]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/fork.c
096f9d840bb87368e2178908a23821f9366604c5
[mirror_ubuntu-kernels.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 static int max_threads; /* tunable limit on nr_threads */
127
128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148
149 int nr_processes(void)
150 {
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180 /*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187 /*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227 /* Clear stale pointers from reused stack. */
228 memset(s->addr, 0, THREAD_SIZE);
229
230 tsk->stack_vm_area = s;
231 tsk->stack = s->addr;
232 return s->addr;
233 }
234
235 /*
236 * Allocated stacks are cached and later reused by new threads,
237 * so memcg accounting is performed manually on assigning/releasing
238 * stacks to tasks. Drop __GFP_ACCOUNT.
239 */
240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
241 VMALLOC_START, VMALLOC_END,
242 THREADINFO_GFP & ~__GFP_ACCOUNT,
243 PAGE_KERNEL,
244 0, node, __builtin_return_address(0));
245
246 /*
247 * We can't call find_vm_area() in interrupt context, and
248 * free_thread_stack() can be called in interrupt context,
249 * so cache the vm_struct.
250 */
251 if (stack) {
252 tsk->stack_vm_area = find_vm_area(stack);
253 tsk->stack = stack;
254 }
255 return stack;
256 #else
257 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
258 THREAD_SIZE_ORDER);
259
260 if (likely(page)) {
261 tsk->stack = page_address(page);
262 return tsk->stack;
263 }
264 return NULL;
265 #endif
266 }
267
268 static inline void free_thread_stack(struct task_struct *tsk)
269 {
270 #ifdef CONFIG_VMAP_STACK
271 struct vm_struct *vm = task_stack_vm_area(tsk);
272
273 if (vm) {
274 int i;
275
276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
277 mod_memcg_page_state(vm->pages[i],
278 MEMCG_KERNEL_STACK_KB,
279 -(int)(PAGE_SIZE / 1024));
280
281 memcg_kmem_uncharge(vm->pages[i], 0);
282 }
283
284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
287 continue;
288
289 return;
290 }
291
292 vfree_atomic(tsk->stack);
293 return;
294 }
295 #endif
296
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 int node)
304 {
305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 tsk->stack = stack;
308 return stack;
309 }
310
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
316 void thread_stack_cache_init(void)
317 {
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352 }
353
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 *new = *orig;
360 INIT_LIST_HEAD(&new->anon_vma_chain);
361 }
362 return new;
363 }
364
365 void vm_area_free(struct vm_area_struct *vma)
366 {
367 kmem_cache_free(vm_area_cachep, vma);
368 }
369
370 static void account_kernel_stack(struct task_struct *tsk, int account)
371 {
372 void *stack = task_stack_page(tsk);
373 struct vm_struct *vm = task_stack_vm_area(tsk);
374
375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
376
377 if (vm) {
378 int i;
379
380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
381
382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
383 mod_zone_page_state(page_zone(vm->pages[i]),
384 NR_KERNEL_STACK_KB,
385 PAGE_SIZE / 1024 * account);
386 }
387 } else {
388 /*
389 * All stack pages are in the same zone and belong to the
390 * same memcg.
391 */
392 struct page *first_page = virt_to_page(stack);
393
394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
395 THREAD_SIZE / 1024 * account);
396
397 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
398 account * (THREAD_SIZE / 1024));
399 }
400 }
401
402 static int memcg_charge_kernel_stack(struct task_struct *tsk)
403 {
404 #ifdef CONFIG_VMAP_STACK
405 struct vm_struct *vm = task_stack_vm_area(tsk);
406 int ret;
407
408 if (vm) {
409 int i;
410
411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 /*
413 * If memcg_kmem_charge() fails, page->mem_cgroup
414 * pointer is NULL, and both memcg_kmem_uncharge()
415 * and mod_memcg_page_state() in free_thread_stack()
416 * will ignore this page. So it's safe.
417 */
418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
419 if (ret)
420 return ret;
421
422 mod_memcg_page_state(vm->pages[i],
423 MEMCG_KERNEL_STACK_KB,
424 PAGE_SIZE / 1024);
425 }
426 }
427 #endif
428 return 0;
429 }
430
431 static void release_task_stack(struct task_struct *tsk)
432 {
433 if (WARN_ON(tsk->state != TASK_DEAD))
434 return; /* Better to leak the stack than to free prematurely */
435
436 account_kernel_stack(tsk, -1);
437 free_thread_stack(tsk);
438 tsk->stack = NULL;
439 #ifdef CONFIG_VMAP_STACK
440 tsk->stack_vm_area = NULL;
441 #endif
442 }
443
444 #ifdef CONFIG_THREAD_INFO_IN_TASK
445 void put_task_stack(struct task_struct *tsk)
446 {
447 if (refcount_dec_and_test(&tsk->stack_refcount))
448 release_task_stack(tsk);
449 }
450 #endif
451
452 void free_task(struct task_struct *tsk)
453 {
454 #ifndef CONFIG_THREAD_INFO_IN_TASK
455 /*
456 * The task is finally done with both the stack and thread_info,
457 * so free both.
458 */
459 release_task_stack(tsk);
460 #else
461 /*
462 * If the task had a separate stack allocation, it should be gone
463 * by now.
464 */
465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466 #endif
467 rt_mutex_debug_task_free(tsk);
468 ftrace_graph_exit_task(tsk);
469 put_seccomp_filter(tsk);
470 arch_release_task_struct(tsk);
471 if (tsk->flags & PF_KTHREAD)
472 free_kthread_struct(tsk);
473 free_task_struct(tsk);
474 }
475 EXPORT_SYMBOL(free_task);
476
477 #ifdef CONFIG_MMU
478 static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 struct mm_struct *oldmm)
480 {
481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
482 struct rb_node **rb_link, *rb_parent;
483 int retval;
484 unsigned long charge;
485 LIST_HEAD(uf);
486
487 uprobe_start_dup_mmap();
488 if (down_write_killable(&oldmm->mmap_sem)) {
489 retval = -EINTR;
490 goto fail_uprobe_end;
491 }
492 flush_cache_dup_mm(oldmm);
493 uprobe_dup_mmap(oldmm, mm);
494 /*
495 * Not linked in yet - no deadlock potential:
496 */
497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
498
499 /* No ordering required: file already has been exposed. */
500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501
502 mm->total_vm = oldmm->total_vm;
503 mm->data_vm = oldmm->data_vm;
504 mm->exec_vm = oldmm->exec_vm;
505 mm->stack_vm = oldmm->stack_vm;
506
507 rb_link = &mm->mm_rb.rb_node;
508 rb_parent = NULL;
509 pprev = &mm->mmap;
510 retval = ksm_fork(mm, oldmm);
511 if (retval)
512 goto out;
513 retval = khugepaged_fork(mm, oldmm);
514 if (retval)
515 goto out;
516
517 prev = NULL;
518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 struct file *file;
520
521 if (mpnt->vm_flags & VM_DONTCOPY) {
522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 continue;
524 }
525 charge = 0;
526 /*
527 * Don't duplicate many vmas if we've been oom-killed (for
528 * example)
529 */
530 if (fatal_signal_pending(current)) {
531 retval = -EINTR;
532 goto out;
533 }
534 if (mpnt->vm_flags & VM_ACCOUNT) {
535 unsigned long len = vma_pages(mpnt);
536
537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 goto fail_nomem;
539 charge = len;
540 }
541 tmp = vm_area_dup(mpnt);
542 if (!tmp)
543 goto fail_nomem;
544 retval = vma_dup_policy(mpnt, tmp);
545 if (retval)
546 goto fail_nomem_policy;
547 tmp->vm_mm = mm;
548 retval = dup_userfaultfd(tmp, &uf);
549 if (retval)
550 goto fail_nomem_anon_vma_fork;
551 if (tmp->vm_flags & VM_WIPEONFORK) {
552 /* VM_WIPEONFORK gets a clean slate in the child. */
553 tmp->anon_vma = NULL;
554 if (anon_vma_prepare(tmp))
555 goto fail_nomem_anon_vma_fork;
556 } else if (anon_vma_fork(tmp, mpnt))
557 goto fail_nomem_anon_vma_fork;
558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 tmp->vm_next = tmp->vm_prev = NULL;
560 file = tmp->vm_file;
561 if (file) {
562 struct inode *inode = file_inode(file);
563 struct address_space *mapping = file->f_mapping;
564
565 get_file(file);
566 if (tmp->vm_flags & VM_DENYWRITE)
567 atomic_dec(&inode->i_writecount);
568 i_mmap_lock_write(mapping);
569 if (tmp->vm_flags & VM_SHARED)
570 atomic_inc(&mapping->i_mmap_writable);
571 flush_dcache_mmap_lock(mapping);
572 /* insert tmp into the share list, just after mpnt */
573 vma_interval_tree_insert_after(tmp, mpnt,
574 &mapping->i_mmap);
575 flush_dcache_mmap_unlock(mapping);
576 i_mmap_unlock_write(mapping);
577 }
578
579 /*
580 * Clear hugetlb-related page reserves for children. This only
581 * affects MAP_PRIVATE mappings. Faults generated by the child
582 * are not guaranteed to succeed, even if read-only
583 */
584 if (is_vm_hugetlb_page(tmp))
585 reset_vma_resv_huge_pages(tmp);
586
587 /*
588 * Link in the new vma and copy the page table entries.
589 */
590 *pprev = tmp;
591 pprev = &tmp->vm_next;
592 tmp->vm_prev = prev;
593 prev = tmp;
594
595 __vma_link_rb(mm, tmp, rb_link, rb_parent);
596 rb_link = &tmp->vm_rb.rb_right;
597 rb_parent = &tmp->vm_rb;
598
599 mm->map_count++;
600 if (!(tmp->vm_flags & VM_WIPEONFORK))
601 retval = copy_page_range(mm, oldmm, mpnt);
602
603 if (tmp->vm_ops && tmp->vm_ops->open)
604 tmp->vm_ops->open(tmp);
605
606 if (retval)
607 goto out;
608 }
609 /* a new mm has just been created */
610 retval = arch_dup_mmap(oldmm, mm);
611 out:
612 up_write(&mm->mmap_sem);
613 flush_tlb_mm(oldmm);
614 up_write(&oldmm->mmap_sem);
615 dup_userfaultfd_complete(&uf);
616 fail_uprobe_end:
617 uprobe_end_dup_mmap();
618 return retval;
619 fail_nomem_anon_vma_fork:
620 mpol_put(vma_policy(tmp));
621 fail_nomem_policy:
622 vm_area_free(tmp);
623 fail_nomem:
624 retval = -ENOMEM;
625 vm_unacct_memory(charge);
626 goto out;
627 }
628
629 static inline int mm_alloc_pgd(struct mm_struct *mm)
630 {
631 mm->pgd = pgd_alloc(mm);
632 if (unlikely(!mm->pgd))
633 return -ENOMEM;
634 return 0;
635 }
636
637 static inline void mm_free_pgd(struct mm_struct *mm)
638 {
639 pgd_free(mm, mm->pgd);
640 }
641 #else
642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
643 {
644 down_write(&oldmm->mmap_sem);
645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
646 up_write(&oldmm->mmap_sem);
647 return 0;
648 }
649 #define mm_alloc_pgd(mm) (0)
650 #define mm_free_pgd(mm)
651 #endif /* CONFIG_MMU */
652
653 static void check_mm(struct mm_struct *mm)
654 {
655 int i;
656
657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
658 "Please make sure 'struct resident_page_types[]' is updated as well");
659
660 for (i = 0; i < NR_MM_COUNTERS; i++) {
661 long x = atomic_long_read(&mm->rss_stat.count[i]);
662
663 if (unlikely(x))
664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
665 mm, resident_page_types[i], x);
666 }
667
668 if (mm_pgtables_bytes(mm))
669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
670 mm_pgtables_bytes(mm));
671
672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674 #endif
675 }
676
677 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
678 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
679
680 /*
681 * Called when the last reference to the mm
682 * is dropped: either by a lazy thread or by
683 * mmput. Free the page directory and the mm.
684 */
685 void __mmdrop(struct mm_struct *mm)
686 {
687 BUG_ON(mm == &init_mm);
688 WARN_ON_ONCE(mm == current->mm);
689 WARN_ON_ONCE(mm == current->active_mm);
690 mm_free_pgd(mm);
691 destroy_context(mm);
692 mmu_notifier_mm_destroy(mm);
693 check_mm(mm);
694 put_user_ns(mm->user_ns);
695 free_mm(mm);
696 }
697 EXPORT_SYMBOL_GPL(__mmdrop);
698
699 static void mmdrop_async_fn(struct work_struct *work)
700 {
701 struct mm_struct *mm;
702
703 mm = container_of(work, struct mm_struct, async_put_work);
704 __mmdrop(mm);
705 }
706
707 static void mmdrop_async(struct mm_struct *mm)
708 {
709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
711 schedule_work(&mm->async_put_work);
712 }
713 }
714
715 static inline void free_signal_struct(struct signal_struct *sig)
716 {
717 taskstats_tgid_free(sig);
718 sched_autogroup_exit(sig);
719 /*
720 * __mmdrop is not safe to call from softirq context on x86 due to
721 * pgd_dtor so postpone it to the async context
722 */
723 if (sig->oom_mm)
724 mmdrop_async(sig->oom_mm);
725 kmem_cache_free(signal_cachep, sig);
726 }
727
728 static inline void put_signal_struct(struct signal_struct *sig)
729 {
730 if (refcount_dec_and_test(&sig->sigcnt))
731 free_signal_struct(sig);
732 }
733
734 void __put_task_struct(struct task_struct *tsk)
735 {
736 WARN_ON(!tsk->exit_state);
737 WARN_ON(refcount_read(&tsk->usage));
738 WARN_ON(tsk == current);
739
740 cgroup_free(tsk);
741 task_numa_free(tsk, true);
742 security_task_free(tsk);
743 exit_creds(tsk);
744 delayacct_tsk_free(tsk);
745 put_signal_struct(tsk->signal);
746
747 if (!profile_handoff_task(tsk))
748 free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751
752 void __init __weak arch_task_cache_init(void) { }
753
754 /*
755 * set_max_threads
756 */
757 static void set_max_threads(unsigned int max_threads_suggested)
758 {
759 u64 threads;
760 unsigned long nr_pages = totalram_pages();
761
762 /*
763 * The number of threads shall be limited such that the thread
764 * structures may only consume a small part of the available memory.
765 */
766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 threads = MAX_THREADS;
768 else
769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 (u64) THREAD_SIZE * 8UL);
771
772 if (threads > max_threads_suggested)
773 threads = max_threads_suggested;
774
775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776 }
777
778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779 /* Initialized by the architecture: */
780 int arch_task_struct_size __read_mostly;
781 #endif
782
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 {
786 /* Fetch thread_struct whitelist for the architecture. */
787 arch_thread_struct_whitelist(offset, size);
788
789 /*
790 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 * adjust offset to position of thread_struct in task_struct.
792 */
793 if (unlikely(*size == 0))
794 *offset = 0;
795 else
796 *offset += offsetof(struct task_struct, thread);
797 }
798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799
800 void __init fork_init(void)
801 {
802 int i;
803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804 #ifndef ARCH_MIN_TASKALIGN
805 #define ARCH_MIN_TASKALIGN 0
806 #endif
807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 unsigned long useroffset, usersize;
809
810 /* create a slab on which task_structs can be allocated */
811 task_struct_whitelist(&useroffset, &usersize);
812 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 arch_task_struct_size, align,
814 SLAB_PANIC|SLAB_ACCOUNT,
815 useroffset, usersize, NULL);
816 #endif
817
818 /* do the arch specific task caches init */
819 arch_task_cache_init();
820
821 set_max_threads(MAX_THREADS);
822
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 init_task.signal->rlim[RLIMIT_NPROC];
827
828 for (i = 0; i < UCOUNT_COUNTS; i++) {
829 init_user_ns.ucount_max[i] = max_threads/2;
830 }
831
832 #ifdef CONFIG_VMAP_STACK
833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
834 NULL, free_vm_stack_cache);
835 #endif
836
837 lockdep_init_task(&init_task);
838 uprobes_init();
839 }
840
841 int __weak arch_dup_task_struct(struct task_struct *dst,
842 struct task_struct *src)
843 {
844 *dst = *src;
845 return 0;
846 }
847
848 void set_task_stack_end_magic(struct task_struct *tsk)
849 {
850 unsigned long *stackend;
851
852 stackend = end_of_stack(tsk);
853 *stackend = STACK_END_MAGIC; /* for overflow detection */
854 }
855
856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857 {
858 struct task_struct *tsk;
859 unsigned long *stack;
860 struct vm_struct *stack_vm_area __maybe_unused;
861 int err;
862
863 if (node == NUMA_NO_NODE)
864 node = tsk_fork_get_node(orig);
865 tsk = alloc_task_struct_node(node);
866 if (!tsk)
867 return NULL;
868
869 stack = alloc_thread_stack_node(tsk, node);
870 if (!stack)
871 goto free_tsk;
872
873 if (memcg_charge_kernel_stack(tsk))
874 goto free_stack;
875
876 stack_vm_area = task_stack_vm_area(tsk);
877
878 err = arch_dup_task_struct(tsk, orig);
879
880 /*
881 * arch_dup_task_struct() clobbers the stack-related fields. Make
882 * sure they're properly initialized before using any stack-related
883 * functions again.
884 */
885 tsk->stack = stack;
886 #ifdef CONFIG_VMAP_STACK
887 tsk->stack_vm_area = stack_vm_area;
888 #endif
889 #ifdef CONFIG_THREAD_INFO_IN_TASK
890 refcount_set(&tsk->stack_refcount, 1);
891 #endif
892
893 if (err)
894 goto free_stack;
895
896 #ifdef CONFIG_SECCOMP
897 /*
898 * We must handle setting up seccomp filters once we're under
899 * the sighand lock in case orig has changed between now and
900 * then. Until then, filter must be NULL to avoid messing up
901 * the usage counts on the error path calling free_task.
902 */
903 tsk->seccomp.filter = NULL;
904 #endif
905
906 setup_thread_stack(tsk, orig);
907 clear_user_return_notifier(tsk);
908 clear_tsk_need_resched(tsk);
909 set_task_stack_end_magic(tsk);
910
911 #ifdef CONFIG_STACKPROTECTOR
912 tsk->stack_canary = get_random_canary();
913 #endif
914 if (orig->cpus_ptr == &orig->cpus_mask)
915 tsk->cpus_ptr = &tsk->cpus_mask;
916
917 /*
918 * One for the user space visible state that goes away when reaped.
919 * One for the scheduler.
920 */
921 refcount_set(&tsk->rcu_users, 2);
922 /* One for the rcu users */
923 refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925 tsk->btrace_seq = 0;
926 #endif
927 tsk->splice_pipe = NULL;
928 tsk->task_frag.page = NULL;
929 tsk->wake_q.next = NULL;
930
931 account_kernel_stack(tsk, 1);
932
933 kcov_task_init(tsk);
934
935 #ifdef CONFIG_FAULT_INJECTION
936 tsk->fail_nth = 0;
937 #endif
938
939 #ifdef CONFIG_BLK_CGROUP
940 tsk->throttle_queue = NULL;
941 tsk->use_memdelay = 0;
942 #endif
943
944 #ifdef CONFIG_MEMCG
945 tsk->active_memcg = NULL;
946 #endif
947 return tsk;
948
949 free_stack:
950 free_thread_stack(tsk);
951 free_tsk:
952 free_task_struct(tsk);
953 return NULL;
954 }
955
956 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
957
958 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
959
960 static int __init coredump_filter_setup(char *s)
961 {
962 default_dump_filter =
963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
964 MMF_DUMP_FILTER_MASK;
965 return 1;
966 }
967
968 __setup("coredump_filter=", coredump_filter_setup);
969
970 #include <linux/init_task.h>
971
972 static void mm_init_aio(struct mm_struct *mm)
973 {
974 #ifdef CONFIG_AIO
975 spin_lock_init(&mm->ioctx_lock);
976 mm->ioctx_table = NULL;
977 #endif
978 }
979
980 static __always_inline void mm_clear_owner(struct mm_struct *mm,
981 struct task_struct *p)
982 {
983 #ifdef CONFIG_MEMCG
984 if (mm->owner == p)
985 WRITE_ONCE(mm->owner, NULL);
986 #endif
987 }
988
989 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
990 {
991 #ifdef CONFIG_MEMCG
992 mm->owner = p;
993 #endif
994 }
995
996 static void mm_init_uprobes_state(struct mm_struct *mm)
997 {
998 #ifdef CONFIG_UPROBES
999 mm->uprobes_state.xol_area = NULL;
1000 #endif
1001 }
1002
1003 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004 struct user_namespace *user_ns)
1005 {
1006 mm->mmap = NULL;
1007 mm->mm_rb = RB_ROOT;
1008 mm->vmacache_seqnum = 0;
1009 atomic_set(&mm->mm_users, 1);
1010 atomic_set(&mm->mm_count, 1);
1011 init_rwsem(&mm->mmap_sem);
1012 INIT_LIST_HEAD(&mm->mmlist);
1013 mm->core_state = NULL;
1014 mm_pgtables_bytes_init(mm);
1015 mm->map_count = 0;
1016 mm->locked_vm = 0;
1017 atomic64_set(&mm->pinned_vm, 0);
1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019 spin_lock_init(&mm->page_table_lock);
1020 spin_lock_init(&mm->arg_lock);
1021 mm_init_cpumask(mm);
1022 mm_init_aio(mm);
1023 mm_init_owner(mm, p);
1024 RCU_INIT_POINTER(mm->exe_file, NULL);
1025 mmu_notifier_mm_init(mm);
1026 init_tlb_flush_pending(mm);
1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 mm->pmd_huge_pte = NULL;
1029 #endif
1030 mm_init_uprobes_state(mm);
1031
1032 if (current->mm) {
1033 mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 } else {
1036 mm->flags = default_dump_filter;
1037 mm->def_flags = 0;
1038 }
1039
1040 if (mm_alloc_pgd(mm))
1041 goto fail_nopgd;
1042
1043 if (init_new_context(p, mm))
1044 goto fail_nocontext;
1045
1046 mm->user_ns = get_user_ns(user_ns);
1047 return mm;
1048
1049 fail_nocontext:
1050 mm_free_pgd(mm);
1051 fail_nopgd:
1052 free_mm(mm);
1053 return NULL;
1054 }
1055
1056 /*
1057 * Allocate and initialize an mm_struct.
1058 */
1059 struct mm_struct *mm_alloc(void)
1060 {
1061 struct mm_struct *mm;
1062
1063 mm = allocate_mm();
1064 if (!mm)
1065 return NULL;
1066
1067 memset(mm, 0, sizeof(*mm));
1068 return mm_init(mm, current, current_user_ns());
1069 }
1070
1071 static inline void __mmput(struct mm_struct *mm)
1072 {
1073 VM_BUG_ON(atomic_read(&mm->mm_users));
1074
1075 uprobe_clear_state(mm);
1076 exit_aio(mm);
1077 ksm_exit(mm);
1078 khugepaged_exit(mm); /* must run before exit_mmap */
1079 exit_mmap(mm);
1080 mm_put_huge_zero_page(mm);
1081 set_mm_exe_file(mm, NULL);
1082 if (!list_empty(&mm->mmlist)) {
1083 spin_lock(&mmlist_lock);
1084 list_del(&mm->mmlist);
1085 spin_unlock(&mmlist_lock);
1086 }
1087 if (mm->binfmt)
1088 module_put(mm->binfmt->module);
1089 mmdrop(mm);
1090 }
1091
1092 /*
1093 * Decrement the use count and release all resources for an mm.
1094 */
1095 void mmput(struct mm_struct *mm)
1096 {
1097 might_sleep();
1098
1099 if (atomic_dec_and_test(&mm->mm_users))
1100 __mmput(mm);
1101 }
1102 EXPORT_SYMBOL_GPL(mmput);
1103
1104 #ifdef CONFIG_MMU
1105 static void mmput_async_fn(struct work_struct *work)
1106 {
1107 struct mm_struct *mm = container_of(work, struct mm_struct,
1108 async_put_work);
1109
1110 __mmput(mm);
1111 }
1112
1113 void mmput_async(struct mm_struct *mm)
1114 {
1115 if (atomic_dec_and_test(&mm->mm_users)) {
1116 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 schedule_work(&mm->async_put_work);
1118 }
1119 }
1120 #endif
1121
1122 /**
1123 * set_mm_exe_file - change a reference to the mm's executable file
1124 *
1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126 *
1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128 * invocations: in mmput() nobody alive left, in execve task is single
1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130 * mm->exe_file, but does so without using set_mm_exe_file() in order
1131 * to do avoid the need for any locks.
1132 */
1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134 {
1135 struct file *old_exe_file;
1136
1137 /*
1138 * It is safe to dereference the exe_file without RCU as
1139 * this function is only called if nobody else can access
1140 * this mm -- see comment above for justification.
1141 */
1142 old_exe_file = rcu_dereference_raw(mm->exe_file);
1143
1144 if (new_exe_file)
1145 get_file(new_exe_file);
1146 rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 if (old_exe_file)
1148 fput(old_exe_file);
1149 }
1150
1151 /**
1152 * get_mm_exe_file - acquire a reference to the mm's executable file
1153 *
1154 * Returns %NULL if mm has no associated executable file.
1155 * User must release file via fput().
1156 */
1157 struct file *get_mm_exe_file(struct mm_struct *mm)
1158 {
1159 struct file *exe_file;
1160
1161 rcu_read_lock();
1162 exe_file = rcu_dereference(mm->exe_file);
1163 if (exe_file && !get_file_rcu(exe_file))
1164 exe_file = NULL;
1165 rcu_read_unlock();
1166 return exe_file;
1167 }
1168 EXPORT_SYMBOL(get_mm_exe_file);
1169
1170 /**
1171 * get_task_exe_file - acquire a reference to the task's executable file
1172 *
1173 * Returns %NULL if task's mm (if any) has no associated executable file or
1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175 * User must release file via fput().
1176 */
1177 struct file *get_task_exe_file(struct task_struct *task)
1178 {
1179 struct file *exe_file = NULL;
1180 struct mm_struct *mm;
1181
1182 task_lock(task);
1183 mm = task->mm;
1184 if (mm) {
1185 if (!(task->flags & PF_KTHREAD))
1186 exe_file = get_mm_exe_file(mm);
1187 }
1188 task_unlock(task);
1189 return exe_file;
1190 }
1191 EXPORT_SYMBOL(get_task_exe_file);
1192
1193 /**
1194 * get_task_mm - acquire a reference to the task's mm
1195 *
1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1197 * this kernel workthread has transiently adopted a user mm with use_mm,
1198 * to do its AIO) is not set and if so returns a reference to it, after
1199 * bumping up the use count. User must release the mm via mmput()
1200 * after use. Typically used by /proc and ptrace.
1201 */
1202 struct mm_struct *get_task_mm(struct task_struct *task)
1203 {
1204 struct mm_struct *mm;
1205
1206 task_lock(task);
1207 mm = task->mm;
1208 if (mm) {
1209 if (task->flags & PF_KTHREAD)
1210 mm = NULL;
1211 else
1212 mmget(mm);
1213 }
1214 task_unlock(task);
1215 return mm;
1216 }
1217 EXPORT_SYMBOL_GPL(get_task_mm);
1218
1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220 {
1221 struct mm_struct *mm;
1222 int err;
1223
1224 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1225 if (err)
1226 return ERR_PTR(err);
1227
1228 mm = get_task_mm(task);
1229 if (mm && mm != current->mm &&
1230 !ptrace_may_access(task, mode)) {
1231 mmput(mm);
1232 mm = ERR_PTR(-EACCES);
1233 }
1234 mutex_unlock(&task->signal->cred_guard_mutex);
1235
1236 return mm;
1237 }
1238
1239 static void complete_vfork_done(struct task_struct *tsk)
1240 {
1241 struct completion *vfork;
1242
1243 task_lock(tsk);
1244 vfork = tsk->vfork_done;
1245 if (likely(vfork)) {
1246 tsk->vfork_done = NULL;
1247 complete(vfork);
1248 }
1249 task_unlock(tsk);
1250 }
1251
1252 static int wait_for_vfork_done(struct task_struct *child,
1253 struct completion *vfork)
1254 {
1255 int killed;
1256
1257 freezer_do_not_count();
1258 cgroup_enter_frozen();
1259 killed = wait_for_completion_killable(vfork);
1260 cgroup_leave_frozen(false);
1261 freezer_count();
1262
1263 if (killed) {
1264 task_lock(child);
1265 child->vfork_done = NULL;
1266 task_unlock(child);
1267 }
1268
1269 put_task_struct(child);
1270 return killed;
1271 }
1272
1273 /* Please note the differences between mmput and mm_release.
1274 * mmput is called whenever we stop holding onto a mm_struct,
1275 * error success whatever.
1276 *
1277 * mm_release is called after a mm_struct has been removed
1278 * from the current process.
1279 *
1280 * This difference is important for error handling, when we
1281 * only half set up a mm_struct for a new process and need to restore
1282 * the old one. Because we mmput the new mm_struct before
1283 * restoring the old one. . .
1284 * Eric Biederman 10 January 1998
1285 */
1286 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287 {
1288 /* Get rid of any futexes when releasing the mm */
1289 futex_mm_release(tsk);
1290
1291 uprobe_free_utask(tsk);
1292
1293 /* Get rid of any cached register state */
1294 deactivate_mm(tsk, mm);
1295
1296 /*
1297 * Signal userspace if we're not exiting with a core dump
1298 * because we want to leave the value intact for debugging
1299 * purposes.
1300 */
1301 if (tsk->clear_child_tid) {
1302 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1303 atomic_read(&mm->mm_users) > 1) {
1304 /*
1305 * We don't check the error code - if userspace has
1306 * not set up a proper pointer then tough luck.
1307 */
1308 put_user(0, tsk->clear_child_tid);
1309 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1310 1, NULL, NULL, 0, 0);
1311 }
1312 tsk->clear_child_tid = NULL;
1313 }
1314
1315 /*
1316 * All done, finally we can wake up parent and return this mm to him.
1317 * Also kthread_stop() uses this completion for synchronization.
1318 */
1319 if (tsk->vfork_done)
1320 complete_vfork_done(tsk);
1321 }
1322
1323 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1324 {
1325 mm_release(tsk, mm);
1326 }
1327
1328 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1329 {
1330 mm_release(tsk, mm);
1331 }
1332
1333 /**
1334 * dup_mm() - duplicates an existing mm structure
1335 * @tsk: the task_struct with which the new mm will be associated.
1336 * @oldmm: the mm to duplicate.
1337 *
1338 * Allocates a new mm structure and duplicates the provided @oldmm structure
1339 * content into it.
1340 *
1341 * Return: the duplicated mm or NULL on failure.
1342 */
1343 static struct mm_struct *dup_mm(struct task_struct *tsk,
1344 struct mm_struct *oldmm)
1345 {
1346 struct mm_struct *mm;
1347 int err;
1348
1349 mm = allocate_mm();
1350 if (!mm)
1351 goto fail_nomem;
1352
1353 memcpy(mm, oldmm, sizeof(*mm));
1354
1355 if (!mm_init(mm, tsk, mm->user_ns))
1356 goto fail_nomem;
1357
1358 err = dup_mmap(mm, oldmm);
1359 if (err)
1360 goto free_pt;
1361
1362 mm->hiwater_rss = get_mm_rss(mm);
1363 mm->hiwater_vm = mm->total_vm;
1364
1365 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1366 goto free_pt;
1367
1368 return mm;
1369
1370 free_pt:
1371 /* don't put binfmt in mmput, we haven't got module yet */
1372 mm->binfmt = NULL;
1373 mm_init_owner(mm, NULL);
1374 mmput(mm);
1375
1376 fail_nomem:
1377 return NULL;
1378 }
1379
1380 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1381 {
1382 struct mm_struct *mm, *oldmm;
1383 int retval;
1384
1385 tsk->min_flt = tsk->maj_flt = 0;
1386 tsk->nvcsw = tsk->nivcsw = 0;
1387 #ifdef CONFIG_DETECT_HUNG_TASK
1388 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1389 tsk->last_switch_time = 0;
1390 #endif
1391
1392 tsk->mm = NULL;
1393 tsk->active_mm = NULL;
1394
1395 /*
1396 * Are we cloning a kernel thread?
1397 *
1398 * We need to steal a active VM for that..
1399 */
1400 oldmm = current->mm;
1401 if (!oldmm)
1402 return 0;
1403
1404 /* initialize the new vmacache entries */
1405 vmacache_flush(tsk);
1406
1407 if (clone_flags & CLONE_VM) {
1408 mmget(oldmm);
1409 mm = oldmm;
1410 goto good_mm;
1411 }
1412
1413 retval = -ENOMEM;
1414 mm = dup_mm(tsk, current->mm);
1415 if (!mm)
1416 goto fail_nomem;
1417
1418 good_mm:
1419 tsk->mm = mm;
1420 tsk->active_mm = mm;
1421 return 0;
1422
1423 fail_nomem:
1424 return retval;
1425 }
1426
1427 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1428 {
1429 struct fs_struct *fs = current->fs;
1430 if (clone_flags & CLONE_FS) {
1431 /* tsk->fs is already what we want */
1432 spin_lock(&fs->lock);
1433 if (fs->in_exec) {
1434 spin_unlock(&fs->lock);
1435 return -EAGAIN;
1436 }
1437 fs->users++;
1438 spin_unlock(&fs->lock);
1439 return 0;
1440 }
1441 tsk->fs = copy_fs_struct(fs);
1442 if (!tsk->fs)
1443 return -ENOMEM;
1444 return 0;
1445 }
1446
1447 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1448 {
1449 struct files_struct *oldf, *newf;
1450 int error = 0;
1451
1452 /*
1453 * A background process may not have any files ...
1454 */
1455 oldf = current->files;
1456 if (!oldf)
1457 goto out;
1458
1459 if (clone_flags & CLONE_FILES) {
1460 atomic_inc(&oldf->count);
1461 goto out;
1462 }
1463
1464 newf = dup_fd(oldf, &error);
1465 if (!newf)
1466 goto out;
1467
1468 tsk->files = newf;
1469 error = 0;
1470 out:
1471 return error;
1472 }
1473
1474 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1475 {
1476 #ifdef CONFIG_BLOCK
1477 struct io_context *ioc = current->io_context;
1478 struct io_context *new_ioc;
1479
1480 if (!ioc)
1481 return 0;
1482 /*
1483 * Share io context with parent, if CLONE_IO is set
1484 */
1485 if (clone_flags & CLONE_IO) {
1486 ioc_task_link(ioc);
1487 tsk->io_context = ioc;
1488 } else if (ioprio_valid(ioc->ioprio)) {
1489 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1490 if (unlikely(!new_ioc))
1491 return -ENOMEM;
1492
1493 new_ioc->ioprio = ioc->ioprio;
1494 put_io_context(new_ioc);
1495 }
1496 #endif
1497 return 0;
1498 }
1499
1500 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1501 {
1502 struct sighand_struct *sig;
1503
1504 if (clone_flags & CLONE_SIGHAND) {
1505 refcount_inc(&current->sighand->count);
1506 return 0;
1507 }
1508 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1509 rcu_assign_pointer(tsk->sighand, sig);
1510 if (!sig)
1511 return -ENOMEM;
1512
1513 refcount_set(&sig->count, 1);
1514 spin_lock_irq(&current->sighand->siglock);
1515 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1516 spin_unlock_irq(&current->sighand->siglock);
1517 return 0;
1518 }
1519
1520 void __cleanup_sighand(struct sighand_struct *sighand)
1521 {
1522 if (refcount_dec_and_test(&sighand->count)) {
1523 signalfd_cleanup(sighand);
1524 /*
1525 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1526 * without an RCU grace period, see __lock_task_sighand().
1527 */
1528 kmem_cache_free(sighand_cachep, sighand);
1529 }
1530 }
1531
1532 /*
1533 * Initialize POSIX timer handling for a thread group.
1534 */
1535 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1536 {
1537 struct posix_cputimers *pct = &sig->posix_cputimers;
1538 unsigned long cpu_limit;
1539
1540 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1541 posix_cputimers_group_init(pct, cpu_limit);
1542 }
1543
1544 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1545 {
1546 struct signal_struct *sig;
1547
1548 if (clone_flags & CLONE_THREAD)
1549 return 0;
1550
1551 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1552 tsk->signal = sig;
1553 if (!sig)
1554 return -ENOMEM;
1555
1556 sig->nr_threads = 1;
1557 atomic_set(&sig->live, 1);
1558 refcount_set(&sig->sigcnt, 1);
1559
1560 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1561 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1562 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1563
1564 init_waitqueue_head(&sig->wait_chldexit);
1565 sig->curr_target = tsk;
1566 init_sigpending(&sig->shared_pending);
1567 INIT_HLIST_HEAD(&sig->multiprocess);
1568 seqlock_init(&sig->stats_lock);
1569 prev_cputime_init(&sig->prev_cputime);
1570
1571 #ifdef CONFIG_POSIX_TIMERS
1572 INIT_LIST_HEAD(&sig->posix_timers);
1573 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1574 sig->real_timer.function = it_real_fn;
1575 #endif
1576
1577 task_lock(current->group_leader);
1578 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1579 task_unlock(current->group_leader);
1580
1581 posix_cpu_timers_init_group(sig);
1582
1583 tty_audit_fork(sig);
1584 sched_autogroup_fork(sig);
1585
1586 sig->oom_score_adj = current->signal->oom_score_adj;
1587 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1588
1589 mutex_init(&sig->cred_guard_mutex);
1590
1591 return 0;
1592 }
1593
1594 static void copy_seccomp(struct task_struct *p)
1595 {
1596 #ifdef CONFIG_SECCOMP
1597 /*
1598 * Must be called with sighand->lock held, which is common to
1599 * all threads in the group. Holding cred_guard_mutex is not
1600 * needed because this new task is not yet running and cannot
1601 * be racing exec.
1602 */
1603 assert_spin_locked(&current->sighand->siglock);
1604
1605 /* Ref-count the new filter user, and assign it. */
1606 get_seccomp_filter(current);
1607 p->seccomp = current->seccomp;
1608
1609 /*
1610 * Explicitly enable no_new_privs here in case it got set
1611 * between the task_struct being duplicated and holding the
1612 * sighand lock. The seccomp state and nnp must be in sync.
1613 */
1614 if (task_no_new_privs(current))
1615 task_set_no_new_privs(p);
1616
1617 /*
1618 * If the parent gained a seccomp mode after copying thread
1619 * flags and between before we held the sighand lock, we have
1620 * to manually enable the seccomp thread flag here.
1621 */
1622 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1623 set_tsk_thread_flag(p, TIF_SECCOMP);
1624 #endif
1625 }
1626
1627 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1628 {
1629 current->clear_child_tid = tidptr;
1630
1631 return task_pid_vnr(current);
1632 }
1633
1634 static void rt_mutex_init_task(struct task_struct *p)
1635 {
1636 raw_spin_lock_init(&p->pi_lock);
1637 #ifdef CONFIG_RT_MUTEXES
1638 p->pi_waiters = RB_ROOT_CACHED;
1639 p->pi_top_task = NULL;
1640 p->pi_blocked_on = NULL;
1641 #endif
1642 }
1643
1644 static inline void init_task_pid_links(struct task_struct *task)
1645 {
1646 enum pid_type type;
1647
1648 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1649 INIT_HLIST_NODE(&task->pid_links[type]);
1650 }
1651 }
1652
1653 static inline void
1654 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1655 {
1656 if (type == PIDTYPE_PID)
1657 task->thread_pid = pid;
1658 else
1659 task->signal->pids[type] = pid;
1660 }
1661
1662 static inline void rcu_copy_process(struct task_struct *p)
1663 {
1664 #ifdef CONFIG_PREEMPT_RCU
1665 p->rcu_read_lock_nesting = 0;
1666 p->rcu_read_unlock_special.s = 0;
1667 p->rcu_blocked_node = NULL;
1668 INIT_LIST_HEAD(&p->rcu_node_entry);
1669 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1670 #ifdef CONFIG_TASKS_RCU
1671 p->rcu_tasks_holdout = false;
1672 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1673 p->rcu_tasks_idle_cpu = -1;
1674 #endif /* #ifdef CONFIG_TASKS_RCU */
1675 }
1676
1677 struct pid *pidfd_pid(const struct file *file)
1678 {
1679 if (file->f_op == &pidfd_fops)
1680 return file->private_data;
1681
1682 return ERR_PTR(-EBADF);
1683 }
1684
1685 static int pidfd_release(struct inode *inode, struct file *file)
1686 {
1687 struct pid *pid = file->private_data;
1688
1689 file->private_data = NULL;
1690 put_pid(pid);
1691 return 0;
1692 }
1693
1694 #ifdef CONFIG_PROC_FS
1695 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1696 {
1697 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1698 struct pid *pid = f->private_data;
1699
1700 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1701 seq_putc(m, '\n');
1702 }
1703 #endif
1704
1705 /*
1706 * Poll support for process exit notification.
1707 */
1708 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1709 {
1710 struct task_struct *task;
1711 struct pid *pid = file->private_data;
1712 int poll_flags = 0;
1713
1714 poll_wait(file, &pid->wait_pidfd, pts);
1715
1716 rcu_read_lock();
1717 task = pid_task(pid, PIDTYPE_PID);
1718 /*
1719 * Inform pollers only when the whole thread group exits.
1720 * If the thread group leader exits before all other threads in the
1721 * group, then poll(2) should block, similar to the wait(2) family.
1722 */
1723 if (!task || (task->exit_state && thread_group_empty(task)))
1724 poll_flags = POLLIN | POLLRDNORM;
1725 rcu_read_unlock();
1726
1727 return poll_flags;
1728 }
1729
1730 const struct file_operations pidfd_fops = {
1731 .release = pidfd_release,
1732 .poll = pidfd_poll,
1733 #ifdef CONFIG_PROC_FS
1734 .show_fdinfo = pidfd_show_fdinfo,
1735 #endif
1736 };
1737
1738 static void __delayed_free_task(struct rcu_head *rhp)
1739 {
1740 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1741
1742 free_task(tsk);
1743 }
1744
1745 static __always_inline void delayed_free_task(struct task_struct *tsk)
1746 {
1747 if (IS_ENABLED(CONFIG_MEMCG))
1748 call_rcu(&tsk->rcu, __delayed_free_task);
1749 else
1750 free_task(tsk);
1751 }
1752
1753 /*
1754 * This creates a new process as a copy of the old one,
1755 * but does not actually start it yet.
1756 *
1757 * It copies the registers, and all the appropriate
1758 * parts of the process environment (as per the clone
1759 * flags). The actual kick-off is left to the caller.
1760 */
1761 static __latent_entropy struct task_struct *copy_process(
1762 struct pid *pid,
1763 int trace,
1764 int node,
1765 struct kernel_clone_args *args)
1766 {
1767 int pidfd = -1, retval;
1768 struct task_struct *p;
1769 struct multiprocess_signals delayed;
1770 struct file *pidfile = NULL;
1771 u64 clone_flags = args->flags;
1772
1773 /*
1774 * Don't allow sharing the root directory with processes in a different
1775 * namespace
1776 */
1777 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1778 return ERR_PTR(-EINVAL);
1779
1780 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1781 return ERR_PTR(-EINVAL);
1782
1783 /*
1784 * Thread groups must share signals as well, and detached threads
1785 * can only be started up within the thread group.
1786 */
1787 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1788 return ERR_PTR(-EINVAL);
1789
1790 /*
1791 * Shared signal handlers imply shared VM. By way of the above,
1792 * thread groups also imply shared VM. Blocking this case allows
1793 * for various simplifications in other code.
1794 */
1795 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1796 return ERR_PTR(-EINVAL);
1797
1798 /*
1799 * Siblings of global init remain as zombies on exit since they are
1800 * not reaped by their parent (swapper). To solve this and to avoid
1801 * multi-rooted process trees, prevent global and container-inits
1802 * from creating siblings.
1803 */
1804 if ((clone_flags & CLONE_PARENT) &&
1805 current->signal->flags & SIGNAL_UNKILLABLE)
1806 return ERR_PTR(-EINVAL);
1807
1808 /*
1809 * If the new process will be in a different pid or user namespace
1810 * do not allow it to share a thread group with the forking task.
1811 */
1812 if (clone_flags & CLONE_THREAD) {
1813 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1814 (task_active_pid_ns(current) !=
1815 current->nsproxy->pid_ns_for_children))
1816 return ERR_PTR(-EINVAL);
1817 }
1818
1819 if (clone_flags & CLONE_PIDFD) {
1820 /*
1821 * - CLONE_DETACHED is blocked so that we can potentially
1822 * reuse it later for CLONE_PIDFD.
1823 * - CLONE_THREAD is blocked until someone really needs it.
1824 */
1825 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1826 return ERR_PTR(-EINVAL);
1827 }
1828
1829 /*
1830 * Force any signals received before this point to be delivered
1831 * before the fork happens. Collect up signals sent to multiple
1832 * processes that happen during the fork and delay them so that
1833 * they appear to happen after the fork.
1834 */
1835 sigemptyset(&delayed.signal);
1836 INIT_HLIST_NODE(&delayed.node);
1837
1838 spin_lock_irq(&current->sighand->siglock);
1839 if (!(clone_flags & CLONE_THREAD))
1840 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1841 recalc_sigpending();
1842 spin_unlock_irq(&current->sighand->siglock);
1843 retval = -ERESTARTNOINTR;
1844 if (signal_pending(current))
1845 goto fork_out;
1846
1847 retval = -ENOMEM;
1848 p = dup_task_struct(current, node);
1849 if (!p)
1850 goto fork_out;
1851
1852 /*
1853 * This _must_ happen before we call free_task(), i.e. before we jump
1854 * to any of the bad_fork_* labels. This is to avoid freeing
1855 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1856 * kernel threads (PF_KTHREAD).
1857 */
1858 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1859 /*
1860 * Clear TID on mm_release()?
1861 */
1862 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1863
1864 ftrace_graph_init_task(p);
1865
1866 rt_mutex_init_task(p);
1867
1868 #ifdef CONFIG_PROVE_LOCKING
1869 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1870 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1871 #endif
1872 retval = -EAGAIN;
1873 if (atomic_read(&p->real_cred->user->processes) >=
1874 task_rlimit(p, RLIMIT_NPROC)) {
1875 if (p->real_cred->user != INIT_USER &&
1876 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1877 goto bad_fork_free;
1878 }
1879 current->flags &= ~PF_NPROC_EXCEEDED;
1880
1881 retval = copy_creds(p, clone_flags);
1882 if (retval < 0)
1883 goto bad_fork_free;
1884
1885 /*
1886 * If multiple threads are within copy_process(), then this check
1887 * triggers too late. This doesn't hurt, the check is only there
1888 * to stop root fork bombs.
1889 */
1890 retval = -EAGAIN;
1891 if (nr_threads >= max_threads)
1892 goto bad_fork_cleanup_count;
1893
1894 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1895 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1896 p->flags |= PF_FORKNOEXEC;
1897 INIT_LIST_HEAD(&p->children);
1898 INIT_LIST_HEAD(&p->sibling);
1899 rcu_copy_process(p);
1900 p->vfork_done = NULL;
1901 spin_lock_init(&p->alloc_lock);
1902
1903 init_sigpending(&p->pending);
1904
1905 p->utime = p->stime = p->gtime = 0;
1906 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1907 p->utimescaled = p->stimescaled = 0;
1908 #endif
1909 prev_cputime_init(&p->prev_cputime);
1910
1911 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1912 seqcount_init(&p->vtime.seqcount);
1913 p->vtime.starttime = 0;
1914 p->vtime.state = VTIME_INACTIVE;
1915 #endif
1916
1917 #if defined(SPLIT_RSS_COUNTING)
1918 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1919 #endif
1920
1921 p->default_timer_slack_ns = current->timer_slack_ns;
1922
1923 #ifdef CONFIG_PSI
1924 p->psi_flags = 0;
1925 #endif
1926
1927 task_io_accounting_init(&p->ioac);
1928 acct_clear_integrals(p);
1929
1930 posix_cputimers_init(&p->posix_cputimers);
1931
1932 p->io_context = NULL;
1933 audit_set_context(p, NULL);
1934 cgroup_fork(p);
1935 #ifdef CONFIG_NUMA
1936 p->mempolicy = mpol_dup(p->mempolicy);
1937 if (IS_ERR(p->mempolicy)) {
1938 retval = PTR_ERR(p->mempolicy);
1939 p->mempolicy = NULL;
1940 goto bad_fork_cleanup_threadgroup_lock;
1941 }
1942 #endif
1943 #ifdef CONFIG_CPUSETS
1944 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1945 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1946 seqcount_init(&p->mems_allowed_seq);
1947 #endif
1948 #ifdef CONFIG_TRACE_IRQFLAGS
1949 p->irq_events = 0;
1950 p->hardirqs_enabled = 0;
1951 p->hardirq_enable_ip = 0;
1952 p->hardirq_enable_event = 0;
1953 p->hardirq_disable_ip = _THIS_IP_;
1954 p->hardirq_disable_event = 0;
1955 p->softirqs_enabled = 1;
1956 p->softirq_enable_ip = _THIS_IP_;
1957 p->softirq_enable_event = 0;
1958 p->softirq_disable_ip = 0;
1959 p->softirq_disable_event = 0;
1960 p->hardirq_context = 0;
1961 p->softirq_context = 0;
1962 #endif
1963
1964 p->pagefault_disabled = 0;
1965
1966 #ifdef CONFIG_LOCKDEP
1967 lockdep_init_task(p);
1968 #endif
1969
1970 #ifdef CONFIG_DEBUG_MUTEXES
1971 p->blocked_on = NULL; /* not blocked yet */
1972 #endif
1973 #ifdef CONFIG_BCACHE
1974 p->sequential_io = 0;
1975 p->sequential_io_avg = 0;
1976 #endif
1977
1978 /* Perform scheduler related setup. Assign this task to a CPU. */
1979 retval = sched_fork(clone_flags, p);
1980 if (retval)
1981 goto bad_fork_cleanup_policy;
1982
1983 retval = perf_event_init_task(p);
1984 if (retval)
1985 goto bad_fork_cleanup_policy;
1986 retval = audit_alloc(p);
1987 if (retval)
1988 goto bad_fork_cleanup_perf;
1989 /* copy all the process information */
1990 shm_init_task(p);
1991 retval = security_task_alloc(p, clone_flags);
1992 if (retval)
1993 goto bad_fork_cleanup_audit;
1994 retval = copy_semundo(clone_flags, p);
1995 if (retval)
1996 goto bad_fork_cleanup_security;
1997 retval = copy_files(clone_flags, p);
1998 if (retval)
1999 goto bad_fork_cleanup_semundo;
2000 retval = copy_fs(clone_flags, p);
2001 if (retval)
2002 goto bad_fork_cleanup_files;
2003 retval = copy_sighand(clone_flags, p);
2004 if (retval)
2005 goto bad_fork_cleanup_fs;
2006 retval = copy_signal(clone_flags, p);
2007 if (retval)
2008 goto bad_fork_cleanup_sighand;
2009 retval = copy_mm(clone_flags, p);
2010 if (retval)
2011 goto bad_fork_cleanup_signal;
2012 retval = copy_namespaces(clone_flags, p);
2013 if (retval)
2014 goto bad_fork_cleanup_mm;
2015 retval = copy_io(clone_flags, p);
2016 if (retval)
2017 goto bad_fork_cleanup_namespaces;
2018 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2019 args->tls);
2020 if (retval)
2021 goto bad_fork_cleanup_io;
2022
2023 stackleak_task_init(p);
2024
2025 if (pid != &init_struct_pid) {
2026 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2027 if (IS_ERR(pid)) {
2028 retval = PTR_ERR(pid);
2029 goto bad_fork_cleanup_thread;
2030 }
2031 }
2032
2033 /*
2034 * This has to happen after we've potentially unshared the file
2035 * descriptor table (so that the pidfd doesn't leak into the child
2036 * if the fd table isn't shared).
2037 */
2038 if (clone_flags & CLONE_PIDFD) {
2039 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2040 if (retval < 0)
2041 goto bad_fork_free_pid;
2042
2043 pidfd = retval;
2044
2045 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2046 O_RDWR | O_CLOEXEC);
2047 if (IS_ERR(pidfile)) {
2048 put_unused_fd(pidfd);
2049 retval = PTR_ERR(pidfile);
2050 goto bad_fork_free_pid;
2051 }
2052 get_pid(pid); /* held by pidfile now */
2053
2054 retval = put_user(pidfd, args->pidfd);
2055 if (retval)
2056 goto bad_fork_put_pidfd;
2057 }
2058
2059 #ifdef CONFIG_BLOCK
2060 p->plug = NULL;
2061 #endif
2062 futex_init_task(p);
2063
2064 /*
2065 * sigaltstack should be cleared when sharing the same VM
2066 */
2067 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2068 sas_ss_reset(p);
2069
2070 /*
2071 * Syscall tracing and stepping should be turned off in the
2072 * child regardless of CLONE_PTRACE.
2073 */
2074 user_disable_single_step(p);
2075 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2076 #ifdef TIF_SYSCALL_EMU
2077 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2078 #endif
2079 clear_tsk_latency_tracing(p);
2080
2081 /* ok, now we should be set up.. */
2082 p->pid = pid_nr(pid);
2083 if (clone_flags & CLONE_THREAD) {
2084 p->exit_signal = -1;
2085 p->group_leader = current->group_leader;
2086 p->tgid = current->tgid;
2087 } else {
2088 if (clone_flags & CLONE_PARENT)
2089 p->exit_signal = current->group_leader->exit_signal;
2090 else
2091 p->exit_signal = args->exit_signal;
2092 p->group_leader = p;
2093 p->tgid = p->pid;
2094 }
2095
2096 p->nr_dirtied = 0;
2097 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2098 p->dirty_paused_when = 0;
2099
2100 p->pdeath_signal = 0;
2101 INIT_LIST_HEAD(&p->thread_group);
2102 p->task_works = NULL;
2103
2104 cgroup_threadgroup_change_begin(current);
2105 /*
2106 * Ensure that the cgroup subsystem policies allow the new process to be
2107 * forked. It should be noted the the new process's css_set can be changed
2108 * between here and cgroup_post_fork() if an organisation operation is in
2109 * progress.
2110 */
2111 retval = cgroup_can_fork(p);
2112 if (retval)
2113 goto bad_fork_cgroup_threadgroup_change_end;
2114
2115 /*
2116 * From this point on we must avoid any synchronous user-space
2117 * communication until we take the tasklist-lock. In particular, we do
2118 * not want user-space to be able to predict the process start-time by
2119 * stalling fork(2) after we recorded the start_time but before it is
2120 * visible to the system.
2121 */
2122
2123 p->start_time = ktime_get_ns();
2124 p->real_start_time = ktime_get_boottime_ns();
2125
2126 /*
2127 * Make it visible to the rest of the system, but dont wake it up yet.
2128 * Need tasklist lock for parent etc handling!
2129 */
2130 write_lock_irq(&tasklist_lock);
2131
2132 /* CLONE_PARENT re-uses the old parent */
2133 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2134 p->real_parent = current->real_parent;
2135 p->parent_exec_id = current->parent_exec_id;
2136 } else {
2137 p->real_parent = current;
2138 p->parent_exec_id = current->self_exec_id;
2139 }
2140
2141 klp_copy_process(p);
2142
2143 spin_lock(&current->sighand->siglock);
2144
2145 /*
2146 * Copy seccomp details explicitly here, in case they were changed
2147 * before holding sighand lock.
2148 */
2149 copy_seccomp(p);
2150
2151 rseq_fork(p, clone_flags);
2152
2153 /* Don't start children in a dying pid namespace */
2154 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2155 retval = -ENOMEM;
2156 goto bad_fork_cancel_cgroup;
2157 }
2158
2159 /* Let kill terminate clone/fork in the middle */
2160 if (fatal_signal_pending(current)) {
2161 retval = -EINTR;
2162 goto bad_fork_cancel_cgroup;
2163 }
2164
2165 /* past the last point of failure */
2166 if (pidfile)
2167 fd_install(pidfd, pidfile);
2168
2169 init_task_pid_links(p);
2170 if (likely(p->pid)) {
2171 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2172
2173 init_task_pid(p, PIDTYPE_PID, pid);
2174 if (thread_group_leader(p)) {
2175 init_task_pid(p, PIDTYPE_TGID, pid);
2176 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2177 init_task_pid(p, PIDTYPE_SID, task_session(current));
2178
2179 if (is_child_reaper(pid)) {
2180 ns_of_pid(pid)->child_reaper = p;
2181 p->signal->flags |= SIGNAL_UNKILLABLE;
2182 }
2183 p->signal->shared_pending.signal = delayed.signal;
2184 p->signal->tty = tty_kref_get(current->signal->tty);
2185 /*
2186 * Inherit has_child_subreaper flag under the same
2187 * tasklist_lock with adding child to the process tree
2188 * for propagate_has_child_subreaper optimization.
2189 */
2190 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2191 p->real_parent->signal->is_child_subreaper;
2192 list_add_tail(&p->sibling, &p->real_parent->children);
2193 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2194 attach_pid(p, PIDTYPE_TGID);
2195 attach_pid(p, PIDTYPE_PGID);
2196 attach_pid(p, PIDTYPE_SID);
2197 __this_cpu_inc(process_counts);
2198 } else {
2199 current->signal->nr_threads++;
2200 atomic_inc(&current->signal->live);
2201 refcount_inc(&current->signal->sigcnt);
2202 task_join_group_stop(p);
2203 list_add_tail_rcu(&p->thread_group,
2204 &p->group_leader->thread_group);
2205 list_add_tail_rcu(&p->thread_node,
2206 &p->signal->thread_head);
2207 }
2208 attach_pid(p, PIDTYPE_PID);
2209 nr_threads++;
2210 }
2211 total_forks++;
2212 hlist_del_init(&delayed.node);
2213 spin_unlock(&current->sighand->siglock);
2214 syscall_tracepoint_update(p);
2215 write_unlock_irq(&tasklist_lock);
2216
2217 proc_fork_connector(p);
2218 cgroup_post_fork(p);
2219 cgroup_threadgroup_change_end(current);
2220 perf_event_fork(p);
2221
2222 trace_task_newtask(p, clone_flags);
2223 uprobe_copy_process(p, clone_flags);
2224
2225 return p;
2226
2227 bad_fork_cancel_cgroup:
2228 spin_unlock(&current->sighand->siglock);
2229 write_unlock_irq(&tasklist_lock);
2230 cgroup_cancel_fork(p);
2231 bad_fork_cgroup_threadgroup_change_end:
2232 cgroup_threadgroup_change_end(current);
2233 bad_fork_put_pidfd:
2234 if (clone_flags & CLONE_PIDFD) {
2235 fput(pidfile);
2236 put_unused_fd(pidfd);
2237 }
2238 bad_fork_free_pid:
2239 if (pid != &init_struct_pid)
2240 free_pid(pid);
2241 bad_fork_cleanup_thread:
2242 exit_thread(p);
2243 bad_fork_cleanup_io:
2244 if (p->io_context)
2245 exit_io_context(p);
2246 bad_fork_cleanup_namespaces:
2247 exit_task_namespaces(p);
2248 bad_fork_cleanup_mm:
2249 if (p->mm) {
2250 mm_clear_owner(p->mm, p);
2251 mmput(p->mm);
2252 }
2253 bad_fork_cleanup_signal:
2254 if (!(clone_flags & CLONE_THREAD))
2255 free_signal_struct(p->signal);
2256 bad_fork_cleanup_sighand:
2257 __cleanup_sighand(p->sighand);
2258 bad_fork_cleanup_fs:
2259 exit_fs(p); /* blocking */
2260 bad_fork_cleanup_files:
2261 exit_files(p); /* blocking */
2262 bad_fork_cleanup_semundo:
2263 exit_sem(p);
2264 bad_fork_cleanup_security:
2265 security_task_free(p);
2266 bad_fork_cleanup_audit:
2267 audit_free(p);
2268 bad_fork_cleanup_perf:
2269 perf_event_free_task(p);
2270 bad_fork_cleanup_policy:
2271 lockdep_free_task(p);
2272 #ifdef CONFIG_NUMA
2273 mpol_put(p->mempolicy);
2274 bad_fork_cleanup_threadgroup_lock:
2275 #endif
2276 delayacct_tsk_free(p);
2277 bad_fork_cleanup_count:
2278 atomic_dec(&p->cred->user->processes);
2279 exit_creds(p);
2280 bad_fork_free:
2281 p->state = TASK_DEAD;
2282 put_task_stack(p);
2283 delayed_free_task(p);
2284 fork_out:
2285 spin_lock_irq(&current->sighand->siglock);
2286 hlist_del_init(&delayed.node);
2287 spin_unlock_irq(&current->sighand->siglock);
2288 return ERR_PTR(retval);
2289 }
2290
2291 static inline void init_idle_pids(struct task_struct *idle)
2292 {
2293 enum pid_type type;
2294
2295 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2296 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2297 init_task_pid(idle, type, &init_struct_pid);
2298 }
2299 }
2300
2301 struct task_struct *fork_idle(int cpu)
2302 {
2303 struct task_struct *task;
2304 struct kernel_clone_args args = {
2305 .flags = CLONE_VM,
2306 };
2307
2308 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2309 if (!IS_ERR(task)) {
2310 init_idle_pids(task);
2311 init_idle(task, cpu);
2312 }
2313
2314 return task;
2315 }
2316
2317 struct mm_struct *copy_init_mm(void)
2318 {
2319 return dup_mm(NULL, &init_mm);
2320 }
2321
2322 /*
2323 * Ok, this is the main fork-routine.
2324 *
2325 * It copies the process, and if successful kick-starts
2326 * it and waits for it to finish using the VM if required.
2327 *
2328 * args->exit_signal is expected to be checked for sanity by the caller.
2329 */
2330 long _do_fork(struct kernel_clone_args *args)
2331 {
2332 u64 clone_flags = args->flags;
2333 struct completion vfork;
2334 struct pid *pid;
2335 struct task_struct *p;
2336 int trace = 0;
2337 long nr;
2338
2339 /*
2340 * Determine whether and which event to report to ptracer. When
2341 * called from kernel_thread or CLONE_UNTRACED is explicitly
2342 * requested, no event is reported; otherwise, report if the event
2343 * for the type of forking is enabled.
2344 */
2345 if (!(clone_flags & CLONE_UNTRACED)) {
2346 if (clone_flags & CLONE_VFORK)
2347 trace = PTRACE_EVENT_VFORK;
2348 else if (args->exit_signal != SIGCHLD)
2349 trace = PTRACE_EVENT_CLONE;
2350 else
2351 trace = PTRACE_EVENT_FORK;
2352
2353 if (likely(!ptrace_event_enabled(current, trace)))
2354 trace = 0;
2355 }
2356
2357 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2358 add_latent_entropy();
2359
2360 if (IS_ERR(p))
2361 return PTR_ERR(p);
2362
2363 /*
2364 * Do this prior waking up the new thread - the thread pointer
2365 * might get invalid after that point, if the thread exits quickly.
2366 */
2367 trace_sched_process_fork(current, p);
2368
2369 pid = get_task_pid(p, PIDTYPE_PID);
2370 nr = pid_vnr(pid);
2371
2372 if (clone_flags & CLONE_PARENT_SETTID)
2373 put_user(nr, args->parent_tid);
2374
2375 if (clone_flags & CLONE_VFORK) {
2376 p->vfork_done = &vfork;
2377 init_completion(&vfork);
2378 get_task_struct(p);
2379 }
2380
2381 wake_up_new_task(p);
2382
2383 /* forking complete and child started to run, tell ptracer */
2384 if (unlikely(trace))
2385 ptrace_event_pid(trace, pid);
2386
2387 if (clone_flags & CLONE_VFORK) {
2388 if (!wait_for_vfork_done(p, &vfork))
2389 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2390 }
2391
2392 put_pid(pid);
2393 return nr;
2394 }
2395
2396 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2397 {
2398 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2399 if ((kargs->flags & CLONE_PIDFD) &&
2400 (kargs->flags & CLONE_PARENT_SETTID))
2401 return false;
2402
2403 return true;
2404 }
2405
2406 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2407 /* For compatibility with architectures that call do_fork directly rather than
2408 * using the syscall entry points below. */
2409 long do_fork(unsigned long clone_flags,
2410 unsigned long stack_start,
2411 unsigned long stack_size,
2412 int __user *parent_tidptr,
2413 int __user *child_tidptr)
2414 {
2415 struct kernel_clone_args args = {
2416 .flags = (clone_flags & ~CSIGNAL),
2417 .pidfd = parent_tidptr,
2418 .child_tid = child_tidptr,
2419 .parent_tid = parent_tidptr,
2420 .exit_signal = (clone_flags & CSIGNAL),
2421 .stack = stack_start,
2422 .stack_size = stack_size,
2423 };
2424
2425 if (!legacy_clone_args_valid(&args))
2426 return -EINVAL;
2427
2428 return _do_fork(&args);
2429 }
2430 #endif
2431
2432 /*
2433 * Create a kernel thread.
2434 */
2435 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2436 {
2437 struct kernel_clone_args args = {
2438 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2439 .exit_signal = (flags & CSIGNAL),
2440 .stack = (unsigned long)fn,
2441 .stack_size = (unsigned long)arg,
2442 };
2443
2444 return _do_fork(&args);
2445 }
2446
2447 #ifdef __ARCH_WANT_SYS_FORK
2448 SYSCALL_DEFINE0(fork)
2449 {
2450 #ifdef CONFIG_MMU
2451 struct kernel_clone_args args = {
2452 .exit_signal = SIGCHLD,
2453 };
2454
2455 return _do_fork(&args);
2456 #else
2457 /* can not support in nommu mode */
2458 return -EINVAL;
2459 #endif
2460 }
2461 #endif
2462
2463 #ifdef __ARCH_WANT_SYS_VFORK
2464 SYSCALL_DEFINE0(vfork)
2465 {
2466 struct kernel_clone_args args = {
2467 .flags = CLONE_VFORK | CLONE_VM,
2468 .exit_signal = SIGCHLD,
2469 };
2470
2471 return _do_fork(&args);
2472 }
2473 #endif
2474
2475 #ifdef __ARCH_WANT_SYS_CLONE
2476 #ifdef CONFIG_CLONE_BACKWARDS
2477 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2478 int __user *, parent_tidptr,
2479 unsigned long, tls,
2480 int __user *, child_tidptr)
2481 #elif defined(CONFIG_CLONE_BACKWARDS2)
2482 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2483 int __user *, parent_tidptr,
2484 int __user *, child_tidptr,
2485 unsigned long, tls)
2486 #elif defined(CONFIG_CLONE_BACKWARDS3)
2487 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2488 int, stack_size,
2489 int __user *, parent_tidptr,
2490 int __user *, child_tidptr,
2491 unsigned long, tls)
2492 #else
2493 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2494 int __user *, parent_tidptr,
2495 int __user *, child_tidptr,
2496 unsigned long, tls)
2497 #endif
2498 {
2499 struct kernel_clone_args args = {
2500 .flags = (clone_flags & ~CSIGNAL),
2501 .pidfd = parent_tidptr,
2502 .child_tid = child_tidptr,
2503 .parent_tid = parent_tidptr,
2504 .exit_signal = (clone_flags & CSIGNAL),
2505 .stack = newsp,
2506 .tls = tls,
2507 };
2508
2509 if (!legacy_clone_args_valid(&args))
2510 return -EINVAL;
2511
2512 return _do_fork(&args);
2513 }
2514 #endif
2515
2516 #ifdef __ARCH_WANT_SYS_CLONE3
2517 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2518 struct clone_args __user *uargs,
2519 size_t usize)
2520 {
2521 int err;
2522 struct clone_args args;
2523
2524 if (unlikely(usize > PAGE_SIZE))
2525 return -E2BIG;
2526 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2527 return -EINVAL;
2528
2529 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2530 if (err)
2531 return err;
2532
2533 /*
2534 * Verify that higher 32bits of exit_signal are unset and that
2535 * it is a valid signal
2536 */
2537 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2538 !valid_signal(args.exit_signal)))
2539 return -EINVAL;
2540
2541 *kargs = (struct kernel_clone_args){
2542 .flags = args.flags,
2543 .pidfd = u64_to_user_ptr(args.pidfd),
2544 .child_tid = u64_to_user_ptr(args.child_tid),
2545 .parent_tid = u64_to_user_ptr(args.parent_tid),
2546 .exit_signal = args.exit_signal,
2547 .stack = args.stack,
2548 .stack_size = args.stack_size,
2549 .tls = args.tls,
2550 };
2551
2552 return 0;
2553 }
2554
2555 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2556 {
2557 /*
2558 * All lower bits of the flag word are taken.
2559 * Verify that no other unknown flags are passed along.
2560 */
2561 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2562 return false;
2563
2564 /*
2565 * - make the CLONE_DETACHED bit reuseable for clone3
2566 * - make the CSIGNAL bits reuseable for clone3
2567 */
2568 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2569 return false;
2570
2571 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2572 kargs->exit_signal)
2573 return false;
2574
2575 return true;
2576 }
2577
2578 /**
2579 * clone3 - create a new process with specific properties
2580 * @uargs: argument structure
2581 * @size: size of @uargs
2582 *
2583 * clone3() is the extensible successor to clone()/clone2().
2584 * It takes a struct as argument that is versioned by its size.
2585 *
2586 * Return: On success, a positive PID for the child process.
2587 * On error, a negative errno number.
2588 */
2589 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2590 {
2591 int err;
2592
2593 struct kernel_clone_args kargs;
2594
2595 err = copy_clone_args_from_user(&kargs, uargs, size);
2596 if (err)
2597 return err;
2598
2599 if (!clone3_args_valid(&kargs))
2600 return -EINVAL;
2601
2602 return _do_fork(&kargs);
2603 }
2604 #endif
2605
2606 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2607 {
2608 struct task_struct *leader, *parent, *child;
2609 int res;
2610
2611 read_lock(&tasklist_lock);
2612 leader = top = top->group_leader;
2613 down:
2614 for_each_thread(leader, parent) {
2615 list_for_each_entry(child, &parent->children, sibling) {
2616 res = visitor(child, data);
2617 if (res) {
2618 if (res < 0)
2619 goto out;
2620 leader = child;
2621 goto down;
2622 }
2623 up:
2624 ;
2625 }
2626 }
2627
2628 if (leader != top) {
2629 child = leader;
2630 parent = child->real_parent;
2631 leader = parent->group_leader;
2632 goto up;
2633 }
2634 out:
2635 read_unlock(&tasklist_lock);
2636 }
2637
2638 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2639 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2640 #endif
2641
2642 static void sighand_ctor(void *data)
2643 {
2644 struct sighand_struct *sighand = data;
2645
2646 spin_lock_init(&sighand->siglock);
2647 init_waitqueue_head(&sighand->signalfd_wqh);
2648 }
2649
2650 void __init proc_caches_init(void)
2651 {
2652 unsigned int mm_size;
2653
2654 sighand_cachep = kmem_cache_create("sighand_cache",
2655 sizeof(struct sighand_struct), 0,
2656 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2657 SLAB_ACCOUNT, sighand_ctor);
2658 signal_cachep = kmem_cache_create("signal_cache",
2659 sizeof(struct signal_struct), 0,
2660 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2661 NULL);
2662 files_cachep = kmem_cache_create("files_cache",
2663 sizeof(struct files_struct), 0,
2664 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2665 NULL);
2666 fs_cachep = kmem_cache_create("fs_cache",
2667 sizeof(struct fs_struct), 0,
2668 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2669 NULL);
2670
2671 /*
2672 * The mm_cpumask is located at the end of mm_struct, and is
2673 * dynamically sized based on the maximum CPU number this system
2674 * can have, taking hotplug into account (nr_cpu_ids).
2675 */
2676 mm_size = sizeof(struct mm_struct) + cpumask_size();
2677
2678 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2679 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2680 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2681 offsetof(struct mm_struct, saved_auxv),
2682 sizeof_field(struct mm_struct, saved_auxv),
2683 NULL);
2684 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2685 mmap_init();
2686 nsproxy_cache_init();
2687 }
2688
2689 /*
2690 * Check constraints on flags passed to the unshare system call.
2691 */
2692 static int check_unshare_flags(unsigned long unshare_flags)
2693 {
2694 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2695 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2696 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2697 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2698 return -EINVAL;
2699 /*
2700 * Not implemented, but pretend it works if there is nothing
2701 * to unshare. Note that unsharing the address space or the
2702 * signal handlers also need to unshare the signal queues (aka
2703 * CLONE_THREAD).
2704 */
2705 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2706 if (!thread_group_empty(current))
2707 return -EINVAL;
2708 }
2709 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2710 if (refcount_read(&current->sighand->count) > 1)
2711 return -EINVAL;
2712 }
2713 if (unshare_flags & CLONE_VM) {
2714 if (!current_is_single_threaded())
2715 return -EINVAL;
2716 }
2717
2718 return 0;
2719 }
2720
2721 /*
2722 * Unshare the filesystem structure if it is being shared
2723 */
2724 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2725 {
2726 struct fs_struct *fs = current->fs;
2727
2728 if (!(unshare_flags & CLONE_FS) || !fs)
2729 return 0;
2730
2731 /* don't need lock here; in the worst case we'll do useless copy */
2732 if (fs->users == 1)
2733 return 0;
2734
2735 *new_fsp = copy_fs_struct(fs);
2736 if (!*new_fsp)
2737 return -ENOMEM;
2738
2739 return 0;
2740 }
2741
2742 /*
2743 * Unshare file descriptor table if it is being shared
2744 */
2745 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2746 {
2747 struct files_struct *fd = current->files;
2748 int error = 0;
2749
2750 if ((unshare_flags & CLONE_FILES) &&
2751 (fd && atomic_read(&fd->count) > 1)) {
2752 *new_fdp = dup_fd(fd, &error);
2753 if (!*new_fdp)
2754 return error;
2755 }
2756
2757 return 0;
2758 }
2759
2760 /*
2761 * unshare allows a process to 'unshare' part of the process
2762 * context which was originally shared using clone. copy_*
2763 * functions used by do_fork() cannot be used here directly
2764 * because they modify an inactive task_struct that is being
2765 * constructed. Here we are modifying the current, active,
2766 * task_struct.
2767 */
2768 int ksys_unshare(unsigned long unshare_flags)
2769 {
2770 struct fs_struct *fs, *new_fs = NULL;
2771 struct files_struct *fd, *new_fd = NULL;
2772 struct cred *new_cred = NULL;
2773 struct nsproxy *new_nsproxy = NULL;
2774 int do_sysvsem = 0;
2775 int err;
2776
2777 /*
2778 * If unsharing a user namespace must also unshare the thread group
2779 * and unshare the filesystem root and working directories.
2780 */
2781 if (unshare_flags & CLONE_NEWUSER)
2782 unshare_flags |= CLONE_THREAD | CLONE_FS;
2783 /*
2784 * If unsharing vm, must also unshare signal handlers.
2785 */
2786 if (unshare_flags & CLONE_VM)
2787 unshare_flags |= CLONE_SIGHAND;
2788 /*
2789 * If unsharing a signal handlers, must also unshare the signal queues.
2790 */
2791 if (unshare_flags & CLONE_SIGHAND)
2792 unshare_flags |= CLONE_THREAD;
2793 /*
2794 * If unsharing namespace, must also unshare filesystem information.
2795 */
2796 if (unshare_flags & CLONE_NEWNS)
2797 unshare_flags |= CLONE_FS;
2798
2799 err = check_unshare_flags(unshare_flags);
2800 if (err)
2801 goto bad_unshare_out;
2802 /*
2803 * CLONE_NEWIPC must also detach from the undolist: after switching
2804 * to a new ipc namespace, the semaphore arrays from the old
2805 * namespace are unreachable.
2806 */
2807 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2808 do_sysvsem = 1;
2809 err = unshare_fs(unshare_flags, &new_fs);
2810 if (err)
2811 goto bad_unshare_out;
2812 err = unshare_fd(unshare_flags, &new_fd);
2813 if (err)
2814 goto bad_unshare_cleanup_fs;
2815 err = unshare_userns(unshare_flags, &new_cred);
2816 if (err)
2817 goto bad_unshare_cleanup_fd;
2818 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2819 new_cred, new_fs);
2820 if (err)
2821 goto bad_unshare_cleanup_cred;
2822
2823 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2824 if (do_sysvsem) {
2825 /*
2826 * CLONE_SYSVSEM is equivalent to sys_exit().
2827 */
2828 exit_sem(current);
2829 }
2830 if (unshare_flags & CLONE_NEWIPC) {
2831 /* Orphan segments in old ns (see sem above). */
2832 exit_shm(current);
2833 shm_init_task(current);
2834 }
2835
2836 if (new_nsproxy)
2837 switch_task_namespaces(current, new_nsproxy);
2838
2839 task_lock(current);
2840
2841 if (new_fs) {
2842 fs = current->fs;
2843 spin_lock(&fs->lock);
2844 current->fs = new_fs;
2845 if (--fs->users)
2846 new_fs = NULL;
2847 else
2848 new_fs = fs;
2849 spin_unlock(&fs->lock);
2850 }
2851
2852 if (new_fd) {
2853 fd = current->files;
2854 current->files = new_fd;
2855 new_fd = fd;
2856 }
2857
2858 task_unlock(current);
2859
2860 if (new_cred) {
2861 /* Install the new user namespace */
2862 commit_creds(new_cred);
2863 new_cred = NULL;
2864 }
2865 }
2866
2867 perf_event_namespaces(current);
2868
2869 bad_unshare_cleanup_cred:
2870 if (new_cred)
2871 put_cred(new_cred);
2872 bad_unshare_cleanup_fd:
2873 if (new_fd)
2874 put_files_struct(new_fd);
2875
2876 bad_unshare_cleanup_fs:
2877 if (new_fs)
2878 free_fs_struct(new_fs);
2879
2880 bad_unshare_out:
2881 return err;
2882 }
2883
2884 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2885 {
2886 return ksys_unshare(unshare_flags);
2887 }
2888
2889 /*
2890 * Helper to unshare the files of the current task.
2891 * We don't want to expose copy_files internals to
2892 * the exec layer of the kernel.
2893 */
2894
2895 int unshare_files(struct files_struct **displaced)
2896 {
2897 struct task_struct *task = current;
2898 struct files_struct *copy = NULL;
2899 int error;
2900
2901 error = unshare_fd(CLONE_FILES, &copy);
2902 if (error || !copy) {
2903 *displaced = NULL;
2904 return error;
2905 }
2906 *displaced = task->files;
2907 task_lock(task);
2908 task->files = copy;
2909 task_unlock(task);
2910 return 0;
2911 }
2912
2913 int sysctl_max_threads(struct ctl_table *table, int write,
2914 void __user *buffer, size_t *lenp, loff_t *ppos)
2915 {
2916 struct ctl_table t;
2917 int ret;
2918 int threads = max_threads;
2919 int min = 1;
2920 int max = MAX_THREADS;
2921
2922 t = *table;
2923 t.data = &threads;
2924 t.extra1 = &min;
2925 t.extra2 = &max;
2926
2927 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2928 if (ret || !write)
2929 return ret;
2930
2931 max_threads = threads;
2932
2933 return 0;
2934 }