]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/fork.c
perf cs-etm: Fix start tracing packet handling
[mirror_ubuntu-eoan-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108 * Minimum number of threads to boot the kernel
109 */
110 #define MIN_THREADS 20
111
112 /*
113 * Maximum number of threads
114 */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118 * Protected counters by write_lock_irq(&tasklist_lock)
119 */
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
122
123 int max_threads; /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
137 int nr_processes(void)
138 {
139 int cpu;
140 int total = 0;
141
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
144
145 return total;
146 }
147
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171
172 /*
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
175 */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177
178 #ifdef CONFIG_VMAP_STACK
179 /*
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
182 */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
190
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194 if (!vm_stack)
195 continue;
196
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
199 }
200
201 return 0;
202 }
203 #endif
204
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 void *stack;
209 int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *s;
213
214 s = this_cpu_xchg(cached_stacks[i], NULL);
215
216 if (!s)
217 continue;
218
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
221
222 tsk->stack_vm_area = s;
223 return s->addr;
224 }
225
226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 VMALLOC_START, VMALLOC_END,
228 THREADINFO_GFP,
229 PAGE_KERNEL,
230 0, node, __builtin_return_address(0));
231
232 /*
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
236 */
237 if (stack)
238 tsk->stack_vm_area = find_vm_area(stack);
239 return stack;
240 #else
241 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 THREAD_SIZE_ORDER);
243
244 return page ? page_address(page) : NULL;
245 #endif
246 }
247
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk)) {
252 int i;
253
254 for (i = 0; i < NR_CACHED_STACKS; i++) {
255 if (this_cpu_cmpxchg(cached_stacks[i],
256 NULL, tsk->stack_vm_area) != NULL)
257 continue;
258
259 return;
260 }
261
262 vfree_atomic(tsk->stack);
263 return;
264 }
265 #endif
266
267 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 int node)
274 {
275 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282
283 void thread_stack_cache_init(void)
284 {
285 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 THREAD_SIZE, THREAD_SIZE, 0, 0,
287 THREAD_SIZE, NULL);
288 BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310
311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313 struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
314
315 if (vma)
316 vma_init(vma, mm);
317 return vma;
318 }
319
320 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
321 {
322 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
323
324 if (new) {
325 *new = *orig;
326 INIT_LIST_HEAD(&new->anon_vma_chain);
327 }
328 return new;
329 }
330
331 void vm_area_free(struct vm_area_struct *vma)
332 {
333 kmem_cache_free(vm_area_cachep, vma);
334 }
335
336 static void account_kernel_stack(struct task_struct *tsk, int account)
337 {
338 void *stack = task_stack_page(tsk);
339 struct vm_struct *vm = task_stack_vm_area(tsk);
340
341 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
342
343 if (vm) {
344 int i;
345
346 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
347
348 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
349 mod_zone_page_state(page_zone(vm->pages[i]),
350 NR_KERNEL_STACK_KB,
351 PAGE_SIZE / 1024 * account);
352 }
353
354 /* All stack pages belong to the same memcg. */
355 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
356 account * (THREAD_SIZE / 1024));
357 } else {
358 /*
359 * All stack pages are in the same zone and belong to the
360 * same memcg.
361 */
362 struct page *first_page = virt_to_page(stack);
363
364 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
365 THREAD_SIZE / 1024 * account);
366
367 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
368 account * (THREAD_SIZE / 1024));
369 }
370 }
371
372 static void release_task_stack(struct task_struct *tsk)
373 {
374 if (WARN_ON(tsk->state != TASK_DEAD))
375 return; /* Better to leak the stack than to free prematurely */
376
377 account_kernel_stack(tsk, -1);
378 arch_release_thread_stack(tsk->stack);
379 free_thread_stack(tsk);
380 tsk->stack = NULL;
381 #ifdef CONFIG_VMAP_STACK
382 tsk->stack_vm_area = NULL;
383 #endif
384 }
385
386 #ifdef CONFIG_THREAD_INFO_IN_TASK
387 void put_task_stack(struct task_struct *tsk)
388 {
389 if (atomic_dec_and_test(&tsk->stack_refcount))
390 release_task_stack(tsk);
391 }
392 #endif
393
394 void free_task(struct task_struct *tsk)
395 {
396 #ifndef CONFIG_THREAD_INFO_IN_TASK
397 /*
398 * The task is finally done with both the stack and thread_info,
399 * so free both.
400 */
401 release_task_stack(tsk);
402 #else
403 /*
404 * If the task had a separate stack allocation, it should be gone
405 * by now.
406 */
407 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
408 #endif
409 rt_mutex_debug_task_free(tsk);
410 ftrace_graph_exit_task(tsk);
411 put_seccomp_filter(tsk);
412 arch_release_task_struct(tsk);
413 if (tsk->flags & PF_KTHREAD)
414 free_kthread_struct(tsk);
415 free_task_struct(tsk);
416 }
417 EXPORT_SYMBOL(free_task);
418
419 #ifdef CONFIG_MMU
420 static __latent_entropy int dup_mmap(struct mm_struct *mm,
421 struct mm_struct *oldmm)
422 {
423 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
424 struct rb_node **rb_link, *rb_parent;
425 int retval;
426 unsigned long charge;
427 LIST_HEAD(uf);
428
429 uprobe_start_dup_mmap();
430 if (down_write_killable(&oldmm->mmap_sem)) {
431 retval = -EINTR;
432 goto fail_uprobe_end;
433 }
434 flush_cache_dup_mm(oldmm);
435 uprobe_dup_mmap(oldmm, mm);
436 /*
437 * Not linked in yet - no deadlock potential:
438 */
439 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
440
441 /* No ordering required: file already has been exposed. */
442 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
443
444 mm->total_vm = oldmm->total_vm;
445 mm->data_vm = oldmm->data_vm;
446 mm->exec_vm = oldmm->exec_vm;
447 mm->stack_vm = oldmm->stack_vm;
448
449 rb_link = &mm->mm_rb.rb_node;
450 rb_parent = NULL;
451 pprev = &mm->mmap;
452 retval = ksm_fork(mm, oldmm);
453 if (retval)
454 goto out;
455 retval = khugepaged_fork(mm, oldmm);
456 if (retval)
457 goto out;
458
459 prev = NULL;
460 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
461 struct file *file;
462
463 if (mpnt->vm_flags & VM_DONTCOPY) {
464 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
465 continue;
466 }
467 charge = 0;
468 /*
469 * Don't duplicate many vmas if we've been oom-killed (for
470 * example)
471 */
472 if (fatal_signal_pending(current)) {
473 retval = -EINTR;
474 goto out;
475 }
476 if (mpnt->vm_flags & VM_ACCOUNT) {
477 unsigned long len = vma_pages(mpnt);
478
479 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
480 goto fail_nomem;
481 charge = len;
482 }
483 tmp = vm_area_dup(mpnt);
484 if (!tmp)
485 goto fail_nomem;
486 retval = vma_dup_policy(mpnt, tmp);
487 if (retval)
488 goto fail_nomem_policy;
489 tmp->vm_mm = mm;
490 retval = dup_userfaultfd(tmp, &uf);
491 if (retval)
492 goto fail_nomem_anon_vma_fork;
493 if (tmp->vm_flags & VM_WIPEONFORK) {
494 /* VM_WIPEONFORK gets a clean slate in the child. */
495 tmp->anon_vma = NULL;
496 if (anon_vma_prepare(tmp))
497 goto fail_nomem_anon_vma_fork;
498 } else if (anon_vma_fork(tmp, mpnt))
499 goto fail_nomem_anon_vma_fork;
500 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
501 tmp->vm_next = tmp->vm_prev = NULL;
502 file = tmp->vm_file;
503 if (file) {
504 struct inode *inode = file_inode(file);
505 struct address_space *mapping = file->f_mapping;
506
507 get_file(file);
508 if (tmp->vm_flags & VM_DENYWRITE)
509 atomic_dec(&inode->i_writecount);
510 i_mmap_lock_write(mapping);
511 if (tmp->vm_flags & VM_SHARED)
512 atomic_inc(&mapping->i_mmap_writable);
513 flush_dcache_mmap_lock(mapping);
514 /* insert tmp into the share list, just after mpnt */
515 vma_interval_tree_insert_after(tmp, mpnt,
516 &mapping->i_mmap);
517 flush_dcache_mmap_unlock(mapping);
518 i_mmap_unlock_write(mapping);
519 }
520
521 /*
522 * Clear hugetlb-related page reserves for children. This only
523 * affects MAP_PRIVATE mappings. Faults generated by the child
524 * are not guaranteed to succeed, even if read-only
525 */
526 if (is_vm_hugetlb_page(tmp))
527 reset_vma_resv_huge_pages(tmp);
528
529 /*
530 * Link in the new vma and copy the page table entries.
531 */
532 *pprev = tmp;
533 pprev = &tmp->vm_next;
534 tmp->vm_prev = prev;
535 prev = tmp;
536
537 __vma_link_rb(mm, tmp, rb_link, rb_parent);
538 rb_link = &tmp->vm_rb.rb_right;
539 rb_parent = &tmp->vm_rb;
540
541 mm->map_count++;
542 if (!(tmp->vm_flags & VM_WIPEONFORK))
543 retval = copy_page_range(mm, oldmm, mpnt);
544
545 if (tmp->vm_ops && tmp->vm_ops->open)
546 tmp->vm_ops->open(tmp);
547
548 if (retval)
549 goto out;
550 }
551 /* a new mm has just been created */
552 arch_dup_mmap(oldmm, mm);
553 retval = 0;
554 out:
555 up_write(&mm->mmap_sem);
556 flush_tlb_mm(oldmm);
557 up_write(&oldmm->mmap_sem);
558 dup_userfaultfd_complete(&uf);
559 fail_uprobe_end:
560 uprobe_end_dup_mmap();
561 return retval;
562 fail_nomem_anon_vma_fork:
563 mpol_put(vma_policy(tmp));
564 fail_nomem_policy:
565 vm_area_free(tmp);
566 fail_nomem:
567 retval = -ENOMEM;
568 vm_unacct_memory(charge);
569 goto out;
570 }
571
572 static inline int mm_alloc_pgd(struct mm_struct *mm)
573 {
574 mm->pgd = pgd_alloc(mm);
575 if (unlikely(!mm->pgd))
576 return -ENOMEM;
577 return 0;
578 }
579
580 static inline void mm_free_pgd(struct mm_struct *mm)
581 {
582 pgd_free(mm, mm->pgd);
583 }
584 #else
585 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
586 {
587 down_write(&oldmm->mmap_sem);
588 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
589 up_write(&oldmm->mmap_sem);
590 return 0;
591 }
592 #define mm_alloc_pgd(mm) (0)
593 #define mm_free_pgd(mm)
594 #endif /* CONFIG_MMU */
595
596 static void check_mm(struct mm_struct *mm)
597 {
598 int i;
599
600 for (i = 0; i < NR_MM_COUNTERS; i++) {
601 long x = atomic_long_read(&mm->rss_stat.count[i]);
602
603 if (unlikely(x))
604 printk(KERN_ALERT "BUG: Bad rss-counter state "
605 "mm:%p idx:%d val:%ld\n", mm, i, x);
606 }
607
608 if (mm_pgtables_bytes(mm))
609 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
610 mm_pgtables_bytes(mm));
611
612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
613 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
614 #endif
615 }
616
617 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
618 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
619
620 /*
621 * Called when the last reference to the mm
622 * is dropped: either by a lazy thread or by
623 * mmput. Free the page directory and the mm.
624 */
625 void __mmdrop(struct mm_struct *mm)
626 {
627 BUG_ON(mm == &init_mm);
628 WARN_ON_ONCE(mm == current->mm);
629 WARN_ON_ONCE(mm == current->active_mm);
630 mm_free_pgd(mm);
631 destroy_context(mm);
632 hmm_mm_destroy(mm);
633 mmu_notifier_mm_destroy(mm);
634 check_mm(mm);
635 put_user_ns(mm->user_ns);
636 free_mm(mm);
637 }
638 EXPORT_SYMBOL_GPL(__mmdrop);
639
640 static void mmdrop_async_fn(struct work_struct *work)
641 {
642 struct mm_struct *mm;
643
644 mm = container_of(work, struct mm_struct, async_put_work);
645 __mmdrop(mm);
646 }
647
648 static void mmdrop_async(struct mm_struct *mm)
649 {
650 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
651 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
652 schedule_work(&mm->async_put_work);
653 }
654 }
655
656 static inline void free_signal_struct(struct signal_struct *sig)
657 {
658 taskstats_tgid_free(sig);
659 sched_autogroup_exit(sig);
660 /*
661 * __mmdrop is not safe to call from softirq context on x86 due to
662 * pgd_dtor so postpone it to the async context
663 */
664 if (sig->oom_mm)
665 mmdrop_async(sig->oom_mm);
666 kmem_cache_free(signal_cachep, sig);
667 }
668
669 static inline void put_signal_struct(struct signal_struct *sig)
670 {
671 if (atomic_dec_and_test(&sig->sigcnt))
672 free_signal_struct(sig);
673 }
674
675 void __put_task_struct(struct task_struct *tsk)
676 {
677 WARN_ON(!tsk->exit_state);
678 WARN_ON(atomic_read(&tsk->usage));
679 WARN_ON(tsk == current);
680
681 cgroup_free(tsk);
682 task_numa_free(tsk);
683 security_task_free(tsk);
684 exit_creds(tsk);
685 delayacct_tsk_free(tsk);
686 put_signal_struct(tsk->signal);
687
688 if (!profile_handoff_task(tsk))
689 free_task(tsk);
690 }
691 EXPORT_SYMBOL_GPL(__put_task_struct);
692
693 void __init __weak arch_task_cache_init(void) { }
694
695 /*
696 * set_max_threads
697 */
698 static void set_max_threads(unsigned int max_threads_suggested)
699 {
700 u64 threads;
701
702 /*
703 * The number of threads shall be limited such that the thread
704 * structures may only consume a small part of the available memory.
705 */
706 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
707 threads = MAX_THREADS;
708 else
709 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
710 (u64) THREAD_SIZE * 8UL);
711
712 if (threads > max_threads_suggested)
713 threads = max_threads_suggested;
714
715 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
716 }
717
718 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
719 /* Initialized by the architecture: */
720 int arch_task_struct_size __read_mostly;
721 #endif
722
723 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
724 {
725 /* Fetch thread_struct whitelist for the architecture. */
726 arch_thread_struct_whitelist(offset, size);
727
728 /*
729 * Handle zero-sized whitelist or empty thread_struct, otherwise
730 * adjust offset to position of thread_struct in task_struct.
731 */
732 if (unlikely(*size == 0))
733 *offset = 0;
734 else
735 *offset += offsetof(struct task_struct, thread);
736 }
737
738 void __init fork_init(void)
739 {
740 int i;
741 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
742 #ifndef ARCH_MIN_TASKALIGN
743 #define ARCH_MIN_TASKALIGN 0
744 #endif
745 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
746 unsigned long useroffset, usersize;
747
748 /* create a slab on which task_structs can be allocated */
749 task_struct_whitelist(&useroffset, &usersize);
750 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
751 arch_task_struct_size, align,
752 SLAB_PANIC|SLAB_ACCOUNT,
753 useroffset, usersize, NULL);
754 #endif
755
756 /* do the arch specific task caches init */
757 arch_task_cache_init();
758
759 set_max_threads(MAX_THREADS);
760
761 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
762 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
763 init_task.signal->rlim[RLIMIT_SIGPENDING] =
764 init_task.signal->rlim[RLIMIT_NPROC];
765
766 for (i = 0; i < UCOUNT_COUNTS; i++) {
767 init_user_ns.ucount_max[i] = max_threads/2;
768 }
769
770 #ifdef CONFIG_VMAP_STACK
771 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
772 NULL, free_vm_stack_cache);
773 #endif
774
775 lockdep_init_task(&init_task);
776 }
777
778 int __weak arch_dup_task_struct(struct task_struct *dst,
779 struct task_struct *src)
780 {
781 *dst = *src;
782 return 0;
783 }
784
785 void set_task_stack_end_magic(struct task_struct *tsk)
786 {
787 unsigned long *stackend;
788
789 stackend = end_of_stack(tsk);
790 *stackend = STACK_END_MAGIC; /* for overflow detection */
791 }
792
793 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
794 {
795 struct task_struct *tsk;
796 unsigned long *stack;
797 struct vm_struct *stack_vm_area;
798 int err;
799
800 if (node == NUMA_NO_NODE)
801 node = tsk_fork_get_node(orig);
802 tsk = alloc_task_struct_node(node);
803 if (!tsk)
804 return NULL;
805
806 stack = alloc_thread_stack_node(tsk, node);
807 if (!stack)
808 goto free_tsk;
809
810 stack_vm_area = task_stack_vm_area(tsk);
811
812 err = arch_dup_task_struct(tsk, orig);
813
814 /*
815 * arch_dup_task_struct() clobbers the stack-related fields. Make
816 * sure they're properly initialized before using any stack-related
817 * functions again.
818 */
819 tsk->stack = stack;
820 #ifdef CONFIG_VMAP_STACK
821 tsk->stack_vm_area = stack_vm_area;
822 #endif
823 #ifdef CONFIG_THREAD_INFO_IN_TASK
824 atomic_set(&tsk->stack_refcount, 1);
825 #endif
826
827 if (err)
828 goto free_stack;
829
830 #ifdef CONFIG_SECCOMP
831 /*
832 * We must handle setting up seccomp filters once we're under
833 * the sighand lock in case orig has changed between now and
834 * then. Until then, filter must be NULL to avoid messing up
835 * the usage counts on the error path calling free_task.
836 */
837 tsk->seccomp.filter = NULL;
838 #endif
839
840 setup_thread_stack(tsk, orig);
841 clear_user_return_notifier(tsk);
842 clear_tsk_need_resched(tsk);
843 set_task_stack_end_magic(tsk);
844
845 #ifdef CONFIG_STACKPROTECTOR
846 tsk->stack_canary = get_random_canary();
847 #endif
848
849 /*
850 * One for us, one for whoever does the "release_task()" (usually
851 * parent)
852 */
853 atomic_set(&tsk->usage, 2);
854 #ifdef CONFIG_BLK_DEV_IO_TRACE
855 tsk->btrace_seq = 0;
856 #endif
857 tsk->splice_pipe = NULL;
858 tsk->task_frag.page = NULL;
859 tsk->wake_q.next = NULL;
860
861 account_kernel_stack(tsk, 1);
862
863 kcov_task_init(tsk);
864
865 #ifdef CONFIG_FAULT_INJECTION
866 tsk->fail_nth = 0;
867 #endif
868
869 return tsk;
870
871 free_stack:
872 free_thread_stack(tsk);
873 free_tsk:
874 free_task_struct(tsk);
875 return NULL;
876 }
877
878 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
879
880 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
881
882 static int __init coredump_filter_setup(char *s)
883 {
884 default_dump_filter =
885 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
886 MMF_DUMP_FILTER_MASK;
887 return 1;
888 }
889
890 __setup("coredump_filter=", coredump_filter_setup);
891
892 #include <linux/init_task.h>
893
894 static void mm_init_aio(struct mm_struct *mm)
895 {
896 #ifdef CONFIG_AIO
897 spin_lock_init(&mm->ioctx_lock);
898 mm->ioctx_table = NULL;
899 #endif
900 }
901
902 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
903 {
904 #ifdef CONFIG_MEMCG
905 mm->owner = p;
906 #endif
907 }
908
909 static void mm_init_uprobes_state(struct mm_struct *mm)
910 {
911 #ifdef CONFIG_UPROBES
912 mm->uprobes_state.xol_area = NULL;
913 #endif
914 }
915
916 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
917 struct user_namespace *user_ns)
918 {
919 mm->mmap = NULL;
920 mm->mm_rb = RB_ROOT;
921 mm->vmacache_seqnum = 0;
922 atomic_set(&mm->mm_users, 1);
923 atomic_set(&mm->mm_count, 1);
924 init_rwsem(&mm->mmap_sem);
925 INIT_LIST_HEAD(&mm->mmlist);
926 mm->core_state = NULL;
927 mm_pgtables_bytes_init(mm);
928 mm->map_count = 0;
929 mm->locked_vm = 0;
930 mm->pinned_vm = 0;
931 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
932 spin_lock_init(&mm->page_table_lock);
933 spin_lock_init(&mm->arg_lock);
934 mm_init_cpumask(mm);
935 mm_init_aio(mm);
936 mm_init_owner(mm, p);
937 RCU_INIT_POINTER(mm->exe_file, NULL);
938 mmu_notifier_mm_init(mm);
939 hmm_mm_init(mm);
940 init_tlb_flush_pending(mm);
941 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
942 mm->pmd_huge_pte = NULL;
943 #endif
944 mm_init_uprobes_state(mm);
945
946 if (current->mm) {
947 mm->flags = current->mm->flags & MMF_INIT_MASK;
948 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
949 } else {
950 mm->flags = default_dump_filter;
951 mm->def_flags = 0;
952 }
953
954 if (mm_alloc_pgd(mm))
955 goto fail_nopgd;
956
957 if (init_new_context(p, mm))
958 goto fail_nocontext;
959
960 mm->user_ns = get_user_ns(user_ns);
961 return mm;
962
963 fail_nocontext:
964 mm_free_pgd(mm);
965 fail_nopgd:
966 free_mm(mm);
967 return NULL;
968 }
969
970 /*
971 * Allocate and initialize an mm_struct.
972 */
973 struct mm_struct *mm_alloc(void)
974 {
975 struct mm_struct *mm;
976
977 mm = allocate_mm();
978 if (!mm)
979 return NULL;
980
981 memset(mm, 0, sizeof(*mm));
982 return mm_init(mm, current, current_user_ns());
983 }
984
985 static inline void __mmput(struct mm_struct *mm)
986 {
987 VM_BUG_ON(atomic_read(&mm->mm_users));
988
989 uprobe_clear_state(mm);
990 exit_aio(mm);
991 ksm_exit(mm);
992 khugepaged_exit(mm); /* must run before exit_mmap */
993 exit_mmap(mm);
994 mm_put_huge_zero_page(mm);
995 set_mm_exe_file(mm, NULL);
996 if (!list_empty(&mm->mmlist)) {
997 spin_lock(&mmlist_lock);
998 list_del(&mm->mmlist);
999 spin_unlock(&mmlist_lock);
1000 }
1001 if (mm->binfmt)
1002 module_put(mm->binfmt->module);
1003 mmdrop(mm);
1004 }
1005
1006 /*
1007 * Decrement the use count and release all resources for an mm.
1008 */
1009 void mmput(struct mm_struct *mm)
1010 {
1011 might_sleep();
1012
1013 if (atomic_dec_and_test(&mm->mm_users))
1014 __mmput(mm);
1015 }
1016 EXPORT_SYMBOL_GPL(mmput);
1017
1018 #ifdef CONFIG_MMU
1019 static void mmput_async_fn(struct work_struct *work)
1020 {
1021 struct mm_struct *mm = container_of(work, struct mm_struct,
1022 async_put_work);
1023
1024 __mmput(mm);
1025 }
1026
1027 void mmput_async(struct mm_struct *mm)
1028 {
1029 if (atomic_dec_and_test(&mm->mm_users)) {
1030 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1031 schedule_work(&mm->async_put_work);
1032 }
1033 }
1034 #endif
1035
1036 /**
1037 * set_mm_exe_file - change a reference to the mm's executable file
1038 *
1039 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1040 *
1041 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1042 * invocations: in mmput() nobody alive left, in execve task is single
1043 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1044 * mm->exe_file, but does so without using set_mm_exe_file() in order
1045 * to do avoid the need for any locks.
1046 */
1047 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1048 {
1049 struct file *old_exe_file;
1050
1051 /*
1052 * It is safe to dereference the exe_file without RCU as
1053 * this function is only called if nobody else can access
1054 * this mm -- see comment above for justification.
1055 */
1056 old_exe_file = rcu_dereference_raw(mm->exe_file);
1057
1058 if (new_exe_file)
1059 get_file(new_exe_file);
1060 rcu_assign_pointer(mm->exe_file, new_exe_file);
1061 if (old_exe_file)
1062 fput(old_exe_file);
1063 }
1064
1065 /**
1066 * get_mm_exe_file - acquire a reference to the mm's executable file
1067 *
1068 * Returns %NULL if mm has no associated executable file.
1069 * User must release file via fput().
1070 */
1071 struct file *get_mm_exe_file(struct mm_struct *mm)
1072 {
1073 struct file *exe_file;
1074
1075 rcu_read_lock();
1076 exe_file = rcu_dereference(mm->exe_file);
1077 if (exe_file && !get_file_rcu(exe_file))
1078 exe_file = NULL;
1079 rcu_read_unlock();
1080 return exe_file;
1081 }
1082 EXPORT_SYMBOL(get_mm_exe_file);
1083
1084 /**
1085 * get_task_exe_file - acquire a reference to the task's executable file
1086 *
1087 * Returns %NULL if task's mm (if any) has no associated executable file or
1088 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1089 * User must release file via fput().
1090 */
1091 struct file *get_task_exe_file(struct task_struct *task)
1092 {
1093 struct file *exe_file = NULL;
1094 struct mm_struct *mm;
1095
1096 task_lock(task);
1097 mm = task->mm;
1098 if (mm) {
1099 if (!(task->flags & PF_KTHREAD))
1100 exe_file = get_mm_exe_file(mm);
1101 }
1102 task_unlock(task);
1103 return exe_file;
1104 }
1105 EXPORT_SYMBOL(get_task_exe_file);
1106
1107 /**
1108 * get_task_mm - acquire a reference to the task's mm
1109 *
1110 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1111 * this kernel workthread has transiently adopted a user mm with use_mm,
1112 * to do its AIO) is not set and if so returns a reference to it, after
1113 * bumping up the use count. User must release the mm via mmput()
1114 * after use. Typically used by /proc and ptrace.
1115 */
1116 struct mm_struct *get_task_mm(struct task_struct *task)
1117 {
1118 struct mm_struct *mm;
1119
1120 task_lock(task);
1121 mm = task->mm;
1122 if (mm) {
1123 if (task->flags & PF_KTHREAD)
1124 mm = NULL;
1125 else
1126 mmget(mm);
1127 }
1128 task_unlock(task);
1129 return mm;
1130 }
1131 EXPORT_SYMBOL_GPL(get_task_mm);
1132
1133 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1134 {
1135 struct mm_struct *mm;
1136 int err;
1137
1138 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1139 if (err)
1140 return ERR_PTR(err);
1141
1142 mm = get_task_mm(task);
1143 if (mm && mm != current->mm &&
1144 !ptrace_may_access(task, mode)) {
1145 mmput(mm);
1146 mm = ERR_PTR(-EACCES);
1147 }
1148 mutex_unlock(&task->signal->cred_guard_mutex);
1149
1150 return mm;
1151 }
1152
1153 static void complete_vfork_done(struct task_struct *tsk)
1154 {
1155 struct completion *vfork;
1156
1157 task_lock(tsk);
1158 vfork = tsk->vfork_done;
1159 if (likely(vfork)) {
1160 tsk->vfork_done = NULL;
1161 complete(vfork);
1162 }
1163 task_unlock(tsk);
1164 }
1165
1166 static int wait_for_vfork_done(struct task_struct *child,
1167 struct completion *vfork)
1168 {
1169 int killed;
1170
1171 freezer_do_not_count();
1172 killed = wait_for_completion_killable(vfork);
1173 freezer_count();
1174
1175 if (killed) {
1176 task_lock(child);
1177 child->vfork_done = NULL;
1178 task_unlock(child);
1179 }
1180
1181 put_task_struct(child);
1182 return killed;
1183 }
1184
1185 /* Please note the differences between mmput and mm_release.
1186 * mmput is called whenever we stop holding onto a mm_struct,
1187 * error success whatever.
1188 *
1189 * mm_release is called after a mm_struct has been removed
1190 * from the current process.
1191 *
1192 * This difference is important for error handling, when we
1193 * only half set up a mm_struct for a new process and need to restore
1194 * the old one. Because we mmput the new mm_struct before
1195 * restoring the old one. . .
1196 * Eric Biederman 10 January 1998
1197 */
1198 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1199 {
1200 /* Get rid of any futexes when releasing the mm */
1201 #ifdef CONFIG_FUTEX
1202 if (unlikely(tsk->robust_list)) {
1203 exit_robust_list(tsk);
1204 tsk->robust_list = NULL;
1205 }
1206 #ifdef CONFIG_COMPAT
1207 if (unlikely(tsk->compat_robust_list)) {
1208 compat_exit_robust_list(tsk);
1209 tsk->compat_robust_list = NULL;
1210 }
1211 #endif
1212 if (unlikely(!list_empty(&tsk->pi_state_list)))
1213 exit_pi_state_list(tsk);
1214 #endif
1215
1216 uprobe_free_utask(tsk);
1217
1218 /* Get rid of any cached register state */
1219 deactivate_mm(tsk, mm);
1220
1221 /*
1222 * Signal userspace if we're not exiting with a core dump
1223 * because we want to leave the value intact for debugging
1224 * purposes.
1225 */
1226 if (tsk->clear_child_tid) {
1227 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1228 atomic_read(&mm->mm_users) > 1) {
1229 /*
1230 * We don't check the error code - if userspace has
1231 * not set up a proper pointer then tough luck.
1232 */
1233 put_user(0, tsk->clear_child_tid);
1234 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1235 1, NULL, NULL, 0, 0);
1236 }
1237 tsk->clear_child_tid = NULL;
1238 }
1239
1240 /*
1241 * All done, finally we can wake up parent and return this mm to him.
1242 * Also kthread_stop() uses this completion for synchronization.
1243 */
1244 if (tsk->vfork_done)
1245 complete_vfork_done(tsk);
1246 }
1247
1248 /*
1249 * Allocate a new mm structure and copy contents from the
1250 * mm structure of the passed in task structure.
1251 */
1252 static struct mm_struct *dup_mm(struct task_struct *tsk)
1253 {
1254 struct mm_struct *mm, *oldmm = current->mm;
1255 int err;
1256
1257 mm = allocate_mm();
1258 if (!mm)
1259 goto fail_nomem;
1260
1261 memcpy(mm, oldmm, sizeof(*mm));
1262
1263 if (!mm_init(mm, tsk, mm->user_ns))
1264 goto fail_nomem;
1265
1266 err = dup_mmap(mm, oldmm);
1267 if (err)
1268 goto free_pt;
1269
1270 mm->hiwater_rss = get_mm_rss(mm);
1271 mm->hiwater_vm = mm->total_vm;
1272
1273 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1274 goto free_pt;
1275
1276 return mm;
1277
1278 free_pt:
1279 /* don't put binfmt in mmput, we haven't got module yet */
1280 mm->binfmt = NULL;
1281 mmput(mm);
1282
1283 fail_nomem:
1284 return NULL;
1285 }
1286
1287 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1288 {
1289 struct mm_struct *mm, *oldmm;
1290 int retval;
1291
1292 tsk->min_flt = tsk->maj_flt = 0;
1293 tsk->nvcsw = tsk->nivcsw = 0;
1294 #ifdef CONFIG_DETECT_HUNG_TASK
1295 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1296 #endif
1297
1298 tsk->mm = NULL;
1299 tsk->active_mm = NULL;
1300
1301 /*
1302 * Are we cloning a kernel thread?
1303 *
1304 * We need to steal a active VM for that..
1305 */
1306 oldmm = current->mm;
1307 if (!oldmm)
1308 return 0;
1309
1310 /* initialize the new vmacache entries */
1311 vmacache_flush(tsk);
1312
1313 if (clone_flags & CLONE_VM) {
1314 mmget(oldmm);
1315 mm = oldmm;
1316 goto good_mm;
1317 }
1318
1319 retval = -ENOMEM;
1320 mm = dup_mm(tsk);
1321 if (!mm)
1322 goto fail_nomem;
1323
1324 good_mm:
1325 tsk->mm = mm;
1326 tsk->active_mm = mm;
1327 return 0;
1328
1329 fail_nomem:
1330 return retval;
1331 }
1332
1333 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1334 {
1335 struct fs_struct *fs = current->fs;
1336 if (clone_flags & CLONE_FS) {
1337 /* tsk->fs is already what we want */
1338 spin_lock(&fs->lock);
1339 if (fs->in_exec) {
1340 spin_unlock(&fs->lock);
1341 return -EAGAIN;
1342 }
1343 fs->users++;
1344 spin_unlock(&fs->lock);
1345 return 0;
1346 }
1347 tsk->fs = copy_fs_struct(fs);
1348 if (!tsk->fs)
1349 return -ENOMEM;
1350 return 0;
1351 }
1352
1353 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1354 {
1355 struct files_struct *oldf, *newf;
1356 int error = 0;
1357
1358 /*
1359 * A background process may not have any files ...
1360 */
1361 oldf = current->files;
1362 if (!oldf)
1363 goto out;
1364
1365 if (clone_flags & CLONE_FILES) {
1366 atomic_inc(&oldf->count);
1367 goto out;
1368 }
1369
1370 newf = dup_fd(oldf, &error);
1371 if (!newf)
1372 goto out;
1373
1374 tsk->files = newf;
1375 error = 0;
1376 out:
1377 return error;
1378 }
1379
1380 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1381 {
1382 #ifdef CONFIG_BLOCK
1383 struct io_context *ioc = current->io_context;
1384 struct io_context *new_ioc;
1385
1386 if (!ioc)
1387 return 0;
1388 /*
1389 * Share io context with parent, if CLONE_IO is set
1390 */
1391 if (clone_flags & CLONE_IO) {
1392 ioc_task_link(ioc);
1393 tsk->io_context = ioc;
1394 } else if (ioprio_valid(ioc->ioprio)) {
1395 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1396 if (unlikely(!new_ioc))
1397 return -ENOMEM;
1398
1399 new_ioc->ioprio = ioc->ioprio;
1400 put_io_context(new_ioc);
1401 }
1402 #endif
1403 return 0;
1404 }
1405
1406 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1407 {
1408 struct sighand_struct *sig;
1409
1410 if (clone_flags & CLONE_SIGHAND) {
1411 atomic_inc(&current->sighand->count);
1412 return 0;
1413 }
1414 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1415 rcu_assign_pointer(tsk->sighand, sig);
1416 if (!sig)
1417 return -ENOMEM;
1418
1419 atomic_set(&sig->count, 1);
1420 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1421 return 0;
1422 }
1423
1424 void __cleanup_sighand(struct sighand_struct *sighand)
1425 {
1426 if (atomic_dec_and_test(&sighand->count)) {
1427 signalfd_cleanup(sighand);
1428 /*
1429 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1430 * without an RCU grace period, see __lock_task_sighand().
1431 */
1432 kmem_cache_free(sighand_cachep, sighand);
1433 }
1434 }
1435
1436 #ifdef CONFIG_POSIX_TIMERS
1437 /*
1438 * Initialize POSIX timer handling for a thread group.
1439 */
1440 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1441 {
1442 unsigned long cpu_limit;
1443
1444 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1445 if (cpu_limit != RLIM_INFINITY) {
1446 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1447 sig->cputimer.running = true;
1448 }
1449
1450 /* The timer lists. */
1451 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1452 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1453 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1454 }
1455 #else
1456 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1457 #endif
1458
1459 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1460 {
1461 struct signal_struct *sig;
1462
1463 if (clone_flags & CLONE_THREAD)
1464 return 0;
1465
1466 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1467 tsk->signal = sig;
1468 if (!sig)
1469 return -ENOMEM;
1470
1471 sig->nr_threads = 1;
1472 atomic_set(&sig->live, 1);
1473 atomic_set(&sig->sigcnt, 1);
1474
1475 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1476 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1477 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1478
1479 init_waitqueue_head(&sig->wait_chldexit);
1480 sig->curr_target = tsk;
1481 init_sigpending(&sig->shared_pending);
1482 seqlock_init(&sig->stats_lock);
1483 prev_cputime_init(&sig->prev_cputime);
1484
1485 #ifdef CONFIG_POSIX_TIMERS
1486 INIT_LIST_HEAD(&sig->posix_timers);
1487 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1488 sig->real_timer.function = it_real_fn;
1489 #endif
1490
1491 task_lock(current->group_leader);
1492 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1493 task_unlock(current->group_leader);
1494
1495 posix_cpu_timers_init_group(sig);
1496
1497 tty_audit_fork(sig);
1498 sched_autogroup_fork(sig);
1499
1500 sig->oom_score_adj = current->signal->oom_score_adj;
1501 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1502
1503 mutex_init(&sig->cred_guard_mutex);
1504
1505 return 0;
1506 }
1507
1508 static void copy_seccomp(struct task_struct *p)
1509 {
1510 #ifdef CONFIG_SECCOMP
1511 /*
1512 * Must be called with sighand->lock held, which is common to
1513 * all threads in the group. Holding cred_guard_mutex is not
1514 * needed because this new task is not yet running and cannot
1515 * be racing exec.
1516 */
1517 assert_spin_locked(&current->sighand->siglock);
1518
1519 /* Ref-count the new filter user, and assign it. */
1520 get_seccomp_filter(current);
1521 p->seccomp = current->seccomp;
1522
1523 /*
1524 * Explicitly enable no_new_privs here in case it got set
1525 * between the task_struct being duplicated and holding the
1526 * sighand lock. The seccomp state and nnp must be in sync.
1527 */
1528 if (task_no_new_privs(current))
1529 task_set_no_new_privs(p);
1530
1531 /*
1532 * If the parent gained a seccomp mode after copying thread
1533 * flags and between before we held the sighand lock, we have
1534 * to manually enable the seccomp thread flag here.
1535 */
1536 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1537 set_tsk_thread_flag(p, TIF_SECCOMP);
1538 #endif
1539 }
1540
1541 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1542 {
1543 current->clear_child_tid = tidptr;
1544
1545 return task_pid_vnr(current);
1546 }
1547
1548 static void rt_mutex_init_task(struct task_struct *p)
1549 {
1550 raw_spin_lock_init(&p->pi_lock);
1551 #ifdef CONFIG_RT_MUTEXES
1552 p->pi_waiters = RB_ROOT_CACHED;
1553 p->pi_top_task = NULL;
1554 p->pi_blocked_on = NULL;
1555 #endif
1556 }
1557
1558 #ifdef CONFIG_POSIX_TIMERS
1559 /*
1560 * Initialize POSIX timer handling for a single task.
1561 */
1562 static void posix_cpu_timers_init(struct task_struct *tsk)
1563 {
1564 tsk->cputime_expires.prof_exp = 0;
1565 tsk->cputime_expires.virt_exp = 0;
1566 tsk->cputime_expires.sched_exp = 0;
1567 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1568 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1569 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1570 }
1571 #else
1572 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1573 #endif
1574
1575 static inline void
1576 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1577 {
1578 task->pids[type].pid = pid;
1579 }
1580
1581 static inline void rcu_copy_process(struct task_struct *p)
1582 {
1583 #ifdef CONFIG_PREEMPT_RCU
1584 p->rcu_read_lock_nesting = 0;
1585 p->rcu_read_unlock_special.s = 0;
1586 p->rcu_blocked_node = NULL;
1587 INIT_LIST_HEAD(&p->rcu_node_entry);
1588 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1589 #ifdef CONFIG_TASKS_RCU
1590 p->rcu_tasks_holdout = false;
1591 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1592 p->rcu_tasks_idle_cpu = -1;
1593 #endif /* #ifdef CONFIG_TASKS_RCU */
1594 }
1595
1596 /*
1597 * This creates a new process as a copy of the old one,
1598 * but does not actually start it yet.
1599 *
1600 * It copies the registers, and all the appropriate
1601 * parts of the process environment (as per the clone
1602 * flags). The actual kick-off is left to the caller.
1603 */
1604 static __latent_entropy struct task_struct *copy_process(
1605 unsigned long clone_flags,
1606 unsigned long stack_start,
1607 unsigned long stack_size,
1608 int __user *child_tidptr,
1609 struct pid *pid,
1610 int trace,
1611 unsigned long tls,
1612 int node)
1613 {
1614 int retval;
1615 struct task_struct *p;
1616
1617 /*
1618 * Don't allow sharing the root directory with processes in a different
1619 * namespace
1620 */
1621 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1622 return ERR_PTR(-EINVAL);
1623
1624 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1625 return ERR_PTR(-EINVAL);
1626
1627 /*
1628 * Thread groups must share signals as well, and detached threads
1629 * can only be started up within the thread group.
1630 */
1631 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1632 return ERR_PTR(-EINVAL);
1633
1634 /*
1635 * Shared signal handlers imply shared VM. By way of the above,
1636 * thread groups also imply shared VM. Blocking this case allows
1637 * for various simplifications in other code.
1638 */
1639 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1640 return ERR_PTR(-EINVAL);
1641
1642 /*
1643 * Siblings of global init remain as zombies on exit since they are
1644 * not reaped by their parent (swapper). To solve this and to avoid
1645 * multi-rooted process trees, prevent global and container-inits
1646 * from creating siblings.
1647 */
1648 if ((clone_flags & CLONE_PARENT) &&
1649 current->signal->flags & SIGNAL_UNKILLABLE)
1650 return ERR_PTR(-EINVAL);
1651
1652 /*
1653 * If the new process will be in a different pid or user namespace
1654 * do not allow it to share a thread group with the forking task.
1655 */
1656 if (clone_flags & CLONE_THREAD) {
1657 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1658 (task_active_pid_ns(current) !=
1659 current->nsproxy->pid_ns_for_children))
1660 return ERR_PTR(-EINVAL);
1661 }
1662
1663 retval = -ENOMEM;
1664 p = dup_task_struct(current, node);
1665 if (!p)
1666 goto fork_out;
1667
1668 /*
1669 * This _must_ happen before we call free_task(), i.e. before we jump
1670 * to any of the bad_fork_* labels. This is to avoid freeing
1671 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1672 * kernel threads (PF_KTHREAD).
1673 */
1674 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1675 /*
1676 * Clear TID on mm_release()?
1677 */
1678 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1679
1680 ftrace_graph_init_task(p);
1681
1682 rt_mutex_init_task(p);
1683
1684 #ifdef CONFIG_PROVE_LOCKING
1685 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1686 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1687 #endif
1688 retval = -EAGAIN;
1689 if (atomic_read(&p->real_cred->user->processes) >=
1690 task_rlimit(p, RLIMIT_NPROC)) {
1691 if (p->real_cred->user != INIT_USER &&
1692 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1693 goto bad_fork_free;
1694 }
1695 current->flags &= ~PF_NPROC_EXCEEDED;
1696
1697 retval = copy_creds(p, clone_flags);
1698 if (retval < 0)
1699 goto bad_fork_free;
1700
1701 /*
1702 * If multiple threads are within copy_process(), then this check
1703 * triggers too late. This doesn't hurt, the check is only there
1704 * to stop root fork bombs.
1705 */
1706 retval = -EAGAIN;
1707 if (nr_threads >= max_threads)
1708 goto bad_fork_cleanup_count;
1709
1710 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1711 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1712 p->flags |= PF_FORKNOEXEC;
1713 INIT_LIST_HEAD(&p->children);
1714 INIT_LIST_HEAD(&p->sibling);
1715 rcu_copy_process(p);
1716 p->vfork_done = NULL;
1717 spin_lock_init(&p->alloc_lock);
1718
1719 init_sigpending(&p->pending);
1720
1721 p->utime = p->stime = p->gtime = 0;
1722 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1723 p->utimescaled = p->stimescaled = 0;
1724 #endif
1725 prev_cputime_init(&p->prev_cputime);
1726
1727 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1728 seqcount_init(&p->vtime.seqcount);
1729 p->vtime.starttime = 0;
1730 p->vtime.state = VTIME_INACTIVE;
1731 #endif
1732
1733 #if defined(SPLIT_RSS_COUNTING)
1734 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1735 #endif
1736
1737 p->default_timer_slack_ns = current->timer_slack_ns;
1738
1739 task_io_accounting_init(&p->ioac);
1740 acct_clear_integrals(p);
1741
1742 posix_cpu_timers_init(p);
1743
1744 p->start_time = ktime_get_ns();
1745 p->real_start_time = ktime_get_boot_ns();
1746 p->io_context = NULL;
1747 audit_set_context(p, NULL);
1748 cgroup_fork(p);
1749 #ifdef CONFIG_NUMA
1750 p->mempolicy = mpol_dup(p->mempolicy);
1751 if (IS_ERR(p->mempolicy)) {
1752 retval = PTR_ERR(p->mempolicy);
1753 p->mempolicy = NULL;
1754 goto bad_fork_cleanup_threadgroup_lock;
1755 }
1756 #endif
1757 #ifdef CONFIG_CPUSETS
1758 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1759 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1760 seqcount_init(&p->mems_allowed_seq);
1761 #endif
1762 #ifdef CONFIG_TRACE_IRQFLAGS
1763 p->irq_events = 0;
1764 p->hardirqs_enabled = 0;
1765 p->hardirq_enable_ip = 0;
1766 p->hardirq_enable_event = 0;
1767 p->hardirq_disable_ip = _THIS_IP_;
1768 p->hardirq_disable_event = 0;
1769 p->softirqs_enabled = 1;
1770 p->softirq_enable_ip = _THIS_IP_;
1771 p->softirq_enable_event = 0;
1772 p->softirq_disable_ip = 0;
1773 p->softirq_disable_event = 0;
1774 p->hardirq_context = 0;
1775 p->softirq_context = 0;
1776 #endif
1777
1778 p->pagefault_disabled = 0;
1779
1780 #ifdef CONFIG_LOCKDEP
1781 p->lockdep_depth = 0; /* no locks held yet */
1782 p->curr_chain_key = 0;
1783 p->lockdep_recursion = 0;
1784 lockdep_init_task(p);
1785 #endif
1786
1787 #ifdef CONFIG_DEBUG_MUTEXES
1788 p->blocked_on = NULL; /* not blocked yet */
1789 #endif
1790 #ifdef CONFIG_BCACHE
1791 p->sequential_io = 0;
1792 p->sequential_io_avg = 0;
1793 #endif
1794
1795 /* Perform scheduler related setup. Assign this task to a CPU. */
1796 retval = sched_fork(clone_flags, p);
1797 if (retval)
1798 goto bad_fork_cleanup_policy;
1799
1800 retval = perf_event_init_task(p);
1801 if (retval)
1802 goto bad_fork_cleanup_policy;
1803 retval = audit_alloc(p);
1804 if (retval)
1805 goto bad_fork_cleanup_perf;
1806 /* copy all the process information */
1807 shm_init_task(p);
1808 retval = security_task_alloc(p, clone_flags);
1809 if (retval)
1810 goto bad_fork_cleanup_audit;
1811 retval = copy_semundo(clone_flags, p);
1812 if (retval)
1813 goto bad_fork_cleanup_security;
1814 retval = copy_files(clone_flags, p);
1815 if (retval)
1816 goto bad_fork_cleanup_semundo;
1817 retval = copy_fs(clone_flags, p);
1818 if (retval)
1819 goto bad_fork_cleanup_files;
1820 retval = copy_sighand(clone_flags, p);
1821 if (retval)
1822 goto bad_fork_cleanup_fs;
1823 retval = copy_signal(clone_flags, p);
1824 if (retval)
1825 goto bad_fork_cleanup_sighand;
1826 retval = copy_mm(clone_flags, p);
1827 if (retval)
1828 goto bad_fork_cleanup_signal;
1829 retval = copy_namespaces(clone_flags, p);
1830 if (retval)
1831 goto bad_fork_cleanup_mm;
1832 retval = copy_io(clone_flags, p);
1833 if (retval)
1834 goto bad_fork_cleanup_namespaces;
1835 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1836 if (retval)
1837 goto bad_fork_cleanup_io;
1838
1839 if (pid != &init_struct_pid) {
1840 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1841 if (IS_ERR(pid)) {
1842 retval = PTR_ERR(pid);
1843 goto bad_fork_cleanup_thread;
1844 }
1845 }
1846
1847 #ifdef CONFIG_BLOCK
1848 p->plug = NULL;
1849 #endif
1850 #ifdef CONFIG_FUTEX
1851 p->robust_list = NULL;
1852 #ifdef CONFIG_COMPAT
1853 p->compat_robust_list = NULL;
1854 #endif
1855 INIT_LIST_HEAD(&p->pi_state_list);
1856 p->pi_state_cache = NULL;
1857 #endif
1858 /*
1859 * sigaltstack should be cleared when sharing the same VM
1860 */
1861 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1862 sas_ss_reset(p);
1863
1864 /*
1865 * Syscall tracing and stepping should be turned off in the
1866 * child regardless of CLONE_PTRACE.
1867 */
1868 user_disable_single_step(p);
1869 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1870 #ifdef TIF_SYSCALL_EMU
1871 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1872 #endif
1873 clear_all_latency_tracing(p);
1874
1875 /* ok, now we should be set up.. */
1876 p->pid = pid_nr(pid);
1877 if (clone_flags & CLONE_THREAD) {
1878 p->exit_signal = -1;
1879 p->group_leader = current->group_leader;
1880 p->tgid = current->tgid;
1881 } else {
1882 if (clone_flags & CLONE_PARENT)
1883 p->exit_signal = current->group_leader->exit_signal;
1884 else
1885 p->exit_signal = (clone_flags & CSIGNAL);
1886 p->group_leader = p;
1887 p->tgid = p->pid;
1888 }
1889
1890 p->nr_dirtied = 0;
1891 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1892 p->dirty_paused_when = 0;
1893
1894 p->pdeath_signal = 0;
1895 INIT_LIST_HEAD(&p->thread_group);
1896 p->task_works = NULL;
1897
1898 cgroup_threadgroup_change_begin(current);
1899 /*
1900 * Ensure that the cgroup subsystem policies allow the new process to be
1901 * forked. It should be noted the the new process's css_set can be changed
1902 * between here and cgroup_post_fork() if an organisation operation is in
1903 * progress.
1904 */
1905 retval = cgroup_can_fork(p);
1906 if (retval)
1907 goto bad_fork_free_pid;
1908
1909 /*
1910 * Make it visible to the rest of the system, but dont wake it up yet.
1911 * Need tasklist lock for parent etc handling!
1912 */
1913 write_lock_irq(&tasklist_lock);
1914
1915 /* CLONE_PARENT re-uses the old parent */
1916 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1917 p->real_parent = current->real_parent;
1918 p->parent_exec_id = current->parent_exec_id;
1919 } else {
1920 p->real_parent = current;
1921 p->parent_exec_id = current->self_exec_id;
1922 }
1923
1924 klp_copy_process(p);
1925
1926 spin_lock(&current->sighand->siglock);
1927
1928 /*
1929 * Copy seccomp details explicitly here, in case they were changed
1930 * before holding sighand lock.
1931 */
1932 copy_seccomp(p);
1933
1934 rseq_fork(p, clone_flags);
1935
1936 /*
1937 * Process group and session signals need to be delivered to just the
1938 * parent before the fork or both the parent and the child after the
1939 * fork. Restart if a signal comes in before we add the new process to
1940 * it's process group.
1941 * A fatal signal pending means that current will exit, so the new
1942 * thread can't slip out of an OOM kill (or normal SIGKILL).
1943 */
1944 recalc_sigpending();
1945 if (signal_pending(current)) {
1946 retval = -ERESTARTNOINTR;
1947 goto bad_fork_cancel_cgroup;
1948 }
1949 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1950 retval = -ENOMEM;
1951 goto bad_fork_cancel_cgroup;
1952 }
1953
1954 if (likely(p->pid)) {
1955 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1956
1957 init_task_pid(p, PIDTYPE_PID, pid);
1958 if (thread_group_leader(p)) {
1959 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1960 init_task_pid(p, PIDTYPE_SID, task_session(current));
1961
1962 if (is_child_reaper(pid)) {
1963 ns_of_pid(pid)->child_reaper = p;
1964 p->signal->flags |= SIGNAL_UNKILLABLE;
1965 }
1966
1967 p->signal->leader_pid = pid;
1968 p->signal->tty = tty_kref_get(current->signal->tty);
1969 /*
1970 * Inherit has_child_subreaper flag under the same
1971 * tasklist_lock with adding child to the process tree
1972 * for propagate_has_child_subreaper optimization.
1973 */
1974 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1975 p->real_parent->signal->is_child_subreaper;
1976 list_add_tail(&p->sibling, &p->real_parent->children);
1977 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1978 attach_pid(p, PIDTYPE_PGID);
1979 attach_pid(p, PIDTYPE_SID);
1980 __this_cpu_inc(process_counts);
1981 } else {
1982 current->signal->nr_threads++;
1983 atomic_inc(&current->signal->live);
1984 atomic_inc(&current->signal->sigcnt);
1985 list_add_tail_rcu(&p->thread_group,
1986 &p->group_leader->thread_group);
1987 list_add_tail_rcu(&p->thread_node,
1988 &p->signal->thread_head);
1989 }
1990 attach_pid(p, PIDTYPE_PID);
1991 nr_threads++;
1992 }
1993
1994 total_forks++;
1995 spin_unlock(&current->sighand->siglock);
1996 syscall_tracepoint_update(p);
1997 write_unlock_irq(&tasklist_lock);
1998
1999 proc_fork_connector(p);
2000 cgroup_post_fork(p);
2001 cgroup_threadgroup_change_end(current);
2002 perf_event_fork(p);
2003
2004 trace_task_newtask(p, clone_flags);
2005 uprobe_copy_process(p, clone_flags);
2006
2007 return p;
2008
2009 bad_fork_cancel_cgroup:
2010 spin_unlock(&current->sighand->siglock);
2011 write_unlock_irq(&tasklist_lock);
2012 cgroup_cancel_fork(p);
2013 bad_fork_free_pid:
2014 cgroup_threadgroup_change_end(current);
2015 if (pid != &init_struct_pid)
2016 free_pid(pid);
2017 bad_fork_cleanup_thread:
2018 exit_thread(p);
2019 bad_fork_cleanup_io:
2020 if (p->io_context)
2021 exit_io_context(p);
2022 bad_fork_cleanup_namespaces:
2023 exit_task_namespaces(p);
2024 bad_fork_cleanup_mm:
2025 if (p->mm)
2026 mmput(p->mm);
2027 bad_fork_cleanup_signal:
2028 if (!(clone_flags & CLONE_THREAD))
2029 free_signal_struct(p->signal);
2030 bad_fork_cleanup_sighand:
2031 __cleanup_sighand(p->sighand);
2032 bad_fork_cleanup_fs:
2033 exit_fs(p); /* blocking */
2034 bad_fork_cleanup_files:
2035 exit_files(p); /* blocking */
2036 bad_fork_cleanup_semundo:
2037 exit_sem(p);
2038 bad_fork_cleanup_security:
2039 security_task_free(p);
2040 bad_fork_cleanup_audit:
2041 audit_free(p);
2042 bad_fork_cleanup_perf:
2043 perf_event_free_task(p);
2044 bad_fork_cleanup_policy:
2045 lockdep_free_task(p);
2046 #ifdef CONFIG_NUMA
2047 mpol_put(p->mempolicy);
2048 bad_fork_cleanup_threadgroup_lock:
2049 #endif
2050 delayacct_tsk_free(p);
2051 bad_fork_cleanup_count:
2052 atomic_dec(&p->cred->user->processes);
2053 exit_creds(p);
2054 bad_fork_free:
2055 p->state = TASK_DEAD;
2056 put_task_stack(p);
2057 free_task(p);
2058 fork_out:
2059 return ERR_PTR(retval);
2060 }
2061
2062 static inline void init_idle_pids(struct pid_link *links)
2063 {
2064 enum pid_type type;
2065
2066 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2067 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2068 links[type].pid = &init_struct_pid;
2069 }
2070 }
2071
2072 struct task_struct *fork_idle(int cpu)
2073 {
2074 struct task_struct *task;
2075 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2076 cpu_to_node(cpu));
2077 if (!IS_ERR(task)) {
2078 init_idle_pids(task->pids);
2079 init_idle(task, cpu);
2080 }
2081
2082 return task;
2083 }
2084
2085 /*
2086 * Ok, this is the main fork-routine.
2087 *
2088 * It copies the process, and if successful kick-starts
2089 * it and waits for it to finish using the VM if required.
2090 */
2091 long _do_fork(unsigned long clone_flags,
2092 unsigned long stack_start,
2093 unsigned long stack_size,
2094 int __user *parent_tidptr,
2095 int __user *child_tidptr,
2096 unsigned long tls)
2097 {
2098 struct completion vfork;
2099 struct pid *pid;
2100 struct task_struct *p;
2101 int trace = 0;
2102 long nr;
2103
2104 /*
2105 * Determine whether and which event to report to ptracer. When
2106 * called from kernel_thread or CLONE_UNTRACED is explicitly
2107 * requested, no event is reported; otherwise, report if the event
2108 * for the type of forking is enabled.
2109 */
2110 if (!(clone_flags & CLONE_UNTRACED)) {
2111 if (clone_flags & CLONE_VFORK)
2112 trace = PTRACE_EVENT_VFORK;
2113 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2114 trace = PTRACE_EVENT_CLONE;
2115 else
2116 trace = PTRACE_EVENT_FORK;
2117
2118 if (likely(!ptrace_event_enabled(current, trace)))
2119 trace = 0;
2120 }
2121
2122 p = copy_process(clone_flags, stack_start, stack_size,
2123 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2124 add_latent_entropy();
2125
2126 if (IS_ERR(p))
2127 return PTR_ERR(p);
2128
2129 /*
2130 * Do this prior waking up the new thread - the thread pointer
2131 * might get invalid after that point, if the thread exits quickly.
2132 */
2133 trace_sched_process_fork(current, p);
2134
2135 pid = get_task_pid(p, PIDTYPE_PID);
2136 nr = pid_vnr(pid);
2137
2138 if (clone_flags & CLONE_PARENT_SETTID)
2139 put_user(nr, parent_tidptr);
2140
2141 if (clone_flags & CLONE_VFORK) {
2142 p->vfork_done = &vfork;
2143 init_completion(&vfork);
2144 get_task_struct(p);
2145 }
2146
2147 wake_up_new_task(p);
2148
2149 /* forking complete and child started to run, tell ptracer */
2150 if (unlikely(trace))
2151 ptrace_event_pid(trace, pid);
2152
2153 if (clone_flags & CLONE_VFORK) {
2154 if (!wait_for_vfork_done(p, &vfork))
2155 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2156 }
2157
2158 put_pid(pid);
2159 return nr;
2160 }
2161
2162 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2163 /* For compatibility with architectures that call do_fork directly rather than
2164 * using the syscall entry points below. */
2165 long do_fork(unsigned long clone_flags,
2166 unsigned long stack_start,
2167 unsigned long stack_size,
2168 int __user *parent_tidptr,
2169 int __user *child_tidptr)
2170 {
2171 return _do_fork(clone_flags, stack_start, stack_size,
2172 parent_tidptr, child_tidptr, 0);
2173 }
2174 #endif
2175
2176 /*
2177 * Create a kernel thread.
2178 */
2179 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2180 {
2181 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2182 (unsigned long)arg, NULL, NULL, 0);
2183 }
2184
2185 #ifdef __ARCH_WANT_SYS_FORK
2186 SYSCALL_DEFINE0(fork)
2187 {
2188 #ifdef CONFIG_MMU
2189 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2190 #else
2191 /* can not support in nommu mode */
2192 return -EINVAL;
2193 #endif
2194 }
2195 #endif
2196
2197 #ifdef __ARCH_WANT_SYS_VFORK
2198 SYSCALL_DEFINE0(vfork)
2199 {
2200 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2201 0, NULL, NULL, 0);
2202 }
2203 #endif
2204
2205 #ifdef __ARCH_WANT_SYS_CLONE
2206 #ifdef CONFIG_CLONE_BACKWARDS
2207 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2208 int __user *, parent_tidptr,
2209 unsigned long, tls,
2210 int __user *, child_tidptr)
2211 #elif defined(CONFIG_CLONE_BACKWARDS2)
2212 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2213 int __user *, parent_tidptr,
2214 int __user *, child_tidptr,
2215 unsigned long, tls)
2216 #elif defined(CONFIG_CLONE_BACKWARDS3)
2217 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2218 int, stack_size,
2219 int __user *, parent_tidptr,
2220 int __user *, child_tidptr,
2221 unsigned long, tls)
2222 #else
2223 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2224 int __user *, parent_tidptr,
2225 int __user *, child_tidptr,
2226 unsigned long, tls)
2227 #endif
2228 {
2229 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2230 }
2231 #endif
2232
2233 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2234 {
2235 struct task_struct *leader, *parent, *child;
2236 int res;
2237
2238 read_lock(&tasklist_lock);
2239 leader = top = top->group_leader;
2240 down:
2241 for_each_thread(leader, parent) {
2242 list_for_each_entry(child, &parent->children, sibling) {
2243 res = visitor(child, data);
2244 if (res) {
2245 if (res < 0)
2246 goto out;
2247 leader = child;
2248 goto down;
2249 }
2250 up:
2251 ;
2252 }
2253 }
2254
2255 if (leader != top) {
2256 child = leader;
2257 parent = child->real_parent;
2258 leader = parent->group_leader;
2259 goto up;
2260 }
2261 out:
2262 read_unlock(&tasklist_lock);
2263 }
2264
2265 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2266 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2267 #endif
2268
2269 static void sighand_ctor(void *data)
2270 {
2271 struct sighand_struct *sighand = data;
2272
2273 spin_lock_init(&sighand->siglock);
2274 init_waitqueue_head(&sighand->signalfd_wqh);
2275 }
2276
2277 void __init proc_caches_init(void)
2278 {
2279 sighand_cachep = kmem_cache_create("sighand_cache",
2280 sizeof(struct sighand_struct), 0,
2281 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2282 SLAB_ACCOUNT, sighand_ctor);
2283 signal_cachep = kmem_cache_create("signal_cache",
2284 sizeof(struct signal_struct), 0,
2285 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2286 NULL);
2287 files_cachep = kmem_cache_create("files_cache",
2288 sizeof(struct files_struct), 0,
2289 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2290 NULL);
2291 fs_cachep = kmem_cache_create("fs_cache",
2292 sizeof(struct fs_struct), 0,
2293 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2294 NULL);
2295 /*
2296 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2297 * whole struct cpumask for the OFFSTACK case. We could change
2298 * this to *only* allocate as much of it as required by the
2299 * maximum number of CPU's we can ever have. The cpumask_allocation
2300 * is at the end of the structure, exactly for that reason.
2301 */
2302 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2303 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2304 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2305 offsetof(struct mm_struct, saved_auxv),
2306 sizeof_field(struct mm_struct, saved_auxv),
2307 NULL);
2308 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2309 mmap_init();
2310 nsproxy_cache_init();
2311 }
2312
2313 /*
2314 * Check constraints on flags passed to the unshare system call.
2315 */
2316 static int check_unshare_flags(unsigned long unshare_flags)
2317 {
2318 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2319 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2320 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2321 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2322 return -EINVAL;
2323 /*
2324 * Not implemented, but pretend it works if there is nothing
2325 * to unshare. Note that unsharing the address space or the
2326 * signal handlers also need to unshare the signal queues (aka
2327 * CLONE_THREAD).
2328 */
2329 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2330 if (!thread_group_empty(current))
2331 return -EINVAL;
2332 }
2333 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2334 if (atomic_read(&current->sighand->count) > 1)
2335 return -EINVAL;
2336 }
2337 if (unshare_flags & CLONE_VM) {
2338 if (!current_is_single_threaded())
2339 return -EINVAL;
2340 }
2341
2342 return 0;
2343 }
2344
2345 /*
2346 * Unshare the filesystem structure if it is being shared
2347 */
2348 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2349 {
2350 struct fs_struct *fs = current->fs;
2351
2352 if (!(unshare_flags & CLONE_FS) || !fs)
2353 return 0;
2354
2355 /* don't need lock here; in the worst case we'll do useless copy */
2356 if (fs->users == 1)
2357 return 0;
2358
2359 *new_fsp = copy_fs_struct(fs);
2360 if (!*new_fsp)
2361 return -ENOMEM;
2362
2363 return 0;
2364 }
2365
2366 /*
2367 * Unshare file descriptor table if it is being shared
2368 */
2369 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2370 {
2371 struct files_struct *fd = current->files;
2372 int error = 0;
2373
2374 if ((unshare_flags & CLONE_FILES) &&
2375 (fd && atomic_read(&fd->count) > 1)) {
2376 *new_fdp = dup_fd(fd, &error);
2377 if (!*new_fdp)
2378 return error;
2379 }
2380
2381 return 0;
2382 }
2383
2384 /*
2385 * unshare allows a process to 'unshare' part of the process
2386 * context which was originally shared using clone. copy_*
2387 * functions used by do_fork() cannot be used here directly
2388 * because they modify an inactive task_struct that is being
2389 * constructed. Here we are modifying the current, active,
2390 * task_struct.
2391 */
2392 int ksys_unshare(unsigned long unshare_flags)
2393 {
2394 struct fs_struct *fs, *new_fs = NULL;
2395 struct files_struct *fd, *new_fd = NULL;
2396 struct cred *new_cred = NULL;
2397 struct nsproxy *new_nsproxy = NULL;
2398 int do_sysvsem = 0;
2399 int err;
2400
2401 /*
2402 * If unsharing a user namespace must also unshare the thread group
2403 * and unshare the filesystem root and working directories.
2404 */
2405 if (unshare_flags & CLONE_NEWUSER)
2406 unshare_flags |= CLONE_THREAD | CLONE_FS;
2407 /*
2408 * If unsharing vm, must also unshare signal handlers.
2409 */
2410 if (unshare_flags & CLONE_VM)
2411 unshare_flags |= CLONE_SIGHAND;
2412 /*
2413 * If unsharing a signal handlers, must also unshare the signal queues.
2414 */
2415 if (unshare_flags & CLONE_SIGHAND)
2416 unshare_flags |= CLONE_THREAD;
2417 /*
2418 * If unsharing namespace, must also unshare filesystem information.
2419 */
2420 if (unshare_flags & CLONE_NEWNS)
2421 unshare_flags |= CLONE_FS;
2422
2423 err = check_unshare_flags(unshare_flags);
2424 if (err)
2425 goto bad_unshare_out;
2426 /*
2427 * CLONE_NEWIPC must also detach from the undolist: after switching
2428 * to a new ipc namespace, the semaphore arrays from the old
2429 * namespace are unreachable.
2430 */
2431 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2432 do_sysvsem = 1;
2433 err = unshare_fs(unshare_flags, &new_fs);
2434 if (err)
2435 goto bad_unshare_out;
2436 err = unshare_fd(unshare_flags, &new_fd);
2437 if (err)
2438 goto bad_unshare_cleanup_fs;
2439 err = unshare_userns(unshare_flags, &new_cred);
2440 if (err)
2441 goto bad_unshare_cleanup_fd;
2442 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2443 new_cred, new_fs);
2444 if (err)
2445 goto bad_unshare_cleanup_cred;
2446
2447 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2448 if (do_sysvsem) {
2449 /*
2450 * CLONE_SYSVSEM is equivalent to sys_exit().
2451 */
2452 exit_sem(current);
2453 }
2454 if (unshare_flags & CLONE_NEWIPC) {
2455 /* Orphan segments in old ns (see sem above). */
2456 exit_shm(current);
2457 shm_init_task(current);
2458 }
2459
2460 if (new_nsproxy)
2461 switch_task_namespaces(current, new_nsproxy);
2462
2463 task_lock(current);
2464
2465 if (new_fs) {
2466 fs = current->fs;
2467 spin_lock(&fs->lock);
2468 current->fs = new_fs;
2469 if (--fs->users)
2470 new_fs = NULL;
2471 else
2472 new_fs = fs;
2473 spin_unlock(&fs->lock);
2474 }
2475
2476 if (new_fd) {
2477 fd = current->files;
2478 current->files = new_fd;
2479 new_fd = fd;
2480 }
2481
2482 task_unlock(current);
2483
2484 if (new_cred) {
2485 /* Install the new user namespace */
2486 commit_creds(new_cred);
2487 new_cred = NULL;
2488 }
2489 }
2490
2491 perf_event_namespaces(current);
2492
2493 bad_unshare_cleanup_cred:
2494 if (new_cred)
2495 put_cred(new_cred);
2496 bad_unshare_cleanup_fd:
2497 if (new_fd)
2498 put_files_struct(new_fd);
2499
2500 bad_unshare_cleanup_fs:
2501 if (new_fs)
2502 free_fs_struct(new_fs);
2503
2504 bad_unshare_out:
2505 return err;
2506 }
2507
2508 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2509 {
2510 return ksys_unshare(unshare_flags);
2511 }
2512
2513 /*
2514 * Helper to unshare the files of the current task.
2515 * We don't want to expose copy_files internals to
2516 * the exec layer of the kernel.
2517 */
2518
2519 int unshare_files(struct files_struct **displaced)
2520 {
2521 struct task_struct *task = current;
2522 struct files_struct *copy = NULL;
2523 int error;
2524
2525 error = unshare_fd(CLONE_FILES, &copy);
2526 if (error || !copy) {
2527 *displaced = NULL;
2528 return error;
2529 }
2530 *displaced = task->files;
2531 task_lock(task);
2532 task->files = copy;
2533 task_unlock(task);
2534 return 0;
2535 }
2536
2537 int sysctl_max_threads(struct ctl_table *table, int write,
2538 void __user *buffer, size_t *lenp, loff_t *ppos)
2539 {
2540 struct ctl_table t;
2541 int ret;
2542 int threads = max_threads;
2543 int min = MIN_THREADS;
2544 int max = MAX_THREADS;
2545
2546 t = *table;
2547 t.data = &threads;
2548 t.extra1 = &min;
2549 t.extra2 = &max;
2550
2551 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2552 if (ret || !write)
2553 return ret;
2554
2555 set_max_threads(threads);
2556
2557 return 0;
2558 }