]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
block, cfq: unlink cfq_io_context's immediately
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76
77 #include <trace/events/sched.h>
78
79 /*
80 * Protected counters by write_lock_irq(&tasklist_lock)
81 */
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
84
85 int max_threads; /* tunable limit on nr_threads */
86
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98
99 int nr_processes(void)
100 {
101 int cpu;
102 int total = 0;
103
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
106
107 return total;
108 }
109
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
117
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 int node)
121 {
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125 gfp_t mask = GFP_KERNEL;
126 #endif
127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
128
129 return page ? page_address(page) : NULL;
130 }
131
132 static inline void free_thread_info(struct thread_info *ti)
133 {
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 }
136 #endif
137
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
140
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
143
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
146
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
149
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
152
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
155
156 static void account_kernel_stack(struct thread_info *ti, int account)
157 {
158 struct zone *zone = page_zone(virt_to_page(ti));
159
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161 }
162
163 void free_task(struct task_struct *tsk)
164 {
165 account_kernel_stack(tsk->stack, -1);
166 free_thread_info(tsk->stack);
167 rt_mutex_debug_task_free(tsk);
168 ftrace_graph_exit_task(tsk);
169 free_task_struct(tsk);
170 }
171 EXPORT_SYMBOL(free_task);
172
173 static inline void free_signal_struct(struct signal_struct *sig)
174 {
175 taskstats_tgid_free(sig);
176 sched_autogroup_exit(sig);
177 kmem_cache_free(signal_cachep, sig);
178 }
179
180 static inline void put_signal_struct(struct signal_struct *sig)
181 {
182 if (atomic_dec_and_test(&sig->sigcnt))
183 free_signal_struct(sig);
184 }
185
186 void __put_task_struct(struct task_struct *tsk)
187 {
188 WARN_ON(!tsk->exit_state);
189 WARN_ON(atomic_read(&tsk->usage));
190 WARN_ON(tsk == current);
191
192 exit_creds(tsk);
193 delayacct_tsk_free(tsk);
194 put_signal_struct(tsk->signal);
195
196 if (!profile_handoff_task(tsk))
197 free_task(tsk);
198 }
199 EXPORT_SYMBOL_GPL(__put_task_struct);
200
201 /*
202 * macro override instead of weak attribute alias, to workaround
203 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
204 */
205 #ifndef arch_task_cache_init
206 #define arch_task_cache_init()
207 #endif
208
209 void __init fork_init(unsigned long mempages)
210 {
211 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
212 #ifndef ARCH_MIN_TASKALIGN
213 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
214 #endif
215 /* create a slab on which task_structs can be allocated */
216 task_struct_cachep =
217 kmem_cache_create("task_struct", sizeof(struct task_struct),
218 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
219 #endif
220
221 /* do the arch specific task caches init */
222 arch_task_cache_init();
223
224 /*
225 * The default maximum number of threads is set to a safe
226 * value: the thread structures can take up at most half
227 * of memory.
228 */
229 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
230
231 /*
232 * we need to allow at least 20 threads to boot a system
233 */
234 if (max_threads < 20)
235 max_threads = 20;
236
237 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
238 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
239 init_task.signal->rlim[RLIMIT_SIGPENDING] =
240 init_task.signal->rlim[RLIMIT_NPROC];
241 }
242
243 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
244 struct task_struct *src)
245 {
246 *dst = *src;
247 return 0;
248 }
249
250 static struct task_struct *dup_task_struct(struct task_struct *orig)
251 {
252 struct task_struct *tsk;
253 struct thread_info *ti;
254 unsigned long *stackend;
255 int node = tsk_fork_get_node(orig);
256 int err;
257
258 prepare_to_copy(orig);
259
260 tsk = alloc_task_struct_node(node);
261 if (!tsk)
262 return NULL;
263
264 ti = alloc_thread_info_node(tsk, node);
265 if (!ti) {
266 free_task_struct(tsk);
267 return NULL;
268 }
269
270 err = arch_dup_task_struct(tsk, orig);
271 if (err)
272 goto out;
273
274 tsk->stack = ti;
275
276 setup_thread_stack(tsk, orig);
277 clear_user_return_notifier(tsk);
278 clear_tsk_need_resched(tsk);
279 stackend = end_of_stack(tsk);
280 *stackend = STACK_END_MAGIC; /* for overflow detection */
281
282 #ifdef CONFIG_CC_STACKPROTECTOR
283 tsk->stack_canary = get_random_int();
284 #endif
285
286 /*
287 * One for us, one for whoever does the "release_task()" (usually
288 * parent)
289 */
290 atomic_set(&tsk->usage, 2);
291 #ifdef CONFIG_BLK_DEV_IO_TRACE
292 tsk->btrace_seq = 0;
293 #endif
294 tsk->splice_pipe = NULL;
295
296 account_kernel_stack(ti, 1);
297
298 return tsk;
299
300 out:
301 free_thread_info(ti);
302 free_task_struct(tsk);
303 return NULL;
304 }
305
306 #ifdef CONFIG_MMU
307 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
308 {
309 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
310 struct rb_node **rb_link, *rb_parent;
311 int retval;
312 unsigned long charge;
313 struct mempolicy *pol;
314
315 down_write(&oldmm->mmap_sem);
316 flush_cache_dup_mm(oldmm);
317 /*
318 * Not linked in yet - no deadlock potential:
319 */
320 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
321
322 mm->locked_vm = 0;
323 mm->mmap = NULL;
324 mm->mmap_cache = NULL;
325 mm->free_area_cache = oldmm->mmap_base;
326 mm->cached_hole_size = ~0UL;
327 mm->map_count = 0;
328 cpumask_clear(mm_cpumask(mm));
329 mm->mm_rb = RB_ROOT;
330 rb_link = &mm->mm_rb.rb_node;
331 rb_parent = NULL;
332 pprev = &mm->mmap;
333 retval = ksm_fork(mm, oldmm);
334 if (retval)
335 goto out;
336 retval = khugepaged_fork(mm, oldmm);
337 if (retval)
338 goto out;
339
340 prev = NULL;
341 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
342 struct file *file;
343
344 if (mpnt->vm_flags & VM_DONTCOPY) {
345 long pages = vma_pages(mpnt);
346 mm->total_vm -= pages;
347 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
348 -pages);
349 continue;
350 }
351 charge = 0;
352 if (mpnt->vm_flags & VM_ACCOUNT) {
353 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
354 if (security_vm_enough_memory(len))
355 goto fail_nomem;
356 charge = len;
357 }
358 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
359 if (!tmp)
360 goto fail_nomem;
361 *tmp = *mpnt;
362 INIT_LIST_HEAD(&tmp->anon_vma_chain);
363 pol = mpol_dup(vma_policy(mpnt));
364 retval = PTR_ERR(pol);
365 if (IS_ERR(pol))
366 goto fail_nomem_policy;
367 vma_set_policy(tmp, pol);
368 tmp->vm_mm = mm;
369 if (anon_vma_fork(tmp, mpnt))
370 goto fail_nomem_anon_vma_fork;
371 tmp->vm_flags &= ~VM_LOCKED;
372 tmp->vm_next = tmp->vm_prev = NULL;
373 file = tmp->vm_file;
374 if (file) {
375 struct inode *inode = file->f_path.dentry->d_inode;
376 struct address_space *mapping = file->f_mapping;
377
378 get_file(file);
379 if (tmp->vm_flags & VM_DENYWRITE)
380 atomic_dec(&inode->i_writecount);
381 mutex_lock(&mapping->i_mmap_mutex);
382 if (tmp->vm_flags & VM_SHARED)
383 mapping->i_mmap_writable++;
384 flush_dcache_mmap_lock(mapping);
385 /* insert tmp into the share list, just after mpnt */
386 vma_prio_tree_add(tmp, mpnt);
387 flush_dcache_mmap_unlock(mapping);
388 mutex_unlock(&mapping->i_mmap_mutex);
389 }
390
391 /*
392 * Clear hugetlb-related page reserves for children. This only
393 * affects MAP_PRIVATE mappings. Faults generated by the child
394 * are not guaranteed to succeed, even if read-only
395 */
396 if (is_vm_hugetlb_page(tmp))
397 reset_vma_resv_huge_pages(tmp);
398
399 /*
400 * Link in the new vma and copy the page table entries.
401 */
402 *pprev = tmp;
403 pprev = &tmp->vm_next;
404 tmp->vm_prev = prev;
405 prev = tmp;
406
407 __vma_link_rb(mm, tmp, rb_link, rb_parent);
408 rb_link = &tmp->vm_rb.rb_right;
409 rb_parent = &tmp->vm_rb;
410
411 mm->map_count++;
412 retval = copy_page_range(mm, oldmm, mpnt);
413
414 if (tmp->vm_ops && tmp->vm_ops->open)
415 tmp->vm_ops->open(tmp);
416
417 if (retval)
418 goto out;
419 }
420 /* a new mm has just been created */
421 arch_dup_mmap(oldmm, mm);
422 retval = 0;
423 out:
424 up_write(&mm->mmap_sem);
425 flush_tlb_mm(oldmm);
426 up_write(&oldmm->mmap_sem);
427 return retval;
428 fail_nomem_anon_vma_fork:
429 mpol_put(pol);
430 fail_nomem_policy:
431 kmem_cache_free(vm_area_cachep, tmp);
432 fail_nomem:
433 retval = -ENOMEM;
434 vm_unacct_memory(charge);
435 goto out;
436 }
437
438 static inline int mm_alloc_pgd(struct mm_struct *mm)
439 {
440 mm->pgd = pgd_alloc(mm);
441 if (unlikely(!mm->pgd))
442 return -ENOMEM;
443 return 0;
444 }
445
446 static inline void mm_free_pgd(struct mm_struct *mm)
447 {
448 pgd_free(mm, mm->pgd);
449 }
450 #else
451 #define dup_mmap(mm, oldmm) (0)
452 #define mm_alloc_pgd(mm) (0)
453 #define mm_free_pgd(mm)
454 #endif /* CONFIG_MMU */
455
456 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
457
458 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
459 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
460
461 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
462
463 static int __init coredump_filter_setup(char *s)
464 {
465 default_dump_filter =
466 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
467 MMF_DUMP_FILTER_MASK;
468 return 1;
469 }
470
471 __setup("coredump_filter=", coredump_filter_setup);
472
473 #include <linux/init_task.h>
474
475 static void mm_init_aio(struct mm_struct *mm)
476 {
477 #ifdef CONFIG_AIO
478 spin_lock_init(&mm->ioctx_lock);
479 INIT_HLIST_HEAD(&mm->ioctx_list);
480 #endif
481 }
482
483 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
484 {
485 atomic_set(&mm->mm_users, 1);
486 atomic_set(&mm->mm_count, 1);
487 init_rwsem(&mm->mmap_sem);
488 INIT_LIST_HEAD(&mm->mmlist);
489 mm->flags = (current->mm) ?
490 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
491 mm->core_state = NULL;
492 mm->nr_ptes = 0;
493 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
494 spin_lock_init(&mm->page_table_lock);
495 mm->free_area_cache = TASK_UNMAPPED_BASE;
496 mm->cached_hole_size = ~0UL;
497 mm_init_aio(mm);
498 mm_init_owner(mm, p);
499
500 if (likely(!mm_alloc_pgd(mm))) {
501 mm->def_flags = 0;
502 mmu_notifier_mm_init(mm);
503 return mm;
504 }
505
506 free_mm(mm);
507 return NULL;
508 }
509
510 /*
511 * Allocate and initialize an mm_struct.
512 */
513 struct mm_struct *mm_alloc(void)
514 {
515 struct mm_struct *mm;
516
517 mm = allocate_mm();
518 if (!mm)
519 return NULL;
520
521 memset(mm, 0, sizeof(*mm));
522 mm_init_cpumask(mm);
523 return mm_init(mm, current);
524 }
525
526 /*
527 * Called when the last reference to the mm
528 * is dropped: either by a lazy thread or by
529 * mmput. Free the page directory and the mm.
530 */
531 void __mmdrop(struct mm_struct *mm)
532 {
533 BUG_ON(mm == &init_mm);
534 mm_free_pgd(mm);
535 destroy_context(mm);
536 mmu_notifier_mm_destroy(mm);
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 VM_BUG_ON(mm->pmd_huge_pte);
539 #endif
540 free_mm(mm);
541 }
542 EXPORT_SYMBOL_GPL(__mmdrop);
543
544 /*
545 * Decrement the use count and release all resources for an mm.
546 */
547 void mmput(struct mm_struct *mm)
548 {
549 might_sleep();
550
551 if (atomic_dec_and_test(&mm->mm_users)) {
552 exit_aio(mm);
553 ksm_exit(mm);
554 khugepaged_exit(mm); /* must run before exit_mmap */
555 exit_mmap(mm);
556 set_mm_exe_file(mm, NULL);
557 if (!list_empty(&mm->mmlist)) {
558 spin_lock(&mmlist_lock);
559 list_del(&mm->mmlist);
560 spin_unlock(&mmlist_lock);
561 }
562 put_swap_token(mm);
563 if (mm->binfmt)
564 module_put(mm->binfmt->module);
565 mmdrop(mm);
566 }
567 }
568 EXPORT_SYMBOL_GPL(mmput);
569
570 /*
571 * We added or removed a vma mapping the executable. The vmas are only mapped
572 * during exec and are not mapped with the mmap system call.
573 * Callers must hold down_write() on the mm's mmap_sem for these
574 */
575 void added_exe_file_vma(struct mm_struct *mm)
576 {
577 mm->num_exe_file_vmas++;
578 }
579
580 void removed_exe_file_vma(struct mm_struct *mm)
581 {
582 mm->num_exe_file_vmas--;
583 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
584 fput(mm->exe_file);
585 mm->exe_file = NULL;
586 }
587
588 }
589
590 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
591 {
592 if (new_exe_file)
593 get_file(new_exe_file);
594 if (mm->exe_file)
595 fput(mm->exe_file);
596 mm->exe_file = new_exe_file;
597 mm->num_exe_file_vmas = 0;
598 }
599
600 struct file *get_mm_exe_file(struct mm_struct *mm)
601 {
602 struct file *exe_file;
603
604 /* We need mmap_sem to protect against races with removal of
605 * VM_EXECUTABLE vmas */
606 down_read(&mm->mmap_sem);
607 exe_file = mm->exe_file;
608 if (exe_file)
609 get_file(exe_file);
610 up_read(&mm->mmap_sem);
611 return exe_file;
612 }
613
614 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
615 {
616 /* It's safe to write the exe_file pointer without exe_file_lock because
617 * this is called during fork when the task is not yet in /proc */
618 newmm->exe_file = get_mm_exe_file(oldmm);
619 }
620
621 /**
622 * get_task_mm - acquire a reference to the task's mm
623 *
624 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
625 * this kernel workthread has transiently adopted a user mm with use_mm,
626 * to do its AIO) is not set and if so returns a reference to it, after
627 * bumping up the use count. User must release the mm via mmput()
628 * after use. Typically used by /proc and ptrace.
629 */
630 struct mm_struct *get_task_mm(struct task_struct *task)
631 {
632 struct mm_struct *mm;
633
634 task_lock(task);
635 mm = task->mm;
636 if (mm) {
637 if (task->flags & PF_KTHREAD)
638 mm = NULL;
639 else
640 atomic_inc(&mm->mm_users);
641 }
642 task_unlock(task);
643 return mm;
644 }
645 EXPORT_SYMBOL_GPL(get_task_mm);
646
647 /* Please note the differences between mmput and mm_release.
648 * mmput is called whenever we stop holding onto a mm_struct,
649 * error success whatever.
650 *
651 * mm_release is called after a mm_struct has been removed
652 * from the current process.
653 *
654 * This difference is important for error handling, when we
655 * only half set up a mm_struct for a new process and need to restore
656 * the old one. Because we mmput the new mm_struct before
657 * restoring the old one. . .
658 * Eric Biederman 10 January 1998
659 */
660 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
661 {
662 struct completion *vfork_done = tsk->vfork_done;
663
664 /* Get rid of any futexes when releasing the mm */
665 #ifdef CONFIG_FUTEX
666 if (unlikely(tsk->robust_list)) {
667 exit_robust_list(tsk);
668 tsk->robust_list = NULL;
669 }
670 #ifdef CONFIG_COMPAT
671 if (unlikely(tsk->compat_robust_list)) {
672 compat_exit_robust_list(tsk);
673 tsk->compat_robust_list = NULL;
674 }
675 #endif
676 if (unlikely(!list_empty(&tsk->pi_state_list)))
677 exit_pi_state_list(tsk);
678 #endif
679
680 /* Get rid of any cached register state */
681 deactivate_mm(tsk, mm);
682
683 /* notify parent sleeping on vfork() */
684 if (vfork_done) {
685 tsk->vfork_done = NULL;
686 complete(vfork_done);
687 }
688
689 /*
690 * If we're exiting normally, clear a user-space tid field if
691 * requested. We leave this alone when dying by signal, to leave
692 * the value intact in a core dump, and to save the unnecessary
693 * trouble otherwise. Userland only wants this done for a sys_exit.
694 */
695 if (tsk->clear_child_tid) {
696 if (!(tsk->flags & PF_SIGNALED) &&
697 atomic_read(&mm->mm_users) > 1) {
698 /*
699 * We don't check the error code - if userspace has
700 * not set up a proper pointer then tough luck.
701 */
702 put_user(0, tsk->clear_child_tid);
703 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
704 1, NULL, NULL, 0);
705 }
706 tsk->clear_child_tid = NULL;
707 }
708 }
709
710 /*
711 * Allocate a new mm structure and copy contents from the
712 * mm structure of the passed in task structure.
713 */
714 struct mm_struct *dup_mm(struct task_struct *tsk)
715 {
716 struct mm_struct *mm, *oldmm = current->mm;
717 int err;
718
719 if (!oldmm)
720 return NULL;
721
722 mm = allocate_mm();
723 if (!mm)
724 goto fail_nomem;
725
726 memcpy(mm, oldmm, sizeof(*mm));
727 mm_init_cpumask(mm);
728
729 /* Initializing for Swap token stuff */
730 mm->token_priority = 0;
731 mm->last_interval = 0;
732
733 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
734 mm->pmd_huge_pte = NULL;
735 #endif
736
737 if (!mm_init(mm, tsk))
738 goto fail_nomem;
739
740 if (init_new_context(tsk, mm))
741 goto fail_nocontext;
742
743 dup_mm_exe_file(oldmm, mm);
744
745 err = dup_mmap(mm, oldmm);
746 if (err)
747 goto free_pt;
748
749 mm->hiwater_rss = get_mm_rss(mm);
750 mm->hiwater_vm = mm->total_vm;
751
752 if (mm->binfmt && !try_module_get(mm->binfmt->module))
753 goto free_pt;
754
755 return mm;
756
757 free_pt:
758 /* don't put binfmt in mmput, we haven't got module yet */
759 mm->binfmt = NULL;
760 mmput(mm);
761
762 fail_nomem:
763 return NULL;
764
765 fail_nocontext:
766 /*
767 * If init_new_context() failed, we cannot use mmput() to free the mm
768 * because it calls destroy_context()
769 */
770 mm_free_pgd(mm);
771 free_mm(mm);
772 return NULL;
773 }
774
775 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
776 {
777 struct mm_struct *mm, *oldmm;
778 int retval;
779
780 tsk->min_flt = tsk->maj_flt = 0;
781 tsk->nvcsw = tsk->nivcsw = 0;
782 #ifdef CONFIG_DETECT_HUNG_TASK
783 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
784 #endif
785
786 tsk->mm = NULL;
787 tsk->active_mm = NULL;
788
789 /*
790 * Are we cloning a kernel thread?
791 *
792 * We need to steal a active VM for that..
793 */
794 oldmm = current->mm;
795 if (!oldmm)
796 return 0;
797
798 if (clone_flags & CLONE_VM) {
799 atomic_inc(&oldmm->mm_users);
800 mm = oldmm;
801 goto good_mm;
802 }
803
804 retval = -ENOMEM;
805 mm = dup_mm(tsk);
806 if (!mm)
807 goto fail_nomem;
808
809 good_mm:
810 /* Initializing for Swap token stuff */
811 mm->token_priority = 0;
812 mm->last_interval = 0;
813
814 tsk->mm = mm;
815 tsk->active_mm = mm;
816 return 0;
817
818 fail_nomem:
819 return retval;
820 }
821
822 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
823 {
824 struct fs_struct *fs = current->fs;
825 if (clone_flags & CLONE_FS) {
826 /* tsk->fs is already what we want */
827 spin_lock(&fs->lock);
828 if (fs->in_exec) {
829 spin_unlock(&fs->lock);
830 return -EAGAIN;
831 }
832 fs->users++;
833 spin_unlock(&fs->lock);
834 return 0;
835 }
836 tsk->fs = copy_fs_struct(fs);
837 if (!tsk->fs)
838 return -ENOMEM;
839 return 0;
840 }
841
842 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
843 {
844 struct files_struct *oldf, *newf;
845 int error = 0;
846
847 /*
848 * A background process may not have any files ...
849 */
850 oldf = current->files;
851 if (!oldf)
852 goto out;
853
854 if (clone_flags & CLONE_FILES) {
855 atomic_inc(&oldf->count);
856 goto out;
857 }
858
859 newf = dup_fd(oldf, &error);
860 if (!newf)
861 goto out;
862
863 tsk->files = newf;
864 error = 0;
865 out:
866 return error;
867 }
868
869 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
870 {
871 #ifdef CONFIG_BLOCK
872 struct io_context *ioc = current->io_context;
873 struct io_context *new_ioc;
874
875 if (!ioc)
876 return 0;
877 /*
878 * Share io context with parent, if CLONE_IO is set
879 */
880 if (clone_flags & CLONE_IO) {
881 tsk->io_context = ioc_task_link(ioc);
882 if (unlikely(!tsk->io_context))
883 return -ENOMEM;
884 } else if (ioprio_valid(ioc->ioprio)) {
885 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
886 if (unlikely(!new_ioc))
887 return -ENOMEM;
888
889 new_ioc->ioprio = ioc->ioprio;
890 put_io_context(new_ioc, NULL);
891 }
892 #endif
893 return 0;
894 }
895
896 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
897 {
898 struct sighand_struct *sig;
899
900 if (clone_flags & CLONE_SIGHAND) {
901 atomic_inc(&current->sighand->count);
902 return 0;
903 }
904 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
905 rcu_assign_pointer(tsk->sighand, sig);
906 if (!sig)
907 return -ENOMEM;
908 atomic_set(&sig->count, 1);
909 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
910 return 0;
911 }
912
913 void __cleanup_sighand(struct sighand_struct *sighand)
914 {
915 if (atomic_dec_and_test(&sighand->count))
916 kmem_cache_free(sighand_cachep, sighand);
917 }
918
919
920 /*
921 * Initialize POSIX timer handling for a thread group.
922 */
923 static void posix_cpu_timers_init_group(struct signal_struct *sig)
924 {
925 unsigned long cpu_limit;
926
927 /* Thread group counters. */
928 thread_group_cputime_init(sig);
929
930 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
931 if (cpu_limit != RLIM_INFINITY) {
932 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
933 sig->cputimer.running = 1;
934 }
935
936 /* The timer lists. */
937 INIT_LIST_HEAD(&sig->cpu_timers[0]);
938 INIT_LIST_HEAD(&sig->cpu_timers[1]);
939 INIT_LIST_HEAD(&sig->cpu_timers[2]);
940 }
941
942 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
943 {
944 struct signal_struct *sig;
945
946 if (clone_flags & CLONE_THREAD)
947 return 0;
948
949 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
950 tsk->signal = sig;
951 if (!sig)
952 return -ENOMEM;
953
954 sig->nr_threads = 1;
955 atomic_set(&sig->live, 1);
956 atomic_set(&sig->sigcnt, 1);
957 init_waitqueue_head(&sig->wait_chldexit);
958 if (clone_flags & CLONE_NEWPID)
959 sig->flags |= SIGNAL_UNKILLABLE;
960 sig->curr_target = tsk;
961 init_sigpending(&sig->shared_pending);
962 INIT_LIST_HEAD(&sig->posix_timers);
963
964 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
965 sig->real_timer.function = it_real_fn;
966
967 task_lock(current->group_leader);
968 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
969 task_unlock(current->group_leader);
970
971 posix_cpu_timers_init_group(sig);
972
973 tty_audit_fork(sig);
974 sched_autogroup_fork(sig);
975
976 #ifdef CONFIG_CGROUPS
977 init_rwsem(&sig->threadgroup_fork_lock);
978 #endif
979
980 sig->oom_adj = current->signal->oom_adj;
981 sig->oom_score_adj = current->signal->oom_score_adj;
982 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
983
984 mutex_init(&sig->cred_guard_mutex);
985
986 return 0;
987 }
988
989 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
990 {
991 unsigned long new_flags = p->flags;
992
993 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
994 new_flags |= PF_FORKNOEXEC;
995 new_flags |= PF_STARTING;
996 p->flags = new_flags;
997 clear_freeze_flag(p);
998 }
999
1000 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1001 {
1002 current->clear_child_tid = tidptr;
1003
1004 return task_pid_vnr(current);
1005 }
1006
1007 static void rt_mutex_init_task(struct task_struct *p)
1008 {
1009 raw_spin_lock_init(&p->pi_lock);
1010 #ifdef CONFIG_RT_MUTEXES
1011 plist_head_init(&p->pi_waiters);
1012 p->pi_blocked_on = NULL;
1013 #endif
1014 }
1015
1016 #ifdef CONFIG_MM_OWNER
1017 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1018 {
1019 mm->owner = p;
1020 }
1021 #endif /* CONFIG_MM_OWNER */
1022
1023 /*
1024 * Initialize POSIX timer handling for a single task.
1025 */
1026 static void posix_cpu_timers_init(struct task_struct *tsk)
1027 {
1028 tsk->cputime_expires.prof_exp = cputime_zero;
1029 tsk->cputime_expires.virt_exp = cputime_zero;
1030 tsk->cputime_expires.sched_exp = 0;
1031 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1032 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1033 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1034 }
1035
1036 /*
1037 * This creates a new process as a copy of the old one,
1038 * but does not actually start it yet.
1039 *
1040 * It copies the registers, and all the appropriate
1041 * parts of the process environment (as per the clone
1042 * flags). The actual kick-off is left to the caller.
1043 */
1044 static struct task_struct *copy_process(unsigned long clone_flags,
1045 unsigned long stack_start,
1046 struct pt_regs *regs,
1047 unsigned long stack_size,
1048 int __user *child_tidptr,
1049 struct pid *pid,
1050 int trace)
1051 {
1052 int retval;
1053 struct task_struct *p;
1054 int cgroup_callbacks_done = 0;
1055
1056 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1057 return ERR_PTR(-EINVAL);
1058
1059 /*
1060 * Thread groups must share signals as well, and detached threads
1061 * can only be started up within the thread group.
1062 */
1063 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1064 return ERR_PTR(-EINVAL);
1065
1066 /*
1067 * Shared signal handlers imply shared VM. By way of the above,
1068 * thread groups also imply shared VM. Blocking this case allows
1069 * for various simplifications in other code.
1070 */
1071 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1072 return ERR_PTR(-EINVAL);
1073
1074 /*
1075 * Siblings of global init remain as zombies on exit since they are
1076 * not reaped by their parent (swapper). To solve this and to avoid
1077 * multi-rooted process trees, prevent global and container-inits
1078 * from creating siblings.
1079 */
1080 if ((clone_flags & CLONE_PARENT) &&
1081 current->signal->flags & SIGNAL_UNKILLABLE)
1082 return ERR_PTR(-EINVAL);
1083
1084 retval = security_task_create(clone_flags);
1085 if (retval)
1086 goto fork_out;
1087
1088 retval = -ENOMEM;
1089 p = dup_task_struct(current);
1090 if (!p)
1091 goto fork_out;
1092
1093 ftrace_graph_init_task(p);
1094
1095 rt_mutex_init_task(p);
1096
1097 #ifdef CONFIG_PROVE_LOCKING
1098 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1099 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1100 #endif
1101 retval = -EAGAIN;
1102 if (atomic_read(&p->real_cred->user->processes) >=
1103 task_rlimit(p, RLIMIT_NPROC)) {
1104 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1105 p->real_cred->user != INIT_USER)
1106 goto bad_fork_free;
1107 }
1108 current->flags &= ~PF_NPROC_EXCEEDED;
1109
1110 retval = copy_creds(p, clone_flags);
1111 if (retval < 0)
1112 goto bad_fork_free;
1113
1114 /*
1115 * If multiple threads are within copy_process(), then this check
1116 * triggers too late. This doesn't hurt, the check is only there
1117 * to stop root fork bombs.
1118 */
1119 retval = -EAGAIN;
1120 if (nr_threads >= max_threads)
1121 goto bad_fork_cleanup_count;
1122
1123 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1124 goto bad_fork_cleanup_count;
1125
1126 p->did_exec = 0;
1127 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1128 copy_flags(clone_flags, p);
1129 INIT_LIST_HEAD(&p->children);
1130 INIT_LIST_HEAD(&p->sibling);
1131 rcu_copy_process(p);
1132 p->vfork_done = NULL;
1133 spin_lock_init(&p->alloc_lock);
1134
1135 init_sigpending(&p->pending);
1136
1137 p->utime = cputime_zero;
1138 p->stime = cputime_zero;
1139 p->gtime = cputime_zero;
1140 p->utimescaled = cputime_zero;
1141 p->stimescaled = cputime_zero;
1142 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1143 p->prev_utime = cputime_zero;
1144 p->prev_stime = cputime_zero;
1145 #endif
1146 #if defined(SPLIT_RSS_COUNTING)
1147 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1148 #endif
1149
1150 p->default_timer_slack_ns = current->timer_slack_ns;
1151
1152 task_io_accounting_init(&p->ioac);
1153 acct_clear_integrals(p);
1154
1155 posix_cpu_timers_init(p);
1156
1157 do_posix_clock_monotonic_gettime(&p->start_time);
1158 p->real_start_time = p->start_time;
1159 monotonic_to_bootbased(&p->real_start_time);
1160 p->io_context = NULL;
1161 p->audit_context = NULL;
1162 if (clone_flags & CLONE_THREAD)
1163 threadgroup_fork_read_lock(current);
1164 cgroup_fork(p);
1165 #ifdef CONFIG_NUMA
1166 p->mempolicy = mpol_dup(p->mempolicy);
1167 if (IS_ERR(p->mempolicy)) {
1168 retval = PTR_ERR(p->mempolicy);
1169 p->mempolicy = NULL;
1170 goto bad_fork_cleanup_cgroup;
1171 }
1172 mpol_fix_fork_child_flag(p);
1173 #endif
1174 #ifdef CONFIG_CPUSETS
1175 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1176 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1177 #endif
1178 #ifdef CONFIG_TRACE_IRQFLAGS
1179 p->irq_events = 0;
1180 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1181 p->hardirqs_enabled = 1;
1182 #else
1183 p->hardirqs_enabled = 0;
1184 #endif
1185 p->hardirq_enable_ip = 0;
1186 p->hardirq_enable_event = 0;
1187 p->hardirq_disable_ip = _THIS_IP_;
1188 p->hardirq_disable_event = 0;
1189 p->softirqs_enabled = 1;
1190 p->softirq_enable_ip = _THIS_IP_;
1191 p->softirq_enable_event = 0;
1192 p->softirq_disable_ip = 0;
1193 p->softirq_disable_event = 0;
1194 p->hardirq_context = 0;
1195 p->softirq_context = 0;
1196 #endif
1197 #ifdef CONFIG_LOCKDEP
1198 p->lockdep_depth = 0; /* no locks held yet */
1199 p->curr_chain_key = 0;
1200 p->lockdep_recursion = 0;
1201 #endif
1202
1203 #ifdef CONFIG_DEBUG_MUTEXES
1204 p->blocked_on = NULL; /* not blocked yet */
1205 #endif
1206 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1207 p->memcg_batch.do_batch = 0;
1208 p->memcg_batch.memcg = NULL;
1209 #endif
1210
1211 /* Perform scheduler related setup. Assign this task to a CPU. */
1212 sched_fork(p);
1213
1214 retval = perf_event_init_task(p);
1215 if (retval)
1216 goto bad_fork_cleanup_policy;
1217 retval = audit_alloc(p);
1218 if (retval)
1219 goto bad_fork_cleanup_policy;
1220 /* copy all the process information */
1221 retval = copy_semundo(clone_flags, p);
1222 if (retval)
1223 goto bad_fork_cleanup_audit;
1224 retval = copy_files(clone_flags, p);
1225 if (retval)
1226 goto bad_fork_cleanup_semundo;
1227 retval = copy_fs(clone_flags, p);
1228 if (retval)
1229 goto bad_fork_cleanup_files;
1230 retval = copy_sighand(clone_flags, p);
1231 if (retval)
1232 goto bad_fork_cleanup_fs;
1233 retval = copy_signal(clone_flags, p);
1234 if (retval)
1235 goto bad_fork_cleanup_sighand;
1236 retval = copy_mm(clone_flags, p);
1237 if (retval)
1238 goto bad_fork_cleanup_signal;
1239 retval = copy_namespaces(clone_flags, p);
1240 if (retval)
1241 goto bad_fork_cleanup_mm;
1242 retval = copy_io(clone_flags, p);
1243 if (retval)
1244 goto bad_fork_cleanup_namespaces;
1245 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1246 if (retval)
1247 goto bad_fork_cleanup_io;
1248
1249 if (pid != &init_struct_pid) {
1250 retval = -ENOMEM;
1251 pid = alloc_pid(p->nsproxy->pid_ns);
1252 if (!pid)
1253 goto bad_fork_cleanup_io;
1254 }
1255
1256 p->pid = pid_nr(pid);
1257 p->tgid = p->pid;
1258 if (clone_flags & CLONE_THREAD)
1259 p->tgid = current->tgid;
1260
1261 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1262 /*
1263 * Clear TID on mm_release()?
1264 */
1265 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1266 #ifdef CONFIG_BLOCK
1267 p->plug = NULL;
1268 #endif
1269 #ifdef CONFIG_FUTEX
1270 p->robust_list = NULL;
1271 #ifdef CONFIG_COMPAT
1272 p->compat_robust_list = NULL;
1273 #endif
1274 INIT_LIST_HEAD(&p->pi_state_list);
1275 p->pi_state_cache = NULL;
1276 #endif
1277 /*
1278 * sigaltstack should be cleared when sharing the same VM
1279 */
1280 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1281 p->sas_ss_sp = p->sas_ss_size = 0;
1282
1283 /*
1284 * Syscall tracing and stepping should be turned off in the
1285 * child regardless of CLONE_PTRACE.
1286 */
1287 user_disable_single_step(p);
1288 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1289 #ifdef TIF_SYSCALL_EMU
1290 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1291 #endif
1292 clear_all_latency_tracing(p);
1293
1294 /* ok, now we should be set up.. */
1295 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1296 p->pdeath_signal = 0;
1297 p->exit_state = 0;
1298
1299 p->nr_dirtied = 0;
1300 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1301
1302 /*
1303 * Ok, make it visible to the rest of the system.
1304 * We dont wake it up yet.
1305 */
1306 p->group_leader = p;
1307 INIT_LIST_HEAD(&p->thread_group);
1308
1309 /* Now that the task is set up, run cgroup callbacks if
1310 * necessary. We need to run them before the task is visible
1311 * on the tasklist. */
1312 cgroup_fork_callbacks(p);
1313 cgroup_callbacks_done = 1;
1314
1315 /* Need tasklist lock for parent etc handling! */
1316 write_lock_irq(&tasklist_lock);
1317
1318 /* CLONE_PARENT re-uses the old parent */
1319 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1320 p->real_parent = current->real_parent;
1321 p->parent_exec_id = current->parent_exec_id;
1322 } else {
1323 p->real_parent = current;
1324 p->parent_exec_id = current->self_exec_id;
1325 }
1326
1327 spin_lock(&current->sighand->siglock);
1328
1329 /*
1330 * Process group and session signals need to be delivered to just the
1331 * parent before the fork or both the parent and the child after the
1332 * fork. Restart if a signal comes in before we add the new process to
1333 * it's process group.
1334 * A fatal signal pending means that current will exit, so the new
1335 * thread can't slip out of an OOM kill (or normal SIGKILL).
1336 */
1337 recalc_sigpending();
1338 if (signal_pending(current)) {
1339 spin_unlock(&current->sighand->siglock);
1340 write_unlock_irq(&tasklist_lock);
1341 retval = -ERESTARTNOINTR;
1342 goto bad_fork_free_pid;
1343 }
1344
1345 if (clone_flags & CLONE_THREAD) {
1346 current->signal->nr_threads++;
1347 atomic_inc(&current->signal->live);
1348 atomic_inc(&current->signal->sigcnt);
1349 p->group_leader = current->group_leader;
1350 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1351 }
1352
1353 if (likely(p->pid)) {
1354 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1355
1356 if (thread_group_leader(p)) {
1357 if (is_child_reaper(pid))
1358 p->nsproxy->pid_ns->child_reaper = p;
1359
1360 p->signal->leader_pid = pid;
1361 p->signal->tty = tty_kref_get(current->signal->tty);
1362 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1363 attach_pid(p, PIDTYPE_SID, task_session(current));
1364 list_add_tail(&p->sibling, &p->real_parent->children);
1365 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1366 __this_cpu_inc(process_counts);
1367 }
1368 attach_pid(p, PIDTYPE_PID, pid);
1369 nr_threads++;
1370 }
1371
1372 total_forks++;
1373 spin_unlock(&current->sighand->siglock);
1374 write_unlock_irq(&tasklist_lock);
1375 proc_fork_connector(p);
1376 cgroup_post_fork(p);
1377 if (clone_flags & CLONE_THREAD)
1378 threadgroup_fork_read_unlock(current);
1379 perf_event_fork(p);
1380 return p;
1381
1382 bad_fork_free_pid:
1383 if (pid != &init_struct_pid)
1384 free_pid(pid);
1385 bad_fork_cleanup_io:
1386 if (p->io_context)
1387 exit_io_context(p);
1388 bad_fork_cleanup_namespaces:
1389 exit_task_namespaces(p);
1390 bad_fork_cleanup_mm:
1391 if (p->mm)
1392 mmput(p->mm);
1393 bad_fork_cleanup_signal:
1394 if (!(clone_flags & CLONE_THREAD))
1395 free_signal_struct(p->signal);
1396 bad_fork_cleanup_sighand:
1397 __cleanup_sighand(p->sighand);
1398 bad_fork_cleanup_fs:
1399 exit_fs(p); /* blocking */
1400 bad_fork_cleanup_files:
1401 exit_files(p); /* blocking */
1402 bad_fork_cleanup_semundo:
1403 exit_sem(p);
1404 bad_fork_cleanup_audit:
1405 audit_free(p);
1406 bad_fork_cleanup_policy:
1407 perf_event_free_task(p);
1408 #ifdef CONFIG_NUMA
1409 mpol_put(p->mempolicy);
1410 bad_fork_cleanup_cgroup:
1411 #endif
1412 if (clone_flags & CLONE_THREAD)
1413 threadgroup_fork_read_unlock(current);
1414 cgroup_exit(p, cgroup_callbacks_done);
1415 delayacct_tsk_free(p);
1416 module_put(task_thread_info(p)->exec_domain->module);
1417 bad_fork_cleanup_count:
1418 atomic_dec(&p->cred->user->processes);
1419 exit_creds(p);
1420 bad_fork_free:
1421 free_task(p);
1422 fork_out:
1423 return ERR_PTR(retval);
1424 }
1425
1426 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1427 {
1428 memset(regs, 0, sizeof(struct pt_regs));
1429 return regs;
1430 }
1431
1432 static inline void init_idle_pids(struct pid_link *links)
1433 {
1434 enum pid_type type;
1435
1436 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1437 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1438 links[type].pid = &init_struct_pid;
1439 }
1440 }
1441
1442 struct task_struct * __cpuinit fork_idle(int cpu)
1443 {
1444 struct task_struct *task;
1445 struct pt_regs regs;
1446
1447 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1448 &init_struct_pid, 0);
1449 if (!IS_ERR(task)) {
1450 init_idle_pids(task->pids);
1451 init_idle(task, cpu);
1452 }
1453
1454 return task;
1455 }
1456
1457 /*
1458 * Ok, this is the main fork-routine.
1459 *
1460 * It copies the process, and if successful kick-starts
1461 * it and waits for it to finish using the VM if required.
1462 */
1463 long do_fork(unsigned long clone_flags,
1464 unsigned long stack_start,
1465 struct pt_regs *regs,
1466 unsigned long stack_size,
1467 int __user *parent_tidptr,
1468 int __user *child_tidptr)
1469 {
1470 struct task_struct *p;
1471 int trace = 0;
1472 long nr;
1473
1474 /*
1475 * Do some preliminary argument and permissions checking before we
1476 * actually start allocating stuff
1477 */
1478 if (clone_flags & CLONE_NEWUSER) {
1479 if (clone_flags & CLONE_THREAD)
1480 return -EINVAL;
1481 /* hopefully this check will go away when userns support is
1482 * complete
1483 */
1484 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1485 !capable(CAP_SETGID))
1486 return -EPERM;
1487 }
1488
1489 /*
1490 * Determine whether and which event to report to ptracer. When
1491 * called from kernel_thread or CLONE_UNTRACED is explicitly
1492 * requested, no event is reported; otherwise, report if the event
1493 * for the type of forking is enabled.
1494 */
1495 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1496 if (clone_flags & CLONE_VFORK)
1497 trace = PTRACE_EVENT_VFORK;
1498 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1499 trace = PTRACE_EVENT_CLONE;
1500 else
1501 trace = PTRACE_EVENT_FORK;
1502
1503 if (likely(!ptrace_event_enabled(current, trace)))
1504 trace = 0;
1505 }
1506
1507 p = copy_process(clone_flags, stack_start, regs, stack_size,
1508 child_tidptr, NULL, trace);
1509 /*
1510 * Do this prior waking up the new thread - the thread pointer
1511 * might get invalid after that point, if the thread exits quickly.
1512 */
1513 if (!IS_ERR(p)) {
1514 struct completion vfork;
1515
1516 trace_sched_process_fork(current, p);
1517
1518 nr = task_pid_vnr(p);
1519
1520 if (clone_flags & CLONE_PARENT_SETTID)
1521 put_user(nr, parent_tidptr);
1522
1523 if (clone_flags & CLONE_VFORK) {
1524 p->vfork_done = &vfork;
1525 init_completion(&vfork);
1526 }
1527
1528 audit_finish_fork(p);
1529
1530 /*
1531 * We set PF_STARTING at creation in case tracing wants to
1532 * use this to distinguish a fully live task from one that
1533 * hasn't finished SIGSTOP raising yet. Now we clear it
1534 * and set the child going.
1535 */
1536 p->flags &= ~PF_STARTING;
1537
1538 wake_up_new_task(p);
1539
1540 /* forking complete and child started to run, tell ptracer */
1541 if (unlikely(trace))
1542 ptrace_event(trace, nr);
1543
1544 if (clone_flags & CLONE_VFORK) {
1545 freezer_do_not_count();
1546 wait_for_completion(&vfork);
1547 freezer_count();
1548 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1549 }
1550 } else {
1551 nr = PTR_ERR(p);
1552 }
1553 return nr;
1554 }
1555
1556 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1557 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1558 #endif
1559
1560 static void sighand_ctor(void *data)
1561 {
1562 struct sighand_struct *sighand = data;
1563
1564 spin_lock_init(&sighand->siglock);
1565 init_waitqueue_head(&sighand->signalfd_wqh);
1566 }
1567
1568 void __init proc_caches_init(void)
1569 {
1570 sighand_cachep = kmem_cache_create("sighand_cache",
1571 sizeof(struct sighand_struct), 0,
1572 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1573 SLAB_NOTRACK, sighand_ctor);
1574 signal_cachep = kmem_cache_create("signal_cache",
1575 sizeof(struct signal_struct), 0,
1576 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1577 files_cachep = kmem_cache_create("files_cache",
1578 sizeof(struct files_struct), 0,
1579 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1580 fs_cachep = kmem_cache_create("fs_cache",
1581 sizeof(struct fs_struct), 0,
1582 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1583 /*
1584 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1585 * whole struct cpumask for the OFFSTACK case. We could change
1586 * this to *only* allocate as much of it as required by the
1587 * maximum number of CPU's we can ever have. The cpumask_allocation
1588 * is at the end of the structure, exactly for that reason.
1589 */
1590 mm_cachep = kmem_cache_create("mm_struct",
1591 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1592 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1593 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1594 mmap_init();
1595 nsproxy_cache_init();
1596 }
1597
1598 /*
1599 * Check constraints on flags passed to the unshare system call.
1600 */
1601 static int check_unshare_flags(unsigned long unshare_flags)
1602 {
1603 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1604 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1605 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1606 return -EINVAL;
1607 /*
1608 * Not implemented, but pretend it works if there is nothing to
1609 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1610 * needs to unshare vm.
1611 */
1612 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1613 /* FIXME: get_task_mm() increments ->mm_users */
1614 if (atomic_read(&current->mm->mm_users) > 1)
1615 return -EINVAL;
1616 }
1617
1618 return 0;
1619 }
1620
1621 /*
1622 * Unshare the filesystem structure if it is being shared
1623 */
1624 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1625 {
1626 struct fs_struct *fs = current->fs;
1627
1628 if (!(unshare_flags & CLONE_FS) || !fs)
1629 return 0;
1630
1631 /* don't need lock here; in the worst case we'll do useless copy */
1632 if (fs->users == 1)
1633 return 0;
1634
1635 *new_fsp = copy_fs_struct(fs);
1636 if (!*new_fsp)
1637 return -ENOMEM;
1638
1639 return 0;
1640 }
1641
1642 /*
1643 * Unshare file descriptor table if it is being shared
1644 */
1645 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1646 {
1647 struct files_struct *fd = current->files;
1648 int error = 0;
1649
1650 if ((unshare_flags & CLONE_FILES) &&
1651 (fd && atomic_read(&fd->count) > 1)) {
1652 *new_fdp = dup_fd(fd, &error);
1653 if (!*new_fdp)
1654 return error;
1655 }
1656
1657 return 0;
1658 }
1659
1660 /*
1661 * unshare allows a process to 'unshare' part of the process
1662 * context which was originally shared using clone. copy_*
1663 * functions used by do_fork() cannot be used here directly
1664 * because they modify an inactive task_struct that is being
1665 * constructed. Here we are modifying the current, active,
1666 * task_struct.
1667 */
1668 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1669 {
1670 struct fs_struct *fs, *new_fs = NULL;
1671 struct files_struct *fd, *new_fd = NULL;
1672 struct nsproxy *new_nsproxy = NULL;
1673 int do_sysvsem = 0;
1674 int err;
1675
1676 err = check_unshare_flags(unshare_flags);
1677 if (err)
1678 goto bad_unshare_out;
1679
1680 /*
1681 * If unsharing namespace, must also unshare filesystem information.
1682 */
1683 if (unshare_flags & CLONE_NEWNS)
1684 unshare_flags |= CLONE_FS;
1685 /*
1686 * CLONE_NEWIPC must also detach from the undolist: after switching
1687 * to a new ipc namespace, the semaphore arrays from the old
1688 * namespace are unreachable.
1689 */
1690 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1691 do_sysvsem = 1;
1692 err = unshare_fs(unshare_flags, &new_fs);
1693 if (err)
1694 goto bad_unshare_out;
1695 err = unshare_fd(unshare_flags, &new_fd);
1696 if (err)
1697 goto bad_unshare_cleanup_fs;
1698 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1699 if (err)
1700 goto bad_unshare_cleanup_fd;
1701
1702 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1703 if (do_sysvsem) {
1704 /*
1705 * CLONE_SYSVSEM is equivalent to sys_exit().
1706 */
1707 exit_sem(current);
1708 }
1709
1710 if (new_nsproxy) {
1711 switch_task_namespaces(current, new_nsproxy);
1712 new_nsproxy = NULL;
1713 }
1714
1715 task_lock(current);
1716
1717 if (new_fs) {
1718 fs = current->fs;
1719 spin_lock(&fs->lock);
1720 current->fs = new_fs;
1721 if (--fs->users)
1722 new_fs = NULL;
1723 else
1724 new_fs = fs;
1725 spin_unlock(&fs->lock);
1726 }
1727
1728 if (new_fd) {
1729 fd = current->files;
1730 current->files = new_fd;
1731 new_fd = fd;
1732 }
1733
1734 task_unlock(current);
1735 }
1736
1737 if (new_nsproxy)
1738 put_nsproxy(new_nsproxy);
1739
1740 bad_unshare_cleanup_fd:
1741 if (new_fd)
1742 put_files_struct(new_fd);
1743
1744 bad_unshare_cleanup_fs:
1745 if (new_fs)
1746 free_fs_struct(new_fs);
1747
1748 bad_unshare_out:
1749 return err;
1750 }
1751
1752 /*
1753 * Helper to unshare the files of the current task.
1754 * We don't want to expose copy_files internals to
1755 * the exec layer of the kernel.
1756 */
1757
1758 int unshare_files(struct files_struct **displaced)
1759 {
1760 struct task_struct *task = current;
1761 struct files_struct *copy = NULL;
1762 int error;
1763
1764 error = unshare_fd(CLONE_FILES, &copy);
1765 if (error || !copy) {
1766 *displaced = NULL;
1767 return error;
1768 }
1769 *displaced = task->files;
1770 task_lock(task);
1771 task->files = copy;
1772 task_unlock(task);
1773 return 0;
1774 }