldmm);
418 if (retval)
419 goto out;
420 retval = khugepaged_fork(mm, oldmm);
421 if (retval)
422 goto out;
423
424 prev = NULL;
425 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
426 struct file *file;
427
428 if (mpnt->vm_flags & VM_DONTCOPY) {
429 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
430 -vma_pages(mpnt));
431 continue;
432 }
433 charge = 0;
434 if (mpnt->vm_flags & VM_ACCOUNT) {
435 unsigned long len = vma_pages(mpnt);
436
437 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
438 goto fail_nomem;
439 charge = len;
440 }
441 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
442 if (!tmp)
443 goto fail_nomem;
444 *tmp = *mpnt;
445 INIT_LIST_HEAD(&tmp->anon_vma_chain);
446 retval = vma_dup_policy(mpnt, tmp);
447 if (retval)
448 goto fail_nomem_policy;
449 tmp->vm_mm = mm;
450 if (anon_vma_fork(tmp, mpnt))
451 goto fail_nomem_anon_vma_fork;
452 tmp->vm_flags &= ~VM_LOCKED;
453 tmp->vm_next = tmp->vm_prev = NULL;
454 file = tmp->vm_file;
455 if (file) {
456 struct inode *inode = file_inode(file);
457 struct address_space *mapping = file->f_mapping;
458
459 get_file(file);
460 if (tmp->vm_flags & VM_DENYWRITE)
461 atomic_dec(&inode->i_writecount);
462 i_mmap_lock_write(mapping);
463 if (tmp->vm_flags & VM_SHARED)
464 atomic_inc(&mapping->i_mmap_writable);
465 flush_dcache_mmap_lock(mapping);
466 /* insert tmp into the share list, just after mpnt */
467 vma_interval_tree_insert_after(tmp, mpnt,
468 &mapping->i_mmap);
469 flush_dcache_mmap_unlock(mapping);
470 i_mmap_unlock_write(mapping);
471 }
472
473 /*
474 * Clear hugetlb-related page reserves for children. This only
475 * affects MAP_PRIVATE mappings. Faults generated by the child
476 * are not guaranteed to succeed, even if read-only
477 */
478 if (is_vm_hugetlb_page(tmp))
479 reset_vma_resv_huge_pages(tmp);
480
481 /*
482 * Link in the new vma and copy the page table entries.
483 */
484 *pprev = tmp;
485 pprev = &tmp->vm_next;
486 tmp->vm_prev = prev;
487 prev = tmp;
488
489 __vma_link_rb(mm, tmp, rb_link, rb_parent);
490 rb_link = &tmp->vm_rb.rb_right;
491 rb_parent = &tmp->vm_rb;
492
493 mm->map_count++;
494 retval = copy_page_range(mm, oldmm, mpnt);
495
496 if (tmp->vm_ops && tmp->vm_ops->open)
497 tmp->vm_ops->open(tmp);
498
499 if (retval)
500 goto out;
501 }
502 /* a new mm has just been created */
503 arch_dup_mmap(oldmm, mm);
504 retval = 0;
505 out:
506 up_write(&mm->mmap_sem);
507 flush_tlb_mm(oldmm);
508 up_write(&oldmm->mmap_sem);
509 uprobe_end_dup_mmap();
510 return retval;
511 fail_nomem_anon_vma_fork:
512 mpol_put(vma_policy(tmp));
513 fail_nomem_policy:
514 kmem_cache_free(vm_area_cachep, tmp);
515 fail_nomem:
516 retval = -ENOMEM;
517 vm_unacct_memory(charge);
518 goto out;
519 }
520
521 static inline int mm_alloc_pgd(struct mm_struct *mm)
522 {
523 mm->pgd = pgd_alloc(mm);
524 if (unlikely(!mm->pgd))
525 return -ENOMEM;
526 return 0;
527 }
528
529 static inline void mm_free_pgd(struct mm_struct *mm)
530 {
531 pgd_free(mm, mm->pgd);
532 }
533 #else
534 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
535 {
536 down_write(&oldmm->mmap_sem);
537 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
538 up_write(&oldmm->mmap_sem);
539 return 0;
540 }
541 #define mm_alloc_pgd(mm) (0)
542 #define mm_free_pgd(mm)
543 #endif /* CONFIG_MMU */
544
545 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
546
547 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
548 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
549
550 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
551
552 static int __init coredump_filter_setup(char *s)
553 {
554 default_dump_filter =
555 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
556 MMF_DUMP_FILTER_MASK;
557 return 1;
558 }
559
560 __setup("coredump_filter=", coredump_filter_setup);
561
562 #include <linux/init_task.h>
563
564 static void mm_init_aio(struct mm_struct *mm)
565 {
566 #ifdef CONFIG_AIO
567 spin_lock_init(&mm->ioctx_lock);
568 mm->ioctx_table = NULL;
569 #endif
570 }
571
572 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
573 {
574 #ifdef CONFIG_MEMCG
575 mm->owner = p;
576 #endif
577 }
578
579 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
580 {
581 mm->mmap = NULL;
582 mm->mm_rb = RB_ROOT;
583 mm->vmacache_seqnum = 0;
584 atomic_set(&mm->mm_users, 1);
585 atomic_set(&mm->mm_count, 1);
586 init_rwsem(&mm->mmap_sem);
587 INIT_LIST_HEAD(&mm->mmlist);
588 mm->core_state = NULL;
589 atomic_long_set(&mm->nr_ptes, 0);
590 mm_nr_pmds_init(mm);
591 mm->map_count = 0;
592 mm->locked_vm = 0;
593 mm->pinned_vm = 0;
594 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
595 spin_lock_init(&mm->page_table_lock);
596 mm_init_cpumask(mm);
597 mm_init_aio(mm);
598 mm_init_owner(mm, p);
599 mmu_notifier_mm_init(mm);
600 clear_tlb_flush_pending(mm);
601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
602 mm->pmd_huge_pte = NULL;
603 #endif
604
605 if (current->mm) {
606 mm->flags = current->mm->flags & MMF_INIT_MASK;
607 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
608 } else {
609 mm->flags = default_dump_filter;
610 mm->def_flags = 0;
611 }
612
613 if (mm_alloc_pgd(mm))
614 goto fail_nopgd;
615
616 if (init_new_context(p, mm))
617 goto fail_nocontext;
618
619 return mm;
620
621 fail_nocontext:
622 mm_free_pgd(mm);
623 fail_nopgd:
624 free_mm(mm);
625 return NULL;
626 }
627
628 static void check_mm(struct mm_struct *mm)
629 {
630 int i;
631
632 for (i = 0; i < NR_MM_COUNTERS; i++) {
633 long x = atomic_long_read(&mm->rss_stat.count[i]);
634
635 if (unlikely(x))
636 printk(KERN_ALERT "BUG: Bad rss-counter state "
637 "mm:%p idx:%d val:%ld\n", mm, i, x);
638 }
639
640 if (atomic_long_read(&mm->nr_ptes))
641 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
642 atomic_long_read(&mm->nr_ptes));
643 if (mm_nr_pmds(mm))
644 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
645 mm_nr_pmds(mm));
646
647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
648 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
649 #endif
650 }
651
652 /*
653 * Allocate and initialize an mm_struct.
654 */
655 struct mm_struct *mm_alloc(void)
656 {
657 struct mm_struct *mm;
658
659 mm = allocate_mm();
660 if (!mm)
661 return NULL;
662
663 memset(mm, 0, sizeof(*mm));
664 return mm_init(mm, current);
665 }
666
667 /*
668 * Called when the last reference to the mm
669 * is dropped: either by a lazy thread or by
670 * mmput. Free the page directory and the mm.
671 */
672 void __mmdrop(struct mm_struct *mm)
673 {
674 BUG_ON(mm == &init_mm);
675 mm_free_pgd(mm);
676 destroy_context(mm);
677 mmu_notifier_mm_destroy(mm);
678 check_mm(mm);
679 free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682
683 /*
684 * Decrement the use count and release all resources for an mm.
685 */
686 void mmput(struct mm_struct *mm)
687 {
688 might_sleep();
689
690 if (atomic_dec_and_test(&mm->mm_users)) {
691 uprobe_clear_state(mm);
692 exit_aio(mm);
693 ksm_exit(mm);
694 khugepaged_exit(mm); /* must run before exit_mmap */
695 exit_mmap(mm);
696 set_mm_exe_file(mm, NULL);
697 if (!list_empty(&mm->mmlist)) {
698 spin_lock(&mmlist_lock);
699 list_del(&mm->mmlist);
700 spin_unlock(&mmlist_lock);
701 }
702 if (mm->binfmt)
703 module_put(mm->binfmt->module);
704 mmdrop(mm);
705 }
706 }
707 EXPORT_SYMBOL_GPL(mmput);
708
709 /**
710 * set_mm_exe_file - change a reference to the mm's executable file
711 *
712 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
713 *
714 * Main users are mmput() and sys_execve(). Callers prevent concurrent
715 * invocations: in mmput() nobody alive left, in execve task is single
716 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
717 * mm->exe_file, but does so without using set_mm_exe_file() in order
718 * to do avoid the need for any locks.
719 */
720 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
721 {
722 struct file *old_exe_file;
723
724 /*
725 * It is safe to dereference the exe_file without RCU as
726 * this function is only called if nobody else can access
727 * this mm -- see comment above for justification.
728 */
729 old_exe_file = rcu_dereference_raw(mm->exe_file);
730
731 if (new_exe_file)
732 get_file(new_exe_file);
733 rcu_assign_pointer(mm->exe_file, new_exe_file);
734 if (old_exe_file)
735 fput(old_exe_file);
736 }
737
738 /**
739 * get_mm_exe_file - acquire a reference to the mm's executable file
740 *
741 * Returns %NULL if mm has no associated executable file.
742 * User must release file via fput().
743 */
744 struct file *get_mm_exe_file(struct mm_struct *mm)
745 {
746 struct file *exe_file;
747
748 rcu_read_lock();
749 exe_file = rcu_dereference(mm->exe_file);
750 if (exe_file && !get_file_rcu(exe_file))
751 exe_file = NULL;
752 rcu_read_unlock();
753 return exe_file;
754 }
755 EXPORT_SYMBOL(get_mm_exe_file);
756
757 /**
758 * get_task_mm - acquire a reference to the task's mm
759 *
760 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
761 * this kernel workthread has transiently adopted a user mm with use_mm,
762 * to do its AIO) is not set and if so returns a reference to it, after
763 * bumping up the use count. User must release the mm via mmput()
764 * after use. Typically used by /proc and ptrace.
765 */
766 struct mm_struct *get_task_mm(struct task_struct *task)
767 {
768 struct mm_struct *mm;
769
770 task_lock(task);
771 mm = task->mm;
772 if (mm) {
773 if (task->flags & PF_KTHREAD)
774 mm = NULL;
775 else
776 atomic_inc(&mm->mm_users);
777 }
778 task_unlock(task);
779 return mm;
780 }
781 EXPORT_SYMBOL_GPL(get_task_mm);
782
783 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
784 {
785 struct mm_struct *mm;
786 int err;
787
788 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
789 if (err)
790 return ERR_PTR(err);
791
792 mm = get_task_mm(task);
793 if (mm && mm != current->mm &&
794 !ptrace_may_access(task, mode)) {
795 mmput(mm);
796 mm = ERR_PTR(-EACCES);
797 }
798 mutex_unlock(&task->signal->cred_guard_mutex);
799
800 return mm;
801 }
802
803 static void complete_vfork_done(struct task_struct *tsk)
804 {
805 struct completion *vfork;
806
807 task_lock(tsk);
808 vfork = tsk->vfork_done;
809 if (likely(vfork)) {
810 tsk->vfork_done = NULL;
811 complete(vfork);
812 }
813 task_unlock(tsk);
814 }
815
816 static int wait_for_vfork_done(struct task_struct *child,
817 struct completion *vfork)
818 {
819 int killed;
820
821 freezer_do_not_count();
822 killed = wait_for_completion_killable(vfork);
823 freezer_count();
824
825 if (killed) {
826 task_lock(child);
827 child->vfork_done = NULL;
828 task_unlock(child);
829 }
830
831 put_task_struct(child);
832 return killed;
833 }
834
835 /* Please note the differences between mmput and mm_release.
836 * mmput is called whenever we stop holding onto a mm_struct,
837 * error success whatever.
838 *
839 * mm_release is called after a mm_struct has been removed
840 * from the current process.
841 *
842 * This difference is important for error handling, when we
843 * only half set up a mm_struct for a new process and need to restore
844 * the old one. Because we mmput the new mm_struct before
845 * restoring the old one. . .
846 * Eric Biederman 10 January 1998
847 */
848 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
849 {
850 /* Get rid of any futexes when releasing the mm */
851 #ifdef CONFIG_FUTEX
852 if (unlikely(tsk->robust_list)) {
853 exit_robust_list(tsk);
854 tsk->robust_list = NULL;
855 }
856 #ifdef CONFIG_COMPAT
857 if (unlikely(tsk->compat_robust_list)) {
858 compat_exit_robust_list(tsk);
859 tsk->compat_robust_list = NULL;
860 }
861 #endif
862 if (unlikely(!list_empty(&tsk->pi_state_list)))
863 exit_pi_state_list(tsk);
864 #endif
865
866 uprobe_free_utask(tsk);
867
868 /* Get rid of any cached register state */
869 deactivate_mm(tsk, mm);
870
871 /*
872 * If we're exiting normally, clear a user-space tid field if
873 * requested. We leave this alone when dying by signal, to leave
874 * the value intact in a core dump, and to save the unnecessary
875 * trouble, say, a killed vfork parent shouldn't touch this mm.
876 * Userland only wants this done for a sys_exit.
877 */
878 if (tsk->clear_child_tid) {
879 if (!(tsk->flags & PF_SIGNALED) &&
880 atomic_read(&mm->mm_users) > 1) {
881 /*
882 * We don't check the error code - if userspace has
883 * not set up a proper pointer then tough luck.
884 */
885 put_user(0, tsk->clear_child_tid);
886 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
887 1, NULL, NULL, 0);
888 }
889 tsk->clear_child_tid = NULL;
890 }
891
892 /*
893 * All done, finally we can wake up parent and return this mm to him.
894 * Also kthread_stop() uses this completion for synchronization.
895 */
896 if (tsk->vfork_done)
897 complete_vfork_done(tsk);
898 }
899
900 /*
901 * Allocate a new mm structure and copy contents from the
902 * mm structure of the passed in task structure.
903 */
904 static struct mm_struct *dup_mm(struct task_struct *tsk)
905 {
906 struct mm_struct *mm, *oldmm = current->mm;
907 int err;
908
909 mm = allocate_mm();
910 if (!mm)
911 goto fail_nomem;
912
913 memcpy(mm, oldmm, sizeof(*mm));
914
915 if (!mm_init(mm, tsk))
916 goto fail_nomem;
917
918 err = dup_mmap(mm, oldmm);
919 if (err)
920 goto free_pt;
921
922 mm->hiwater_rss = get_mm_rss(mm);
923 mm->hiwater_vm = mm->total_vm;
924
925 if (mm->binfmt && !try_module_get(mm->binfmt->module))
926 goto free_pt;
927
928 return mm;
929
930 free_pt:
931 /* don't put binfmt in mmput, we haven't got module yet */
932 mm->binfmt = NULL;
933 mmput(mm);
934
935 fail_nomem:
936 return NULL;
937 }
938
939 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
940 {
941 struct mm_struct *mm, *oldmm;
942 int retval;
943
944 tsk->min_flt = tsk->maj_flt = 0;
945 tsk->nvcsw = tsk->nivcsw = 0;
946 #ifdef CONFIG_DETECT_HUNG_TASK
947 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
948 #endif
949
950 tsk->mm = NULL;
951 tsk->active_mm = NULL;
952
953 /*
954 * Are we cloning a kernel thread?
955 *
956 * We need to steal a active VM for that..
957 */
958 oldmm = current->mm;
959 if (!oldmm)
960 return 0;
961
962 /* initialize the new vmacache entries */
963 vmacache_flush(tsk);
964
965 if (clone_flags & CLONE_VM) {
966 atomic_inc(&oldmm->mm_users);
967 mm = oldmm;
968 goto good_mm;
969 }
970
971 retval = -ENOMEM;
972 mm = dup_mm(tsk);
973 if (!mm)
974 goto fail_nomem;
975
976 good_mm:
977 tsk->mm = mm;
978 tsk->active_mm = mm;
979 return 0;
980
981 fail_nomem:
982 return retval;
983 }
984
985 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 struct fs_struct *fs = current->fs;
988 if (clone_flags & CLONE_FS) {
989 /* tsk->fs is already what we want */
990 spin_lock(&fs->lock);
991 if (fs->in_exec) {
992 spin_unlock(&fs->lock);
993 return -EAGAIN;
994 }
995 fs->users++;
996 spin_unlock(&fs->lock);
997 return 0;
998 }
999 tsk->fs = copy_fs_struct(fs);
1000 if (!tsk->fs)
1001 return -ENOMEM;
1002 return 0;
1003 }
1004
1005 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1006 {
1007 struct files_struct *oldf, *newf;
1008 int error = 0;
1009
1010 /*
1011 * A background process may not have any files ...
1012 */
1013 oldf = current->files;
1014 if (!oldf)
1015 goto out;
1016
1017 if (clone_flags & CLONE_FILES) {
1018 atomic_inc(&oldf->count);
1019 goto out;
1020 }
1021
1022 newf = dup_fd(oldf, &error);
1023 if (!newf)
1024 goto out;
1025
1026 tsk->files = newf;
1027 error = 0;
1028 out:
1029 return error;
1030 }
1031
1032 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1033 {
1034 #ifdef CONFIG_BLOCK
1035 struct io_context *ioc = current->io_context;
1036 struct io_context *new_ioc;
1037
1038 if (!ioc)
1039 return 0;
1040 /*
1041 * Share io context with parent, if CLONE_IO is set
1042 */
1043 if (clone_flags & CLONE_IO) {
1044 ioc_task_link(ioc);
1045 tsk->io_context = ioc;
1046 } else if (ioprio_valid(ioc->ioprio)) {
1047 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1048 if (unlikely(!new_ioc))
1049 return -ENOMEM;
1050
1051 new_ioc->ioprio = ioc->ioprio;
1052 put_io_context(new_ioc);
1053 }
1054 #endif
1055 return 0;
1056 }
1057
1058 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1059 {
1060 struct sighand_struct *sig;
1061
1062 if (clone_flags & CLONE_SIGHAND) {
1063 atomic_inc(&current->sighand->count);
1064 return 0;
1065 }
1066 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1067 rcu_assign_pointer(tsk->sighand, sig);
1068 if (!sig)
1069 return -ENOMEM;
1070 atomic_set(&sig->count, 1);
1071 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1072 return 0;
1073 }
1074
1075 void __cleanup_sighand(struct sighand_struct *sighand)
1076 {
1077 if (atomic_dec_and_test(&sighand->count)) {
1078 signalfd_cleanup(sighand);
1079 /*
1080 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1081 * without an RCU grace period, see __lock_task_sighand().
1082 */
1083 kmem_cache_free(sighand_cachep, sighand);
1084 }
1085 }
1086
1087 /*
1088 * Initialize POSIX timer handling for a thread group.
1089 */
1090 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1091 {
1092 unsigned long cpu_limit;
1093
1094 /* Thread group counters. */
1095 thread_group_cputime_init(sig);
1096
1097 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1098 if (cpu_limit != RLIM_INFINITY) {
1099 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1100 sig->cputimer.running = 1;
1101 }
1102
1103 /* The timer lists. */
1104 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1105 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1106 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1107 }
1108
1109 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1110 {
1111 struct signal_struct *sig;
1112
1113 if (clone_flags & CLONE_THREAD)
1114 return 0;
1115
1116 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1117 tsk->signal = sig;
1118 if (!sig)
1119 return -ENOMEM;
1120
1121 sig->nr_threads = 1;
1122 atomic_set(&sig->live, 1);
1123 atomic_set(&sig->sigcnt, 1);
1124
1125 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1126 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1127 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1128
1129 init_waitqueue_head(&sig->wait_chldexit);
1130 sig->curr_target = tsk;
1131 init_sigpending(&sig->shared_pending);
1132 INIT_LIST_HEAD(&sig->posix_timers);
1133 seqlock_init(&sig->stats_lock);
1134
1135 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1136 sig->real_timer.function = it_real_fn;
1137
1138 task_lock(current->group_leader);
1139 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1140 task_unlock(current->group_leader);
1141
1142 posix_cpu_timers_init_group(sig);
1143
1144 tty_audit_fork(sig);
1145 sched_autogroup_fork(sig);
1146
1147 #ifdef CONFIG_CGROUPS
1148 init_rwsem(&sig->group_rwsem);
1149 #endif
1150
1151 sig->oom_score_adj = current->signal->oom_score_adj;
1152 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1153
1154 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1155 current->signal->is_child_subreaper;
1156
1157 mutex_init(&sig->cred_guard_mutex);
1158
1159 return 0;
1160 }
1161
1162 static void copy_seccomp(struct task_struct *p)
1163 {
1164 #ifdef CONFIG_SECCOMP
1165 /*
1166 * Must be called with sighand->lock held, which is common to
1167 * all threads in the group. Holding cred_guard_mutex is not
1168 * needed because this new task is not yet running and cannot
1169 * be racing exec.
1170 */
1171 assert_spin_locked(&current->sighand->siglock);
1172
1173 /* Ref-count the new filter user, and assign it. */
1174 get_seccomp_filter(current);
1175 p->seccomp = current->seccomp;
1176
1177 /*
1178 * Explicitly enable no_new_privs here in case it got set
1179 * between the task_struct being duplicated and holding the
1180 * sighand lock. The seccomp state and nnp must be in sync.
1181 */
1182 if (task_no_new_privs(current))
1183 task_set_no_new_privs(p);
1184
1185 /*
1186 * If the parent gained a seccomp mode after copying thread
1187 * flags and between before we held the sighand lock, we have
1188 * to manually enable the seccomp thread flag here.
1189 */
1190 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1191 set_tsk_thread_flag(p, TIF_SECCOMP);
1192 #endif
1193 }
1194
1195 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1196 {
1197 current->clear_child_tid = tidptr;
1198
1199 return task_pid_vnr(current);
1200 }
1201
1202 static void rt_mutex_init_task(struct task_struct *p)
1203 {
1204 raw_spin_lock_init(&p->pi_lock);
1205 #ifdef CONFIG_RT_MUTEXES
1206 p->pi_waiters = RB_ROOT;
1207 p->pi_waiters_leftmost = NULL;
1208 p->pi_blocked_on = NULL;
1209 #endif
1210 }
1211
1212 /*
1213 * Initialize POSIX timer handling for a single task.
1214 */
1215 static void posix_cpu_timers_init(struct task_struct *tsk)
1216 {
1217 tsk->cputime_expires.prof_exp = 0;
1218 tsk->cputime_expires.virt_exp = 0;
1219 tsk->cputime_expires.sched_exp = 0;
1220 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1221 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1222 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1223 }
1224
1225 static inline void
1226 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1227 {
1228 task->pids[type].pid = pid;
1229 }
1230
1231 /*
1232 * This creates a new process as a copy of the old one,
1233 * but does not actually start it yet.
1234 *
1235 * It copies the registers, and all the appropriate
1236 * parts of the process environment (as per the clone
1237 * flags). The actual kick-off is left to the caller.
1238 */
1239 static struct task_struct *copy_process(unsigned long clone_flags,
1240 unsigned long stack_start,
1241 unsigned long stack_size,
1242 int __user *child_tidptr,
1243 struct pid *pid,
1244 int trace)
1245 {
1246 int retval;
1247 struct task_struct *p;
1248
1249 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1250 return ERR_PTR(-EINVAL);
1251
1252 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1253 return ERR_PTR(-EINVAL);
1254
1255 /*
1256 * Thread groups must share signals as well, and detached threads
1257 * can only be started up within the thread group.
1258 */
1259 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1260 return ERR_PTR(-EINVAL);
1261
1262 /*
1263 * Shared signal handlers imply shared VM. By way of the above,
1264 * thread groups also imply shared VM. Blocking this case allows
1265 * for various simplifications in other code.
1266 */
1267 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1268 return ERR_PTR(-EINVAL);
1269
1270 /*
1271 * Siblings of global init remain as zombies on exit since they are
1272 * not reaped by their parent (swapper). To solve this and to avoid
1273 * multi-rooted process trees, prevent global and container-inits
1274 * from creating siblings.
1275 */
1276 if ((clone_flags & CLONE_PARENT) &&
1277 current->signal->flags & SIGNAL_UNKILLABLE)
1278 return ERR_PTR(-EINVAL);
1279
1280 /*
1281 * If the new process will be in a different pid or user namespace
1282 * do not allow it to share a thread group or signal handlers or
1283 * parent with the forking task.
1284 */
1285 if (clone_flags & CLONE_SIGHAND) {
1286 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1287 (task_active_pid_ns(current) !=
1288 current->nsproxy->pid_ns_for_children))
1289 return ERR_PTR(-EINVAL);
1290 }
1291
1292 retval = security_task_create(clone_flags);
1293 if (retval)
1294 goto fork_out;
1295
1296 retval = -ENOMEM;
1297 p = dup_task_struct(current);
1298 if (!p)
1299 goto fork_out;
1300
1301 ftrace_graph_init_task(p);
1302
1303 rt_mutex_init_task(p);
1304
1305 #ifdef CONFIG_PROVE_LOCKING
1306 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1307 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1308 #endif
1309 retval = -EAGAIN;
1310 if (atomic_read(&p->real_cred->user->processes) >=
1311 task_rlimit(p, RLIMIT_NPROC)) {
1312 if (p->real_cred->user != INIT_USER &&
1313 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1314 goto bad_fork_free;
1315 }
1316 current->flags &= ~PF_NPROC_EXCEEDED;
1317
1318 retval = copy_creds(p, clone_flags);
1319 if (retval < 0)
1320 goto bad_fork_free;
1321
1322 /*
1323 * If multiple threads are within copy_process(), then this check
1324 * triggers too late. This doesn't hurt, the check is only there
1325 * to stop root fork bombs.
1326 */
1327 retval = -EAGAIN;
1328 if (nr_threads >= max_threads)
1329 goto bad_fork_cleanup_count;
1330
1331 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1332 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1333 p->flags |= PF_FORKNOEXEC;
1334 INIT_LIST_HEAD(&p->children);
1335 INIT_LIST_HEAD(&p->sibling);
1336 rcu_copy_process(p);
1337 p->vfork_done = NULL;
1338 spin_lock_init(&p->alloc_lock);
1339
1340 init_sigpending(&p->pending);
1341
1342 p->utime = p->stime = p->gtime = 0;
1343 p->utimescaled = p->stimescaled = 0;
1344 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1345 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1346 #endif
1347 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1348 seqlock_init(&p->vtime_seqlock);
1349 p->vtime_snap = 0;
1350 p->vtime_snap_whence = VTIME_SLEEPING;
1351 #endif
1352
1353 #if defined(SPLIT_RSS_COUNTING)
1354 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1355 #endif
1356
1357 p->default_timer_slack_ns = current->timer_slack_ns;
1358
1359 task_io_accounting_init(&p->ioac);
1360 acct_clear_integrals(p);
1361
1362 posix_cpu_timers_init(p);
1363
1364 p->start_time = ktime_get_ns();
1365 p->real_start_time = ktime_get_boot_ns();
1366 p->io_context = NULL;
1367 p->audit_context = NULL;
1368 if (clone_flags & CLONE_THREAD)
1369 threadgroup_change_begin(current);
1370 cgroup_fork(p);
1371 #ifdef CONFIG_NUMA
1372 p->mempolicy = mpol_dup(p->mempolicy);
1373 if (IS_ERR(p->mempolicy)) {
1374 retval = PTR_ERR(p->mempolicy);
1375 p->mempolicy = NULL;
1376 goto bad_fork_cleanup_threadgroup_lock;
1377 }
1378 #endif
1379 #ifdef CONFIG_CPUSETS
1380 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1381 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1382 seqcount_init(&p->mems_allowed_seq);
1383 #endif
1384 #ifdef CONFIG_TRACE_IRQFLAGS
1385 p->irq_events = 0;
1386 p->hardirqs_enabled = 0;
1387 p->hardirq_enable_ip = 0;
1388 p->hardirq_enable_event = 0;
1389 p->hardirq_disable_ip = _THIS_IP_;
1390 p->hardirq_disable_event = 0;
1391 p->softirqs_enabled = 1;
1392 p->softirq_enable_ip = _THIS_IP_;
1393 p->softirq_enable_event = 0;
1394 p->softirq_disable_ip = 0;
1395 p->softirq_disable_event = 0;
1396 p->hardirq_context = 0;
1397 p->softirq_context = 0;
1398 #endif
1399 #ifdef CONFIG_LOCKDEP
1400 p->lockdep_depth = 0; /* no locks held yet */
1401 p->curr_chain_key = 0;
1402 p->lockdep_recursion = 0;
1403 #endif
1404
1405 #ifdef CONFIG_DEBUG_MUTEXES
1406 p->blocked_on = NULL; /* not blocked yet */
1407 #endif
1408 #ifdef CONFIG_BCACHE
1409 p->sequential_io = 0;
1410 p->sequential_io_avg = 0;
1411 #endif
1412
1413 /* Perform scheduler related setup. Assign this task to a CPU. */
1414 retval = sched_fork(clone_flags, p);
1415 if (retval)
1416 goto bad_fork_cleanup_policy;
1417
1418 retval = perf_event_init_task(p);
1419 if (retval)
1420 goto bad_fork_cleanup_policy;
1421 retval = audit_alloc(p);
1422 if (retval)
1423 goto bad_fork_cleanup_perf;
1424 /* copy all the process information */
1425 shm_init_task(p);
1426 retval = copy_semundo(clone_flags, p);
1427 if (retval)
1428 goto bad_fork_cleanup_audit;
1429 retval = copy_files(clone_flags, p);
1430 if (retval)
1431 goto bad_fork_cleanup_semundo;
1432 retval = copy_fs(clone_flags, p);
1433 if (retval)
1434 goto bad_fork_cleanup_files;
1435 retval = copy_sighand(clone_flags, p);
1436 if (retval)
1437 goto bad_fork_cleanup_fs;
1438 retval = copy_signal(clone_flags, p);
1439 if (retval)
1440 goto bad_fork_cleanup_sighand;
1441 retval = copy_mm(clone_flags, p);
1442 if (retval)
1443 goto bad_fork_cleanup_signal;
1444 retval = copy_namespaces(clone_flags, p);
1445 if (retval)
1446 goto bad_fork_cleanup_mm;
1447 retval = copy_io(clone_flags, p);
1448 if (retval)
1449 goto bad_fork_cleanup_namespaces;
1450 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1451 if (retval)
1452 goto bad_fork_cleanup_io;
1453
1454 if (pid != &init_struct_pid) {
1455 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1456 if (IS_ERR(pid)) {
1457 retval = PTR_ERR(pid);
1458 goto bad_fork_cleanup_io;
1459 }
1460 }
1461
1462 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1463 /*
1464 * Clear TID on mm_release()?
1465 */
1466 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1467 #ifdef CONFIG_BLOCK
1468 p->plug = NULL;
1469 #endif
1470 #ifdef CONFIG_FUTEX
1471 p->robust_list = NULL;
1472 #ifdef CONFIG_COMPAT
1473 p->compat_robust_list = NULL;
1474 #endif
1475 INIT_LIST_HEAD(&p->pi_state_list);
1476 p->pi_state_cache = NULL;
1477 #endif
1478 /*
1479 * sigaltstack should be cleared when sharing the same VM
1480 */
1481 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1482 p->sas_ss_sp = p->sas_ss_size = 0;
1483
1484 /*
1485 * Syscall tracing and stepping should be turned off in the
1486 * child regardless of CLONE_PTRACE.
1487 */
1488 user_disable_single_step(p);
1489 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1490 #ifdef TIF_SYSCALL_EMU
1491 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1492 #endif
1493 clear_all_latency_tracing(p);
1494
1495 /* ok, now we should be set up.. */
1496 p->pid = pid_nr(pid);
1497 if (clone_flags & CLONE_THREAD) {
1498 p->exit_signal = -1;
1499 p->group_leader = current->group_leader;
1500 p->tgid = current->tgid;
1501 } else {
1502 if (clone_flags & CLONE_PARENT)
1503 p->exit_signal = current->group_leader->exit_signal;
1504 else
1505 p->exit_signal = (clone_flags & CSIGNAL);
1506 p->group_leader = p;
1507 p->tgid = p->pid;
1508 }
1509
1510 p->nr_dirtied = 0;
1511 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1512 p->dirty_paused_when = 0;
1513
1514 p->pdeath_signal = 0;
1515 INIT_LIST_HEAD(&p->thread_group);
1516 p->task_works = NULL;
1517
1518 /*
1519 * Make it visible to the rest of the system, but dont wake it up yet.
1520 * Need tasklist lock for parent etc handling!
1521 */
1522 write_lock_irq(&tasklist_lock);
1523
1524 /* CLONE_PARENT re-uses the old parent */
1525 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1526 p->real_parent = current->real_parent;
1527 p->parent_exec_id = current->parent_exec_id;
1528 } else {
1529 p->real_parent = current;
1530 p->parent_exec_id = current->self_exec_id;
1531 }
1532
1533 spin_lock(&current->sighand->siglock);
1534
1535 /*
1536 * Copy seccomp details explicitly here, in case they were changed
1537 * before holding sighand lock.
1538 */
1539 copy_seccomp(p);
1540
1541 /*
1542 * Process group and session signals need to be delivered to just the
1543 * parent before the fork or both the parent and the child after the
1544 * fork. Restart if a signal comes in before we add the new process to
1545 * it's process group.
1546 * A fatal signal pending means that current will exit, so the new
1547 * thread can't slip out of an OOM kill (or normal SIGKILL).
1548 */
1549 recalc_sigpending();
1550 if (signal_pending(current)) {
1551 spin_unlock(&current->sighand->siglock);
1552 write_unlock_irq(&tasklist_lock);
1553 retval = -ERESTARTNOINTR;
1554 goto bad_fork_free_pid;
1555 }
1556
1557 if (likely(p->pid)) {
1558 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1559
1560 init_task_pid(p, PIDTYPE_PID, pid);
1561 if (thread_group_leader(p)) {
1562 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1563 init_task_pid(p, PIDTYPE_SID, task_session(current));
1564
1565 if (is_child_reaper(pid)) {
1566 ns_of_pid(pid)->child_reaper = p;
1567 p->signal->flags |= SIGNAL_UNKILLABLE;
1568 }
1569
1570 p->signal->leader_pid = pid;
1571 p->signal->tty = tty_kref_get(current->signal->tty);
1572 list_add_tail(&p->sibling, &p->real_parent->children);
1573 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1574 attach_pid(p, PIDTYPE_PGID);
1575 attach_pid(p, PIDTYPE_SID);
1576 __this_cpu_inc(process_counts);
1577 } else {
1578 current->signal->nr_threads++;
1579 atomic_inc(&current->signal->live);
1580 atomic_inc(&current->signal->sigcnt);
1581 list_add_tail_rcu(&p->thread_group,
1582 &p->group_leader->thread_group);
1583 list_add_tail_rcu(&p->thread_node,
1584 &p->signal->thread_head);
1585 }
1586 attach_pid(p, PIDTYPE_PID);
1587 nr_threads++;
1588 }
1589
1590 total_forks++;
1591 spin_unlock(&current->sighand->siglock);
1592 syscall_tracepoint_update(p);
1593 write_unlock_irq(&tasklist_lock);
1594
1595 proc_fork_connector(p);
1596 cgroup_post_fork(p);
1597 if (clone_flags & CLONE_THREAD)
1598 threadgroup_change_end(current);
1599 perf_event_fork(p);
1600
1601 trace_task_newtask(p, clone_flags);
1602 uprobe_copy_process(p, clone_flags);
1603
1604 return p;
1605
1606 bad_fork_free_pid:
1607 if (pid != &init_struct_pid)
1608 free_pid(pid);
1609 bad_fork_cleanup_io:
1610 if (p->io_context)
1611 exit_io_context(p);
1612 bad_fork_cleanup_namespaces:
1613 exit_task_namespaces(p);
1614 bad_fork_cleanup_mm:
1615 if (p->mm)
1616 mmput(p->mm);
1617 bad_fork_cleanup_signal:
1618 if (!(clone_flags & CLONE_THREAD))
1619 free_signal_struct(p->signal);
1620 bad_fork_cleanup_sighand:
1621 __cleanup_sighand(p->sighand);
1622 bad_fork_cleanup_fs:
1623 exit_fs(p); /* blocking */
1624 bad_fork_cleanup_files:
1625 exit_files(p); /* blocking */
1626 bad_fork_cleanup_semundo:
1627 exit_sem(p);
1628 bad_fork_cleanup_audit:
1629 audit_free(p);
1630 bad_fork_cleanup_perf:
1631 perf_event_free_task(p);
1632 bad_fork_cleanup_policy:
1633 #ifdef CONFIG_NUMA
1634 mpol_put(p->mempolicy);
1635 bad_fork_cleanup_threadgroup_lock:
1636 #endif
1637 if (clone_flags & CLONE_THREAD)
1638 threadgroup_change_end(current);
1639 delayacct_tsk_free(p);
1640 bad_fork_cleanup_count:
1641 atomic_dec(&p->cred->user->processes);
1642 exit_creds(p);
1643 bad_fork_free:
1644 free_task(p);
1645 fork_out:
1646 return ERR_PTR(retval);
1647 }
1648
1649 static inline void init_idle_pids(struct pid_link *links)
1650 {
1651 enum pid_type type;
1652
1653 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1654 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1655 links[type].pid = &init_struct_pid;
1656 }
1657 }
1658
1659 struct task_struct *fork_idle(int cpu)
1660 {
1661 struct task_struct *task;
1662 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1663 if (!IS_ERR(task)) {
1664 init_idle_pids(task->pids);
1665 init_idle(task, cpu);
1666 }
1667
1668 return task;
1669 }
1670
1671 /*
1672 * Ok, this is the main fork-routine.
1673 *
1674 * It copies the process, and if successful kick-starts
1675 * it and waits for it to finish using the VM if required.
1676 */
1677 long do_fork(unsigned long clone_flags,
1678 unsigned long stack_start,
1679 unsigned long stack_size,
1680 int __user *parent_tidptr,
1681 int __user *child_tidptr)
1682 {
1683 struct task_struct *p;
1684 int trace = 0;
1685 long nr;
1686
1687 /*
1688 * Determine whether and which event to report to ptracer. When
1689 * called from kernel_thread or CLONE_UNTRACED is explicitly
1690 * requested, no event is reported; otherwise, report if the event
1691 * for the type of forking is enabled.
1692 */
1693 if (!(clone_flags & CLONE_UNTRACED)) {
1694 if (clone_flags & CLONE_VFORK)
1695 trace = PTRACE_EVENT_VFORK;
1696 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1697 trace = PTRACE_EVENT_CLONE;
1698 else
1699 trace = PTRACE_EVENT_FORK;
1700
1701 if (likely(!ptrace_event_enabled(current, trace)))
1702 trace = 0;
1703 }
1704
1705 p = copy_process(clone_flags, stack_start, stack_size,
1706 child_tidptr, NULL, trace);
1707 /*
1708 * Do this prior waking up the new thread - the thread pointer
1709 * might get invalid after that point, if the thread exits quickly.
1710 */
1711 if (!IS_ERR(p)) {
1712 struct completion vfork;
1713 struct pid *pid;
1714
1715 trace_sched_process_fork(current, p);
1716
1717 pid = get_task_pid(p, PIDTYPE_PID);
1718 nr = pid_vnr(pid);
1719
1720 if (clone_flags & CLONE_PARENT_SETTID)
1721 put_user(nr, parent_tidptr);
1722
1723 if (clone_flags & CLONE_VFORK) {
1724 p->vfork_done = &vfork;
1725 init_completion(&vfork);
1726 get_task_struct(p);
1727 }
1728
1729 wake_up_new_task(p);
1730
1731 /* forking complete and child started to run, tell ptracer */
1732 if (unlikely(trace))
1733 ptrace_event_pid(trace, pid);
1734
1735 if (clone_flags & CLONE_VFORK) {
1736 if (!wait_for_vfork_done(p, &vfork))
1737 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1738 }
1739
1740 put_pid(pid);
1741 } else {
1742 nr = PTR_ERR(p);
1743 }
1744 return nr;
1745 }
1746
1747 /*
1748 * Create a kernel thread.
1749 */
1750 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1751 {
1752 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1753 (unsigned long)arg, NULL, NULL);
1754 }
1755
1756 #ifdef __ARCH_WANT_SYS_FORK
1757 SYSCALL_DEFINE0(fork)
1758 {
1759 #ifdef CONFIG_MMU
1760 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1761 #else
1762 /* can not support in nommu mode */
1763 return -EINVAL;
1764 #endif
1765 }
1766 #endif
1767
1768 #ifdef __ARCH_WANT_SYS_VFORK
1769 SYSCALL_DEFINE0(vfork)
1770 {
1771 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1772 0, NULL, NULL);
1773 }
1774 #endif
1775
1776 #ifdef __ARCH_WANT_SYS_CLONE
1777 #ifdef CONFIG_CLONE_BACKWARDS
1778 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1779 int __user *, parent_tidptr,
1780 int, tls_val,
1781 int __user *, child_tidptr)
1782 #elif defined(CONFIG_CLONE_BACKWARDS2)
1783 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1784 int __user *, parent_tidptr,
1785 int __user *, child_tidptr,
1786 int, tls_val)
1787 #elif defined(CONFIG_CLONE_BACKWARDS3)
1788 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1789 int, stack_size,
1790 int __user *, parent_tidptr,
1791 int __user *, child_tidptr,
1792 int, tls_val)
1793 #else
1794 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1795 int __user *, parent_tidptr,
1796 int __user *, child_tidptr,
1797 int, tls_val)
1798 #endif
1799 {
1800 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1801 }
1802 #endif
1803
1804 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1805 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1806 #endif
1807
1808 static void sighand_ctor(void *data)
1809 {
1810 struct sighand_struct *sighand = data;
1811
1812 spin_lock_init(&sighand->siglock);
1813 init_waitqueue_head(&sighand->signalfd_wqh);
1814 }
1815
1816 void __init proc_caches_init(void)
1817 {
1818 sighand_cachep = kmem_cache_create("sighand_cache",
1819 sizeof(struct sighand_struct), 0,
1820 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1821 SLAB_NOTRACK, sighand_ctor);
1822 signal_cachep = kmem_cache_create("signal_cache",
1823 sizeof(struct signal_struct), 0,
1824 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1825 files_cachep = kmem_cache_create("files_cache",
1826 sizeof(struct files_struct), 0,
1827 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1828 fs_cachep = kmem_cache_create("fs_cache",
1829 sizeof(struct fs_struct), 0,
1830 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1831 /*
1832 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1833 * whole struct cpumask for the OFFSTACK case. We could change
1834 * this to *only* allocate as much of it as required by the
1835 * maximum number of CPU's we can ever have. The cpumask_allocation
1836 * is at the end of the structure, exactly for that reason.
1837 */
1838 mm_cachep = kmem_cache_create("mm_struct",
1839 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1840 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1841 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1842 mmap_init();
1843 nsproxy_cache_init();
1844 }
1845
1846 /*
1847 * Check constraints on flags passed to the unshare system call.
1848 */
1849 static int check_unshare_flags(unsigned long unshare_flags)
1850 {
1851 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1852 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1853 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1854 CLONE_NEWUSER|CLONE_NEWPID))
1855 return -EINVAL;
1856 /*
1857 * Not implemented, but pretend it works if there is nothing to
1858 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1859 * needs to unshare vm.
1860 */
1861 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1862 /* FIXME: get_task_mm() increments ->mm_users */
1863 if (atomic_read(&current->mm->mm_users) > 1)
1864 return -EINVAL;
1865 }
1866
1867 return 0;
1868 }
1869
1870 /*
1871 * Unshare the filesystem structure if it is being shared
1872 */
1873 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1874 {
1875 struct fs_struct *fs = current->fs;
1876
1877 if (!(unshare_flags & CLONE_FS) || !fs)
1878 return 0;
1879
1880 /* don't need lock here; in the worst case we'll do useless copy */
1881 if (fs->users == 1)
1882 return 0;
1883
1884 *new_fsp = copy_fs_struct(fs);
1885 if (!*new_fsp)
1886 return -ENOMEM;
1887
1888 return 0;
1889 }
1890
1891 /*
1892 * Unshare file descriptor table if it is being shared
1893 */
1894 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1895 {
1896 struct files_struct *fd = current->files;
1897 int error = 0;
1898
1899 if ((unshare_flags & CLONE_FILES) &&
1900 (fd && atomic_read(&fd->count) > 1)) {
1901 *new_fdp = dup_fd(fd, &error);
1902 if (!*new_fdp)
1903 return error;
1904 }
1905
1906 return 0;
1907 }
1908
1909 /*
1910 * unshare allows a process to 'unshare' part of the process
1911 * context which was originally shared using clone. copy_*
1912 * functions used by do_fork() cannot be used here directly
1913 * because they modify an inactive task_struct that is being
1914 * constructed. Here we are modifying the current, active,
1915 * task_struct.
1916 */
1917 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1918 {
1919 struct fs_struct *fs, *new_fs = NULL;
1920 struct files_struct *fd, *new_fd = NULL;
1921 struct cred *new_cred = NULL;
1922 struct nsproxy *new_nsproxy = NULL;
1923 int do_sysvsem = 0;
1924 int err;
1925
1926 /*
1927 * If unsharing a user namespace must also unshare the thread.
1928 */
1929 if (unshare_flags & CLONE_NEWUSER)
1930 unshare_flags |= CLONE_THREAD | CLONE_FS;
1931 /*
1932 * If unsharing a thread from a thread group, must also unshare vm.
1933 */
1934 if (unshare_flags & CLONE_THREAD)
1935 unshare_flags |= CLONE_VM;
1936 /*
1937 * If unsharing vm, must also unshare signal handlers.
1938 */
1939 if (unshare_flags & CLONE_VM)
1940 unshare_flags |= CLONE_SIGHAND;
1941 /*
1942 * If unsharing namespace, must also unshare filesystem information.
1943 */
1944 if (unshare_flags & CLONE_NEWNS)
1945 unshare_flags |= CLONE_FS;
1946
1947 err = check_unshare_flags(unshare_flags);
1948 if (err)
1949 goto bad_unshare_out;
1950 /*
1951 * CLONE_NEWIPC must also detach from the undolist: after switching
1952 * to a new ipc namespace, the semaphore arrays from the old
1953 * namespace are unreachable.
1954 */
1955 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1956 do_sysvsem = 1;
1957 err = unshare_fs(unshare_flags, &new_fs);
1958 if (err)
1959 goto bad_unshare_out;
1960 err = unshare_fd(unshare_flags, &new_fd);
1961 if (err)
1962 goto bad_unshare_cleanup_fs;
1963 err = unshare_userns(unshare_flags, &new_cred);
1964 if (err)
1965 goto bad_unshare_cleanup_fd;
1966 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1967 new_cred, new_fs);
1968 if (err)
1969 goto bad_unshare_cleanup_cred;
1970
1971 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1972 if (do_sysvsem) {
1973 /*
1974 * CLONE_SYSVSEM is equivalent to sys_exit().
1975 */
1976 exit_sem(current);
1977 }
1978 if (unshare_flags & CLONE_NEWIPC) {
1979 /* Orphan segments in old ns (see sem above). */
1980 exit_shm(current);
1981 shm_init_task(current);
1982 }
1983
1984 if (new_nsproxy)
1985 switch_task_namespaces(current, new_nsproxy);
1986
1987 task_lock(current);
1988
1989 if (new_fs) {
1990 fs = current->fs;
1991 spin_lock(&fs->lock);
1992 current->fs = new_fs;
1993 if (--fs->users)
1994 new_fs = NULL;
1995 else
1996 new_fs = fs;
1997 spin_unlock(&fs->lock);
1998 }
1999
2000 if (new_fd) {
2001 fd = current->files;
2002 current->files = new_fd;
2003 new_fd = fd;
2004 }
2005
2006 task_unlock(current);
2007
2008 if (new_cred) {
2009 /* Install the new user namespace */
2010 commit_creds(new_cred);
2011 new_cred = NULL;
2012 }
2013 }
2014
2015 bad_unshare_cleanup_cred:
2016 if (new_cred)
2017 put_cred(new_cred);
2018 bad_unshare_cleanup_fd:
2019 if (new_fd)
2020 put_files_struct(new_fd);
2021
2022 bad_unshare_cleanup_fs:
2023 if (new_fs)
2024 free_fs_struct(new_fs);
2025
2026 bad_unshare_out:
2027 return err;
2028 }
2029
2030 /*
2031 * Helper to unshare the files of the current task.
2032 * We don't want to expose copy_files internals to
2033 * the exec layer of the kernel.
2034 */
2035
2036 int unshare_files(struct files_struct **displaced)
2037 {
2038 struct task_struct *task = current;
2039 struct files_struct *copy = NULL;
2040 int error;
2041
2042 error = unshare_fd(CLONE_FILES, &copy);
2043 if (error || !copy) {
2044 *displaced = NULL;
2045 return error;
2046 }
2047 *displaced = task->files;
2048 task_lock(task);
2049 task->files = copy;
2050 task_unlock(task);
2051 return 0;
2052 }
2053
2054 int sysctl_max_threads(struct ctl_table *table, int write,
2055 void __user *buffer, size_t *lenp, loff_t *ppos)
2056 {
2057 struct ctl_table t;
2058 int ret;
2059 int threads = max_threads;
2060 int min = MIN_THREADS;
2061 int max = MAX_THREADS;
2062
2063 t = *table;
2064 t.data = &threads;
2065 t.extra1 = &min;
2066 t.extra2 = &max;
2067
2068 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2069 if (ret || !write)
2070 return ret;
2071
2072 set_max_threads(threads);
2073
2074 return 0;
2075 }