]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
crypto: s390 - fix aes,des ctr mode concurrency finding.
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 task_numa_free(tsk);
241 security_task_free(tsk);
242 exit_creds(tsk);
243 delayacct_tsk_free(tsk);
244 put_signal_struct(tsk->signal);
245
246 if (!profile_handoff_task(tsk))
247 free_task(tsk);
248 }
249 EXPORT_SYMBOL_GPL(__put_task_struct);
250
251 void __init __weak arch_task_cache_init(void) { }
252
253 void __init fork_init(unsigned long mempages)
254 {
255 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
256 #ifndef ARCH_MIN_TASKALIGN
257 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
258 #endif
259 /* create a slab on which task_structs can be allocated */
260 task_struct_cachep =
261 kmem_cache_create("task_struct", sizeof(struct task_struct),
262 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
263 #endif
264
265 /* do the arch specific task caches init */
266 arch_task_cache_init();
267
268 /*
269 * The default maximum number of threads is set to a safe
270 * value: the thread structures can take up at most half
271 * of memory.
272 */
273 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
274
275 /*
276 * we need to allow at least 20 threads to boot a system
277 */
278 if (max_threads < 20)
279 max_threads = 20;
280
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
282 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
283 init_task.signal->rlim[RLIMIT_SIGPENDING] =
284 init_task.signal->rlim[RLIMIT_NPROC];
285 }
286
287 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
288 struct task_struct *src)
289 {
290 *dst = *src;
291 return 0;
292 }
293
294 static struct task_struct *dup_task_struct(struct task_struct *orig)
295 {
296 struct task_struct *tsk;
297 struct thread_info *ti;
298 unsigned long *stackend;
299 int node = tsk_fork_get_node(orig);
300 int err;
301
302 tsk = alloc_task_struct_node(node);
303 if (!tsk)
304 return NULL;
305
306 ti = alloc_thread_info_node(tsk, node);
307 if (!ti)
308 goto free_tsk;
309
310 err = arch_dup_task_struct(tsk, orig);
311 if (err)
312 goto free_ti;
313
314 tsk->stack = ti;
315
316 setup_thread_stack(tsk, orig);
317 clear_user_return_notifier(tsk);
318 clear_tsk_need_resched(tsk);
319 stackend = end_of_stack(tsk);
320 *stackend = STACK_END_MAGIC; /* for overflow detection */
321
322 #ifdef CONFIG_CC_STACKPROTECTOR
323 tsk->stack_canary = get_random_int();
324 #endif
325
326 /*
327 * One for us, one for whoever does the "release_task()" (usually
328 * parent)
329 */
330 atomic_set(&tsk->usage, 2);
331 #ifdef CONFIG_BLK_DEV_IO_TRACE
332 tsk->btrace_seq = 0;
333 #endif
334 tsk->splice_pipe = NULL;
335 tsk->task_frag.page = NULL;
336
337 account_kernel_stack(ti, 1);
338
339 return tsk;
340
341 free_ti:
342 free_thread_info(ti);
343 free_tsk:
344 free_task_struct(tsk);
345 return NULL;
346 }
347
348 #ifdef CONFIG_MMU
349 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
350 {
351 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
352 struct rb_node **rb_link, *rb_parent;
353 int retval;
354 unsigned long charge;
355
356 uprobe_start_dup_mmap();
357 down_write(&oldmm->mmap_sem);
358 flush_cache_dup_mm(oldmm);
359 uprobe_dup_mmap(oldmm, mm);
360 /*
361 * Not linked in yet - no deadlock potential:
362 */
363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364
365 mm->locked_vm = 0;
366 mm->mmap = NULL;
367 mm->mmap_cache = NULL;
368 mm->map_count = 0;
369 cpumask_clear(mm_cpumask(mm));
370 mm->mm_rb = RB_ROOT;
371 rb_link = &mm->mm_rb.rb_node;
372 rb_parent = NULL;
373 pprev = &mm->mmap;
374 retval = ksm_fork(mm, oldmm);
375 if (retval)
376 goto out;
377 retval = khugepaged_fork(mm, oldmm);
378 if (retval)
379 goto out;
380
381 prev = NULL;
382 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 struct file *file;
384
385 if (mpnt->vm_flags & VM_DONTCOPY) {
386 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 -vma_pages(mpnt));
388 continue;
389 }
390 charge = 0;
391 if (mpnt->vm_flags & VM_ACCOUNT) {
392 unsigned long len = vma_pages(mpnt);
393
394 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 goto fail_nomem;
396 charge = len;
397 }
398 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 if (!tmp)
400 goto fail_nomem;
401 *tmp = *mpnt;
402 INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 retval = vma_dup_policy(mpnt, tmp);
404 if (retval)
405 goto fail_nomem_policy;
406 tmp->vm_mm = mm;
407 if (anon_vma_fork(tmp, mpnt))
408 goto fail_nomem_anon_vma_fork;
409 tmp->vm_flags &= ~VM_LOCKED;
410 tmp->vm_next = tmp->vm_prev = NULL;
411 file = tmp->vm_file;
412 if (file) {
413 struct inode *inode = file_inode(file);
414 struct address_space *mapping = file->f_mapping;
415
416 get_file(file);
417 if (tmp->vm_flags & VM_DENYWRITE)
418 atomic_dec(&inode->i_writecount);
419 mutex_lock(&mapping->i_mmap_mutex);
420 if (tmp->vm_flags & VM_SHARED)
421 mapping->i_mmap_writable++;
422 flush_dcache_mmap_lock(mapping);
423 /* insert tmp into the share list, just after mpnt */
424 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
425 vma_nonlinear_insert(tmp,
426 &mapping->i_mmap_nonlinear);
427 else
428 vma_interval_tree_insert_after(tmp, mpnt,
429 &mapping->i_mmap);
430 flush_dcache_mmap_unlock(mapping);
431 mutex_unlock(&mapping->i_mmap_mutex);
432 }
433
434 /*
435 * Clear hugetlb-related page reserves for children. This only
436 * affects MAP_PRIVATE mappings. Faults generated by the child
437 * are not guaranteed to succeed, even if read-only
438 */
439 if (is_vm_hugetlb_page(tmp))
440 reset_vma_resv_huge_pages(tmp);
441
442 /*
443 * Link in the new vma and copy the page table entries.
444 */
445 *pprev = tmp;
446 pprev = &tmp->vm_next;
447 tmp->vm_prev = prev;
448 prev = tmp;
449
450 __vma_link_rb(mm, tmp, rb_link, rb_parent);
451 rb_link = &tmp->vm_rb.rb_right;
452 rb_parent = &tmp->vm_rb;
453
454 mm->map_count++;
455 retval = copy_page_range(mm, oldmm, mpnt);
456
457 if (tmp->vm_ops && tmp->vm_ops->open)
458 tmp->vm_ops->open(tmp);
459
460 if (retval)
461 goto out;
462 }
463 /* a new mm has just been created */
464 arch_dup_mmap(oldmm, mm);
465 retval = 0;
466 out:
467 up_write(&mm->mmap_sem);
468 flush_tlb_mm(oldmm);
469 up_write(&oldmm->mmap_sem);
470 uprobe_end_dup_mmap();
471 return retval;
472 fail_nomem_anon_vma_fork:
473 mpol_put(vma_policy(tmp));
474 fail_nomem_policy:
475 kmem_cache_free(vm_area_cachep, tmp);
476 fail_nomem:
477 retval = -ENOMEM;
478 vm_unacct_memory(charge);
479 goto out;
480 }
481
482 static inline int mm_alloc_pgd(struct mm_struct *mm)
483 {
484 mm->pgd = pgd_alloc(mm);
485 if (unlikely(!mm->pgd))
486 return -ENOMEM;
487 return 0;
488 }
489
490 static inline void mm_free_pgd(struct mm_struct *mm)
491 {
492 pgd_free(mm, mm->pgd);
493 }
494 #else
495 #define dup_mmap(mm, oldmm) (0)
496 #define mm_alloc_pgd(mm) (0)
497 #define mm_free_pgd(mm)
498 #endif /* CONFIG_MMU */
499
500 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
501
502 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
503 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
504
505 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
506
507 static int __init coredump_filter_setup(char *s)
508 {
509 default_dump_filter =
510 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
511 MMF_DUMP_FILTER_MASK;
512 return 1;
513 }
514
515 __setup("coredump_filter=", coredump_filter_setup);
516
517 #include <linux/init_task.h>
518
519 static void mm_init_aio(struct mm_struct *mm)
520 {
521 #ifdef CONFIG_AIO
522 spin_lock_init(&mm->ioctx_lock);
523 mm->ioctx_table = NULL;
524 #endif
525 }
526
527 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
528 {
529 atomic_set(&mm->mm_users, 1);
530 atomic_set(&mm->mm_count, 1);
531 init_rwsem(&mm->mmap_sem);
532 INIT_LIST_HEAD(&mm->mmlist);
533 mm->flags = (current->mm) ?
534 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
535 mm->core_state = NULL;
536 atomic_long_set(&mm->nr_ptes, 0);
537 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
538 spin_lock_init(&mm->page_table_lock);
539 mm_init_aio(mm);
540 mm_init_owner(mm, p);
541 clear_tlb_flush_pending(mm);
542
543 if (likely(!mm_alloc_pgd(mm))) {
544 mm->def_flags = 0;
545 mmu_notifier_mm_init(mm);
546 return mm;
547 }
548
549 free_mm(mm);
550 return NULL;
551 }
552
553 static void check_mm(struct mm_struct *mm)
554 {
555 int i;
556
557 for (i = 0; i < NR_MM_COUNTERS; i++) {
558 long x = atomic_long_read(&mm->rss_stat.count[i]);
559
560 if (unlikely(x))
561 printk(KERN_ALERT "BUG: Bad rss-counter state "
562 "mm:%p idx:%d val:%ld\n", mm, i, x);
563 }
564
565 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
566 VM_BUG_ON(mm->pmd_huge_pte);
567 #endif
568 }
569
570 /*
571 * Allocate and initialize an mm_struct.
572 */
573 struct mm_struct *mm_alloc(void)
574 {
575 struct mm_struct *mm;
576
577 mm = allocate_mm();
578 if (!mm)
579 return NULL;
580
581 memset(mm, 0, sizeof(*mm));
582 mm_init_cpumask(mm);
583 return mm_init(mm, current);
584 }
585
586 /*
587 * Called when the last reference to the mm
588 * is dropped: either by a lazy thread or by
589 * mmput. Free the page directory and the mm.
590 */
591 void __mmdrop(struct mm_struct *mm)
592 {
593 BUG_ON(mm == &init_mm);
594 mm_free_pgd(mm);
595 destroy_context(mm);
596 mmu_notifier_mm_destroy(mm);
597 check_mm(mm);
598 free_mm(mm);
599 }
600 EXPORT_SYMBOL_GPL(__mmdrop);
601
602 /*
603 * Decrement the use count and release all resources for an mm.
604 */
605 void mmput(struct mm_struct *mm)
606 {
607 might_sleep();
608
609 if (atomic_dec_and_test(&mm->mm_users)) {
610 uprobe_clear_state(mm);
611 exit_aio(mm);
612 ksm_exit(mm);
613 khugepaged_exit(mm); /* must run before exit_mmap */
614 exit_mmap(mm);
615 set_mm_exe_file(mm, NULL);
616 if (!list_empty(&mm->mmlist)) {
617 spin_lock(&mmlist_lock);
618 list_del(&mm->mmlist);
619 spin_unlock(&mmlist_lock);
620 }
621 if (mm->binfmt)
622 module_put(mm->binfmt->module);
623 mmdrop(mm);
624 }
625 }
626 EXPORT_SYMBOL_GPL(mmput);
627
628 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
629 {
630 if (new_exe_file)
631 get_file(new_exe_file);
632 if (mm->exe_file)
633 fput(mm->exe_file);
634 mm->exe_file = new_exe_file;
635 }
636
637 struct file *get_mm_exe_file(struct mm_struct *mm)
638 {
639 struct file *exe_file;
640
641 /* We need mmap_sem to protect against races with removal of exe_file */
642 down_read(&mm->mmap_sem);
643 exe_file = mm->exe_file;
644 if (exe_file)
645 get_file(exe_file);
646 up_read(&mm->mmap_sem);
647 return exe_file;
648 }
649
650 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
651 {
652 /* It's safe to write the exe_file pointer without exe_file_lock because
653 * this is called during fork when the task is not yet in /proc */
654 newmm->exe_file = get_mm_exe_file(oldmm);
655 }
656
657 /**
658 * get_task_mm - acquire a reference to the task's mm
659 *
660 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
661 * this kernel workthread has transiently adopted a user mm with use_mm,
662 * to do its AIO) is not set and if so returns a reference to it, after
663 * bumping up the use count. User must release the mm via mmput()
664 * after use. Typically used by /proc and ptrace.
665 */
666 struct mm_struct *get_task_mm(struct task_struct *task)
667 {
668 struct mm_struct *mm;
669
670 task_lock(task);
671 mm = task->mm;
672 if (mm) {
673 if (task->flags & PF_KTHREAD)
674 mm = NULL;
675 else
676 atomic_inc(&mm->mm_users);
677 }
678 task_unlock(task);
679 return mm;
680 }
681 EXPORT_SYMBOL_GPL(get_task_mm);
682
683 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
684 {
685 struct mm_struct *mm;
686 int err;
687
688 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
689 if (err)
690 return ERR_PTR(err);
691
692 mm = get_task_mm(task);
693 if (mm && mm != current->mm &&
694 !ptrace_may_access(task, mode)) {
695 mmput(mm);
696 mm = ERR_PTR(-EACCES);
697 }
698 mutex_unlock(&task->signal->cred_guard_mutex);
699
700 return mm;
701 }
702
703 static void complete_vfork_done(struct task_struct *tsk)
704 {
705 struct completion *vfork;
706
707 task_lock(tsk);
708 vfork = tsk->vfork_done;
709 if (likely(vfork)) {
710 tsk->vfork_done = NULL;
711 complete(vfork);
712 }
713 task_unlock(tsk);
714 }
715
716 static int wait_for_vfork_done(struct task_struct *child,
717 struct completion *vfork)
718 {
719 int killed;
720
721 freezer_do_not_count();
722 killed = wait_for_completion_killable(vfork);
723 freezer_count();
724
725 if (killed) {
726 task_lock(child);
727 child->vfork_done = NULL;
728 task_unlock(child);
729 }
730
731 put_task_struct(child);
732 return killed;
733 }
734
735 /* Please note the differences between mmput and mm_release.
736 * mmput is called whenever we stop holding onto a mm_struct,
737 * error success whatever.
738 *
739 * mm_release is called after a mm_struct has been removed
740 * from the current process.
741 *
742 * This difference is important for error handling, when we
743 * only half set up a mm_struct for a new process and need to restore
744 * the old one. Because we mmput the new mm_struct before
745 * restoring the old one. . .
746 * Eric Biederman 10 January 1998
747 */
748 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
749 {
750 /* Get rid of any futexes when releasing the mm */
751 #ifdef CONFIG_FUTEX
752 if (unlikely(tsk->robust_list)) {
753 exit_robust_list(tsk);
754 tsk->robust_list = NULL;
755 }
756 #ifdef CONFIG_COMPAT
757 if (unlikely(tsk->compat_robust_list)) {
758 compat_exit_robust_list(tsk);
759 tsk->compat_robust_list = NULL;
760 }
761 #endif
762 if (unlikely(!list_empty(&tsk->pi_state_list)))
763 exit_pi_state_list(tsk);
764 #endif
765
766 uprobe_free_utask(tsk);
767
768 /* Get rid of any cached register state */
769 deactivate_mm(tsk, mm);
770
771 /*
772 * If we're exiting normally, clear a user-space tid field if
773 * requested. We leave this alone when dying by signal, to leave
774 * the value intact in a core dump, and to save the unnecessary
775 * trouble, say, a killed vfork parent shouldn't touch this mm.
776 * Userland only wants this done for a sys_exit.
777 */
778 if (tsk->clear_child_tid) {
779 if (!(tsk->flags & PF_SIGNALED) &&
780 atomic_read(&mm->mm_users) > 1) {
781 /*
782 * We don't check the error code - if userspace has
783 * not set up a proper pointer then tough luck.
784 */
785 put_user(0, tsk->clear_child_tid);
786 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
787 1, NULL, NULL, 0);
788 }
789 tsk->clear_child_tid = NULL;
790 }
791
792 /*
793 * All done, finally we can wake up parent and return this mm to him.
794 * Also kthread_stop() uses this completion for synchronization.
795 */
796 if (tsk->vfork_done)
797 complete_vfork_done(tsk);
798 }
799
800 /*
801 * Allocate a new mm structure and copy contents from the
802 * mm structure of the passed in task structure.
803 */
804 static struct mm_struct *dup_mm(struct task_struct *tsk)
805 {
806 struct mm_struct *mm, *oldmm = current->mm;
807 int err;
808
809 mm = allocate_mm();
810 if (!mm)
811 goto fail_nomem;
812
813 memcpy(mm, oldmm, sizeof(*mm));
814 mm_init_cpumask(mm);
815
816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
817 mm->pmd_huge_pte = NULL;
818 #endif
819 if (!mm_init(mm, tsk))
820 goto fail_nomem;
821
822 if (init_new_context(tsk, mm))
823 goto fail_nocontext;
824
825 dup_mm_exe_file(oldmm, mm);
826
827 err = dup_mmap(mm, oldmm);
828 if (err)
829 goto free_pt;
830
831 mm->hiwater_rss = get_mm_rss(mm);
832 mm->hiwater_vm = mm->total_vm;
833
834 if (mm->binfmt && !try_module_get(mm->binfmt->module))
835 goto free_pt;
836
837 return mm;
838
839 free_pt:
840 /* don't put binfmt in mmput, we haven't got module yet */
841 mm->binfmt = NULL;
842 mmput(mm);
843
844 fail_nomem:
845 return NULL;
846
847 fail_nocontext:
848 /*
849 * If init_new_context() failed, we cannot use mmput() to free the mm
850 * because it calls destroy_context()
851 */
852 mm_free_pgd(mm);
853 free_mm(mm);
854 return NULL;
855 }
856
857 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
858 {
859 struct mm_struct *mm, *oldmm;
860 int retval;
861
862 tsk->min_flt = tsk->maj_flt = 0;
863 tsk->nvcsw = tsk->nivcsw = 0;
864 #ifdef CONFIG_DETECT_HUNG_TASK
865 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
866 #endif
867
868 tsk->mm = NULL;
869 tsk->active_mm = NULL;
870
871 /*
872 * Are we cloning a kernel thread?
873 *
874 * We need to steal a active VM for that..
875 */
876 oldmm = current->mm;
877 if (!oldmm)
878 return 0;
879
880 if (clone_flags & CLONE_VM) {
881 atomic_inc(&oldmm->mm_users);
882 mm = oldmm;
883 goto good_mm;
884 }
885
886 retval = -ENOMEM;
887 mm = dup_mm(tsk);
888 if (!mm)
889 goto fail_nomem;
890
891 good_mm:
892 tsk->mm = mm;
893 tsk->active_mm = mm;
894 return 0;
895
896 fail_nomem:
897 return retval;
898 }
899
900 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
901 {
902 struct fs_struct *fs = current->fs;
903 if (clone_flags & CLONE_FS) {
904 /* tsk->fs is already what we want */
905 spin_lock(&fs->lock);
906 if (fs->in_exec) {
907 spin_unlock(&fs->lock);
908 return -EAGAIN;
909 }
910 fs->users++;
911 spin_unlock(&fs->lock);
912 return 0;
913 }
914 tsk->fs = copy_fs_struct(fs);
915 if (!tsk->fs)
916 return -ENOMEM;
917 return 0;
918 }
919
920 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
921 {
922 struct files_struct *oldf, *newf;
923 int error = 0;
924
925 /*
926 * A background process may not have any files ...
927 */
928 oldf = current->files;
929 if (!oldf)
930 goto out;
931
932 if (clone_flags & CLONE_FILES) {
933 atomic_inc(&oldf->count);
934 goto out;
935 }
936
937 newf = dup_fd(oldf, &error);
938 if (!newf)
939 goto out;
940
941 tsk->files = newf;
942 error = 0;
943 out:
944 return error;
945 }
946
947 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
948 {
949 #ifdef CONFIG_BLOCK
950 struct io_context *ioc = current->io_context;
951 struct io_context *new_ioc;
952
953 if (!ioc)
954 return 0;
955 /*
956 * Share io context with parent, if CLONE_IO is set
957 */
958 if (clone_flags & CLONE_IO) {
959 ioc_task_link(ioc);
960 tsk->io_context = ioc;
961 } else if (ioprio_valid(ioc->ioprio)) {
962 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
963 if (unlikely(!new_ioc))
964 return -ENOMEM;
965
966 new_ioc->ioprio = ioc->ioprio;
967 put_io_context(new_ioc);
968 }
969 #endif
970 return 0;
971 }
972
973 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
974 {
975 struct sighand_struct *sig;
976
977 if (clone_flags & CLONE_SIGHAND) {
978 atomic_inc(&current->sighand->count);
979 return 0;
980 }
981 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
982 rcu_assign_pointer(tsk->sighand, sig);
983 if (!sig)
984 return -ENOMEM;
985 atomic_set(&sig->count, 1);
986 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
987 return 0;
988 }
989
990 void __cleanup_sighand(struct sighand_struct *sighand)
991 {
992 if (atomic_dec_and_test(&sighand->count)) {
993 signalfd_cleanup(sighand);
994 kmem_cache_free(sighand_cachep, sighand);
995 }
996 }
997
998
999 /*
1000 * Initialize POSIX timer handling for a thread group.
1001 */
1002 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1003 {
1004 unsigned long cpu_limit;
1005
1006 /* Thread group counters. */
1007 thread_group_cputime_init(sig);
1008
1009 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1010 if (cpu_limit != RLIM_INFINITY) {
1011 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1012 sig->cputimer.running = 1;
1013 }
1014
1015 /* The timer lists. */
1016 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1017 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1018 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1019 }
1020
1021 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1022 {
1023 struct signal_struct *sig;
1024
1025 if (clone_flags & CLONE_THREAD)
1026 return 0;
1027
1028 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1029 tsk->signal = sig;
1030 if (!sig)
1031 return -ENOMEM;
1032
1033 sig->nr_threads = 1;
1034 atomic_set(&sig->live, 1);
1035 atomic_set(&sig->sigcnt, 1);
1036
1037 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1038 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1039 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1040
1041 init_waitqueue_head(&sig->wait_chldexit);
1042 sig->curr_target = tsk;
1043 init_sigpending(&sig->shared_pending);
1044 INIT_LIST_HEAD(&sig->posix_timers);
1045
1046 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1047 sig->real_timer.function = it_real_fn;
1048
1049 task_lock(current->group_leader);
1050 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1051 task_unlock(current->group_leader);
1052
1053 posix_cpu_timers_init_group(sig);
1054
1055 tty_audit_fork(sig);
1056 sched_autogroup_fork(sig);
1057
1058 #ifdef CONFIG_CGROUPS
1059 init_rwsem(&sig->group_rwsem);
1060 #endif
1061
1062 sig->oom_score_adj = current->signal->oom_score_adj;
1063 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1064
1065 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1066 current->signal->is_child_subreaper;
1067
1068 mutex_init(&sig->cred_guard_mutex);
1069
1070 return 0;
1071 }
1072
1073 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1074 {
1075 unsigned long new_flags = p->flags;
1076
1077 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1078 new_flags |= PF_FORKNOEXEC;
1079 p->flags = new_flags;
1080 }
1081
1082 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1083 {
1084 current->clear_child_tid = tidptr;
1085
1086 return task_pid_vnr(current);
1087 }
1088
1089 static void rt_mutex_init_task(struct task_struct *p)
1090 {
1091 raw_spin_lock_init(&p->pi_lock);
1092 #ifdef CONFIG_RT_MUTEXES
1093 p->pi_waiters = RB_ROOT;
1094 p->pi_waiters_leftmost = NULL;
1095 p->pi_blocked_on = NULL;
1096 p->pi_top_task = NULL;
1097 #endif
1098 }
1099
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1102 {
1103 mm->owner = p;
1104 }
1105 #endif /* CONFIG_MM_OWNER */
1106
1107 /*
1108 * Initialize POSIX timer handling for a single task.
1109 */
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1111 {
1112 tsk->cputime_expires.prof_exp = 0;
1113 tsk->cputime_expires.virt_exp = 0;
1114 tsk->cputime_expires.sched_exp = 0;
1115 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1118 }
1119
1120 static inline void
1121 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1122 {
1123 task->pids[type].pid = pid;
1124 }
1125
1126 /*
1127 * This creates a new process as a copy of the old one,
1128 * but does not actually start it yet.
1129 *
1130 * It copies the registers, and all the appropriate
1131 * parts of the process environment (as per the clone
1132 * flags). The actual kick-off is left to the caller.
1133 */
1134 static struct task_struct *copy_process(unsigned long clone_flags,
1135 unsigned long stack_start,
1136 unsigned long stack_size,
1137 int __user *child_tidptr,
1138 struct pid *pid,
1139 int trace)
1140 {
1141 int retval;
1142 struct task_struct *p;
1143
1144 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1145 return ERR_PTR(-EINVAL);
1146
1147 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1148 return ERR_PTR(-EINVAL);
1149
1150 /*
1151 * Thread groups must share signals as well, and detached threads
1152 * can only be started up within the thread group.
1153 */
1154 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1155 return ERR_PTR(-EINVAL);
1156
1157 /*
1158 * Shared signal handlers imply shared VM. By way of the above,
1159 * thread groups also imply shared VM. Blocking this case allows
1160 * for various simplifications in other code.
1161 */
1162 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1163 return ERR_PTR(-EINVAL);
1164
1165 /*
1166 * Siblings of global init remain as zombies on exit since they are
1167 * not reaped by their parent (swapper). To solve this and to avoid
1168 * multi-rooted process trees, prevent global and container-inits
1169 * from creating siblings.
1170 */
1171 if ((clone_flags & CLONE_PARENT) &&
1172 current->signal->flags & SIGNAL_UNKILLABLE)
1173 return ERR_PTR(-EINVAL);
1174
1175 /*
1176 * If the new process will be in a different pid or user namespace
1177 * do not allow it to share a thread group or signal handlers or
1178 * parent with the forking task.
1179 */
1180 if (clone_flags & CLONE_SIGHAND) {
1181 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1182 (task_active_pid_ns(current) !=
1183 current->nsproxy->pid_ns_for_children))
1184 return ERR_PTR(-EINVAL);
1185 }
1186
1187 retval = security_task_create(clone_flags);
1188 if (retval)
1189 goto fork_out;
1190
1191 retval = -ENOMEM;
1192 p = dup_task_struct(current);
1193 if (!p)
1194 goto fork_out;
1195
1196 ftrace_graph_init_task(p);
1197 get_seccomp_filter(p);
1198
1199 rt_mutex_init_task(p);
1200
1201 #ifdef CONFIG_PROVE_LOCKING
1202 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1203 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1204 #endif
1205 retval = -EAGAIN;
1206 if (atomic_read(&p->real_cred->user->processes) >=
1207 task_rlimit(p, RLIMIT_NPROC)) {
1208 if (p->real_cred->user != INIT_USER &&
1209 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1210 goto bad_fork_free;
1211 }
1212 current->flags &= ~PF_NPROC_EXCEEDED;
1213
1214 retval = copy_creds(p, clone_flags);
1215 if (retval < 0)
1216 goto bad_fork_free;
1217
1218 /*
1219 * If multiple threads are within copy_process(), then this check
1220 * triggers too late. This doesn't hurt, the check is only there
1221 * to stop root fork bombs.
1222 */
1223 retval = -EAGAIN;
1224 if (nr_threads >= max_threads)
1225 goto bad_fork_cleanup_count;
1226
1227 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1228 goto bad_fork_cleanup_count;
1229
1230 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1231 copy_flags(clone_flags, p);
1232 INIT_LIST_HEAD(&p->children);
1233 INIT_LIST_HEAD(&p->sibling);
1234 rcu_copy_process(p);
1235 p->vfork_done = NULL;
1236 spin_lock_init(&p->alloc_lock);
1237
1238 init_sigpending(&p->pending);
1239
1240 p->utime = p->stime = p->gtime = 0;
1241 p->utimescaled = p->stimescaled = 0;
1242 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1243 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1244 #endif
1245 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1246 seqlock_init(&p->vtime_seqlock);
1247 p->vtime_snap = 0;
1248 p->vtime_snap_whence = VTIME_SLEEPING;
1249 #endif
1250
1251 #if defined(SPLIT_RSS_COUNTING)
1252 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1253 #endif
1254
1255 p->default_timer_slack_ns = current->timer_slack_ns;
1256
1257 task_io_accounting_init(&p->ioac);
1258 acct_clear_integrals(p);
1259
1260 posix_cpu_timers_init(p);
1261
1262 do_posix_clock_monotonic_gettime(&p->start_time);
1263 p->real_start_time = p->start_time;
1264 monotonic_to_bootbased(&p->real_start_time);
1265 p->io_context = NULL;
1266 p->audit_context = NULL;
1267 if (clone_flags & CLONE_THREAD)
1268 threadgroup_change_begin(current);
1269 cgroup_fork(p);
1270 #ifdef CONFIG_NUMA
1271 p->mempolicy = mpol_dup(p->mempolicy);
1272 if (IS_ERR(p->mempolicy)) {
1273 retval = PTR_ERR(p->mempolicy);
1274 p->mempolicy = NULL;
1275 goto bad_fork_cleanup_cgroup;
1276 }
1277 mpol_fix_fork_child_flag(p);
1278 #endif
1279 #ifdef CONFIG_CPUSETS
1280 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1281 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1282 seqcount_init(&p->mems_allowed_seq);
1283 #endif
1284 #ifdef CONFIG_TRACE_IRQFLAGS
1285 p->irq_events = 0;
1286 p->hardirqs_enabled = 0;
1287 p->hardirq_enable_ip = 0;
1288 p->hardirq_enable_event = 0;
1289 p->hardirq_disable_ip = _THIS_IP_;
1290 p->hardirq_disable_event = 0;
1291 p->softirqs_enabled = 1;
1292 p->softirq_enable_ip = _THIS_IP_;
1293 p->softirq_enable_event = 0;
1294 p->softirq_disable_ip = 0;
1295 p->softirq_disable_event = 0;
1296 p->hardirq_context = 0;
1297 p->softirq_context = 0;
1298 #endif
1299 #ifdef CONFIG_LOCKDEP
1300 p->lockdep_depth = 0; /* no locks held yet */
1301 p->curr_chain_key = 0;
1302 p->lockdep_recursion = 0;
1303 #endif
1304
1305 #ifdef CONFIG_DEBUG_MUTEXES
1306 p->blocked_on = NULL; /* not blocked yet */
1307 #endif
1308 #ifdef CONFIG_MEMCG
1309 p->memcg_batch.do_batch = 0;
1310 p->memcg_batch.memcg = NULL;
1311 #endif
1312 #ifdef CONFIG_BCACHE
1313 p->sequential_io = 0;
1314 p->sequential_io_avg = 0;
1315 #endif
1316
1317 /* Perform scheduler related setup. Assign this task to a CPU. */
1318 retval = sched_fork(clone_flags, p);
1319 if (retval)
1320 goto bad_fork_cleanup_policy;
1321
1322 retval = perf_event_init_task(p);
1323 if (retval)
1324 goto bad_fork_cleanup_policy;
1325 retval = audit_alloc(p);
1326 if (retval)
1327 goto bad_fork_cleanup_policy;
1328 /* copy all the process information */
1329 retval = copy_semundo(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_audit;
1332 retval = copy_files(clone_flags, p);
1333 if (retval)
1334 goto bad_fork_cleanup_semundo;
1335 retval = copy_fs(clone_flags, p);
1336 if (retval)
1337 goto bad_fork_cleanup_files;
1338 retval = copy_sighand(clone_flags, p);
1339 if (retval)
1340 goto bad_fork_cleanup_fs;
1341 retval = copy_signal(clone_flags, p);
1342 if (retval)
1343 goto bad_fork_cleanup_sighand;
1344 retval = copy_mm(clone_flags, p);
1345 if (retval)
1346 goto bad_fork_cleanup_signal;
1347 retval = copy_namespaces(clone_flags, p);
1348 if (retval)
1349 goto bad_fork_cleanup_mm;
1350 retval = copy_io(clone_flags, p);
1351 if (retval)
1352 goto bad_fork_cleanup_namespaces;
1353 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1354 if (retval)
1355 goto bad_fork_cleanup_io;
1356
1357 if (pid != &init_struct_pid) {
1358 retval = -ENOMEM;
1359 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1360 if (!pid)
1361 goto bad_fork_cleanup_io;
1362 }
1363
1364 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1365 /*
1366 * Clear TID on mm_release()?
1367 */
1368 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1369 #ifdef CONFIG_BLOCK
1370 p->plug = NULL;
1371 #endif
1372 #ifdef CONFIG_FUTEX
1373 p->robust_list = NULL;
1374 #ifdef CONFIG_COMPAT
1375 p->compat_robust_list = NULL;
1376 #endif
1377 INIT_LIST_HEAD(&p->pi_state_list);
1378 p->pi_state_cache = NULL;
1379 #endif
1380 /*
1381 * sigaltstack should be cleared when sharing the same VM
1382 */
1383 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1384 p->sas_ss_sp = p->sas_ss_size = 0;
1385
1386 /*
1387 * Syscall tracing and stepping should be turned off in the
1388 * child regardless of CLONE_PTRACE.
1389 */
1390 user_disable_single_step(p);
1391 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1392 #ifdef TIF_SYSCALL_EMU
1393 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1394 #endif
1395 clear_all_latency_tracing(p);
1396
1397 /* ok, now we should be set up.. */
1398 p->pid = pid_nr(pid);
1399 if (clone_flags & CLONE_THREAD) {
1400 p->exit_signal = -1;
1401 p->group_leader = current->group_leader;
1402 p->tgid = current->tgid;
1403 } else {
1404 if (clone_flags & CLONE_PARENT)
1405 p->exit_signal = current->group_leader->exit_signal;
1406 else
1407 p->exit_signal = (clone_flags & CSIGNAL);
1408 p->group_leader = p;
1409 p->tgid = p->pid;
1410 }
1411
1412 p->nr_dirtied = 0;
1413 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1414 p->dirty_paused_when = 0;
1415
1416 p->pdeath_signal = 0;
1417 INIT_LIST_HEAD(&p->thread_group);
1418 p->task_works = NULL;
1419
1420 /*
1421 * Make it visible to the rest of the system, but dont wake it up yet.
1422 * Need tasklist lock for parent etc handling!
1423 */
1424 write_lock_irq(&tasklist_lock);
1425
1426 /* CLONE_PARENT re-uses the old parent */
1427 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1428 p->real_parent = current->real_parent;
1429 p->parent_exec_id = current->parent_exec_id;
1430 } else {
1431 p->real_parent = current;
1432 p->parent_exec_id = current->self_exec_id;
1433 }
1434
1435 spin_lock(&current->sighand->siglock);
1436
1437 /*
1438 * Process group and session signals need to be delivered to just the
1439 * parent before the fork or both the parent and the child after the
1440 * fork. Restart if a signal comes in before we add the new process to
1441 * it's process group.
1442 * A fatal signal pending means that current will exit, so the new
1443 * thread can't slip out of an OOM kill (or normal SIGKILL).
1444 */
1445 recalc_sigpending();
1446 if (signal_pending(current)) {
1447 spin_unlock(&current->sighand->siglock);
1448 write_unlock_irq(&tasklist_lock);
1449 retval = -ERESTARTNOINTR;
1450 goto bad_fork_free_pid;
1451 }
1452
1453 if (likely(p->pid)) {
1454 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1455
1456 init_task_pid(p, PIDTYPE_PID, pid);
1457 if (thread_group_leader(p)) {
1458 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1459 init_task_pid(p, PIDTYPE_SID, task_session(current));
1460
1461 if (is_child_reaper(pid)) {
1462 ns_of_pid(pid)->child_reaper = p;
1463 p->signal->flags |= SIGNAL_UNKILLABLE;
1464 }
1465
1466 p->signal->leader_pid = pid;
1467 p->signal->tty = tty_kref_get(current->signal->tty);
1468 list_add_tail(&p->sibling, &p->real_parent->children);
1469 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1470 attach_pid(p, PIDTYPE_PGID);
1471 attach_pid(p, PIDTYPE_SID);
1472 __this_cpu_inc(process_counts);
1473 } else {
1474 current->signal->nr_threads++;
1475 atomic_inc(&current->signal->live);
1476 atomic_inc(&current->signal->sigcnt);
1477 list_add_tail_rcu(&p->thread_group,
1478 &p->group_leader->thread_group);
1479 list_add_tail_rcu(&p->thread_node,
1480 &p->signal->thread_head);
1481 }
1482 attach_pid(p, PIDTYPE_PID);
1483 nr_threads++;
1484 }
1485
1486 total_forks++;
1487 spin_unlock(&current->sighand->siglock);
1488 write_unlock_irq(&tasklist_lock);
1489 proc_fork_connector(p);
1490 cgroup_post_fork(p);
1491 if (clone_flags & CLONE_THREAD)
1492 threadgroup_change_end(current);
1493 perf_event_fork(p);
1494
1495 trace_task_newtask(p, clone_flags);
1496 uprobe_copy_process(p, clone_flags);
1497
1498 return p;
1499
1500 bad_fork_free_pid:
1501 if (pid != &init_struct_pid)
1502 free_pid(pid);
1503 bad_fork_cleanup_io:
1504 if (p->io_context)
1505 exit_io_context(p);
1506 bad_fork_cleanup_namespaces:
1507 exit_task_namespaces(p);
1508 bad_fork_cleanup_mm:
1509 if (p->mm)
1510 mmput(p->mm);
1511 bad_fork_cleanup_signal:
1512 if (!(clone_flags & CLONE_THREAD))
1513 free_signal_struct(p->signal);
1514 bad_fork_cleanup_sighand:
1515 __cleanup_sighand(p->sighand);
1516 bad_fork_cleanup_fs:
1517 exit_fs(p); /* blocking */
1518 bad_fork_cleanup_files:
1519 exit_files(p); /* blocking */
1520 bad_fork_cleanup_semundo:
1521 exit_sem(p);
1522 bad_fork_cleanup_audit:
1523 audit_free(p);
1524 bad_fork_cleanup_policy:
1525 perf_event_free_task(p);
1526 #ifdef CONFIG_NUMA
1527 mpol_put(p->mempolicy);
1528 bad_fork_cleanup_cgroup:
1529 #endif
1530 if (clone_flags & CLONE_THREAD)
1531 threadgroup_change_end(current);
1532 cgroup_exit(p, 0);
1533 delayacct_tsk_free(p);
1534 module_put(task_thread_info(p)->exec_domain->module);
1535 bad_fork_cleanup_count:
1536 atomic_dec(&p->cred->user->processes);
1537 exit_creds(p);
1538 bad_fork_free:
1539 free_task(p);
1540 fork_out:
1541 return ERR_PTR(retval);
1542 }
1543
1544 static inline void init_idle_pids(struct pid_link *links)
1545 {
1546 enum pid_type type;
1547
1548 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1549 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1550 links[type].pid = &init_struct_pid;
1551 }
1552 }
1553
1554 struct task_struct *fork_idle(int cpu)
1555 {
1556 struct task_struct *task;
1557 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1558 if (!IS_ERR(task)) {
1559 init_idle_pids(task->pids);
1560 init_idle(task, cpu);
1561 }
1562
1563 return task;
1564 }
1565
1566 /*
1567 * Ok, this is the main fork-routine.
1568 *
1569 * It copies the process, and if successful kick-starts
1570 * it and waits for it to finish using the VM if required.
1571 */
1572 long do_fork(unsigned long clone_flags,
1573 unsigned long stack_start,
1574 unsigned long stack_size,
1575 int __user *parent_tidptr,
1576 int __user *child_tidptr)
1577 {
1578 struct task_struct *p;
1579 int trace = 0;
1580 long nr;
1581
1582 /*
1583 * Determine whether and which event to report to ptracer. When
1584 * called from kernel_thread or CLONE_UNTRACED is explicitly
1585 * requested, no event is reported; otherwise, report if the event
1586 * for the type of forking is enabled.
1587 */
1588 if (!(clone_flags & CLONE_UNTRACED)) {
1589 if (clone_flags & CLONE_VFORK)
1590 trace = PTRACE_EVENT_VFORK;
1591 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1592 trace = PTRACE_EVENT_CLONE;
1593 else
1594 trace = PTRACE_EVENT_FORK;
1595
1596 if (likely(!ptrace_event_enabled(current, trace)))
1597 trace = 0;
1598 }
1599
1600 p = copy_process(clone_flags, stack_start, stack_size,
1601 child_tidptr, NULL, trace);
1602 /*
1603 * Do this prior waking up the new thread - the thread pointer
1604 * might get invalid after that point, if the thread exits quickly.
1605 */
1606 if (!IS_ERR(p)) {
1607 struct completion vfork;
1608
1609 trace_sched_process_fork(current, p);
1610
1611 nr = task_pid_vnr(p);
1612
1613 if (clone_flags & CLONE_PARENT_SETTID)
1614 put_user(nr, parent_tidptr);
1615
1616 if (clone_flags & CLONE_VFORK) {
1617 p->vfork_done = &vfork;
1618 init_completion(&vfork);
1619 get_task_struct(p);
1620 }
1621
1622 wake_up_new_task(p);
1623
1624 /* forking complete and child started to run, tell ptracer */
1625 if (unlikely(trace))
1626 ptrace_event(trace, nr);
1627
1628 if (clone_flags & CLONE_VFORK) {
1629 if (!wait_for_vfork_done(p, &vfork))
1630 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1631 }
1632 } else {
1633 nr = PTR_ERR(p);
1634 }
1635 return nr;
1636 }
1637
1638 /*
1639 * Create a kernel thread.
1640 */
1641 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1642 {
1643 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1644 (unsigned long)arg, NULL, NULL);
1645 }
1646
1647 #ifdef __ARCH_WANT_SYS_FORK
1648 SYSCALL_DEFINE0(fork)
1649 {
1650 #ifdef CONFIG_MMU
1651 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1652 #else
1653 /* can not support in nommu mode */
1654 return -EINVAL;
1655 #endif
1656 }
1657 #endif
1658
1659 #ifdef __ARCH_WANT_SYS_VFORK
1660 SYSCALL_DEFINE0(vfork)
1661 {
1662 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1663 0, NULL, NULL);
1664 }
1665 #endif
1666
1667 #ifdef __ARCH_WANT_SYS_CLONE
1668 #ifdef CONFIG_CLONE_BACKWARDS
1669 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1670 int __user *, parent_tidptr,
1671 int, tls_val,
1672 int __user *, child_tidptr)
1673 #elif defined(CONFIG_CLONE_BACKWARDS2)
1674 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1675 int __user *, parent_tidptr,
1676 int __user *, child_tidptr,
1677 int, tls_val)
1678 #elif defined(CONFIG_CLONE_BACKWARDS3)
1679 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1680 int, stack_size,
1681 int __user *, parent_tidptr,
1682 int __user *, child_tidptr,
1683 int, tls_val)
1684 #else
1685 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1686 int __user *, parent_tidptr,
1687 int __user *, child_tidptr,
1688 int, tls_val)
1689 #endif
1690 {
1691 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1692 }
1693 #endif
1694
1695 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1696 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1697 #endif
1698
1699 static void sighand_ctor(void *data)
1700 {
1701 struct sighand_struct *sighand = data;
1702
1703 spin_lock_init(&sighand->siglock);
1704 init_waitqueue_head(&sighand->signalfd_wqh);
1705 }
1706
1707 void __init proc_caches_init(void)
1708 {
1709 sighand_cachep = kmem_cache_create("sighand_cache",
1710 sizeof(struct sighand_struct), 0,
1711 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1712 SLAB_NOTRACK, sighand_ctor);
1713 signal_cachep = kmem_cache_create("signal_cache",
1714 sizeof(struct signal_struct), 0,
1715 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1716 files_cachep = kmem_cache_create("files_cache",
1717 sizeof(struct files_struct), 0,
1718 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1719 fs_cachep = kmem_cache_create("fs_cache",
1720 sizeof(struct fs_struct), 0,
1721 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1722 /*
1723 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1724 * whole struct cpumask for the OFFSTACK case. We could change
1725 * this to *only* allocate as much of it as required by the
1726 * maximum number of CPU's we can ever have. The cpumask_allocation
1727 * is at the end of the structure, exactly for that reason.
1728 */
1729 mm_cachep = kmem_cache_create("mm_struct",
1730 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1731 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1732 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1733 mmap_init();
1734 nsproxy_cache_init();
1735 }
1736
1737 /*
1738 * Check constraints on flags passed to the unshare system call.
1739 */
1740 static int check_unshare_flags(unsigned long unshare_flags)
1741 {
1742 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1743 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1744 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1745 CLONE_NEWUSER|CLONE_NEWPID))
1746 return -EINVAL;
1747 /*
1748 * Not implemented, but pretend it works if there is nothing to
1749 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1750 * needs to unshare vm.
1751 */
1752 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1753 /* FIXME: get_task_mm() increments ->mm_users */
1754 if (atomic_read(&current->mm->mm_users) > 1)
1755 return -EINVAL;
1756 }
1757
1758 return 0;
1759 }
1760
1761 /*
1762 * Unshare the filesystem structure if it is being shared
1763 */
1764 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1765 {
1766 struct fs_struct *fs = current->fs;
1767
1768 if (!(unshare_flags & CLONE_FS) || !fs)
1769 return 0;
1770
1771 /* don't need lock here; in the worst case we'll do useless copy */
1772 if (fs->users == 1)
1773 return 0;
1774
1775 *new_fsp = copy_fs_struct(fs);
1776 if (!*new_fsp)
1777 return -ENOMEM;
1778
1779 return 0;
1780 }
1781
1782 /*
1783 * Unshare file descriptor table if it is being shared
1784 */
1785 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1786 {
1787 struct files_struct *fd = current->files;
1788 int error = 0;
1789
1790 if ((unshare_flags & CLONE_FILES) &&
1791 (fd && atomic_read(&fd->count) > 1)) {
1792 *new_fdp = dup_fd(fd, &error);
1793 if (!*new_fdp)
1794 return error;
1795 }
1796
1797 return 0;
1798 }
1799
1800 /*
1801 * unshare allows a process to 'unshare' part of the process
1802 * context which was originally shared using clone. copy_*
1803 * functions used by do_fork() cannot be used here directly
1804 * because they modify an inactive task_struct that is being
1805 * constructed. Here we are modifying the current, active,
1806 * task_struct.
1807 */
1808 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1809 {
1810 struct fs_struct *fs, *new_fs = NULL;
1811 struct files_struct *fd, *new_fd = NULL;
1812 struct cred *new_cred = NULL;
1813 struct nsproxy *new_nsproxy = NULL;
1814 int do_sysvsem = 0;
1815 int err;
1816
1817 /*
1818 * If unsharing a user namespace must also unshare the thread.
1819 */
1820 if (unshare_flags & CLONE_NEWUSER)
1821 unshare_flags |= CLONE_THREAD | CLONE_FS;
1822 /*
1823 * If unsharing a thread from a thread group, must also unshare vm.
1824 */
1825 if (unshare_flags & CLONE_THREAD)
1826 unshare_flags |= CLONE_VM;
1827 /*
1828 * If unsharing vm, must also unshare signal handlers.
1829 */
1830 if (unshare_flags & CLONE_VM)
1831 unshare_flags |= CLONE_SIGHAND;
1832 /*
1833 * If unsharing namespace, must also unshare filesystem information.
1834 */
1835 if (unshare_flags & CLONE_NEWNS)
1836 unshare_flags |= CLONE_FS;
1837
1838 err = check_unshare_flags(unshare_flags);
1839 if (err)
1840 goto bad_unshare_out;
1841 /*
1842 * CLONE_NEWIPC must also detach from the undolist: after switching
1843 * to a new ipc namespace, the semaphore arrays from the old
1844 * namespace are unreachable.
1845 */
1846 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1847 do_sysvsem = 1;
1848 err = unshare_fs(unshare_flags, &new_fs);
1849 if (err)
1850 goto bad_unshare_out;
1851 err = unshare_fd(unshare_flags, &new_fd);
1852 if (err)
1853 goto bad_unshare_cleanup_fs;
1854 err = unshare_userns(unshare_flags, &new_cred);
1855 if (err)
1856 goto bad_unshare_cleanup_fd;
1857 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1858 new_cred, new_fs);
1859 if (err)
1860 goto bad_unshare_cleanup_cred;
1861
1862 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1863 if (do_sysvsem) {
1864 /*
1865 * CLONE_SYSVSEM is equivalent to sys_exit().
1866 */
1867 exit_sem(current);
1868 }
1869
1870 if (new_nsproxy)
1871 switch_task_namespaces(current, new_nsproxy);
1872
1873 task_lock(current);
1874
1875 if (new_fs) {
1876 fs = current->fs;
1877 spin_lock(&fs->lock);
1878 current->fs = new_fs;
1879 if (--fs->users)
1880 new_fs = NULL;
1881 else
1882 new_fs = fs;
1883 spin_unlock(&fs->lock);
1884 }
1885
1886 if (new_fd) {
1887 fd = current->files;
1888 current->files = new_fd;
1889 new_fd = fd;
1890 }
1891
1892 task_unlock(current);
1893
1894 if (new_cred) {
1895 /* Install the new user namespace */
1896 commit_creds(new_cred);
1897 new_cred = NULL;
1898 }
1899 }
1900
1901 bad_unshare_cleanup_cred:
1902 if (new_cred)
1903 put_cred(new_cred);
1904 bad_unshare_cleanup_fd:
1905 if (new_fd)
1906 put_files_struct(new_fd);
1907
1908 bad_unshare_cleanup_fs:
1909 if (new_fs)
1910 free_fs_struct(new_fs);
1911
1912 bad_unshare_out:
1913 return err;
1914 }
1915
1916 /*
1917 * Helper to unshare the files of the current task.
1918 * We don't want to expose copy_files internals to
1919 * the exec layer of the kernel.
1920 */
1921
1922 int unshare_files(struct files_struct **displaced)
1923 {
1924 struct task_struct *task = current;
1925 struct files_struct *copy = NULL;
1926 int error;
1927
1928 error = unshare_fd(CLONE_FILES, &copy);
1929 if (error || !copy) {
1930 *displaced = NULL;
1931 return error;
1932 }
1933 *displaced = task->files;
1934 task_lock(task);
1935 task->files = copy;
1936 task_unlock(task);
1937 return 0;
1938 }