]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
treewide: make "nr_cpu_ids" unsigned
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100
101 #include <trace/events/sched.h>
102
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
105
106 /*
107 * Minimum number of threads to boot the kernel
108 */
109 #define MIN_THREADS 20
110
111 /*
112 * Maximum number of threads
113 */
114 #define MAX_THREADS FUTEX_TID_MASK
115
116 /*
117 * Protected counters by write_lock_irq(&tasklist_lock)
118 */
119 unsigned long total_forks; /* Handle normal Linux uptimes. */
120 int nr_threads; /* The idle threads do not count.. */
121
122 int max_threads; /* tunable limit on nr_threads */
123
124 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
125
126 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
127
128 #ifdef CONFIG_PROVE_RCU
129 int lockdep_tasklist_lock_is_held(void)
130 {
131 return lockdep_is_held(&tasklist_lock);
132 }
133 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
134 #endif /* #ifdef CONFIG_PROVE_RCU */
135
136 int nr_processes(void)
137 {
138 int cpu;
139 int total = 0;
140
141 for_each_possible_cpu(cpu)
142 total += per_cpu(process_counts, cpu);
143
144 return total;
145 }
146
147 void __weak arch_release_task_struct(struct task_struct *tsk)
148 {
149 }
150
151 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
152 static struct kmem_cache *task_struct_cachep;
153
154 static inline struct task_struct *alloc_task_struct_node(int node)
155 {
156 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
157 }
158
159 static inline void free_task_struct(struct task_struct *tsk)
160 {
161 kmem_cache_free(task_struct_cachep, tsk);
162 }
163 #endif
164
165 void __weak arch_release_thread_stack(unsigned long *stack)
166 {
167 }
168
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170
171 /*
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
174 */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176
177 #ifdef CONFIG_VMAP_STACK
178 /*
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
181 */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 int i;
189
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *vm_stack = cached_vm_stacks[i];
192
193 if (!vm_stack)
194 continue;
195
196 vfree(vm_stack->addr);
197 cached_vm_stacks[i] = NULL;
198 }
199
200 return 0;
201 }
202 #endif
203
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 void *stack;
208 int i;
209
210 for (i = 0; i < NR_CACHED_STACKS; i++) {
211 struct vm_struct *s;
212
213 s = this_cpu_xchg(cached_stacks[i], NULL);
214
215 if (!s)
216 continue;
217
218 tsk->stack_vm_area = s;
219 return s->addr;
220 }
221
222 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
223 VMALLOC_START, VMALLOC_END,
224 THREADINFO_GFP,
225 PAGE_KERNEL,
226 0, node, __builtin_return_address(0));
227
228 /*
229 * We can't call find_vm_area() in interrupt context, and
230 * free_thread_stack() can be called in interrupt context,
231 * so cache the vm_struct.
232 */
233 if (stack)
234 tsk->stack_vm_area = find_vm_area(stack);
235 return stack;
236 #else
237 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
238 THREAD_SIZE_ORDER);
239
240 return page ? page_address(page) : NULL;
241 #endif
242 }
243
244 static inline void free_thread_stack(struct task_struct *tsk)
245 {
246 #ifdef CONFIG_VMAP_STACK
247 if (task_stack_vm_area(tsk)) {
248 int i;
249
250 for (i = 0; i < NR_CACHED_STACKS; i++) {
251 if (this_cpu_cmpxchg(cached_stacks[i],
252 NULL, tsk->stack_vm_area) != NULL)
253 continue;
254
255 return;
256 }
257
258 vfree_atomic(tsk->stack);
259 return;
260 }
261 #endif
262
263 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
264 }
265 # else
266 static struct kmem_cache *thread_stack_cache;
267
268 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
269 int node)
270 {
271 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
272 }
273
274 static void free_thread_stack(struct task_struct *tsk)
275 {
276 kmem_cache_free(thread_stack_cache, tsk->stack);
277 }
278
279 void thread_stack_cache_init(void)
280 {
281 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
282 THREAD_SIZE, 0, NULL);
283 BUG_ON(thread_stack_cache == NULL);
284 }
285 # endif
286 #endif
287
288 /* SLAB cache for signal_struct structures (tsk->signal) */
289 static struct kmem_cache *signal_cachep;
290
291 /* SLAB cache for sighand_struct structures (tsk->sighand) */
292 struct kmem_cache *sighand_cachep;
293
294 /* SLAB cache for files_struct structures (tsk->files) */
295 struct kmem_cache *files_cachep;
296
297 /* SLAB cache for fs_struct structures (tsk->fs) */
298 struct kmem_cache *fs_cachep;
299
300 /* SLAB cache for vm_area_struct structures */
301 struct kmem_cache *vm_area_cachep;
302
303 /* SLAB cache for mm_struct structures (tsk->mm) */
304 static struct kmem_cache *mm_cachep;
305
306 static void account_kernel_stack(struct task_struct *tsk, int account)
307 {
308 void *stack = task_stack_page(tsk);
309 struct vm_struct *vm = task_stack_vm_area(tsk);
310
311 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
312
313 if (vm) {
314 int i;
315
316 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
317
318 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
319 mod_zone_page_state(page_zone(vm->pages[i]),
320 NR_KERNEL_STACK_KB,
321 PAGE_SIZE / 1024 * account);
322 }
323
324 /* All stack pages belong to the same memcg. */
325 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
326 account * (THREAD_SIZE / 1024));
327 } else {
328 /*
329 * All stack pages are in the same zone and belong to the
330 * same memcg.
331 */
332 struct page *first_page = virt_to_page(stack);
333
334 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
335 THREAD_SIZE / 1024 * account);
336
337 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
338 account * (THREAD_SIZE / 1024));
339 }
340 }
341
342 static void release_task_stack(struct task_struct *tsk)
343 {
344 if (WARN_ON(tsk->state != TASK_DEAD))
345 return; /* Better to leak the stack than to free prematurely */
346
347 account_kernel_stack(tsk, -1);
348 arch_release_thread_stack(tsk->stack);
349 free_thread_stack(tsk);
350 tsk->stack = NULL;
351 #ifdef CONFIG_VMAP_STACK
352 tsk->stack_vm_area = NULL;
353 #endif
354 }
355
356 #ifdef CONFIG_THREAD_INFO_IN_TASK
357 void put_task_stack(struct task_struct *tsk)
358 {
359 if (atomic_dec_and_test(&tsk->stack_refcount))
360 release_task_stack(tsk);
361 }
362 #endif
363
364 void free_task(struct task_struct *tsk)
365 {
366 #ifndef CONFIG_THREAD_INFO_IN_TASK
367 /*
368 * The task is finally done with both the stack and thread_info,
369 * so free both.
370 */
371 release_task_stack(tsk);
372 #else
373 /*
374 * If the task had a separate stack allocation, it should be gone
375 * by now.
376 */
377 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
378 #endif
379 rt_mutex_debug_task_free(tsk);
380 ftrace_graph_exit_task(tsk);
381 put_seccomp_filter(tsk);
382 arch_release_task_struct(tsk);
383 if (tsk->flags & PF_KTHREAD)
384 free_kthread_struct(tsk);
385 free_task_struct(tsk);
386 }
387 EXPORT_SYMBOL(free_task);
388
389 static inline void free_signal_struct(struct signal_struct *sig)
390 {
391 taskstats_tgid_free(sig);
392 sched_autogroup_exit(sig);
393 /*
394 * __mmdrop is not safe to call from softirq context on x86 due to
395 * pgd_dtor so postpone it to the async context
396 */
397 if (sig->oom_mm)
398 mmdrop_async(sig->oom_mm);
399 kmem_cache_free(signal_cachep, sig);
400 }
401
402 static inline void put_signal_struct(struct signal_struct *sig)
403 {
404 if (atomic_dec_and_test(&sig->sigcnt))
405 free_signal_struct(sig);
406 }
407
408 void __put_task_struct(struct task_struct *tsk)
409 {
410 WARN_ON(!tsk->exit_state);
411 WARN_ON(atomic_read(&tsk->usage));
412 WARN_ON(tsk == current);
413
414 cgroup_free(tsk);
415 task_numa_free(tsk);
416 security_task_free(tsk);
417 exit_creds(tsk);
418 delayacct_tsk_free(tsk);
419 put_signal_struct(tsk->signal);
420
421 if (!profile_handoff_task(tsk))
422 free_task(tsk);
423 }
424 EXPORT_SYMBOL_GPL(__put_task_struct);
425
426 void __init __weak arch_task_cache_init(void) { }
427
428 /*
429 * set_max_threads
430 */
431 static void set_max_threads(unsigned int max_threads_suggested)
432 {
433 u64 threads;
434
435 /*
436 * The number of threads shall be limited such that the thread
437 * structures may only consume a small part of the available memory.
438 */
439 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
440 threads = MAX_THREADS;
441 else
442 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
443 (u64) THREAD_SIZE * 8UL);
444
445 if (threads > max_threads_suggested)
446 threads = max_threads_suggested;
447
448 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
449 }
450
451 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
452 /* Initialized by the architecture: */
453 int arch_task_struct_size __read_mostly;
454 #endif
455
456 void __init fork_init(void)
457 {
458 int i;
459 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
460 #ifndef ARCH_MIN_TASKALIGN
461 #define ARCH_MIN_TASKALIGN 0
462 #endif
463 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
464
465 /* create a slab on which task_structs can be allocated */
466 task_struct_cachep = kmem_cache_create("task_struct",
467 arch_task_struct_size, align,
468 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
469 #endif
470
471 /* do the arch specific task caches init */
472 arch_task_cache_init();
473
474 set_max_threads(MAX_THREADS);
475
476 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
477 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
478 init_task.signal->rlim[RLIMIT_SIGPENDING] =
479 init_task.signal->rlim[RLIMIT_NPROC];
480
481 for (i = 0; i < UCOUNT_COUNTS; i++) {
482 init_user_ns.ucount_max[i] = max_threads/2;
483 }
484
485 #ifdef CONFIG_VMAP_STACK
486 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
487 NULL, free_vm_stack_cache);
488 #endif
489
490 lockdep_init_task(&init_task);
491 }
492
493 int __weak arch_dup_task_struct(struct task_struct *dst,
494 struct task_struct *src)
495 {
496 *dst = *src;
497 return 0;
498 }
499
500 void set_task_stack_end_magic(struct task_struct *tsk)
501 {
502 unsigned long *stackend;
503
504 stackend = end_of_stack(tsk);
505 *stackend = STACK_END_MAGIC; /* for overflow detection */
506 }
507
508 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
509 {
510 struct task_struct *tsk;
511 unsigned long *stack;
512 struct vm_struct *stack_vm_area;
513 int err;
514
515 if (node == NUMA_NO_NODE)
516 node = tsk_fork_get_node(orig);
517 tsk = alloc_task_struct_node(node);
518 if (!tsk)
519 return NULL;
520
521 stack = alloc_thread_stack_node(tsk, node);
522 if (!stack)
523 goto free_tsk;
524
525 stack_vm_area = task_stack_vm_area(tsk);
526
527 err = arch_dup_task_struct(tsk, orig);
528
529 /*
530 * arch_dup_task_struct() clobbers the stack-related fields. Make
531 * sure they're properly initialized before using any stack-related
532 * functions again.
533 */
534 tsk->stack = stack;
535 #ifdef CONFIG_VMAP_STACK
536 tsk->stack_vm_area = stack_vm_area;
537 #endif
538 #ifdef CONFIG_THREAD_INFO_IN_TASK
539 atomic_set(&tsk->stack_refcount, 1);
540 #endif
541
542 if (err)
543 goto free_stack;
544
545 #ifdef CONFIG_SECCOMP
546 /*
547 * We must handle setting up seccomp filters once we're under
548 * the sighand lock in case orig has changed between now and
549 * then. Until then, filter must be NULL to avoid messing up
550 * the usage counts on the error path calling free_task.
551 */
552 tsk->seccomp.filter = NULL;
553 #endif
554
555 setup_thread_stack(tsk, orig);
556 clear_user_return_notifier(tsk);
557 clear_tsk_need_resched(tsk);
558 set_task_stack_end_magic(tsk);
559
560 #ifdef CONFIG_CC_STACKPROTECTOR
561 tsk->stack_canary = get_random_canary();
562 #endif
563
564 /*
565 * One for us, one for whoever does the "release_task()" (usually
566 * parent)
567 */
568 atomic_set(&tsk->usage, 2);
569 #ifdef CONFIG_BLK_DEV_IO_TRACE
570 tsk->btrace_seq = 0;
571 #endif
572 tsk->splice_pipe = NULL;
573 tsk->task_frag.page = NULL;
574 tsk->wake_q.next = NULL;
575
576 account_kernel_stack(tsk, 1);
577
578 kcov_task_init(tsk);
579
580 #ifdef CONFIG_FAULT_INJECTION
581 tsk->fail_nth = 0;
582 #endif
583
584 return tsk;
585
586 free_stack:
587 free_thread_stack(tsk);
588 free_tsk:
589 free_task_struct(tsk);
590 return NULL;
591 }
592
593 #ifdef CONFIG_MMU
594 static __latent_entropy int dup_mmap(struct mm_struct *mm,
595 struct mm_struct *oldmm)
596 {
597 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
598 struct rb_node **rb_link, *rb_parent;
599 int retval;
600 unsigned long charge;
601 LIST_HEAD(uf);
602
603 uprobe_start_dup_mmap();
604 if (down_write_killable(&oldmm->mmap_sem)) {
605 retval = -EINTR;
606 goto fail_uprobe_end;
607 }
608 flush_cache_dup_mm(oldmm);
609 uprobe_dup_mmap(oldmm, mm);
610 /*
611 * Not linked in yet - no deadlock potential:
612 */
613 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
614
615 /* No ordering required: file already has been exposed. */
616 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
617
618 mm->total_vm = oldmm->total_vm;
619 mm->data_vm = oldmm->data_vm;
620 mm->exec_vm = oldmm->exec_vm;
621 mm->stack_vm = oldmm->stack_vm;
622
623 rb_link = &mm->mm_rb.rb_node;
624 rb_parent = NULL;
625 pprev = &mm->mmap;
626 retval = ksm_fork(mm, oldmm);
627 if (retval)
628 goto out;
629 retval = khugepaged_fork(mm, oldmm);
630 if (retval)
631 goto out;
632
633 prev = NULL;
634 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
635 struct file *file;
636
637 if (mpnt->vm_flags & VM_DONTCOPY) {
638 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
639 continue;
640 }
641 charge = 0;
642 if (mpnt->vm_flags & VM_ACCOUNT) {
643 unsigned long len = vma_pages(mpnt);
644
645 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
646 goto fail_nomem;
647 charge = len;
648 }
649 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
650 if (!tmp)
651 goto fail_nomem;
652 *tmp = *mpnt;
653 INIT_LIST_HEAD(&tmp->anon_vma_chain);
654 retval = vma_dup_policy(mpnt, tmp);
655 if (retval)
656 goto fail_nomem_policy;
657 tmp->vm_mm = mm;
658 retval = dup_userfaultfd(tmp, &uf);
659 if (retval)
660 goto fail_nomem_anon_vma_fork;
661 if (tmp->vm_flags & VM_WIPEONFORK) {
662 /* VM_WIPEONFORK gets a clean slate in the child. */
663 tmp->anon_vma = NULL;
664 if (anon_vma_prepare(tmp))
665 goto fail_nomem_anon_vma_fork;
666 } else if (anon_vma_fork(tmp, mpnt))
667 goto fail_nomem_anon_vma_fork;
668 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
669 tmp->vm_next = tmp->vm_prev = NULL;
670 file = tmp->vm_file;
671 if (file) {
672 struct inode *inode = file_inode(file);
673 struct address_space *mapping = file->f_mapping;
674
675 get_file(file);
676 if (tmp->vm_flags & VM_DENYWRITE)
677 atomic_dec(&inode->i_writecount);
678 i_mmap_lock_write(mapping);
679 if (tmp->vm_flags & VM_SHARED)
680 atomic_inc(&mapping->i_mmap_writable);
681 flush_dcache_mmap_lock(mapping);
682 /* insert tmp into the share list, just after mpnt */
683 vma_interval_tree_insert_after(tmp, mpnt,
684 &mapping->i_mmap);
685 flush_dcache_mmap_unlock(mapping);
686 i_mmap_unlock_write(mapping);
687 }
688
689 /*
690 * Clear hugetlb-related page reserves for children. This only
691 * affects MAP_PRIVATE mappings. Faults generated by the child
692 * are not guaranteed to succeed, even if read-only
693 */
694 if (is_vm_hugetlb_page(tmp))
695 reset_vma_resv_huge_pages(tmp);
696
697 /*
698 * Link in the new vma and copy the page table entries.
699 */
700 *pprev = tmp;
701 pprev = &tmp->vm_next;
702 tmp->vm_prev = prev;
703 prev = tmp;
704
705 __vma_link_rb(mm, tmp, rb_link, rb_parent);
706 rb_link = &tmp->vm_rb.rb_right;
707 rb_parent = &tmp->vm_rb;
708
709 mm->map_count++;
710 if (!(tmp->vm_flags & VM_WIPEONFORK))
711 retval = copy_page_range(mm, oldmm, mpnt);
712
713 if (tmp->vm_ops && tmp->vm_ops->open)
714 tmp->vm_ops->open(tmp);
715
716 if (retval)
717 goto out;
718 }
719 /* a new mm has just been created */
720 arch_dup_mmap(oldmm, mm);
721 retval = 0;
722 out:
723 up_write(&mm->mmap_sem);
724 flush_tlb_mm(oldmm);
725 up_write(&oldmm->mmap_sem);
726 dup_userfaultfd_complete(&uf);
727 fail_uprobe_end:
728 uprobe_end_dup_mmap();
729 return retval;
730 fail_nomem_anon_vma_fork:
731 mpol_put(vma_policy(tmp));
732 fail_nomem_policy:
733 kmem_cache_free(vm_area_cachep, tmp);
734 fail_nomem:
735 retval = -ENOMEM;
736 vm_unacct_memory(charge);
737 goto out;
738 }
739
740 static inline int mm_alloc_pgd(struct mm_struct *mm)
741 {
742 mm->pgd = pgd_alloc(mm);
743 if (unlikely(!mm->pgd))
744 return -ENOMEM;
745 return 0;
746 }
747
748 static inline void mm_free_pgd(struct mm_struct *mm)
749 {
750 pgd_free(mm, mm->pgd);
751 }
752 #else
753 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
754 {
755 down_write(&oldmm->mmap_sem);
756 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
757 up_write(&oldmm->mmap_sem);
758 return 0;
759 }
760 #define mm_alloc_pgd(mm) (0)
761 #define mm_free_pgd(mm)
762 #endif /* CONFIG_MMU */
763
764 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
765
766 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
767 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
768
769 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
770
771 static int __init coredump_filter_setup(char *s)
772 {
773 default_dump_filter =
774 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
775 MMF_DUMP_FILTER_MASK;
776 return 1;
777 }
778
779 __setup("coredump_filter=", coredump_filter_setup);
780
781 #include <linux/init_task.h>
782
783 static void mm_init_aio(struct mm_struct *mm)
784 {
785 #ifdef CONFIG_AIO
786 spin_lock_init(&mm->ioctx_lock);
787 mm->ioctx_table = NULL;
788 #endif
789 }
790
791 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
792 {
793 #ifdef CONFIG_MEMCG
794 mm->owner = p;
795 #endif
796 }
797
798 static void mm_init_uprobes_state(struct mm_struct *mm)
799 {
800 #ifdef CONFIG_UPROBES
801 mm->uprobes_state.xol_area = NULL;
802 #endif
803 }
804
805 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
806 struct user_namespace *user_ns)
807 {
808 mm->mmap = NULL;
809 mm->mm_rb = RB_ROOT;
810 mm->vmacache_seqnum = 0;
811 atomic_set(&mm->mm_users, 1);
812 atomic_set(&mm->mm_count, 1);
813 init_rwsem(&mm->mmap_sem);
814 INIT_LIST_HEAD(&mm->mmlist);
815 mm->core_state = NULL;
816 atomic_long_set(&mm->nr_ptes, 0);
817 mm_nr_pmds_init(mm);
818 mm->map_count = 0;
819 mm->locked_vm = 0;
820 mm->pinned_vm = 0;
821 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
822 spin_lock_init(&mm->page_table_lock);
823 mm_init_cpumask(mm);
824 mm_init_aio(mm);
825 mm_init_owner(mm, p);
826 RCU_INIT_POINTER(mm->exe_file, NULL);
827 mmu_notifier_mm_init(mm);
828 hmm_mm_init(mm);
829 init_tlb_flush_pending(mm);
830 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
831 mm->pmd_huge_pte = NULL;
832 #endif
833 mm_init_uprobes_state(mm);
834
835 if (current->mm) {
836 mm->flags = current->mm->flags & MMF_INIT_MASK;
837 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
838 } else {
839 mm->flags = default_dump_filter;
840 mm->def_flags = 0;
841 }
842
843 if (mm_alloc_pgd(mm))
844 goto fail_nopgd;
845
846 if (init_new_context(p, mm))
847 goto fail_nocontext;
848
849 mm->user_ns = get_user_ns(user_ns);
850 return mm;
851
852 fail_nocontext:
853 mm_free_pgd(mm);
854 fail_nopgd:
855 free_mm(mm);
856 return NULL;
857 }
858
859 static void check_mm(struct mm_struct *mm)
860 {
861 int i;
862
863 for (i = 0; i < NR_MM_COUNTERS; i++) {
864 long x = atomic_long_read(&mm->rss_stat.count[i]);
865
866 if (unlikely(x))
867 printk(KERN_ALERT "BUG: Bad rss-counter state "
868 "mm:%p idx:%d val:%ld\n", mm, i, x);
869 }
870
871 if (atomic_long_read(&mm->nr_ptes))
872 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
873 atomic_long_read(&mm->nr_ptes));
874 if (mm_nr_pmds(mm))
875 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
876 mm_nr_pmds(mm));
877
878 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
879 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
880 #endif
881 }
882
883 /*
884 * Allocate and initialize an mm_struct.
885 */
886 struct mm_struct *mm_alloc(void)
887 {
888 struct mm_struct *mm;
889
890 mm = allocate_mm();
891 if (!mm)
892 return NULL;
893
894 memset(mm, 0, sizeof(*mm));
895 return mm_init(mm, current, current_user_ns());
896 }
897
898 /*
899 * Called when the last reference to the mm
900 * is dropped: either by a lazy thread or by
901 * mmput. Free the page directory and the mm.
902 */
903 void __mmdrop(struct mm_struct *mm)
904 {
905 BUG_ON(mm == &init_mm);
906 mm_free_pgd(mm);
907 destroy_context(mm);
908 hmm_mm_destroy(mm);
909 mmu_notifier_mm_destroy(mm);
910 check_mm(mm);
911 put_user_ns(mm->user_ns);
912 free_mm(mm);
913 }
914 EXPORT_SYMBOL_GPL(__mmdrop);
915
916 static inline void __mmput(struct mm_struct *mm)
917 {
918 VM_BUG_ON(atomic_read(&mm->mm_users));
919
920 uprobe_clear_state(mm);
921 exit_aio(mm);
922 ksm_exit(mm);
923 khugepaged_exit(mm); /* must run before exit_mmap */
924 exit_mmap(mm);
925 mm_put_huge_zero_page(mm);
926 set_mm_exe_file(mm, NULL);
927 if (!list_empty(&mm->mmlist)) {
928 spin_lock(&mmlist_lock);
929 list_del(&mm->mmlist);
930 spin_unlock(&mmlist_lock);
931 }
932 if (mm->binfmt)
933 module_put(mm->binfmt->module);
934 mmdrop(mm);
935 }
936
937 /*
938 * Decrement the use count and release all resources for an mm.
939 */
940 void mmput(struct mm_struct *mm)
941 {
942 might_sleep();
943
944 if (atomic_dec_and_test(&mm->mm_users))
945 __mmput(mm);
946 }
947 EXPORT_SYMBOL_GPL(mmput);
948
949 /**
950 * set_mm_exe_file - change a reference to the mm's executable file
951 *
952 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
953 *
954 * Main users are mmput() and sys_execve(). Callers prevent concurrent
955 * invocations: in mmput() nobody alive left, in execve task is single
956 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
957 * mm->exe_file, but does so without using set_mm_exe_file() in order
958 * to do avoid the need for any locks.
959 */
960 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
961 {
962 struct file *old_exe_file;
963
964 /*
965 * It is safe to dereference the exe_file without RCU as
966 * this function is only called if nobody else can access
967 * this mm -- see comment above for justification.
968 */
969 old_exe_file = rcu_dereference_raw(mm->exe_file);
970
971 if (new_exe_file)
972 get_file(new_exe_file);
973 rcu_assign_pointer(mm->exe_file, new_exe_file);
974 if (old_exe_file)
975 fput(old_exe_file);
976 }
977
978 /**
979 * get_mm_exe_file - acquire a reference to the mm's executable file
980 *
981 * Returns %NULL if mm has no associated executable file.
982 * User must release file via fput().
983 */
984 struct file *get_mm_exe_file(struct mm_struct *mm)
985 {
986 struct file *exe_file;
987
988 rcu_read_lock();
989 exe_file = rcu_dereference(mm->exe_file);
990 if (exe_file && !get_file_rcu(exe_file))
991 exe_file = NULL;
992 rcu_read_unlock();
993 return exe_file;
994 }
995 EXPORT_SYMBOL(get_mm_exe_file);
996
997 /**
998 * get_task_exe_file - acquire a reference to the task's executable file
999 *
1000 * Returns %NULL if task's mm (if any) has no associated executable file or
1001 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1002 * User must release file via fput().
1003 */
1004 struct file *get_task_exe_file(struct task_struct *task)
1005 {
1006 struct file *exe_file = NULL;
1007 struct mm_struct *mm;
1008
1009 task_lock(task);
1010 mm = task->mm;
1011 if (mm) {
1012 if (!(task->flags & PF_KTHREAD))
1013 exe_file = get_mm_exe_file(mm);
1014 }
1015 task_unlock(task);
1016 return exe_file;
1017 }
1018 EXPORT_SYMBOL(get_task_exe_file);
1019
1020 /**
1021 * get_task_mm - acquire a reference to the task's mm
1022 *
1023 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1024 * this kernel workthread has transiently adopted a user mm with use_mm,
1025 * to do its AIO) is not set and if so returns a reference to it, after
1026 * bumping up the use count. User must release the mm via mmput()
1027 * after use. Typically used by /proc and ptrace.
1028 */
1029 struct mm_struct *get_task_mm(struct task_struct *task)
1030 {
1031 struct mm_struct *mm;
1032
1033 task_lock(task);
1034 mm = task->mm;
1035 if (mm) {
1036 if (task->flags & PF_KTHREAD)
1037 mm = NULL;
1038 else
1039 mmget(mm);
1040 }
1041 task_unlock(task);
1042 return mm;
1043 }
1044 EXPORT_SYMBOL_GPL(get_task_mm);
1045
1046 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1047 {
1048 struct mm_struct *mm;
1049 int err;
1050
1051 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1052 if (err)
1053 return ERR_PTR(err);
1054
1055 mm = get_task_mm(task);
1056 if (mm && mm != current->mm &&
1057 !ptrace_may_access(task, mode)) {
1058 mmput(mm);
1059 mm = ERR_PTR(-EACCES);
1060 }
1061 mutex_unlock(&task->signal->cred_guard_mutex);
1062
1063 return mm;
1064 }
1065
1066 static void complete_vfork_done(struct task_struct *tsk)
1067 {
1068 struct completion *vfork;
1069
1070 task_lock(tsk);
1071 vfork = tsk->vfork_done;
1072 if (likely(vfork)) {
1073 tsk->vfork_done = NULL;
1074 complete(vfork);
1075 }
1076 task_unlock(tsk);
1077 }
1078
1079 static int wait_for_vfork_done(struct task_struct *child,
1080 struct completion *vfork)
1081 {
1082 int killed;
1083
1084 freezer_do_not_count();
1085 killed = wait_for_completion_killable(vfork);
1086 freezer_count();
1087
1088 if (killed) {
1089 task_lock(child);
1090 child->vfork_done = NULL;
1091 task_unlock(child);
1092 }
1093
1094 put_task_struct(child);
1095 return killed;
1096 }
1097
1098 /* Please note the differences between mmput and mm_release.
1099 * mmput is called whenever we stop holding onto a mm_struct,
1100 * error success whatever.
1101 *
1102 * mm_release is called after a mm_struct has been removed
1103 * from the current process.
1104 *
1105 * This difference is important for error handling, when we
1106 * only half set up a mm_struct for a new process and need to restore
1107 * the old one. Because we mmput the new mm_struct before
1108 * restoring the old one. . .
1109 * Eric Biederman 10 January 1998
1110 */
1111 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1112 {
1113 /* Get rid of any futexes when releasing the mm */
1114 #ifdef CONFIG_FUTEX
1115 if (unlikely(tsk->robust_list)) {
1116 exit_robust_list(tsk);
1117 tsk->robust_list = NULL;
1118 }
1119 #ifdef CONFIG_COMPAT
1120 if (unlikely(tsk->compat_robust_list)) {
1121 compat_exit_robust_list(tsk);
1122 tsk->compat_robust_list = NULL;
1123 }
1124 #endif
1125 if (unlikely(!list_empty(&tsk->pi_state_list)))
1126 exit_pi_state_list(tsk);
1127 #endif
1128
1129 uprobe_free_utask(tsk);
1130
1131 /* Get rid of any cached register state */
1132 deactivate_mm(tsk, mm);
1133
1134 /*
1135 * Signal userspace if we're not exiting with a core dump
1136 * because we want to leave the value intact for debugging
1137 * purposes.
1138 */
1139 if (tsk->clear_child_tid) {
1140 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1141 atomic_read(&mm->mm_users) > 1) {
1142 /*
1143 * We don't check the error code - if userspace has
1144 * not set up a proper pointer then tough luck.
1145 */
1146 put_user(0, tsk->clear_child_tid);
1147 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1148 1, NULL, NULL, 0);
1149 }
1150 tsk->clear_child_tid = NULL;
1151 }
1152
1153 /*
1154 * All done, finally we can wake up parent and return this mm to him.
1155 * Also kthread_stop() uses this completion for synchronization.
1156 */
1157 if (tsk->vfork_done)
1158 complete_vfork_done(tsk);
1159 }
1160
1161 /*
1162 * Allocate a new mm structure and copy contents from the
1163 * mm structure of the passed in task structure.
1164 */
1165 static struct mm_struct *dup_mm(struct task_struct *tsk)
1166 {
1167 struct mm_struct *mm, *oldmm = current->mm;
1168 int err;
1169
1170 mm = allocate_mm();
1171 if (!mm)
1172 goto fail_nomem;
1173
1174 memcpy(mm, oldmm, sizeof(*mm));
1175
1176 if (!mm_init(mm, tsk, mm->user_ns))
1177 goto fail_nomem;
1178
1179 err = dup_mmap(mm, oldmm);
1180 if (err)
1181 goto free_pt;
1182
1183 mm->hiwater_rss = get_mm_rss(mm);
1184 mm->hiwater_vm = mm->total_vm;
1185
1186 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1187 goto free_pt;
1188
1189 return mm;
1190
1191 free_pt:
1192 /* don't put binfmt in mmput, we haven't got module yet */
1193 mm->binfmt = NULL;
1194 mmput(mm);
1195
1196 fail_nomem:
1197 return NULL;
1198 }
1199
1200 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1201 {
1202 struct mm_struct *mm, *oldmm;
1203 int retval;
1204
1205 tsk->min_flt = tsk->maj_flt = 0;
1206 tsk->nvcsw = tsk->nivcsw = 0;
1207 #ifdef CONFIG_DETECT_HUNG_TASK
1208 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1209 #endif
1210
1211 tsk->mm = NULL;
1212 tsk->active_mm = NULL;
1213
1214 /*
1215 * Are we cloning a kernel thread?
1216 *
1217 * We need to steal a active VM for that..
1218 */
1219 oldmm = current->mm;
1220 if (!oldmm)
1221 return 0;
1222
1223 /* initialize the new vmacache entries */
1224 vmacache_flush(tsk);
1225
1226 if (clone_flags & CLONE_VM) {
1227 mmget(oldmm);
1228 mm = oldmm;
1229 goto good_mm;
1230 }
1231
1232 retval = -ENOMEM;
1233 mm = dup_mm(tsk);
1234 if (!mm)
1235 goto fail_nomem;
1236
1237 good_mm:
1238 tsk->mm = mm;
1239 tsk->active_mm = mm;
1240 return 0;
1241
1242 fail_nomem:
1243 return retval;
1244 }
1245
1246 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1247 {
1248 struct fs_struct *fs = current->fs;
1249 if (clone_flags & CLONE_FS) {
1250 /* tsk->fs is already what we want */
1251 spin_lock(&fs->lock);
1252 if (fs->in_exec) {
1253 spin_unlock(&fs->lock);
1254 return -EAGAIN;
1255 }
1256 fs->users++;
1257 spin_unlock(&fs->lock);
1258 return 0;
1259 }
1260 tsk->fs = copy_fs_struct(fs);
1261 if (!tsk->fs)
1262 return -ENOMEM;
1263 return 0;
1264 }
1265
1266 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1267 {
1268 struct files_struct *oldf, *newf;
1269 int error = 0;
1270
1271 /*
1272 * A background process may not have any files ...
1273 */
1274 oldf = current->files;
1275 if (!oldf)
1276 goto out;
1277
1278 if (clone_flags & CLONE_FILES) {
1279 atomic_inc(&oldf->count);
1280 goto out;
1281 }
1282
1283 newf = dup_fd(oldf, &error);
1284 if (!newf)
1285 goto out;
1286
1287 tsk->files = newf;
1288 error = 0;
1289 out:
1290 return error;
1291 }
1292
1293 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1294 {
1295 #ifdef CONFIG_BLOCK
1296 struct io_context *ioc = current->io_context;
1297 struct io_context *new_ioc;
1298
1299 if (!ioc)
1300 return 0;
1301 /*
1302 * Share io context with parent, if CLONE_IO is set
1303 */
1304 if (clone_flags & CLONE_IO) {
1305 ioc_task_link(ioc);
1306 tsk->io_context = ioc;
1307 } else if (ioprio_valid(ioc->ioprio)) {
1308 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1309 if (unlikely(!new_ioc))
1310 return -ENOMEM;
1311
1312 new_ioc->ioprio = ioc->ioprio;
1313 put_io_context(new_ioc);
1314 }
1315 #endif
1316 return 0;
1317 }
1318
1319 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1320 {
1321 struct sighand_struct *sig;
1322
1323 if (clone_flags & CLONE_SIGHAND) {
1324 atomic_inc(&current->sighand->count);
1325 return 0;
1326 }
1327 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1328 rcu_assign_pointer(tsk->sighand, sig);
1329 if (!sig)
1330 return -ENOMEM;
1331
1332 atomic_set(&sig->count, 1);
1333 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1334 return 0;
1335 }
1336
1337 void __cleanup_sighand(struct sighand_struct *sighand)
1338 {
1339 if (atomic_dec_and_test(&sighand->count)) {
1340 signalfd_cleanup(sighand);
1341 /*
1342 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1343 * without an RCU grace period, see __lock_task_sighand().
1344 */
1345 kmem_cache_free(sighand_cachep, sighand);
1346 }
1347 }
1348
1349 #ifdef CONFIG_POSIX_TIMERS
1350 /*
1351 * Initialize POSIX timer handling for a thread group.
1352 */
1353 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1354 {
1355 unsigned long cpu_limit;
1356
1357 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1358 if (cpu_limit != RLIM_INFINITY) {
1359 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1360 sig->cputimer.running = true;
1361 }
1362
1363 /* The timer lists. */
1364 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1365 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1366 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1367 }
1368 #else
1369 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1370 #endif
1371
1372 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1373 {
1374 struct signal_struct *sig;
1375
1376 if (clone_flags & CLONE_THREAD)
1377 return 0;
1378
1379 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1380 tsk->signal = sig;
1381 if (!sig)
1382 return -ENOMEM;
1383
1384 sig->nr_threads = 1;
1385 atomic_set(&sig->live, 1);
1386 atomic_set(&sig->sigcnt, 1);
1387
1388 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1389 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1390 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1391
1392 init_waitqueue_head(&sig->wait_chldexit);
1393 sig->curr_target = tsk;
1394 init_sigpending(&sig->shared_pending);
1395 seqlock_init(&sig->stats_lock);
1396 prev_cputime_init(&sig->prev_cputime);
1397
1398 #ifdef CONFIG_POSIX_TIMERS
1399 INIT_LIST_HEAD(&sig->posix_timers);
1400 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1401 sig->real_timer.function = it_real_fn;
1402 #endif
1403
1404 task_lock(current->group_leader);
1405 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1406 task_unlock(current->group_leader);
1407
1408 posix_cpu_timers_init_group(sig);
1409
1410 tty_audit_fork(sig);
1411 sched_autogroup_fork(sig);
1412
1413 sig->oom_score_adj = current->signal->oom_score_adj;
1414 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1415
1416 mutex_init(&sig->cred_guard_mutex);
1417
1418 return 0;
1419 }
1420
1421 static void copy_seccomp(struct task_struct *p)
1422 {
1423 #ifdef CONFIG_SECCOMP
1424 /*
1425 * Must be called with sighand->lock held, which is common to
1426 * all threads in the group. Holding cred_guard_mutex is not
1427 * needed because this new task is not yet running and cannot
1428 * be racing exec.
1429 */
1430 assert_spin_locked(&current->sighand->siglock);
1431
1432 /* Ref-count the new filter user, and assign it. */
1433 get_seccomp_filter(current);
1434 p->seccomp = current->seccomp;
1435
1436 /*
1437 * Explicitly enable no_new_privs here in case it got set
1438 * between the task_struct being duplicated and holding the
1439 * sighand lock. The seccomp state and nnp must be in sync.
1440 */
1441 if (task_no_new_privs(current))
1442 task_set_no_new_privs(p);
1443
1444 /*
1445 * If the parent gained a seccomp mode after copying thread
1446 * flags and between before we held the sighand lock, we have
1447 * to manually enable the seccomp thread flag here.
1448 */
1449 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1450 set_tsk_thread_flag(p, TIF_SECCOMP);
1451 #endif
1452 }
1453
1454 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1455 {
1456 current->clear_child_tid = tidptr;
1457
1458 return task_pid_vnr(current);
1459 }
1460
1461 static void rt_mutex_init_task(struct task_struct *p)
1462 {
1463 raw_spin_lock_init(&p->pi_lock);
1464 #ifdef CONFIG_RT_MUTEXES
1465 p->pi_waiters = RB_ROOT;
1466 p->pi_waiters_leftmost = NULL;
1467 p->pi_top_task = NULL;
1468 p->pi_blocked_on = NULL;
1469 #endif
1470 }
1471
1472 #ifdef CONFIG_POSIX_TIMERS
1473 /*
1474 * Initialize POSIX timer handling for a single task.
1475 */
1476 static void posix_cpu_timers_init(struct task_struct *tsk)
1477 {
1478 tsk->cputime_expires.prof_exp = 0;
1479 tsk->cputime_expires.virt_exp = 0;
1480 tsk->cputime_expires.sched_exp = 0;
1481 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1482 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1483 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1484 }
1485 #else
1486 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1487 #endif
1488
1489 static inline void
1490 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1491 {
1492 task->pids[type].pid = pid;
1493 }
1494
1495 static inline void rcu_copy_process(struct task_struct *p)
1496 {
1497 #ifdef CONFIG_PREEMPT_RCU
1498 p->rcu_read_lock_nesting = 0;
1499 p->rcu_read_unlock_special.s = 0;
1500 p->rcu_blocked_node = NULL;
1501 INIT_LIST_HEAD(&p->rcu_node_entry);
1502 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1503 #ifdef CONFIG_TASKS_RCU
1504 p->rcu_tasks_holdout = false;
1505 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1506 p->rcu_tasks_idle_cpu = -1;
1507 #endif /* #ifdef CONFIG_TASKS_RCU */
1508 }
1509
1510 /*
1511 * This creates a new process as a copy of the old one,
1512 * but does not actually start it yet.
1513 *
1514 * It copies the registers, and all the appropriate
1515 * parts of the process environment (as per the clone
1516 * flags). The actual kick-off is left to the caller.
1517 */
1518 static __latent_entropy struct task_struct *copy_process(
1519 unsigned long clone_flags,
1520 unsigned long stack_start,
1521 unsigned long stack_size,
1522 int __user *child_tidptr,
1523 struct pid *pid,
1524 int trace,
1525 unsigned long tls,
1526 int node)
1527 {
1528 int retval;
1529 struct task_struct *p;
1530
1531 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1532 return ERR_PTR(-EINVAL);
1533
1534 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1535 return ERR_PTR(-EINVAL);
1536
1537 /*
1538 * Thread groups must share signals as well, and detached threads
1539 * can only be started up within the thread group.
1540 */
1541 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1542 return ERR_PTR(-EINVAL);
1543
1544 /*
1545 * Shared signal handlers imply shared VM. By way of the above,
1546 * thread groups also imply shared VM. Blocking this case allows
1547 * for various simplifications in other code.
1548 */
1549 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1550 return ERR_PTR(-EINVAL);
1551
1552 /*
1553 * Siblings of global init remain as zombies on exit since they are
1554 * not reaped by their parent (swapper). To solve this and to avoid
1555 * multi-rooted process trees, prevent global and container-inits
1556 * from creating siblings.
1557 */
1558 if ((clone_flags & CLONE_PARENT) &&
1559 current->signal->flags & SIGNAL_UNKILLABLE)
1560 return ERR_PTR(-EINVAL);
1561
1562 /*
1563 * If the new process will be in a different pid or user namespace
1564 * do not allow it to share a thread group with the forking task.
1565 */
1566 if (clone_flags & CLONE_THREAD) {
1567 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1568 (task_active_pid_ns(current) !=
1569 current->nsproxy->pid_ns_for_children))
1570 return ERR_PTR(-EINVAL);
1571 }
1572
1573 retval = security_task_create(clone_flags);
1574 if (retval)
1575 goto fork_out;
1576
1577 retval = -ENOMEM;
1578 p = dup_task_struct(current, node);
1579 if (!p)
1580 goto fork_out;
1581
1582 /*
1583 * This _must_ happen before we call free_task(), i.e. before we jump
1584 * to any of the bad_fork_* labels. This is to avoid freeing
1585 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1586 * kernel threads (PF_KTHREAD).
1587 */
1588 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1589 /*
1590 * Clear TID on mm_release()?
1591 */
1592 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1593
1594 ftrace_graph_init_task(p);
1595
1596 rt_mutex_init_task(p);
1597
1598 #ifdef CONFIG_PROVE_LOCKING
1599 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1600 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1601 #endif
1602 retval = -EAGAIN;
1603 if (atomic_read(&p->real_cred->user->processes) >=
1604 task_rlimit(p, RLIMIT_NPROC)) {
1605 if (p->real_cred->user != INIT_USER &&
1606 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1607 goto bad_fork_free;
1608 }
1609 current->flags &= ~PF_NPROC_EXCEEDED;
1610
1611 retval = copy_creds(p, clone_flags);
1612 if (retval < 0)
1613 goto bad_fork_free;
1614
1615 /*
1616 * If multiple threads are within copy_process(), then this check
1617 * triggers too late. This doesn't hurt, the check is only there
1618 * to stop root fork bombs.
1619 */
1620 retval = -EAGAIN;
1621 if (nr_threads >= max_threads)
1622 goto bad_fork_cleanup_count;
1623
1624 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1625 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1626 p->flags |= PF_FORKNOEXEC;
1627 INIT_LIST_HEAD(&p->children);
1628 INIT_LIST_HEAD(&p->sibling);
1629 rcu_copy_process(p);
1630 p->vfork_done = NULL;
1631 spin_lock_init(&p->alloc_lock);
1632
1633 init_sigpending(&p->pending);
1634
1635 p->utime = p->stime = p->gtime = 0;
1636 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1637 p->utimescaled = p->stimescaled = 0;
1638 #endif
1639 prev_cputime_init(&p->prev_cputime);
1640
1641 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1642 seqcount_init(&p->vtime.seqcount);
1643 p->vtime.starttime = 0;
1644 p->vtime.state = VTIME_INACTIVE;
1645 #endif
1646
1647 #if defined(SPLIT_RSS_COUNTING)
1648 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1649 #endif
1650
1651 p->default_timer_slack_ns = current->timer_slack_ns;
1652
1653 task_io_accounting_init(&p->ioac);
1654 acct_clear_integrals(p);
1655
1656 posix_cpu_timers_init(p);
1657
1658 p->start_time = ktime_get_ns();
1659 p->real_start_time = ktime_get_boot_ns();
1660 p->io_context = NULL;
1661 p->audit_context = NULL;
1662 cgroup_fork(p);
1663 #ifdef CONFIG_NUMA
1664 p->mempolicy = mpol_dup(p->mempolicy);
1665 if (IS_ERR(p->mempolicy)) {
1666 retval = PTR_ERR(p->mempolicy);
1667 p->mempolicy = NULL;
1668 goto bad_fork_cleanup_threadgroup_lock;
1669 }
1670 #endif
1671 #ifdef CONFIG_CPUSETS
1672 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1673 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1674 seqcount_init(&p->mems_allowed_seq);
1675 #endif
1676 #ifdef CONFIG_TRACE_IRQFLAGS
1677 p->irq_events = 0;
1678 p->hardirqs_enabled = 0;
1679 p->hardirq_enable_ip = 0;
1680 p->hardirq_enable_event = 0;
1681 p->hardirq_disable_ip = _THIS_IP_;
1682 p->hardirq_disable_event = 0;
1683 p->softirqs_enabled = 1;
1684 p->softirq_enable_ip = _THIS_IP_;
1685 p->softirq_enable_event = 0;
1686 p->softirq_disable_ip = 0;
1687 p->softirq_disable_event = 0;
1688 p->hardirq_context = 0;
1689 p->softirq_context = 0;
1690 #endif
1691
1692 p->pagefault_disabled = 0;
1693
1694 #ifdef CONFIG_LOCKDEP
1695 p->lockdep_depth = 0; /* no locks held yet */
1696 p->curr_chain_key = 0;
1697 p->lockdep_recursion = 0;
1698 lockdep_init_task(p);
1699 #endif
1700
1701 #ifdef CONFIG_DEBUG_MUTEXES
1702 p->blocked_on = NULL; /* not blocked yet */
1703 #endif
1704 #ifdef CONFIG_BCACHE
1705 p->sequential_io = 0;
1706 p->sequential_io_avg = 0;
1707 #endif
1708
1709 /* Perform scheduler related setup. Assign this task to a CPU. */
1710 retval = sched_fork(clone_flags, p);
1711 if (retval)
1712 goto bad_fork_cleanup_policy;
1713
1714 retval = perf_event_init_task(p);
1715 if (retval)
1716 goto bad_fork_cleanup_policy;
1717 retval = audit_alloc(p);
1718 if (retval)
1719 goto bad_fork_cleanup_perf;
1720 /* copy all the process information */
1721 shm_init_task(p);
1722 retval = security_task_alloc(p, clone_flags);
1723 if (retval)
1724 goto bad_fork_cleanup_audit;
1725 retval = copy_semundo(clone_flags, p);
1726 if (retval)
1727 goto bad_fork_cleanup_security;
1728 retval = copy_files(clone_flags, p);
1729 if (retval)
1730 goto bad_fork_cleanup_semundo;
1731 retval = copy_fs(clone_flags, p);
1732 if (retval)
1733 goto bad_fork_cleanup_files;
1734 retval = copy_sighand(clone_flags, p);
1735 if (retval)
1736 goto bad_fork_cleanup_fs;
1737 retval = copy_signal(clone_flags, p);
1738 if (retval)
1739 goto bad_fork_cleanup_sighand;
1740 retval = copy_mm(clone_flags, p);
1741 if (retval)
1742 goto bad_fork_cleanup_signal;
1743 retval = copy_namespaces(clone_flags, p);
1744 if (retval)
1745 goto bad_fork_cleanup_mm;
1746 retval = copy_io(clone_flags, p);
1747 if (retval)
1748 goto bad_fork_cleanup_namespaces;
1749 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1750 if (retval)
1751 goto bad_fork_cleanup_io;
1752
1753 if (pid != &init_struct_pid) {
1754 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1755 if (IS_ERR(pid)) {
1756 retval = PTR_ERR(pid);
1757 goto bad_fork_cleanup_thread;
1758 }
1759 }
1760
1761 #ifdef CONFIG_BLOCK
1762 p->plug = NULL;
1763 #endif
1764 #ifdef CONFIG_FUTEX
1765 p->robust_list = NULL;
1766 #ifdef CONFIG_COMPAT
1767 p->compat_robust_list = NULL;
1768 #endif
1769 INIT_LIST_HEAD(&p->pi_state_list);
1770 p->pi_state_cache = NULL;
1771 #endif
1772 /*
1773 * sigaltstack should be cleared when sharing the same VM
1774 */
1775 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1776 sas_ss_reset(p);
1777
1778 /*
1779 * Syscall tracing and stepping should be turned off in the
1780 * child regardless of CLONE_PTRACE.
1781 */
1782 user_disable_single_step(p);
1783 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1784 #ifdef TIF_SYSCALL_EMU
1785 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1786 #endif
1787 clear_all_latency_tracing(p);
1788
1789 /* ok, now we should be set up.. */
1790 p->pid = pid_nr(pid);
1791 if (clone_flags & CLONE_THREAD) {
1792 p->exit_signal = -1;
1793 p->group_leader = current->group_leader;
1794 p->tgid = current->tgid;
1795 } else {
1796 if (clone_flags & CLONE_PARENT)
1797 p->exit_signal = current->group_leader->exit_signal;
1798 else
1799 p->exit_signal = (clone_flags & CSIGNAL);
1800 p->group_leader = p;
1801 p->tgid = p->pid;
1802 }
1803
1804 p->nr_dirtied = 0;
1805 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1806 p->dirty_paused_when = 0;
1807
1808 p->pdeath_signal = 0;
1809 INIT_LIST_HEAD(&p->thread_group);
1810 p->task_works = NULL;
1811
1812 cgroup_threadgroup_change_begin(current);
1813 /*
1814 * Ensure that the cgroup subsystem policies allow the new process to be
1815 * forked. It should be noted the the new process's css_set can be changed
1816 * between here and cgroup_post_fork() if an organisation operation is in
1817 * progress.
1818 */
1819 retval = cgroup_can_fork(p);
1820 if (retval)
1821 goto bad_fork_free_pid;
1822
1823 /*
1824 * Make it visible to the rest of the system, but dont wake it up yet.
1825 * Need tasklist lock for parent etc handling!
1826 */
1827 write_lock_irq(&tasklist_lock);
1828
1829 /* CLONE_PARENT re-uses the old parent */
1830 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1831 p->real_parent = current->real_parent;
1832 p->parent_exec_id = current->parent_exec_id;
1833 } else {
1834 p->real_parent = current;
1835 p->parent_exec_id = current->self_exec_id;
1836 }
1837
1838 klp_copy_process(p);
1839
1840 spin_lock(&current->sighand->siglock);
1841
1842 /*
1843 * Copy seccomp details explicitly here, in case they were changed
1844 * before holding sighand lock.
1845 */
1846 copy_seccomp(p);
1847
1848 /*
1849 * Process group and session signals need to be delivered to just the
1850 * parent before the fork or both the parent and the child after the
1851 * fork. Restart if a signal comes in before we add the new process to
1852 * it's process group.
1853 * A fatal signal pending means that current will exit, so the new
1854 * thread can't slip out of an OOM kill (or normal SIGKILL).
1855 */
1856 recalc_sigpending();
1857 if (signal_pending(current)) {
1858 retval = -ERESTARTNOINTR;
1859 goto bad_fork_cancel_cgroup;
1860 }
1861 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1862 retval = -ENOMEM;
1863 goto bad_fork_cancel_cgroup;
1864 }
1865
1866 if (likely(p->pid)) {
1867 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1868
1869 init_task_pid(p, PIDTYPE_PID, pid);
1870 if (thread_group_leader(p)) {
1871 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1872 init_task_pid(p, PIDTYPE_SID, task_session(current));
1873
1874 if (is_child_reaper(pid)) {
1875 ns_of_pid(pid)->child_reaper = p;
1876 p->signal->flags |= SIGNAL_UNKILLABLE;
1877 }
1878
1879 p->signal->leader_pid = pid;
1880 p->signal->tty = tty_kref_get(current->signal->tty);
1881 /*
1882 * Inherit has_child_subreaper flag under the same
1883 * tasklist_lock with adding child to the process tree
1884 * for propagate_has_child_subreaper optimization.
1885 */
1886 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1887 p->real_parent->signal->is_child_subreaper;
1888 list_add_tail(&p->sibling, &p->real_parent->children);
1889 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1890 attach_pid(p, PIDTYPE_PGID);
1891 attach_pid(p, PIDTYPE_SID);
1892 __this_cpu_inc(process_counts);
1893 } else {
1894 current->signal->nr_threads++;
1895 atomic_inc(&current->signal->live);
1896 atomic_inc(&current->signal->sigcnt);
1897 list_add_tail_rcu(&p->thread_group,
1898 &p->group_leader->thread_group);
1899 list_add_tail_rcu(&p->thread_node,
1900 &p->signal->thread_head);
1901 }
1902 attach_pid(p, PIDTYPE_PID);
1903 nr_threads++;
1904 }
1905
1906 total_forks++;
1907 spin_unlock(&current->sighand->siglock);
1908 syscall_tracepoint_update(p);
1909 write_unlock_irq(&tasklist_lock);
1910
1911 proc_fork_connector(p);
1912 cgroup_post_fork(p);
1913 cgroup_threadgroup_change_end(current);
1914 perf_event_fork(p);
1915
1916 trace_task_newtask(p, clone_flags);
1917 uprobe_copy_process(p, clone_flags);
1918
1919 return p;
1920
1921 bad_fork_cancel_cgroup:
1922 spin_unlock(&current->sighand->siglock);
1923 write_unlock_irq(&tasklist_lock);
1924 cgroup_cancel_fork(p);
1925 bad_fork_free_pid:
1926 cgroup_threadgroup_change_end(current);
1927 if (pid != &init_struct_pid)
1928 free_pid(pid);
1929 bad_fork_cleanup_thread:
1930 exit_thread(p);
1931 bad_fork_cleanup_io:
1932 if (p->io_context)
1933 exit_io_context(p);
1934 bad_fork_cleanup_namespaces:
1935 exit_task_namespaces(p);
1936 bad_fork_cleanup_mm:
1937 if (p->mm)
1938 mmput(p->mm);
1939 bad_fork_cleanup_signal:
1940 if (!(clone_flags & CLONE_THREAD))
1941 free_signal_struct(p->signal);
1942 bad_fork_cleanup_sighand:
1943 __cleanup_sighand(p->sighand);
1944 bad_fork_cleanup_fs:
1945 exit_fs(p); /* blocking */
1946 bad_fork_cleanup_files:
1947 exit_files(p); /* blocking */
1948 bad_fork_cleanup_semundo:
1949 exit_sem(p);
1950 bad_fork_cleanup_security:
1951 security_task_free(p);
1952 bad_fork_cleanup_audit:
1953 audit_free(p);
1954 bad_fork_cleanup_perf:
1955 perf_event_free_task(p);
1956 bad_fork_cleanup_policy:
1957 lockdep_free_task(p);
1958 #ifdef CONFIG_NUMA
1959 mpol_put(p->mempolicy);
1960 bad_fork_cleanup_threadgroup_lock:
1961 #endif
1962 delayacct_tsk_free(p);
1963 bad_fork_cleanup_count:
1964 atomic_dec(&p->cred->user->processes);
1965 exit_creds(p);
1966 bad_fork_free:
1967 p->state = TASK_DEAD;
1968 put_task_stack(p);
1969 free_task(p);
1970 fork_out:
1971 return ERR_PTR(retval);
1972 }
1973
1974 static inline void init_idle_pids(struct pid_link *links)
1975 {
1976 enum pid_type type;
1977
1978 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1979 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1980 links[type].pid = &init_struct_pid;
1981 }
1982 }
1983
1984 struct task_struct *fork_idle(int cpu)
1985 {
1986 struct task_struct *task;
1987 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1988 cpu_to_node(cpu));
1989 if (!IS_ERR(task)) {
1990 init_idle_pids(task->pids);
1991 init_idle(task, cpu);
1992 }
1993
1994 return task;
1995 }
1996
1997 /*
1998 * Ok, this is the main fork-routine.
1999 *
2000 * It copies the process, and if successful kick-starts
2001 * it and waits for it to finish using the VM if required.
2002 */
2003 long _do_fork(unsigned long clone_flags,
2004 unsigned long stack_start,
2005 unsigned long stack_size,
2006 int __user *parent_tidptr,
2007 int __user *child_tidptr,
2008 unsigned long tls)
2009 {
2010 struct task_struct *p;
2011 int trace = 0;
2012 long nr;
2013
2014 /*
2015 * Determine whether and which event to report to ptracer. When
2016 * called from kernel_thread or CLONE_UNTRACED is explicitly
2017 * requested, no event is reported; otherwise, report if the event
2018 * for the type of forking is enabled.
2019 */
2020 if (!(clone_flags & CLONE_UNTRACED)) {
2021 if (clone_flags & CLONE_VFORK)
2022 trace = PTRACE_EVENT_VFORK;
2023 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2024 trace = PTRACE_EVENT_CLONE;
2025 else
2026 trace = PTRACE_EVENT_FORK;
2027
2028 if (likely(!ptrace_event_enabled(current, trace)))
2029 trace = 0;
2030 }
2031
2032 p = copy_process(clone_flags, stack_start, stack_size,
2033 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2034 add_latent_entropy();
2035 /*
2036 * Do this prior waking up the new thread - the thread pointer
2037 * might get invalid after that point, if the thread exits quickly.
2038 */
2039 if (!IS_ERR(p)) {
2040 struct completion vfork;
2041 struct pid *pid;
2042
2043 trace_sched_process_fork(current, p);
2044
2045 pid = get_task_pid(p, PIDTYPE_PID);
2046 nr = pid_vnr(pid);
2047
2048 if (clone_flags & CLONE_PARENT_SETTID)
2049 put_user(nr, parent_tidptr);
2050
2051 if (clone_flags & CLONE_VFORK) {
2052 p->vfork_done = &vfork;
2053 init_completion(&vfork);
2054 get_task_struct(p);
2055 }
2056
2057 wake_up_new_task(p);
2058
2059 /* forking complete and child started to run, tell ptracer */
2060 if (unlikely(trace))
2061 ptrace_event_pid(trace, pid);
2062
2063 if (clone_flags & CLONE_VFORK) {
2064 if (!wait_for_vfork_done(p, &vfork))
2065 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2066 }
2067
2068 put_pid(pid);
2069 } else {
2070 nr = PTR_ERR(p);
2071 }
2072 return nr;
2073 }
2074
2075 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2076 /* For compatibility with architectures that call do_fork directly rather than
2077 * using the syscall entry points below. */
2078 long do_fork(unsigned long clone_flags,
2079 unsigned long stack_start,
2080 unsigned long stack_size,
2081 int __user *parent_tidptr,
2082 int __user *child_tidptr)
2083 {
2084 return _do_fork(clone_flags, stack_start, stack_size,
2085 parent_tidptr, child_tidptr, 0);
2086 }
2087 #endif
2088
2089 /*
2090 * Create a kernel thread.
2091 */
2092 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2093 {
2094 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2095 (unsigned long)arg, NULL, NULL, 0);
2096 }
2097
2098 #ifdef __ARCH_WANT_SYS_FORK
2099 SYSCALL_DEFINE0(fork)
2100 {
2101 #ifdef CONFIG_MMU
2102 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2103 #else
2104 /* can not support in nommu mode */
2105 return -EINVAL;
2106 #endif
2107 }
2108 #endif
2109
2110 #ifdef __ARCH_WANT_SYS_VFORK
2111 SYSCALL_DEFINE0(vfork)
2112 {
2113 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2114 0, NULL, NULL, 0);
2115 }
2116 #endif
2117
2118 #ifdef __ARCH_WANT_SYS_CLONE
2119 #ifdef CONFIG_CLONE_BACKWARDS
2120 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2121 int __user *, parent_tidptr,
2122 unsigned long, tls,
2123 int __user *, child_tidptr)
2124 #elif defined(CONFIG_CLONE_BACKWARDS2)
2125 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2126 int __user *, parent_tidptr,
2127 int __user *, child_tidptr,
2128 unsigned long, tls)
2129 #elif defined(CONFIG_CLONE_BACKWARDS3)
2130 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2131 int, stack_size,
2132 int __user *, parent_tidptr,
2133 int __user *, child_tidptr,
2134 unsigned long, tls)
2135 #else
2136 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2137 int __user *, parent_tidptr,
2138 int __user *, child_tidptr,
2139 unsigned long, tls)
2140 #endif
2141 {
2142 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2143 }
2144 #endif
2145
2146 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2147 {
2148 struct task_struct *leader, *parent, *child;
2149 int res;
2150
2151 read_lock(&tasklist_lock);
2152 leader = top = top->group_leader;
2153 down:
2154 for_each_thread(leader, parent) {
2155 list_for_each_entry(child, &parent->children, sibling) {
2156 res = visitor(child, data);
2157 if (res) {
2158 if (res < 0)
2159 goto out;
2160 leader = child;
2161 goto down;
2162 }
2163 up:
2164 ;
2165 }
2166 }
2167
2168 if (leader != top) {
2169 child = leader;
2170 parent = child->real_parent;
2171 leader = parent->group_leader;
2172 goto up;
2173 }
2174 out:
2175 read_unlock(&tasklist_lock);
2176 }
2177
2178 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2179 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2180 #endif
2181
2182 static void sighand_ctor(void *data)
2183 {
2184 struct sighand_struct *sighand = data;
2185
2186 spin_lock_init(&sighand->siglock);
2187 init_waitqueue_head(&sighand->signalfd_wqh);
2188 }
2189
2190 void __init proc_caches_init(void)
2191 {
2192 sighand_cachep = kmem_cache_create("sighand_cache",
2193 sizeof(struct sighand_struct), 0,
2194 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2195 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2196 signal_cachep = kmem_cache_create("signal_cache",
2197 sizeof(struct signal_struct), 0,
2198 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2199 NULL);
2200 files_cachep = kmem_cache_create("files_cache",
2201 sizeof(struct files_struct), 0,
2202 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2203 NULL);
2204 fs_cachep = kmem_cache_create("fs_cache",
2205 sizeof(struct fs_struct), 0,
2206 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2207 NULL);
2208 /*
2209 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2210 * whole struct cpumask for the OFFSTACK case. We could change
2211 * this to *only* allocate as much of it as required by the
2212 * maximum number of CPU's we can ever have. The cpumask_allocation
2213 * is at the end of the structure, exactly for that reason.
2214 */
2215 mm_cachep = kmem_cache_create("mm_struct",
2216 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2217 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2218 NULL);
2219 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2220 mmap_init();
2221 nsproxy_cache_init();
2222 }
2223
2224 /*
2225 * Check constraints on flags passed to the unshare system call.
2226 */
2227 static int check_unshare_flags(unsigned long unshare_flags)
2228 {
2229 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2230 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2231 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2232 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2233 return -EINVAL;
2234 /*
2235 * Not implemented, but pretend it works if there is nothing
2236 * to unshare. Note that unsharing the address space or the
2237 * signal handlers also need to unshare the signal queues (aka
2238 * CLONE_THREAD).
2239 */
2240 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2241 if (!thread_group_empty(current))
2242 return -EINVAL;
2243 }
2244 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2245 if (atomic_read(&current->sighand->count) > 1)
2246 return -EINVAL;
2247 }
2248 if (unshare_flags & CLONE_VM) {
2249 if (!current_is_single_threaded())
2250 return -EINVAL;
2251 }
2252
2253 return 0;
2254 }
2255
2256 /*
2257 * Unshare the filesystem structure if it is being shared
2258 */
2259 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2260 {
2261 struct fs_struct *fs = current->fs;
2262
2263 if (!(unshare_flags & CLONE_FS) || !fs)
2264 return 0;
2265
2266 /* don't need lock here; in the worst case we'll do useless copy */
2267 if (fs->users == 1)
2268 return 0;
2269
2270 *new_fsp = copy_fs_struct(fs);
2271 if (!*new_fsp)
2272 return -ENOMEM;
2273
2274 return 0;
2275 }
2276
2277 /*
2278 * Unshare file descriptor table if it is being shared
2279 */
2280 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2281 {
2282 struct files_struct *fd = current->files;
2283 int error = 0;
2284
2285 if ((unshare_flags & CLONE_FILES) &&
2286 (fd && atomic_read(&fd->count) > 1)) {
2287 *new_fdp = dup_fd(fd, &error);
2288 if (!*new_fdp)
2289 return error;
2290 }
2291
2292 return 0;
2293 }
2294
2295 /*
2296 * unshare allows a process to 'unshare' part of the process
2297 * context which was originally shared using clone. copy_*
2298 * functions used by do_fork() cannot be used here directly
2299 * because they modify an inactive task_struct that is being
2300 * constructed. Here we are modifying the current, active,
2301 * task_struct.
2302 */
2303 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2304 {
2305 struct fs_struct *fs, *new_fs = NULL;
2306 struct files_struct *fd, *new_fd = NULL;
2307 struct cred *new_cred = NULL;
2308 struct nsproxy *new_nsproxy = NULL;
2309 int do_sysvsem = 0;
2310 int err;
2311
2312 /*
2313 * If unsharing a user namespace must also unshare the thread group
2314 * and unshare the filesystem root and working directories.
2315 */
2316 if (unshare_flags & CLONE_NEWUSER)
2317 unshare_flags |= CLONE_THREAD | CLONE_FS;
2318 /*
2319 * If unsharing vm, must also unshare signal handlers.
2320 */
2321 if (unshare_flags & CLONE_VM)
2322 unshare_flags |= CLONE_SIGHAND;
2323 /*
2324 * If unsharing a signal handlers, must also unshare the signal queues.
2325 */
2326 if (unshare_flags & CLONE_SIGHAND)
2327 unshare_flags |= CLONE_THREAD;
2328 /*
2329 * If unsharing namespace, must also unshare filesystem information.
2330 */
2331 if (unshare_flags & CLONE_NEWNS)
2332 unshare_flags |= CLONE_FS;
2333
2334 err = check_unshare_flags(unshare_flags);
2335 if (err)
2336 goto bad_unshare_out;
2337 /*
2338 * CLONE_NEWIPC must also detach from the undolist: after switching
2339 * to a new ipc namespace, the semaphore arrays from the old
2340 * namespace are unreachable.
2341 */
2342 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2343 do_sysvsem = 1;
2344 err = unshare_fs(unshare_flags, &new_fs);
2345 if (err)
2346 goto bad_unshare_out;
2347 err = unshare_fd(unshare_flags, &new_fd);
2348 if (err)
2349 goto bad_unshare_cleanup_fs;
2350 err = unshare_userns(unshare_flags, &new_cred);
2351 if (err)
2352 goto bad_unshare_cleanup_fd;
2353 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2354 new_cred, new_fs);
2355 if (err)
2356 goto bad_unshare_cleanup_cred;
2357
2358 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2359 if (do_sysvsem) {
2360 /*
2361 * CLONE_SYSVSEM is equivalent to sys_exit().
2362 */
2363 exit_sem(current);
2364 }
2365 if (unshare_flags & CLONE_NEWIPC) {
2366 /* Orphan segments in old ns (see sem above). */
2367 exit_shm(current);
2368 shm_init_task(current);
2369 }
2370
2371 if (new_nsproxy)
2372 switch_task_namespaces(current, new_nsproxy);
2373
2374 task_lock(current);
2375
2376 if (new_fs) {
2377 fs = current->fs;
2378 spin_lock(&fs->lock);
2379 current->fs = new_fs;
2380 if (--fs->users)
2381 new_fs = NULL;
2382 else
2383 new_fs = fs;
2384 spin_unlock(&fs->lock);
2385 }
2386
2387 if (new_fd) {
2388 fd = current->files;
2389 current->files = new_fd;
2390 new_fd = fd;
2391 }
2392
2393 task_unlock(current);
2394
2395 if (new_cred) {
2396 /* Install the new user namespace */
2397 commit_creds(new_cred);
2398 new_cred = NULL;
2399 }
2400 }
2401
2402 perf_event_namespaces(current);
2403
2404 bad_unshare_cleanup_cred:
2405 if (new_cred)
2406 put_cred(new_cred);
2407 bad_unshare_cleanup_fd:
2408 if (new_fd)
2409 put_files_struct(new_fd);
2410
2411 bad_unshare_cleanup_fs:
2412 if (new_fs)
2413 free_fs_struct(new_fs);
2414
2415 bad_unshare_out:
2416 return err;
2417 }
2418
2419 /*
2420 * Helper to unshare the files of the current task.
2421 * We don't want to expose copy_files internals to
2422 * the exec layer of the kernel.
2423 */
2424
2425 int unshare_files(struct files_struct **displaced)
2426 {
2427 struct task_struct *task = current;
2428 struct files_struct *copy = NULL;
2429 int error;
2430
2431 error = unshare_fd(CLONE_FILES, &copy);
2432 if (error || !copy) {
2433 *displaced = NULL;
2434 return error;
2435 }
2436 *displaced = task->files;
2437 task_lock(task);
2438 task->files = copy;
2439 task_unlock(task);
2440 return 0;
2441 }
2442
2443 int sysctl_max_threads(struct ctl_table *table, int write,
2444 void __user *buffer, size_t *lenp, loff_t *ppos)
2445 {
2446 struct ctl_table t;
2447 int ret;
2448 int threads = max_threads;
2449 int min = MIN_THREADS;
2450 int max = MAX_THREADS;
2451
2452 t = *table;
2453 t.data = &threads;
2454 t.extra1 = &min;
2455 t.extra2 = &max;
2456
2457 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2458 if (ret || !write)
2459 return ret;
2460
2461 set_max_threads(threads);
2462
2463 return 0;
2464 }