]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/fork.c
compat: Introduce COMPAT_USE_64BIT_TIME
[mirror_ubuntu-zesty-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76
77 #include <trace/events/sched.h>
78
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/task.h>
81
82 /*
83 * Protected counters by write_lock_irq(&tasklist_lock)
84 */
85 unsigned long total_forks; /* Handle normal Linux uptimes. */
86 int nr_threads; /* The idle threads do not count.. */
87
88 int max_threads; /* tunable limit on nr_threads */
89
90 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
91
92 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
93
94 #ifdef CONFIG_PROVE_RCU
95 int lockdep_tasklist_lock_is_held(void)
96 {
97 return lockdep_is_held(&tasklist_lock);
98 }
99 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
100 #endif /* #ifdef CONFIG_PROVE_RCU */
101
102 int nr_processes(void)
103 {
104 int cpu;
105 int total = 0;
106
107 for_each_possible_cpu(cpu)
108 total += per_cpu(process_counts, cpu);
109
110 return total;
111 }
112
113 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
114 # define alloc_task_struct_node(node) \
115 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
116 # define free_task_struct(tsk) \
117 kmem_cache_free(task_struct_cachep, (tsk))
118 static struct kmem_cache *task_struct_cachep;
119 #endif
120
121 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
122 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
123 int node)
124 {
125 #ifdef CONFIG_DEBUG_STACK_USAGE
126 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
127 #else
128 gfp_t mask = GFP_KERNEL;
129 #endif
130 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
131
132 return page ? page_address(page) : NULL;
133 }
134
135 static inline void free_thread_info(struct thread_info *ti)
136 {
137 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
138 }
139 #endif
140
141 /* SLAB cache for signal_struct structures (tsk->signal) */
142 static struct kmem_cache *signal_cachep;
143
144 /* SLAB cache for sighand_struct structures (tsk->sighand) */
145 struct kmem_cache *sighand_cachep;
146
147 /* SLAB cache for files_struct structures (tsk->files) */
148 struct kmem_cache *files_cachep;
149
150 /* SLAB cache for fs_struct structures (tsk->fs) */
151 struct kmem_cache *fs_cachep;
152
153 /* SLAB cache for vm_area_struct structures */
154 struct kmem_cache *vm_area_cachep;
155
156 /* SLAB cache for mm_struct structures (tsk->mm) */
157 static struct kmem_cache *mm_cachep;
158
159 static void account_kernel_stack(struct thread_info *ti, int account)
160 {
161 struct zone *zone = page_zone(virt_to_page(ti));
162
163 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
164 }
165
166 void free_task(struct task_struct *tsk)
167 {
168 account_kernel_stack(tsk->stack, -1);
169 free_thread_info(tsk->stack);
170 rt_mutex_debug_task_free(tsk);
171 ftrace_graph_exit_task(tsk);
172 free_task_struct(tsk);
173 }
174 EXPORT_SYMBOL(free_task);
175
176 static inline void free_signal_struct(struct signal_struct *sig)
177 {
178 taskstats_tgid_free(sig);
179 sched_autogroup_exit(sig);
180 kmem_cache_free(signal_cachep, sig);
181 }
182
183 static inline void put_signal_struct(struct signal_struct *sig)
184 {
185 if (atomic_dec_and_test(&sig->sigcnt))
186 free_signal_struct(sig);
187 }
188
189 void __put_task_struct(struct task_struct *tsk)
190 {
191 WARN_ON(!tsk->exit_state);
192 WARN_ON(atomic_read(&tsk->usage));
193 WARN_ON(tsk == current);
194
195 exit_creds(tsk);
196 delayacct_tsk_free(tsk);
197 put_signal_struct(tsk->signal);
198
199 if (!profile_handoff_task(tsk))
200 free_task(tsk);
201 }
202 EXPORT_SYMBOL_GPL(__put_task_struct);
203
204 /*
205 * macro override instead of weak attribute alias, to workaround
206 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
207 */
208 #ifndef arch_task_cache_init
209 #define arch_task_cache_init()
210 #endif
211
212 void __init fork_init(unsigned long mempages)
213 {
214 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
215 #ifndef ARCH_MIN_TASKALIGN
216 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
217 #endif
218 /* create a slab on which task_structs can be allocated */
219 task_struct_cachep =
220 kmem_cache_create("task_struct", sizeof(struct task_struct),
221 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
222 #endif
223
224 /* do the arch specific task caches init */
225 arch_task_cache_init();
226
227 /*
228 * The default maximum number of threads is set to a safe
229 * value: the thread structures can take up at most half
230 * of memory.
231 */
232 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
233
234 /*
235 * we need to allow at least 20 threads to boot a system
236 */
237 if (max_threads < 20)
238 max_threads = 20;
239
240 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
241 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
242 init_task.signal->rlim[RLIMIT_SIGPENDING] =
243 init_task.signal->rlim[RLIMIT_NPROC];
244 }
245
246 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
247 struct task_struct *src)
248 {
249 *dst = *src;
250 return 0;
251 }
252
253 static struct task_struct *dup_task_struct(struct task_struct *orig)
254 {
255 struct task_struct *tsk;
256 struct thread_info *ti;
257 unsigned long *stackend;
258 int node = tsk_fork_get_node(orig);
259 int err;
260
261 prepare_to_copy(orig);
262
263 tsk = alloc_task_struct_node(node);
264 if (!tsk)
265 return NULL;
266
267 ti = alloc_thread_info_node(tsk, node);
268 if (!ti) {
269 free_task_struct(tsk);
270 return NULL;
271 }
272
273 err = arch_dup_task_struct(tsk, orig);
274 if (err)
275 goto out;
276
277 tsk->stack = ti;
278
279 setup_thread_stack(tsk, orig);
280 clear_user_return_notifier(tsk);
281 clear_tsk_need_resched(tsk);
282 stackend = end_of_stack(tsk);
283 *stackend = STACK_END_MAGIC; /* for overflow detection */
284
285 #ifdef CONFIG_CC_STACKPROTECTOR
286 tsk->stack_canary = get_random_int();
287 #endif
288
289 /*
290 * One for us, one for whoever does the "release_task()" (usually
291 * parent)
292 */
293 atomic_set(&tsk->usage, 2);
294 #ifdef CONFIG_BLK_DEV_IO_TRACE
295 tsk->btrace_seq = 0;
296 #endif
297 tsk->splice_pipe = NULL;
298
299 account_kernel_stack(ti, 1);
300
301 return tsk;
302
303 out:
304 free_thread_info(ti);
305 free_task_struct(tsk);
306 return NULL;
307 }
308
309 #ifdef CONFIG_MMU
310 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
311 {
312 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
313 struct rb_node **rb_link, *rb_parent;
314 int retval;
315 unsigned long charge;
316 struct mempolicy *pol;
317
318 down_write(&oldmm->mmap_sem);
319 flush_cache_dup_mm(oldmm);
320 /*
321 * Not linked in yet - no deadlock potential:
322 */
323 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
324
325 mm->locked_vm = 0;
326 mm->mmap = NULL;
327 mm->mmap_cache = NULL;
328 mm->free_area_cache = oldmm->mmap_base;
329 mm->cached_hole_size = ~0UL;
330 mm->map_count = 0;
331 cpumask_clear(mm_cpumask(mm));
332 mm->mm_rb = RB_ROOT;
333 rb_link = &mm->mm_rb.rb_node;
334 rb_parent = NULL;
335 pprev = &mm->mmap;
336 retval = ksm_fork(mm, oldmm);
337 if (retval)
338 goto out;
339 retval = khugepaged_fork(mm, oldmm);
340 if (retval)
341 goto out;
342
343 prev = NULL;
344 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
345 struct file *file;
346
347 if (mpnt->vm_flags & VM_DONTCOPY) {
348 long pages = vma_pages(mpnt);
349 mm->total_vm -= pages;
350 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
351 -pages);
352 continue;
353 }
354 charge = 0;
355 if (mpnt->vm_flags & VM_ACCOUNT) {
356 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
357 if (security_vm_enough_memory(len))
358 goto fail_nomem;
359 charge = len;
360 }
361 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362 if (!tmp)
363 goto fail_nomem;
364 *tmp = *mpnt;
365 INIT_LIST_HEAD(&tmp->anon_vma_chain);
366 pol = mpol_dup(vma_policy(mpnt));
367 retval = PTR_ERR(pol);
368 if (IS_ERR(pol))
369 goto fail_nomem_policy;
370 vma_set_policy(tmp, pol);
371 tmp->vm_mm = mm;
372 if (anon_vma_fork(tmp, mpnt))
373 goto fail_nomem_anon_vma_fork;
374 tmp->vm_flags &= ~VM_LOCKED;
375 tmp->vm_next = tmp->vm_prev = NULL;
376 file = tmp->vm_file;
377 if (file) {
378 struct inode *inode = file->f_path.dentry->d_inode;
379 struct address_space *mapping = file->f_mapping;
380
381 get_file(file);
382 if (tmp->vm_flags & VM_DENYWRITE)
383 atomic_dec(&inode->i_writecount);
384 mutex_lock(&mapping->i_mmap_mutex);
385 if (tmp->vm_flags & VM_SHARED)
386 mapping->i_mmap_writable++;
387 flush_dcache_mmap_lock(mapping);
388 /* insert tmp into the share list, just after mpnt */
389 vma_prio_tree_add(tmp, mpnt);
390 flush_dcache_mmap_unlock(mapping);
391 mutex_unlock(&mapping->i_mmap_mutex);
392 }
393
394 /*
395 * Clear hugetlb-related page reserves for children. This only
396 * affects MAP_PRIVATE mappings. Faults generated by the child
397 * are not guaranteed to succeed, even if read-only
398 */
399 if (is_vm_hugetlb_page(tmp))
400 reset_vma_resv_huge_pages(tmp);
401
402 /*
403 * Link in the new vma and copy the page table entries.
404 */
405 *pprev = tmp;
406 pprev = &tmp->vm_next;
407 tmp->vm_prev = prev;
408 prev = tmp;
409
410 __vma_link_rb(mm, tmp, rb_link, rb_parent);
411 rb_link = &tmp->vm_rb.rb_right;
412 rb_parent = &tmp->vm_rb;
413
414 mm->map_count++;
415 retval = copy_page_range(mm, oldmm, mpnt);
416
417 if (tmp->vm_ops && tmp->vm_ops->open)
418 tmp->vm_ops->open(tmp);
419
420 if (retval)
421 goto out;
422 }
423 /* a new mm has just been created */
424 arch_dup_mmap(oldmm, mm);
425 retval = 0;
426 out:
427 up_write(&mm->mmap_sem);
428 flush_tlb_mm(oldmm);
429 up_write(&oldmm->mmap_sem);
430 return retval;
431 fail_nomem_anon_vma_fork:
432 mpol_put(pol);
433 fail_nomem_policy:
434 kmem_cache_free(vm_area_cachep, tmp);
435 fail_nomem:
436 retval = -ENOMEM;
437 vm_unacct_memory(charge);
438 goto out;
439 }
440
441 static inline int mm_alloc_pgd(struct mm_struct *mm)
442 {
443 mm->pgd = pgd_alloc(mm);
444 if (unlikely(!mm->pgd))
445 return -ENOMEM;
446 return 0;
447 }
448
449 static inline void mm_free_pgd(struct mm_struct *mm)
450 {
451 pgd_free(mm, mm->pgd);
452 }
453 #else
454 #define dup_mmap(mm, oldmm) (0)
455 #define mm_alloc_pgd(mm) (0)
456 #define mm_free_pgd(mm)
457 #endif /* CONFIG_MMU */
458
459 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
460
461 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
462 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
463
464 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
465
466 static int __init coredump_filter_setup(char *s)
467 {
468 default_dump_filter =
469 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
470 MMF_DUMP_FILTER_MASK;
471 return 1;
472 }
473
474 __setup("coredump_filter=", coredump_filter_setup);
475
476 #include <linux/init_task.h>
477
478 static void mm_init_aio(struct mm_struct *mm)
479 {
480 #ifdef CONFIG_AIO
481 spin_lock_init(&mm->ioctx_lock);
482 INIT_HLIST_HEAD(&mm->ioctx_list);
483 #endif
484 }
485
486 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
487 {
488 atomic_set(&mm->mm_users, 1);
489 atomic_set(&mm->mm_count, 1);
490 init_rwsem(&mm->mmap_sem);
491 INIT_LIST_HEAD(&mm->mmlist);
492 mm->flags = (current->mm) ?
493 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
494 mm->core_state = NULL;
495 mm->nr_ptes = 0;
496 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
497 spin_lock_init(&mm->page_table_lock);
498 mm->free_area_cache = TASK_UNMAPPED_BASE;
499 mm->cached_hole_size = ~0UL;
500 mm_init_aio(mm);
501 mm_init_owner(mm, p);
502
503 if (likely(!mm_alloc_pgd(mm))) {
504 mm->def_flags = 0;
505 mmu_notifier_mm_init(mm);
506 return mm;
507 }
508
509 free_mm(mm);
510 return NULL;
511 }
512
513 /*
514 * Allocate and initialize an mm_struct.
515 */
516 struct mm_struct *mm_alloc(void)
517 {
518 struct mm_struct *mm;
519
520 mm = allocate_mm();
521 if (!mm)
522 return NULL;
523
524 memset(mm, 0, sizeof(*mm));
525 mm_init_cpumask(mm);
526 return mm_init(mm, current);
527 }
528
529 /*
530 * Called when the last reference to the mm
531 * is dropped: either by a lazy thread or by
532 * mmput. Free the page directory and the mm.
533 */
534 void __mmdrop(struct mm_struct *mm)
535 {
536 BUG_ON(mm == &init_mm);
537 mm_free_pgd(mm);
538 destroy_context(mm);
539 mmu_notifier_mm_destroy(mm);
540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
541 VM_BUG_ON(mm->pmd_huge_pte);
542 #endif
543 free_mm(mm);
544 }
545 EXPORT_SYMBOL_GPL(__mmdrop);
546
547 /*
548 * Decrement the use count and release all resources for an mm.
549 */
550 void mmput(struct mm_struct *mm)
551 {
552 might_sleep();
553
554 if (atomic_dec_and_test(&mm->mm_users)) {
555 exit_aio(mm);
556 ksm_exit(mm);
557 khugepaged_exit(mm); /* must run before exit_mmap */
558 exit_mmap(mm);
559 set_mm_exe_file(mm, NULL);
560 if (!list_empty(&mm->mmlist)) {
561 spin_lock(&mmlist_lock);
562 list_del(&mm->mmlist);
563 spin_unlock(&mmlist_lock);
564 }
565 put_swap_token(mm);
566 if (mm->binfmt)
567 module_put(mm->binfmt->module);
568 mmdrop(mm);
569 }
570 }
571 EXPORT_SYMBOL_GPL(mmput);
572
573 /*
574 * We added or removed a vma mapping the executable. The vmas are only mapped
575 * during exec and are not mapped with the mmap system call.
576 * Callers must hold down_write() on the mm's mmap_sem for these
577 */
578 void added_exe_file_vma(struct mm_struct *mm)
579 {
580 mm->num_exe_file_vmas++;
581 }
582
583 void removed_exe_file_vma(struct mm_struct *mm)
584 {
585 mm->num_exe_file_vmas--;
586 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
587 fput(mm->exe_file);
588 mm->exe_file = NULL;
589 }
590
591 }
592
593 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
594 {
595 if (new_exe_file)
596 get_file(new_exe_file);
597 if (mm->exe_file)
598 fput(mm->exe_file);
599 mm->exe_file = new_exe_file;
600 mm->num_exe_file_vmas = 0;
601 }
602
603 struct file *get_mm_exe_file(struct mm_struct *mm)
604 {
605 struct file *exe_file;
606
607 /* We need mmap_sem to protect against races with removal of
608 * VM_EXECUTABLE vmas */
609 down_read(&mm->mmap_sem);
610 exe_file = mm->exe_file;
611 if (exe_file)
612 get_file(exe_file);
613 up_read(&mm->mmap_sem);
614 return exe_file;
615 }
616
617 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
618 {
619 /* It's safe to write the exe_file pointer without exe_file_lock because
620 * this is called during fork when the task is not yet in /proc */
621 newmm->exe_file = get_mm_exe_file(oldmm);
622 }
623
624 /**
625 * get_task_mm - acquire a reference to the task's mm
626 *
627 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
628 * this kernel workthread has transiently adopted a user mm with use_mm,
629 * to do its AIO) is not set and if so returns a reference to it, after
630 * bumping up the use count. User must release the mm via mmput()
631 * after use. Typically used by /proc and ptrace.
632 */
633 struct mm_struct *get_task_mm(struct task_struct *task)
634 {
635 struct mm_struct *mm;
636
637 task_lock(task);
638 mm = task->mm;
639 if (mm) {
640 if (task->flags & PF_KTHREAD)
641 mm = NULL;
642 else
643 atomic_inc(&mm->mm_users);
644 }
645 task_unlock(task);
646 return mm;
647 }
648 EXPORT_SYMBOL_GPL(get_task_mm);
649
650 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
651 {
652 struct mm_struct *mm;
653 int err;
654
655 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
656 if (err)
657 return ERR_PTR(err);
658
659 mm = get_task_mm(task);
660 if (mm && mm != current->mm &&
661 !ptrace_may_access(task, mode)) {
662 mmput(mm);
663 mm = ERR_PTR(-EACCES);
664 }
665 mutex_unlock(&task->signal->cred_guard_mutex);
666
667 return mm;
668 }
669
670 /* Please note the differences between mmput and mm_release.
671 * mmput is called whenever we stop holding onto a mm_struct,
672 * error success whatever.
673 *
674 * mm_release is called after a mm_struct has been removed
675 * from the current process.
676 *
677 * This difference is important for error handling, when we
678 * only half set up a mm_struct for a new process and need to restore
679 * the old one. Because we mmput the new mm_struct before
680 * restoring the old one. . .
681 * Eric Biederman 10 January 1998
682 */
683 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
684 {
685 struct completion *vfork_done = tsk->vfork_done;
686
687 /* Get rid of any futexes when releasing the mm */
688 #ifdef CONFIG_FUTEX
689 if (unlikely(tsk->robust_list)) {
690 exit_robust_list(tsk);
691 tsk->robust_list = NULL;
692 }
693 #ifdef CONFIG_COMPAT
694 if (unlikely(tsk->compat_robust_list)) {
695 compat_exit_robust_list(tsk);
696 tsk->compat_robust_list = NULL;
697 }
698 #endif
699 if (unlikely(!list_empty(&tsk->pi_state_list)))
700 exit_pi_state_list(tsk);
701 #endif
702
703 /* Get rid of any cached register state */
704 deactivate_mm(tsk, mm);
705
706 /* notify parent sleeping on vfork() */
707 if (vfork_done) {
708 tsk->vfork_done = NULL;
709 complete(vfork_done);
710 }
711
712 /*
713 * If we're exiting normally, clear a user-space tid field if
714 * requested. We leave this alone when dying by signal, to leave
715 * the value intact in a core dump, and to save the unnecessary
716 * trouble otherwise. Userland only wants this done for a sys_exit.
717 */
718 if (tsk->clear_child_tid) {
719 if (!(tsk->flags & PF_SIGNALED) &&
720 atomic_read(&mm->mm_users) > 1) {
721 /*
722 * We don't check the error code - if userspace has
723 * not set up a proper pointer then tough luck.
724 */
725 put_user(0, tsk->clear_child_tid);
726 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
727 1, NULL, NULL, 0);
728 }
729 tsk->clear_child_tid = NULL;
730 }
731 }
732
733 /*
734 * Allocate a new mm structure and copy contents from the
735 * mm structure of the passed in task structure.
736 */
737 struct mm_struct *dup_mm(struct task_struct *tsk)
738 {
739 struct mm_struct *mm, *oldmm = current->mm;
740 int err;
741
742 if (!oldmm)
743 return NULL;
744
745 mm = allocate_mm();
746 if (!mm)
747 goto fail_nomem;
748
749 memcpy(mm, oldmm, sizeof(*mm));
750 mm_init_cpumask(mm);
751
752 /* Initializing for Swap token stuff */
753 mm->token_priority = 0;
754 mm->last_interval = 0;
755
756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
757 mm->pmd_huge_pte = NULL;
758 #endif
759
760 if (!mm_init(mm, tsk))
761 goto fail_nomem;
762
763 if (init_new_context(tsk, mm))
764 goto fail_nocontext;
765
766 dup_mm_exe_file(oldmm, mm);
767
768 err = dup_mmap(mm, oldmm);
769 if (err)
770 goto free_pt;
771
772 mm->hiwater_rss = get_mm_rss(mm);
773 mm->hiwater_vm = mm->total_vm;
774
775 if (mm->binfmt && !try_module_get(mm->binfmt->module))
776 goto free_pt;
777
778 return mm;
779
780 free_pt:
781 /* don't put binfmt in mmput, we haven't got module yet */
782 mm->binfmt = NULL;
783 mmput(mm);
784
785 fail_nomem:
786 return NULL;
787
788 fail_nocontext:
789 /*
790 * If init_new_context() failed, we cannot use mmput() to free the mm
791 * because it calls destroy_context()
792 */
793 mm_free_pgd(mm);
794 free_mm(mm);
795 return NULL;
796 }
797
798 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
799 {
800 struct mm_struct *mm, *oldmm;
801 int retval;
802
803 tsk->min_flt = tsk->maj_flt = 0;
804 tsk->nvcsw = tsk->nivcsw = 0;
805 #ifdef CONFIG_DETECT_HUNG_TASK
806 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
807 #endif
808
809 tsk->mm = NULL;
810 tsk->active_mm = NULL;
811
812 /*
813 * Are we cloning a kernel thread?
814 *
815 * We need to steal a active VM for that..
816 */
817 oldmm = current->mm;
818 if (!oldmm)
819 return 0;
820
821 if (clone_flags & CLONE_VM) {
822 atomic_inc(&oldmm->mm_users);
823 mm = oldmm;
824 goto good_mm;
825 }
826
827 retval = -ENOMEM;
828 mm = dup_mm(tsk);
829 if (!mm)
830 goto fail_nomem;
831
832 good_mm:
833 /* Initializing for Swap token stuff */
834 mm->token_priority = 0;
835 mm->last_interval = 0;
836
837 tsk->mm = mm;
838 tsk->active_mm = mm;
839 return 0;
840
841 fail_nomem:
842 return retval;
843 }
844
845 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
846 {
847 struct fs_struct *fs = current->fs;
848 if (clone_flags & CLONE_FS) {
849 /* tsk->fs is already what we want */
850 spin_lock(&fs->lock);
851 if (fs->in_exec) {
852 spin_unlock(&fs->lock);
853 return -EAGAIN;
854 }
855 fs->users++;
856 spin_unlock(&fs->lock);
857 return 0;
858 }
859 tsk->fs = copy_fs_struct(fs);
860 if (!tsk->fs)
861 return -ENOMEM;
862 return 0;
863 }
864
865 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
866 {
867 struct files_struct *oldf, *newf;
868 int error = 0;
869
870 /*
871 * A background process may not have any files ...
872 */
873 oldf = current->files;
874 if (!oldf)
875 goto out;
876
877 if (clone_flags & CLONE_FILES) {
878 atomic_inc(&oldf->count);
879 goto out;
880 }
881
882 newf = dup_fd(oldf, &error);
883 if (!newf)
884 goto out;
885
886 tsk->files = newf;
887 error = 0;
888 out:
889 return error;
890 }
891
892 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
893 {
894 #ifdef CONFIG_BLOCK
895 struct io_context *ioc = current->io_context;
896 struct io_context *new_ioc;
897
898 if (!ioc)
899 return 0;
900 /*
901 * Share io context with parent, if CLONE_IO is set
902 */
903 if (clone_flags & CLONE_IO) {
904 tsk->io_context = ioc_task_link(ioc);
905 if (unlikely(!tsk->io_context))
906 return -ENOMEM;
907 } else if (ioprio_valid(ioc->ioprio)) {
908 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
909 if (unlikely(!new_ioc))
910 return -ENOMEM;
911
912 new_ioc->ioprio = ioc->ioprio;
913 put_io_context(new_ioc, NULL);
914 }
915 #endif
916 return 0;
917 }
918
919 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
920 {
921 struct sighand_struct *sig;
922
923 if (clone_flags & CLONE_SIGHAND) {
924 atomic_inc(&current->sighand->count);
925 return 0;
926 }
927 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
928 rcu_assign_pointer(tsk->sighand, sig);
929 if (!sig)
930 return -ENOMEM;
931 atomic_set(&sig->count, 1);
932 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
933 return 0;
934 }
935
936 void __cleanup_sighand(struct sighand_struct *sighand)
937 {
938 if (atomic_dec_and_test(&sighand->count))
939 kmem_cache_free(sighand_cachep, sighand);
940 }
941
942
943 /*
944 * Initialize POSIX timer handling for a thread group.
945 */
946 static void posix_cpu_timers_init_group(struct signal_struct *sig)
947 {
948 unsigned long cpu_limit;
949
950 /* Thread group counters. */
951 thread_group_cputime_init(sig);
952
953 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
954 if (cpu_limit != RLIM_INFINITY) {
955 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
956 sig->cputimer.running = 1;
957 }
958
959 /* The timer lists. */
960 INIT_LIST_HEAD(&sig->cpu_timers[0]);
961 INIT_LIST_HEAD(&sig->cpu_timers[1]);
962 INIT_LIST_HEAD(&sig->cpu_timers[2]);
963 }
964
965 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
966 {
967 struct signal_struct *sig;
968
969 if (clone_flags & CLONE_THREAD)
970 return 0;
971
972 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
973 tsk->signal = sig;
974 if (!sig)
975 return -ENOMEM;
976
977 sig->nr_threads = 1;
978 atomic_set(&sig->live, 1);
979 atomic_set(&sig->sigcnt, 1);
980 init_waitqueue_head(&sig->wait_chldexit);
981 if (clone_flags & CLONE_NEWPID)
982 sig->flags |= SIGNAL_UNKILLABLE;
983 sig->curr_target = tsk;
984 init_sigpending(&sig->shared_pending);
985 INIT_LIST_HEAD(&sig->posix_timers);
986
987 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
988 sig->real_timer.function = it_real_fn;
989
990 task_lock(current->group_leader);
991 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
992 task_unlock(current->group_leader);
993
994 posix_cpu_timers_init_group(sig);
995
996 tty_audit_fork(sig);
997 sched_autogroup_fork(sig);
998
999 #ifdef CONFIG_CGROUPS
1000 init_rwsem(&sig->group_rwsem);
1001 #endif
1002
1003 sig->oom_adj = current->signal->oom_adj;
1004 sig->oom_score_adj = current->signal->oom_score_adj;
1005 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1006
1007 mutex_init(&sig->cred_guard_mutex);
1008
1009 return 0;
1010 }
1011
1012 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1013 {
1014 unsigned long new_flags = p->flags;
1015
1016 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1017 new_flags |= PF_FORKNOEXEC;
1018 new_flags |= PF_STARTING;
1019 p->flags = new_flags;
1020 }
1021
1022 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1023 {
1024 current->clear_child_tid = tidptr;
1025
1026 return task_pid_vnr(current);
1027 }
1028
1029 static void rt_mutex_init_task(struct task_struct *p)
1030 {
1031 raw_spin_lock_init(&p->pi_lock);
1032 #ifdef CONFIG_RT_MUTEXES
1033 plist_head_init(&p->pi_waiters);
1034 p->pi_blocked_on = NULL;
1035 #endif
1036 }
1037
1038 #ifdef CONFIG_MM_OWNER
1039 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1040 {
1041 mm->owner = p;
1042 }
1043 #endif /* CONFIG_MM_OWNER */
1044
1045 /*
1046 * Initialize POSIX timer handling for a single task.
1047 */
1048 static void posix_cpu_timers_init(struct task_struct *tsk)
1049 {
1050 tsk->cputime_expires.prof_exp = 0;
1051 tsk->cputime_expires.virt_exp = 0;
1052 tsk->cputime_expires.sched_exp = 0;
1053 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1054 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1055 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1056 }
1057
1058 /*
1059 * This creates a new process as a copy of the old one,
1060 * but does not actually start it yet.
1061 *
1062 * It copies the registers, and all the appropriate
1063 * parts of the process environment (as per the clone
1064 * flags). The actual kick-off is left to the caller.
1065 */
1066 static struct task_struct *copy_process(unsigned long clone_flags,
1067 unsigned long stack_start,
1068 struct pt_regs *regs,
1069 unsigned long stack_size,
1070 int __user *child_tidptr,
1071 struct pid *pid,
1072 int trace)
1073 {
1074 int retval;
1075 struct task_struct *p;
1076 int cgroup_callbacks_done = 0;
1077
1078 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1079 return ERR_PTR(-EINVAL);
1080
1081 /*
1082 * Thread groups must share signals as well, and detached threads
1083 * can only be started up within the thread group.
1084 */
1085 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1086 return ERR_PTR(-EINVAL);
1087
1088 /*
1089 * Shared signal handlers imply shared VM. By way of the above,
1090 * thread groups also imply shared VM. Blocking this case allows
1091 * for various simplifications in other code.
1092 */
1093 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1094 return ERR_PTR(-EINVAL);
1095
1096 /*
1097 * Siblings of global init remain as zombies on exit since they are
1098 * not reaped by their parent (swapper). To solve this and to avoid
1099 * multi-rooted process trees, prevent global and container-inits
1100 * from creating siblings.
1101 */
1102 if ((clone_flags & CLONE_PARENT) &&
1103 current->signal->flags & SIGNAL_UNKILLABLE)
1104 return ERR_PTR(-EINVAL);
1105
1106 retval = security_task_create(clone_flags);
1107 if (retval)
1108 goto fork_out;
1109
1110 retval = -ENOMEM;
1111 p = dup_task_struct(current);
1112 if (!p)
1113 goto fork_out;
1114
1115 ftrace_graph_init_task(p);
1116
1117 rt_mutex_init_task(p);
1118
1119 #ifdef CONFIG_PROVE_LOCKING
1120 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1121 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1122 #endif
1123 retval = -EAGAIN;
1124 if (atomic_read(&p->real_cred->user->processes) >=
1125 task_rlimit(p, RLIMIT_NPROC)) {
1126 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1127 p->real_cred->user != INIT_USER)
1128 goto bad_fork_free;
1129 }
1130 current->flags &= ~PF_NPROC_EXCEEDED;
1131
1132 retval = copy_creds(p, clone_flags);
1133 if (retval < 0)
1134 goto bad_fork_free;
1135
1136 /*
1137 * If multiple threads are within copy_process(), then this check
1138 * triggers too late. This doesn't hurt, the check is only there
1139 * to stop root fork bombs.
1140 */
1141 retval = -EAGAIN;
1142 if (nr_threads >= max_threads)
1143 goto bad_fork_cleanup_count;
1144
1145 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1146 goto bad_fork_cleanup_count;
1147
1148 p->did_exec = 0;
1149 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1150 copy_flags(clone_flags, p);
1151 INIT_LIST_HEAD(&p->children);
1152 INIT_LIST_HEAD(&p->sibling);
1153 rcu_copy_process(p);
1154 p->vfork_done = NULL;
1155 spin_lock_init(&p->alloc_lock);
1156
1157 init_sigpending(&p->pending);
1158
1159 p->utime = p->stime = p->gtime = 0;
1160 p->utimescaled = p->stimescaled = 0;
1161 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1162 p->prev_utime = p->prev_stime = 0;
1163 #endif
1164 #if defined(SPLIT_RSS_COUNTING)
1165 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1166 #endif
1167
1168 p->default_timer_slack_ns = current->timer_slack_ns;
1169
1170 task_io_accounting_init(&p->ioac);
1171 acct_clear_integrals(p);
1172
1173 posix_cpu_timers_init(p);
1174
1175 do_posix_clock_monotonic_gettime(&p->start_time);
1176 p->real_start_time = p->start_time;
1177 monotonic_to_bootbased(&p->real_start_time);
1178 p->io_context = NULL;
1179 p->audit_context = NULL;
1180 if (clone_flags & CLONE_THREAD)
1181 threadgroup_change_begin(current);
1182 cgroup_fork(p);
1183 #ifdef CONFIG_NUMA
1184 p->mempolicy = mpol_dup(p->mempolicy);
1185 if (IS_ERR(p->mempolicy)) {
1186 retval = PTR_ERR(p->mempolicy);
1187 p->mempolicy = NULL;
1188 goto bad_fork_cleanup_cgroup;
1189 }
1190 mpol_fix_fork_child_flag(p);
1191 #endif
1192 #ifdef CONFIG_CPUSETS
1193 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1194 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1195 #endif
1196 #ifdef CONFIG_TRACE_IRQFLAGS
1197 p->irq_events = 0;
1198 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1199 p->hardirqs_enabled = 1;
1200 #else
1201 p->hardirqs_enabled = 0;
1202 #endif
1203 p->hardirq_enable_ip = 0;
1204 p->hardirq_enable_event = 0;
1205 p->hardirq_disable_ip = _THIS_IP_;
1206 p->hardirq_disable_event = 0;
1207 p->softirqs_enabled = 1;
1208 p->softirq_enable_ip = _THIS_IP_;
1209 p->softirq_enable_event = 0;
1210 p->softirq_disable_ip = 0;
1211 p->softirq_disable_event = 0;
1212 p->hardirq_context = 0;
1213 p->softirq_context = 0;
1214 #endif
1215 #ifdef CONFIG_LOCKDEP
1216 p->lockdep_depth = 0; /* no locks held yet */
1217 p->curr_chain_key = 0;
1218 p->lockdep_recursion = 0;
1219 #endif
1220
1221 #ifdef CONFIG_DEBUG_MUTEXES
1222 p->blocked_on = NULL; /* not blocked yet */
1223 #endif
1224 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1225 p->memcg_batch.do_batch = 0;
1226 p->memcg_batch.memcg = NULL;
1227 #endif
1228
1229 /* Perform scheduler related setup. Assign this task to a CPU. */
1230 sched_fork(p);
1231
1232 retval = perf_event_init_task(p);
1233 if (retval)
1234 goto bad_fork_cleanup_policy;
1235 retval = audit_alloc(p);
1236 if (retval)
1237 goto bad_fork_cleanup_policy;
1238 /* copy all the process information */
1239 retval = copy_semundo(clone_flags, p);
1240 if (retval)
1241 goto bad_fork_cleanup_audit;
1242 retval = copy_files(clone_flags, p);
1243 if (retval)
1244 goto bad_fork_cleanup_semundo;
1245 retval = copy_fs(clone_flags, p);
1246 if (retval)
1247 goto bad_fork_cleanup_files;
1248 retval = copy_sighand(clone_flags, p);
1249 if (retval)
1250 goto bad_fork_cleanup_fs;
1251 retval = copy_signal(clone_flags, p);
1252 if (retval)
1253 goto bad_fork_cleanup_sighand;
1254 retval = copy_mm(clone_flags, p);
1255 if (retval)
1256 goto bad_fork_cleanup_signal;
1257 retval = copy_namespaces(clone_flags, p);
1258 if (retval)
1259 goto bad_fork_cleanup_mm;
1260 retval = copy_io(clone_flags, p);
1261 if (retval)
1262 goto bad_fork_cleanup_namespaces;
1263 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1264 if (retval)
1265 goto bad_fork_cleanup_io;
1266
1267 if (pid != &init_struct_pid) {
1268 retval = -ENOMEM;
1269 pid = alloc_pid(p->nsproxy->pid_ns);
1270 if (!pid)
1271 goto bad_fork_cleanup_io;
1272 }
1273
1274 p->pid = pid_nr(pid);
1275 p->tgid = p->pid;
1276 if (clone_flags & CLONE_THREAD)
1277 p->tgid = current->tgid;
1278
1279 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1280 /*
1281 * Clear TID on mm_release()?
1282 */
1283 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1284 #ifdef CONFIG_BLOCK
1285 p->plug = NULL;
1286 #endif
1287 #ifdef CONFIG_FUTEX
1288 p->robust_list = NULL;
1289 #ifdef CONFIG_COMPAT
1290 p->compat_robust_list = NULL;
1291 #endif
1292 INIT_LIST_HEAD(&p->pi_state_list);
1293 p->pi_state_cache = NULL;
1294 #endif
1295 /*
1296 * sigaltstack should be cleared when sharing the same VM
1297 */
1298 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1299 p->sas_ss_sp = p->sas_ss_size = 0;
1300
1301 /*
1302 * Syscall tracing and stepping should be turned off in the
1303 * child regardless of CLONE_PTRACE.
1304 */
1305 user_disable_single_step(p);
1306 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1307 #ifdef TIF_SYSCALL_EMU
1308 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1309 #endif
1310 clear_all_latency_tracing(p);
1311
1312 /* ok, now we should be set up.. */
1313 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1314 p->pdeath_signal = 0;
1315 p->exit_state = 0;
1316
1317 p->nr_dirtied = 0;
1318 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1319 p->dirty_paused_when = 0;
1320
1321 /*
1322 * Ok, make it visible to the rest of the system.
1323 * We dont wake it up yet.
1324 */
1325 p->group_leader = p;
1326 INIT_LIST_HEAD(&p->thread_group);
1327
1328 /* Now that the task is set up, run cgroup callbacks if
1329 * necessary. We need to run them before the task is visible
1330 * on the tasklist. */
1331 cgroup_fork_callbacks(p);
1332 cgroup_callbacks_done = 1;
1333
1334 /* Need tasklist lock for parent etc handling! */
1335 write_lock_irq(&tasklist_lock);
1336
1337 /* CLONE_PARENT re-uses the old parent */
1338 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1339 p->real_parent = current->real_parent;
1340 p->parent_exec_id = current->parent_exec_id;
1341 } else {
1342 p->real_parent = current;
1343 p->parent_exec_id = current->self_exec_id;
1344 }
1345
1346 spin_lock(&current->sighand->siglock);
1347
1348 /*
1349 * Process group and session signals need to be delivered to just the
1350 * parent before the fork or both the parent and the child after the
1351 * fork. Restart if a signal comes in before we add the new process to
1352 * it's process group.
1353 * A fatal signal pending means that current will exit, so the new
1354 * thread can't slip out of an OOM kill (or normal SIGKILL).
1355 */
1356 recalc_sigpending();
1357 if (signal_pending(current)) {
1358 spin_unlock(&current->sighand->siglock);
1359 write_unlock_irq(&tasklist_lock);
1360 retval = -ERESTARTNOINTR;
1361 goto bad_fork_free_pid;
1362 }
1363
1364 if (clone_flags & CLONE_THREAD) {
1365 current->signal->nr_threads++;
1366 atomic_inc(&current->signal->live);
1367 atomic_inc(&current->signal->sigcnt);
1368 p->group_leader = current->group_leader;
1369 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1370 }
1371
1372 if (likely(p->pid)) {
1373 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1374
1375 if (thread_group_leader(p)) {
1376 if (is_child_reaper(pid))
1377 p->nsproxy->pid_ns->child_reaper = p;
1378
1379 p->signal->leader_pid = pid;
1380 p->signal->tty = tty_kref_get(current->signal->tty);
1381 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1382 attach_pid(p, PIDTYPE_SID, task_session(current));
1383 list_add_tail(&p->sibling, &p->real_parent->children);
1384 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1385 __this_cpu_inc(process_counts);
1386 }
1387 attach_pid(p, PIDTYPE_PID, pid);
1388 nr_threads++;
1389 }
1390
1391 total_forks++;
1392 spin_unlock(&current->sighand->siglock);
1393 write_unlock_irq(&tasklist_lock);
1394 proc_fork_connector(p);
1395 cgroup_post_fork(p);
1396 if (clone_flags & CLONE_THREAD)
1397 threadgroup_change_end(current);
1398 perf_event_fork(p);
1399
1400 trace_task_newtask(p, clone_flags);
1401
1402 return p;
1403
1404 bad_fork_free_pid:
1405 if (pid != &init_struct_pid)
1406 free_pid(pid);
1407 bad_fork_cleanup_io:
1408 if (p->io_context)
1409 exit_io_context(p);
1410 bad_fork_cleanup_namespaces:
1411 exit_task_namespaces(p);
1412 bad_fork_cleanup_mm:
1413 if (p->mm)
1414 mmput(p->mm);
1415 bad_fork_cleanup_signal:
1416 if (!(clone_flags & CLONE_THREAD))
1417 free_signal_struct(p->signal);
1418 bad_fork_cleanup_sighand:
1419 __cleanup_sighand(p->sighand);
1420 bad_fork_cleanup_fs:
1421 exit_fs(p); /* blocking */
1422 bad_fork_cleanup_files:
1423 exit_files(p); /* blocking */
1424 bad_fork_cleanup_semundo:
1425 exit_sem(p);
1426 bad_fork_cleanup_audit:
1427 audit_free(p);
1428 bad_fork_cleanup_policy:
1429 perf_event_free_task(p);
1430 #ifdef CONFIG_NUMA
1431 mpol_put(p->mempolicy);
1432 bad_fork_cleanup_cgroup:
1433 #endif
1434 if (clone_flags & CLONE_THREAD)
1435 threadgroup_change_end(current);
1436 cgroup_exit(p, cgroup_callbacks_done);
1437 delayacct_tsk_free(p);
1438 module_put(task_thread_info(p)->exec_domain->module);
1439 bad_fork_cleanup_count:
1440 atomic_dec(&p->cred->user->processes);
1441 exit_creds(p);
1442 bad_fork_free:
1443 free_task(p);
1444 fork_out:
1445 return ERR_PTR(retval);
1446 }
1447
1448 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1449 {
1450 memset(regs, 0, sizeof(struct pt_regs));
1451 return regs;
1452 }
1453
1454 static inline void init_idle_pids(struct pid_link *links)
1455 {
1456 enum pid_type type;
1457
1458 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1459 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1460 links[type].pid = &init_struct_pid;
1461 }
1462 }
1463
1464 struct task_struct * __cpuinit fork_idle(int cpu)
1465 {
1466 struct task_struct *task;
1467 struct pt_regs regs;
1468
1469 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1470 &init_struct_pid, 0);
1471 if (!IS_ERR(task)) {
1472 init_idle_pids(task->pids);
1473 init_idle(task, cpu);
1474 }
1475
1476 return task;
1477 }
1478
1479 /*
1480 * Ok, this is the main fork-routine.
1481 *
1482 * It copies the process, and if successful kick-starts
1483 * it and waits for it to finish using the VM if required.
1484 */
1485 long do_fork(unsigned long clone_flags,
1486 unsigned long stack_start,
1487 struct pt_regs *regs,
1488 unsigned long stack_size,
1489 int __user *parent_tidptr,
1490 int __user *child_tidptr)
1491 {
1492 struct task_struct *p;
1493 int trace = 0;
1494 long nr;
1495
1496 /*
1497 * Do some preliminary argument and permissions checking before we
1498 * actually start allocating stuff
1499 */
1500 if (clone_flags & CLONE_NEWUSER) {
1501 if (clone_flags & CLONE_THREAD)
1502 return -EINVAL;
1503 /* hopefully this check will go away when userns support is
1504 * complete
1505 */
1506 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1507 !capable(CAP_SETGID))
1508 return -EPERM;
1509 }
1510
1511 /*
1512 * Determine whether and which event to report to ptracer. When
1513 * called from kernel_thread or CLONE_UNTRACED is explicitly
1514 * requested, no event is reported; otherwise, report if the event
1515 * for the type of forking is enabled.
1516 */
1517 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1518 if (clone_flags & CLONE_VFORK)
1519 trace = PTRACE_EVENT_VFORK;
1520 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1521 trace = PTRACE_EVENT_CLONE;
1522 else
1523 trace = PTRACE_EVENT_FORK;
1524
1525 if (likely(!ptrace_event_enabled(current, trace)))
1526 trace = 0;
1527 }
1528
1529 p = copy_process(clone_flags, stack_start, regs, stack_size,
1530 child_tidptr, NULL, trace);
1531 /*
1532 * Do this prior waking up the new thread - the thread pointer
1533 * might get invalid after that point, if the thread exits quickly.
1534 */
1535 if (!IS_ERR(p)) {
1536 struct completion vfork;
1537
1538 trace_sched_process_fork(current, p);
1539
1540 nr = task_pid_vnr(p);
1541
1542 if (clone_flags & CLONE_PARENT_SETTID)
1543 put_user(nr, parent_tidptr);
1544
1545 if (clone_flags & CLONE_VFORK) {
1546 p->vfork_done = &vfork;
1547 init_completion(&vfork);
1548 }
1549
1550 /*
1551 * We set PF_STARTING at creation in case tracing wants to
1552 * use this to distinguish a fully live task from one that
1553 * hasn't finished SIGSTOP raising yet. Now we clear it
1554 * and set the child going.
1555 */
1556 p->flags &= ~PF_STARTING;
1557
1558 wake_up_new_task(p);
1559
1560 /* forking complete and child started to run, tell ptracer */
1561 if (unlikely(trace))
1562 ptrace_event(trace, nr);
1563
1564 if (clone_flags & CLONE_VFORK) {
1565 freezer_do_not_count();
1566 wait_for_completion(&vfork);
1567 freezer_count();
1568 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1569 }
1570 } else {
1571 nr = PTR_ERR(p);
1572 }
1573 return nr;
1574 }
1575
1576 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1577 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1578 #endif
1579
1580 static void sighand_ctor(void *data)
1581 {
1582 struct sighand_struct *sighand = data;
1583
1584 spin_lock_init(&sighand->siglock);
1585 init_waitqueue_head(&sighand->signalfd_wqh);
1586 }
1587
1588 void __init proc_caches_init(void)
1589 {
1590 sighand_cachep = kmem_cache_create("sighand_cache",
1591 sizeof(struct sighand_struct), 0,
1592 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1593 SLAB_NOTRACK, sighand_ctor);
1594 signal_cachep = kmem_cache_create("signal_cache",
1595 sizeof(struct signal_struct), 0,
1596 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1597 files_cachep = kmem_cache_create("files_cache",
1598 sizeof(struct files_struct), 0,
1599 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1600 fs_cachep = kmem_cache_create("fs_cache",
1601 sizeof(struct fs_struct), 0,
1602 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1603 /*
1604 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1605 * whole struct cpumask for the OFFSTACK case. We could change
1606 * this to *only* allocate as much of it as required by the
1607 * maximum number of CPU's we can ever have. The cpumask_allocation
1608 * is at the end of the structure, exactly for that reason.
1609 */
1610 mm_cachep = kmem_cache_create("mm_struct",
1611 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1612 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1613 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1614 mmap_init();
1615 nsproxy_cache_init();
1616 }
1617
1618 /*
1619 * Check constraints on flags passed to the unshare system call.
1620 */
1621 static int check_unshare_flags(unsigned long unshare_flags)
1622 {
1623 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1624 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1625 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1626 return -EINVAL;
1627 /*
1628 * Not implemented, but pretend it works if there is nothing to
1629 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1630 * needs to unshare vm.
1631 */
1632 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1633 /* FIXME: get_task_mm() increments ->mm_users */
1634 if (atomic_read(&current->mm->mm_users) > 1)
1635 return -EINVAL;
1636 }
1637
1638 return 0;
1639 }
1640
1641 /*
1642 * Unshare the filesystem structure if it is being shared
1643 */
1644 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1645 {
1646 struct fs_struct *fs = current->fs;
1647
1648 if (!(unshare_flags & CLONE_FS) || !fs)
1649 return 0;
1650
1651 /* don't need lock here; in the worst case we'll do useless copy */
1652 if (fs->users == 1)
1653 return 0;
1654
1655 *new_fsp = copy_fs_struct(fs);
1656 if (!*new_fsp)
1657 return -ENOMEM;
1658
1659 return 0;
1660 }
1661
1662 /*
1663 * Unshare file descriptor table if it is being shared
1664 */
1665 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1666 {
1667 struct files_struct *fd = current->files;
1668 int error = 0;
1669
1670 if ((unshare_flags & CLONE_FILES) &&
1671 (fd && atomic_read(&fd->count) > 1)) {
1672 *new_fdp = dup_fd(fd, &error);
1673 if (!*new_fdp)
1674 return error;
1675 }
1676
1677 return 0;
1678 }
1679
1680 /*
1681 * unshare allows a process to 'unshare' part of the process
1682 * context which was originally shared using clone. copy_*
1683 * functions used by do_fork() cannot be used here directly
1684 * because they modify an inactive task_struct that is being
1685 * constructed. Here we are modifying the current, active,
1686 * task_struct.
1687 */
1688 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1689 {
1690 struct fs_struct *fs, *new_fs = NULL;
1691 struct files_struct *fd, *new_fd = NULL;
1692 struct nsproxy *new_nsproxy = NULL;
1693 int do_sysvsem = 0;
1694 int err;
1695
1696 err = check_unshare_flags(unshare_flags);
1697 if (err)
1698 goto bad_unshare_out;
1699
1700 /*
1701 * If unsharing namespace, must also unshare filesystem information.
1702 */
1703 if (unshare_flags & CLONE_NEWNS)
1704 unshare_flags |= CLONE_FS;
1705 /*
1706 * CLONE_NEWIPC must also detach from the undolist: after switching
1707 * to a new ipc namespace, the semaphore arrays from the old
1708 * namespace are unreachable.
1709 */
1710 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1711 do_sysvsem = 1;
1712 err = unshare_fs(unshare_flags, &new_fs);
1713 if (err)
1714 goto bad_unshare_out;
1715 err = unshare_fd(unshare_flags, &new_fd);
1716 if (err)
1717 goto bad_unshare_cleanup_fs;
1718 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1719 if (err)
1720 goto bad_unshare_cleanup_fd;
1721
1722 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1723 if (do_sysvsem) {
1724 /*
1725 * CLONE_SYSVSEM is equivalent to sys_exit().
1726 */
1727 exit_sem(current);
1728 }
1729
1730 if (new_nsproxy) {
1731 switch_task_namespaces(current, new_nsproxy);
1732 new_nsproxy = NULL;
1733 }
1734
1735 task_lock(current);
1736
1737 if (new_fs) {
1738 fs = current->fs;
1739 spin_lock(&fs->lock);
1740 current->fs = new_fs;
1741 if (--fs->users)
1742 new_fs = NULL;
1743 else
1744 new_fs = fs;
1745 spin_unlock(&fs->lock);
1746 }
1747
1748 if (new_fd) {
1749 fd = current->files;
1750 current->files = new_fd;
1751 new_fd = fd;
1752 }
1753
1754 task_unlock(current);
1755 }
1756
1757 if (new_nsproxy)
1758 put_nsproxy(new_nsproxy);
1759
1760 bad_unshare_cleanup_fd:
1761 if (new_fd)
1762 put_files_struct(new_fd);
1763
1764 bad_unshare_cleanup_fs:
1765 if (new_fs)
1766 free_fs_struct(new_fs);
1767
1768 bad_unshare_out:
1769 return err;
1770 }
1771
1772 /*
1773 * Helper to unshare the files of the current task.
1774 * We don't want to expose copy_files internals to
1775 * the exec layer of the kernel.
1776 */
1777
1778 int unshare_files(struct files_struct **displaced)
1779 {
1780 struct task_struct *task = current;
1781 struct files_struct *copy = NULL;
1782 int error;
1783
1784 error = unshare_fd(CLONE_FILES, &copy);
1785 if (error || !copy) {
1786 *displaced = NULL;
1787 return error;
1788 }
1789 *displaced = task->files;
1790 task_lock(task);
1791 task->files = copy;
1792 task_unlock(task);
1793 return 0;
1794 }