]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
netfilter: use skb_to_full_sk in ip_route_me_harder
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/userfaultfd_k.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/cn_proc.h>
61 #include <linux/freezer.h>
62 #include <linux/delayacct.h>
63 #include <linux/taskstats_kern.h>
64 #include <linux/random.h>
65 #include <linux/tty.h>
66 #include <linux/blkdev.h>
67 #include <linux/fs_struct.h>
68 #include <linux/magic.h>
69 #include <linux/perf_event.h>
70 #include <linux/posix-timers.h>
71 #include <linux/user-return-notifier.h>
72 #include <linux/oom.h>
73 #include <linux/khugepaged.h>
74 #include <linux/signalfd.h>
75 #include <linux/uprobes.h>
76 #include <linux/aio.h>
77 #include <linux/compiler.h>
78 #include <linux/sysctl.h>
79 #include <linux/kcov.h>
80
81 #include <asm/pgtable.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/mmu_context.h>
85 #include <asm/cacheflush.h>
86 #include <asm/tlbflush.h>
87
88 #include <trace/events/sched.h>
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/task.h>
92
93 /*
94 * Minimum number of threads to boot the kernel
95 */
96 #define MIN_THREADS 20
97
98 /*
99 * Maximum number of threads
100 */
101 #define MAX_THREADS FUTEX_TID_MASK
102
103 /*
104 * Protected counters by write_lock_irq(&tasklist_lock)
105 */
106 unsigned long total_forks; /* Handle normal Linux uptimes. */
107 int nr_threads; /* The idle threads do not count.. */
108
109 int max_threads; /* tunable limit on nr_threads */
110
111 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
112
113 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
114
115 #ifdef CONFIG_PROVE_RCU
116 int lockdep_tasklist_lock_is_held(void)
117 {
118 return lockdep_is_held(&tasklist_lock);
119 }
120 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
121 #endif /* #ifdef CONFIG_PROVE_RCU */
122
123 int nr_processes(void)
124 {
125 int cpu;
126 int total = 0;
127
128 for_each_possible_cpu(cpu)
129 total += per_cpu(process_counts, cpu);
130
131 return total;
132 }
133
134 void __weak arch_release_task_struct(struct task_struct *tsk)
135 {
136 }
137
138 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
139 static struct kmem_cache *task_struct_cachep;
140
141 static inline struct task_struct *alloc_task_struct_node(int node)
142 {
143 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
144 }
145
146 static inline void free_task_struct(struct task_struct *tsk)
147 {
148 kmem_cache_free(task_struct_cachep, tsk);
149 }
150 #endif
151
152 void __weak arch_release_thread_stack(unsigned long *stack)
153 {
154 }
155
156 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
157
158 /*
159 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
160 * kmemcache based allocator.
161 */
162 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
163
164 #ifdef CONFIG_VMAP_STACK
165 /*
166 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
167 * flush. Try to minimize the number of calls by caching stacks.
168 */
169 #define NR_CACHED_STACKS 2
170 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
171 #endif
172
173 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
174 {
175 #ifdef CONFIG_VMAP_STACK
176 void *stack;
177 int i;
178
179 local_irq_disable();
180 for (i = 0; i < NR_CACHED_STACKS; i++) {
181 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
182
183 if (!s)
184 continue;
185 this_cpu_write(cached_stacks[i], NULL);
186
187 tsk->stack_vm_area = s;
188 local_irq_enable();
189 return s->addr;
190 }
191 local_irq_enable();
192
193 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
194 VMALLOC_START, VMALLOC_END,
195 THREADINFO_GFP | __GFP_HIGHMEM,
196 PAGE_KERNEL,
197 0, node, __builtin_return_address(0));
198
199 /*
200 * We can't call find_vm_area() in interrupt context, and
201 * free_thread_stack() can be called in interrupt context,
202 * so cache the vm_struct.
203 */
204 if (stack)
205 tsk->stack_vm_area = find_vm_area(stack);
206 return stack;
207 #else
208 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
209 THREAD_SIZE_ORDER);
210
211 return page ? page_address(page) : NULL;
212 #endif
213 }
214
215 static inline void free_thread_stack(struct task_struct *tsk)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 if (task_stack_vm_area(tsk)) {
219 unsigned long flags;
220 int i;
221
222 local_irq_save(flags);
223 for (i = 0; i < NR_CACHED_STACKS; i++) {
224 if (this_cpu_read(cached_stacks[i]))
225 continue;
226
227 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
228 local_irq_restore(flags);
229 return;
230 }
231 local_irq_restore(flags);
232
233 vfree_atomic(tsk->stack);
234 return;
235 }
236 #endif
237
238 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
239 }
240 # else
241 static struct kmem_cache *thread_stack_cache;
242
243 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
244 int node)
245 {
246 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
247 }
248
249 static void free_thread_stack(struct task_struct *tsk)
250 {
251 kmem_cache_free(thread_stack_cache, tsk->stack);
252 }
253
254 void thread_stack_cache_init(void)
255 {
256 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
257 THREAD_SIZE, 0, NULL);
258 BUG_ON(thread_stack_cache == NULL);
259 }
260 # endif
261 #endif
262
263 /* SLAB cache for signal_struct structures (tsk->signal) */
264 static struct kmem_cache *signal_cachep;
265
266 /* SLAB cache for sighand_struct structures (tsk->sighand) */
267 struct kmem_cache *sighand_cachep;
268
269 /* SLAB cache for files_struct structures (tsk->files) */
270 struct kmem_cache *files_cachep;
271
272 /* SLAB cache for fs_struct structures (tsk->fs) */
273 struct kmem_cache *fs_cachep;
274
275 /* SLAB cache for vm_area_struct structures */
276 struct kmem_cache *vm_area_cachep;
277
278 /* SLAB cache for mm_struct structures (tsk->mm) */
279 static struct kmem_cache *mm_cachep;
280
281 static void account_kernel_stack(struct task_struct *tsk, int account)
282 {
283 void *stack = task_stack_page(tsk);
284 struct vm_struct *vm = task_stack_vm_area(tsk);
285
286 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
287
288 if (vm) {
289 int i;
290
291 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
292
293 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
294 mod_zone_page_state(page_zone(vm->pages[i]),
295 NR_KERNEL_STACK_KB,
296 PAGE_SIZE / 1024 * account);
297 }
298
299 /* All stack pages belong to the same memcg. */
300 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
301 account * (THREAD_SIZE / 1024));
302 } else {
303 /*
304 * All stack pages are in the same zone and belong to the
305 * same memcg.
306 */
307 struct page *first_page = virt_to_page(stack);
308
309 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
310 THREAD_SIZE / 1024 * account);
311
312 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
313 account * (THREAD_SIZE / 1024));
314 }
315 }
316
317 static void release_task_stack(struct task_struct *tsk)
318 {
319 if (WARN_ON(tsk->state != TASK_DEAD))
320 return; /* Better to leak the stack than to free prematurely */
321
322 account_kernel_stack(tsk, -1);
323 arch_release_thread_stack(tsk->stack);
324 free_thread_stack(tsk);
325 tsk->stack = NULL;
326 #ifdef CONFIG_VMAP_STACK
327 tsk->stack_vm_area = NULL;
328 #endif
329 }
330
331 #ifdef CONFIG_THREAD_INFO_IN_TASK
332 void put_task_stack(struct task_struct *tsk)
333 {
334 if (atomic_dec_and_test(&tsk->stack_refcount))
335 release_task_stack(tsk);
336 }
337 #endif
338
339 void free_task(struct task_struct *tsk)
340 {
341 #ifndef CONFIG_THREAD_INFO_IN_TASK
342 /*
343 * The task is finally done with both the stack and thread_info,
344 * so free both.
345 */
346 release_task_stack(tsk);
347 #else
348 /*
349 * If the task had a separate stack allocation, it should be gone
350 * by now.
351 */
352 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
353 #endif
354 rt_mutex_debug_task_free(tsk);
355 ftrace_graph_exit_task(tsk);
356 put_seccomp_filter(tsk);
357 arch_release_task_struct(tsk);
358 if (tsk->flags & PF_KTHREAD)
359 free_kthread_struct(tsk);
360 free_task_struct(tsk);
361 }
362 EXPORT_SYMBOL(free_task);
363
364 static inline void free_signal_struct(struct signal_struct *sig)
365 {
366 taskstats_tgid_free(sig);
367 sched_autogroup_exit(sig);
368 /*
369 * __mmdrop is not safe to call from softirq context on x86 due to
370 * pgd_dtor so postpone it to the async context
371 */
372 if (sig->oom_mm)
373 mmdrop_async(sig->oom_mm);
374 kmem_cache_free(signal_cachep, sig);
375 }
376
377 static inline void put_signal_struct(struct signal_struct *sig)
378 {
379 if (atomic_dec_and_test(&sig->sigcnt))
380 free_signal_struct(sig);
381 }
382
383 void __put_task_struct(struct task_struct *tsk)
384 {
385 WARN_ON(!tsk->exit_state);
386 WARN_ON(atomic_read(&tsk->usage));
387 WARN_ON(tsk == current);
388
389 cgroup_free(tsk);
390 task_numa_free(tsk);
391 security_task_free(tsk);
392 exit_creds(tsk);
393 delayacct_tsk_free(tsk);
394 put_signal_struct(tsk->signal);
395
396 if (!profile_handoff_task(tsk))
397 free_task(tsk);
398 }
399 EXPORT_SYMBOL_GPL(__put_task_struct);
400
401 void __init __weak arch_task_cache_init(void) { }
402
403 /*
404 * set_max_threads
405 */
406 static void set_max_threads(unsigned int max_threads_suggested)
407 {
408 u64 threads;
409
410 /*
411 * The number of threads shall be limited such that the thread
412 * structures may only consume a small part of the available memory.
413 */
414 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
415 threads = MAX_THREADS;
416 else
417 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
418 (u64) THREAD_SIZE * 8UL);
419
420 if (threads > max_threads_suggested)
421 threads = max_threads_suggested;
422
423 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
424 }
425
426 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
427 /* Initialized by the architecture: */
428 int arch_task_struct_size __read_mostly;
429 #endif
430
431 void __init fork_init(void)
432 {
433 int i;
434 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
435 #ifndef ARCH_MIN_TASKALIGN
436 #define ARCH_MIN_TASKALIGN 0
437 #endif
438 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
439
440 /* create a slab on which task_structs can be allocated */
441 task_struct_cachep = kmem_cache_create("task_struct",
442 arch_task_struct_size, align,
443 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
444 #endif
445
446 /* do the arch specific task caches init */
447 arch_task_cache_init();
448
449 set_max_threads(MAX_THREADS);
450
451 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
452 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
453 init_task.signal->rlim[RLIMIT_SIGPENDING] =
454 init_task.signal->rlim[RLIMIT_NPROC];
455
456 for (i = 0; i < UCOUNT_COUNTS; i++) {
457 init_user_ns.ucount_max[i] = max_threads/2;
458 }
459 }
460
461 int __weak arch_dup_task_struct(struct task_struct *dst,
462 struct task_struct *src)
463 {
464 *dst = *src;
465 return 0;
466 }
467
468 void set_task_stack_end_magic(struct task_struct *tsk)
469 {
470 unsigned long *stackend;
471
472 stackend = end_of_stack(tsk);
473 *stackend = STACK_END_MAGIC; /* for overflow detection */
474 }
475
476 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
477 {
478 struct task_struct *tsk;
479 unsigned long *stack;
480 struct vm_struct *stack_vm_area;
481 int err;
482
483 if (node == NUMA_NO_NODE)
484 node = tsk_fork_get_node(orig);
485 tsk = alloc_task_struct_node(node);
486 if (!tsk)
487 return NULL;
488
489 stack = alloc_thread_stack_node(tsk, node);
490 if (!stack)
491 goto free_tsk;
492
493 stack_vm_area = task_stack_vm_area(tsk);
494
495 err = arch_dup_task_struct(tsk, orig);
496
497 /*
498 * arch_dup_task_struct() clobbers the stack-related fields. Make
499 * sure they're properly initialized before using any stack-related
500 * functions again.
501 */
502 tsk->stack = stack;
503 #ifdef CONFIG_VMAP_STACK
504 tsk->stack_vm_area = stack_vm_area;
505 #endif
506 #ifdef CONFIG_THREAD_INFO_IN_TASK
507 atomic_set(&tsk->stack_refcount, 1);
508 #endif
509
510 if (err)
511 goto free_stack;
512
513 #ifdef CONFIG_SECCOMP
514 /*
515 * We must handle setting up seccomp filters once we're under
516 * the sighand lock in case orig has changed between now and
517 * then. Until then, filter must be NULL to avoid messing up
518 * the usage counts on the error path calling free_task.
519 */
520 tsk->seccomp.filter = NULL;
521 #endif
522
523 setup_thread_stack(tsk, orig);
524 clear_user_return_notifier(tsk);
525 clear_tsk_need_resched(tsk);
526 set_task_stack_end_magic(tsk);
527
528 #ifdef CONFIG_CC_STACKPROTECTOR
529 tsk->stack_canary = get_random_int();
530 #endif
531
532 /*
533 * One for us, one for whoever does the "release_task()" (usually
534 * parent)
535 */
536 atomic_set(&tsk->usage, 2);
537 #ifdef CONFIG_BLK_DEV_IO_TRACE
538 tsk->btrace_seq = 0;
539 #endif
540 tsk->splice_pipe = NULL;
541 tsk->task_frag.page = NULL;
542 tsk->wake_q.next = NULL;
543
544 account_kernel_stack(tsk, 1);
545
546 kcov_task_init(tsk);
547
548 return tsk;
549
550 free_stack:
551 free_thread_stack(tsk);
552 free_tsk:
553 free_task_struct(tsk);
554 return NULL;
555 }
556
557 #ifdef CONFIG_MMU
558 static __latent_entropy int dup_mmap(struct mm_struct *mm,
559 struct mm_struct *oldmm)
560 {
561 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
562 struct rb_node **rb_link, *rb_parent;
563 int retval;
564 unsigned long charge;
565 LIST_HEAD(uf);
566
567 uprobe_start_dup_mmap();
568 if (down_write_killable(&oldmm->mmap_sem)) {
569 retval = -EINTR;
570 goto fail_uprobe_end;
571 }
572 flush_cache_dup_mm(oldmm);
573 uprobe_dup_mmap(oldmm, mm);
574 /*
575 * Not linked in yet - no deadlock potential:
576 */
577 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
578
579 /* No ordering required: file already has been exposed. */
580 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
581
582 mm->total_vm = oldmm->total_vm;
583 mm->data_vm = oldmm->data_vm;
584 mm->exec_vm = oldmm->exec_vm;
585 mm->stack_vm = oldmm->stack_vm;
586
587 rb_link = &mm->mm_rb.rb_node;
588 rb_parent = NULL;
589 pprev = &mm->mmap;
590 retval = ksm_fork(mm, oldmm);
591 if (retval)
592 goto out;
593 retval = khugepaged_fork(mm, oldmm);
594 if (retval)
595 goto out;
596
597 prev = NULL;
598 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
599 struct file *file;
600
601 if (mpnt->vm_flags & VM_DONTCOPY) {
602 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
603 continue;
604 }
605 charge = 0;
606 if (mpnt->vm_flags & VM_ACCOUNT) {
607 unsigned long len = vma_pages(mpnt);
608
609 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
610 goto fail_nomem;
611 charge = len;
612 }
613 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
614 if (!tmp)
615 goto fail_nomem;
616 *tmp = *mpnt;
617 INIT_LIST_HEAD(&tmp->anon_vma_chain);
618 retval = vma_dup_policy(mpnt, tmp);
619 if (retval)
620 goto fail_nomem_policy;
621 tmp->vm_mm = mm;
622 retval = dup_userfaultfd(tmp, &uf);
623 if (retval)
624 goto fail_nomem_anon_vma_fork;
625 if (anon_vma_fork(tmp, mpnt))
626 goto fail_nomem_anon_vma_fork;
627 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
628 tmp->vm_next = tmp->vm_prev = NULL;
629 file = tmp->vm_file;
630 if (file) {
631 struct inode *inode = file_inode(file);
632 struct address_space *mapping = file->f_mapping;
633
634 get_file(file);
635 if (tmp->vm_flags & VM_DENYWRITE)
636 atomic_dec(&inode->i_writecount);
637 i_mmap_lock_write(mapping);
638 if (tmp->vm_flags & VM_SHARED)
639 atomic_inc(&mapping->i_mmap_writable);
640 flush_dcache_mmap_lock(mapping);
641 /* insert tmp into the share list, just after mpnt */
642 vma_interval_tree_insert_after(tmp, mpnt,
643 &mapping->i_mmap);
644 flush_dcache_mmap_unlock(mapping);
645 i_mmap_unlock_write(mapping);
646 }
647
648 /*
649 * Clear hugetlb-related page reserves for children. This only
650 * affects MAP_PRIVATE mappings. Faults generated by the child
651 * are not guaranteed to succeed, even if read-only
652 */
653 if (is_vm_hugetlb_page(tmp))
654 reset_vma_resv_huge_pages(tmp);
655
656 /*
657 * Link in the new vma and copy the page table entries.
658 */
659 *pprev = tmp;
660 pprev = &tmp->vm_next;
661 tmp->vm_prev = prev;
662 prev = tmp;
663
664 __vma_link_rb(mm, tmp, rb_link, rb_parent);
665 rb_link = &tmp->vm_rb.rb_right;
666 rb_parent = &tmp->vm_rb;
667
668 mm->map_count++;
669 retval = copy_page_range(mm, oldmm, mpnt);
670
671 if (tmp->vm_ops && tmp->vm_ops->open)
672 tmp->vm_ops->open(tmp);
673
674 if (retval)
675 goto out;
676 }
677 /* a new mm has just been created */
678 arch_dup_mmap(oldmm, mm);
679 retval = 0;
680 out:
681 up_write(&mm->mmap_sem);
682 flush_tlb_mm(oldmm);
683 up_write(&oldmm->mmap_sem);
684 dup_userfaultfd_complete(&uf);
685 fail_uprobe_end:
686 uprobe_end_dup_mmap();
687 return retval;
688 fail_nomem_anon_vma_fork:
689 mpol_put(vma_policy(tmp));
690 fail_nomem_policy:
691 kmem_cache_free(vm_area_cachep, tmp);
692 fail_nomem:
693 retval = -ENOMEM;
694 vm_unacct_memory(charge);
695 goto out;
696 }
697
698 static inline int mm_alloc_pgd(struct mm_struct *mm)
699 {
700 mm->pgd = pgd_alloc(mm);
701 if (unlikely(!mm->pgd))
702 return -ENOMEM;
703 return 0;
704 }
705
706 static inline void mm_free_pgd(struct mm_struct *mm)
707 {
708 pgd_free(mm, mm->pgd);
709 }
710 #else
711 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
712 {
713 down_write(&oldmm->mmap_sem);
714 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
715 up_write(&oldmm->mmap_sem);
716 return 0;
717 }
718 #define mm_alloc_pgd(mm) (0)
719 #define mm_free_pgd(mm)
720 #endif /* CONFIG_MMU */
721
722 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
723
724 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
725 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
726
727 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
728
729 static int __init coredump_filter_setup(char *s)
730 {
731 default_dump_filter =
732 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
733 MMF_DUMP_FILTER_MASK;
734 return 1;
735 }
736
737 __setup("coredump_filter=", coredump_filter_setup);
738
739 #include <linux/init_task.h>
740
741 static void mm_init_aio(struct mm_struct *mm)
742 {
743 #ifdef CONFIG_AIO
744 spin_lock_init(&mm->ioctx_lock);
745 mm->ioctx_table = NULL;
746 #endif
747 }
748
749 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
750 {
751 #ifdef CONFIG_MEMCG
752 mm->owner = p;
753 #endif
754 }
755
756 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
757 struct user_namespace *user_ns)
758 {
759 mm->mmap = NULL;
760 mm->mm_rb = RB_ROOT;
761 mm->vmacache_seqnum = 0;
762 atomic_set(&mm->mm_users, 1);
763 atomic_set(&mm->mm_count, 1);
764 init_rwsem(&mm->mmap_sem);
765 INIT_LIST_HEAD(&mm->mmlist);
766 mm->core_state = NULL;
767 atomic_long_set(&mm->nr_ptes, 0);
768 mm_nr_pmds_init(mm);
769 mm->map_count = 0;
770 mm->locked_vm = 0;
771 mm->pinned_vm = 0;
772 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
773 spin_lock_init(&mm->page_table_lock);
774 mm_init_cpumask(mm);
775 mm_init_aio(mm);
776 mm_init_owner(mm, p);
777 mmu_notifier_mm_init(mm);
778 clear_tlb_flush_pending(mm);
779 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
780 mm->pmd_huge_pte = NULL;
781 #endif
782
783 if (current->mm) {
784 mm->flags = current->mm->flags & MMF_INIT_MASK;
785 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
786 } else {
787 mm->flags = default_dump_filter;
788 mm->def_flags = 0;
789 }
790
791 if (mm_alloc_pgd(mm))
792 goto fail_nopgd;
793
794 if (init_new_context(p, mm))
795 goto fail_nocontext;
796
797 mm->user_ns = get_user_ns(user_ns);
798 return mm;
799
800 fail_nocontext:
801 mm_free_pgd(mm);
802 fail_nopgd:
803 free_mm(mm);
804 return NULL;
805 }
806
807 static void check_mm(struct mm_struct *mm)
808 {
809 int i;
810
811 for (i = 0; i < NR_MM_COUNTERS; i++) {
812 long x = atomic_long_read(&mm->rss_stat.count[i]);
813
814 if (unlikely(x))
815 printk(KERN_ALERT "BUG: Bad rss-counter state "
816 "mm:%p idx:%d val:%ld\n", mm, i, x);
817 }
818
819 if (atomic_long_read(&mm->nr_ptes))
820 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
821 atomic_long_read(&mm->nr_ptes));
822 if (mm_nr_pmds(mm))
823 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
824 mm_nr_pmds(mm));
825
826 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
827 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
828 #endif
829 }
830
831 /*
832 * Allocate and initialize an mm_struct.
833 */
834 struct mm_struct *mm_alloc(void)
835 {
836 struct mm_struct *mm;
837
838 mm = allocate_mm();
839 if (!mm)
840 return NULL;
841
842 memset(mm, 0, sizeof(*mm));
843 return mm_init(mm, current, current_user_ns());
844 }
845
846 /*
847 * Called when the last reference to the mm
848 * is dropped: either by a lazy thread or by
849 * mmput. Free the page directory and the mm.
850 */
851 void __mmdrop(struct mm_struct *mm)
852 {
853 BUG_ON(mm == &init_mm);
854 mm_free_pgd(mm);
855 destroy_context(mm);
856 mmu_notifier_mm_destroy(mm);
857 check_mm(mm);
858 put_user_ns(mm->user_ns);
859 free_mm(mm);
860 }
861 EXPORT_SYMBOL_GPL(__mmdrop);
862
863 static inline void __mmput(struct mm_struct *mm)
864 {
865 VM_BUG_ON(atomic_read(&mm->mm_users));
866
867 uprobe_clear_state(mm);
868 exit_aio(mm);
869 ksm_exit(mm);
870 khugepaged_exit(mm); /* must run before exit_mmap */
871 exit_mmap(mm);
872 mm_put_huge_zero_page(mm);
873 set_mm_exe_file(mm, NULL);
874 if (!list_empty(&mm->mmlist)) {
875 spin_lock(&mmlist_lock);
876 list_del(&mm->mmlist);
877 spin_unlock(&mmlist_lock);
878 }
879 if (mm->binfmt)
880 module_put(mm->binfmt->module);
881 set_bit(MMF_OOM_SKIP, &mm->flags);
882 mmdrop(mm);
883 }
884
885 /*
886 * Decrement the use count and release all resources for an mm.
887 */
888 void mmput(struct mm_struct *mm)
889 {
890 might_sleep();
891
892 if (atomic_dec_and_test(&mm->mm_users))
893 __mmput(mm);
894 }
895 EXPORT_SYMBOL_GPL(mmput);
896
897 #ifdef CONFIG_MMU
898 static void mmput_async_fn(struct work_struct *work)
899 {
900 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
901 __mmput(mm);
902 }
903
904 void mmput_async(struct mm_struct *mm)
905 {
906 if (atomic_dec_and_test(&mm->mm_users)) {
907 INIT_WORK(&mm->async_put_work, mmput_async_fn);
908 schedule_work(&mm->async_put_work);
909 }
910 }
911 #endif
912
913 /**
914 * set_mm_exe_file - change a reference to the mm's executable file
915 *
916 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
917 *
918 * Main users are mmput() and sys_execve(). Callers prevent concurrent
919 * invocations: in mmput() nobody alive left, in execve task is single
920 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
921 * mm->exe_file, but does so without using set_mm_exe_file() in order
922 * to do avoid the need for any locks.
923 */
924 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
925 {
926 struct file *old_exe_file;
927
928 /*
929 * It is safe to dereference the exe_file without RCU as
930 * this function is only called if nobody else can access
931 * this mm -- see comment above for justification.
932 */
933 old_exe_file = rcu_dereference_raw(mm->exe_file);
934
935 if (new_exe_file)
936 get_file(new_exe_file);
937 rcu_assign_pointer(mm->exe_file, new_exe_file);
938 if (old_exe_file)
939 fput(old_exe_file);
940 }
941
942 /**
943 * get_mm_exe_file - acquire a reference to the mm's executable file
944 *
945 * Returns %NULL if mm has no associated executable file.
946 * User must release file via fput().
947 */
948 struct file *get_mm_exe_file(struct mm_struct *mm)
949 {
950 struct file *exe_file;
951
952 rcu_read_lock();
953 exe_file = rcu_dereference(mm->exe_file);
954 if (exe_file && !get_file_rcu(exe_file))
955 exe_file = NULL;
956 rcu_read_unlock();
957 return exe_file;
958 }
959 EXPORT_SYMBOL(get_mm_exe_file);
960
961 /**
962 * get_task_exe_file - acquire a reference to the task's executable file
963 *
964 * Returns %NULL if task's mm (if any) has no associated executable file or
965 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
966 * User must release file via fput().
967 */
968 struct file *get_task_exe_file(struct task_struct *task)
969 {
970 struct file *exe_file = NULL;
971 struct mm_struct *mm;
972
973 task_lock(task);
974 mm = task->mm;
975 if (mm) {
976 if (!(task->flags & PF_KTHREAD))
977 exe_file = get_mm_exe_file(mm);
978 }
979 task_unlock(task);
980 return exe_file;
981 }
982 EXPORT_SYMBOL(get_task_exe_file);
983
984 /**
985 * get_task_mm - acquire a reference to the task's mm
986 *
987 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
988 * this kernel workthread has transiently adopted a user mm with use_mm,
989 * to do its AIO) is not set and if so returns a reference to it, after
990 * bumping up the use count. User must release the mm via mmput()
991 * after use. Typically used by /proc and ptrace.
992 */
993 struct mm_struct *get_task_mm(struct task_struct *task)
994 {
995 struct mm_struct *mm;
996
997 task_lock(task);
998 mm = task->mm;
999 if (mm) {
1000 if (task->flags & PF_KTHREAD)
1001 mm = NULL;
1002 else
1003 atomic_inc(&mm->mm_users);
1004 }
1005 task_unlock(task);
1006 return mm;
1007 }
1008 EXPORT_SYMBOL_GPL(get_task_mm);
1009
1010 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1011 {
1012 struct mm_struct *mm;
1013 int err;
1014
1015 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1016 if (err)
1017 return ERR_PTR(err);
1018
1019 mm = get_task_mm(task);
1020 if (mm && mm != current->mm &&
1021 !ptrace_may_access(task, mode)) {
1022 mmput(mm);
1023 mm = ERR_PTR(-EACCES);
1024 }
1025 mutex_unlock(&task->signal->cred_guard_mutex);
1026
1027 return mm;
1028 }
1029
1030 static void complete_vfork_done(struct task_struct *tsk)
1031 {
1032 struct completion *vfork;
1033
1034 task_lock(tsk);
1035 vfork = tsk->vfork_done;
1036 if (likely(vfork)) {
1037 tsk->vfork_done = NULL;
1038 complete(vfork);
1039 }
1040 task_unlock(tsk);
1041 }
1042
1043 static int wait_for_vfork_done(struct task_struct *child,
1044 struct completion *vfork)
1045 {
1046 int killed;
1047
1048 freezer_do_not_count();
1049 killed = wait_for_completion_killable(vfork);
1050 freezer_count();
1051
1052 if (killed) {
1053 task_lock(child);
1054 child->vfork_done = NULL;
1055 task_unlock(child);
1056 }
1057
1058 put_task_struct(child);
1059 return killed;
1060 }
1061
1062 /* Please note the differences between mmput and mm_release.
1063 * mmput is called whenever we stop holding onto a mm_struct,
1064 * error success whatever.
1065 *
1066 * mm_release is called after a mm_struct has been removed
1067 * from the current process.
1068 *
1069 * This difference is important for error handling, when we
1070 * only half set up a mm_struct for a new process and need to restore
1071 * the old one. Because we mmput the new mm_struct before
1072 * restoring the old one. . .
1073 * Eric Biederman 10 January 1998
1074 */
1075 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1076 {
1077 /* Get rid of any futexes when releasing the mm */
1078 #ifdef CONFIG_FUTEX
1079 if (unlikely(tsk->robust_list)) {
1080 exit_robust_list(tsk);
1081 tsk->robust_list = NULL;
1082 }
1083 #ifdef CONFIG_COMPAT
1084 if (unlikely(tsk->compat_robust_list)) {
1085 compat_exit_robust_list(tsk);
1086 tsk->compat_robust_list = NULL;
1087 }
1088 #endif
1089 if (unlikely(!list_empty(&tsk->pi_state_list)))
1090 exit_pi_state_list(tsk);
1091 #endif
1092
1093 uprobe_free_utask(tsk);
1094
1095 /* Get rid of any cached register state */
1096 deactivate_mm(tsk, mm);
1097
1098 /*
1099 * Signal userspace if we're not exiting with a core dump
1100 * because we want to leave the value intact for debugging
1101 * purposes.
1102 */
1103 if (tsk->clear_child_tid) {
1104 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1105 atomic_read(&mm->mm_users) > 1) {
1106 /*
1107 * We don't check the error code - if userspace has
1108 * not set up a proper pointer then tough luck.
1109 */
1110 put_user(0, tsk->clear_child_tid);
1111 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1112 1, NULL, NULL, 0);
1113 }
1114 tsk->clear_child_tid = NULL;
1115 }
1116
1117 /*
1118 * All done, finally we can wake up parent and return this mm to him.
1119 * Also kthread_stop() uses this completion for synchronization.
1120 */
1121 if (tsk->vfork_done)
1122 complete_vfork_done(tsk);
1123 }
1124
1125 /*
1126 * Allocate a new mm structure and copy contents from the
1127 * mm structure of the passed in task structure.
1128 */
1129 static struct mm_struct *dup_mm(struct task_struct *tsk)
1130 {
1131 struct mm_struct *mm, *oldmm = current->mm;
1132 int err;
1133
1134 mm = allocate_mm();
1135 if (!mm)
1136 goto fail_nomem;
1137
1138 memcpy(mm, oldmm, sizeof(*mm));
1139
1140 if (!mm_init(mm, tsk, mm->user_ns))
1141 goto fail_nomem;
1142
1143 err = dup_mmap(mm, oldmm);
1144 if (err)
1145 goto free_pt;
1146
1147 mm->hiwater_rss = get_mm_rss(mm);
1148 mm->hiwater_vm = mm->total_vm;
1149
1150 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1151 goto free_pt;
1152
1153 return mm;
1154
1155 free_pt:
1156 /* don't put binfmt in mmput, we haven't got module yet */
1157 mm->binfmt = NULL;
1158 mmput(mm);
1159
1160 fail_nomem:
1161 return NULL;
1162 }
1163
1164 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1165 {
1166 struct mm_struct *mm, *oldmm;
1167 int retval;
1168
1169 tsk->min_flt = tsk->maj_flt = 0;
1170 tsk->nvcsw = tsk->nivcsw = 0;
1171 #ifdef CONFIG_DETECT_HUNG_TASK
1172 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1173 #endif
1174
1175 tsk->mm = NULL;
1176 tsk->active_mm = NULL;
1177
1178 /*
1179 * Are we cloning a kernel thread?
1180 *
1181 * We need to steal a active VM for that..
1182 */
1183 oldmm = current->mm;
1184 if (!oldmm)
1185 return 0;
1186
1187 /* initialize the new vmacache entries */
1188 vmacache_flush(tsk);
1189
1190 if (clone_flags & CLONE_VM) {
1191 atomic_inc(&oldmm->mm_users);
1192 mm = oldmm;
1193 goto good_mm;
1194 }
1195
1196 retval = -ENOMEM;
1197 mm = dup_mm(tsk);
1198 if (!mm)
1199 goto fail_nomem;
1200
1201 good_mm:
1202 tsk->mm = mm;
1203 tsk->active_mm = mm;
1204 return 0;
1205
1206 fail_nomem:
1207 return retval;
1208 }
1209
1210 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1211 {
1212 struct fs_struct *fs = current->fs;
1213 if (clone_flags & CLONE_FS) {
1214 /* tsk->fs is already what we want */
1215 spin_lock(&fs->lock);
1216 if (fs->in_exec) {
1217 spin_unlock(&fs->lock);
1218 return -EAGAIN;
1219 }
1220 fs->users++;
1221 spin_unlock(&fs->lock);
1222 return 0;
1223 }
1224 tsk->fs = copy_fs_struct(fs);
1225 if (!tsk->fs)
1226 return -ENOMEM;
1227 return 0;
1228 }
1229
1230 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1231 {
1232 struct files_struct *oldf, *newf;
1233 int error = 0;
1234
1235 /*
1236 * A background process may not have any files ...
1237 */
1238 oldf = current->files;
1239 if (!oldf)
1240 goto out;
1241
1242 if (clone_flags & CLONE_FILES) {
1243 atomic_inc(&oldf->count);
1244 goto out;
1245 }
1246
1247 newf = dup_fd(oldf, &error);
1248 if (!newf)
1249 goto out;
1250
1251 tsk->files = newf;
1252 error = 0;
1253 out:
1254 return error;
1255 }
1256
1257 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1258 {
1259 #ifdef CONFIG_BLOCK
1260 struct io_context *ioc = current->io_context;
1261 struct io_context *new_ioc;
1262
1263 if (!ioc)
1264 return 0;
1265 /*
1266 * Share io context with parent, if CLONE_IO is set
1267 */
1268 if (clone_flags & CLONE_IO) {
1269 ioc_task_link(ioc);
1270 tsk->io_context = ioc;
1271 } else if (ioprio_valid(ioc->ioprio)) {
1272 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1273 if (unlikely(!new_ioc))
1274 return -ENOMEM;
1275
1276 new_ioc->ioprio = ioc->ioprio;
1277 put_io_context(new_ioc);
1278 }
1279 #endif
1280 return 0;
1281 }
1282
1283 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1284 {
1285 struct sighand_struct *sig;
1286
1287 if (clone_flags & CLONE_SIGHAND) {
1288 atomic_inc(&current->sighand->count);
1289 return 0;
1290 }
1291 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1292 rcu_assign_pointer(tsk->sighand, sig);
1293 if (!sig)
1294 return -ENOMEM;
1295
1296 atomic_set(&sig->count, 1);
1297 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1298 return 0;
1299 }
1300
1301 void __cleanup_sighand(struct sighand_struct *sighand)
1302 {
1303 if (atomic_dec_and_test(&sighand->count)) {
1304 signalfd_cleanup(sighand);
1305 /*
1306 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1307 * without an RCU grace period, see __lock_task_sighand().
1308 */
1309 kmem_cache_free(sighand_cachep, sighand);
1310 }
1311 }
1312
1313 #ifdef CONFIG_POSIX_TIMERS
1314 /*
1315 * Initialize POSIX timer handling for a thread group.
1316 */
1317 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1318 {
1319 unsigned long cpu_limit;
1320
1321 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1322 if (cpu_limit != RLIM_INFINITY) {
1323 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1324 sig->cputimer.running = true;
1325 }
1326
1327 /* The timer lists. */
1328 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1329 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1330 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1331 }
1332 #else
1333 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1334 #endif
1335
1336 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1337 {
1338 struct signal_struct *sig;
1339
1340 if (clone_flags & CLONE_THREAD)
1341 return 0;
1342
1343 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1344 tsk->signal = sig;
1345 if (!sig)
1346 return -ENOMEM;
1347
1348 sig->nr_threads = 1;
1349 atomic_set(&sig->live, 1);
1350 atomic_set(&sig->sigcnt, 1);
1351
1352 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1353 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1354 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1355
1356 init_waitqueue_head(&sig->wait_chldexit);
1357 sig->curr_target = tsk;
1358 init_sigpending(&sig->shared_pending);
1359 seqlock_init(&sig->stats_lock);
1360 prev_cputime_init(&sig->prev_cputime);
1361
1362 #ifdef CONFIG_POSIX_TIMERS
1363 INIT_LIST_HEAD(&sig->posix_timers);
1364 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1365 sig->real_timer.function = it_real_fn;
1366 #endif
1367
1368 task_lock(current->group_leader);
1369 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1370 task_unlock(current->group_leader);
1371
1372 posix_cpu_timers_init_group(sig);
1373
1374 tty_audit_fork(sig);
1375 sched_autogroup_fork(sig);
1376
1377 sig->oom_score_adj = current->signal->oom_score_adj;
1378 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1379
1380 mutex_init(&sig->cred_guard_mutex);
1381
1382 return 0;
1383 }
1384
1385 static void copy_seccomp(struct task_struct *p)
1386 {
1387 #ifdef CONFIG_SECCOMP
1388 /*
1389 * Must be called with sighand->lock held, which is common to
1390 * all threads in the group. Holding cred_guard_mutex is not
1391 * needed because this new task is not yet running and cannot
1392 * be racing exec.
1393 */
1394 assert_spin_locked(&current->sighand->siglock);
1395
1396 /* Ref-count the new filter user, and assign it. */
1397 get_seccomp_filter(current);
1398 p->seccomp = current->seccomp;
1399
1400 /*
1401 * Explicitly enable no_new_privs here in case it got set
1402 * between the task_struct being duplicated and holding the
1403 * sighand lock. The seccomp state and nnp must be in sync.
1404 */
1405 if (task_no_new_privs(current))
1406 task_set_no_new_privs(p);
1407
1408 /*
1409 * If the parent gained a seccomp mode after copying thread
1410 * flags and between before we held the sighand lock, we have
1411 * to manually enable the seccomp thread flag here.
1412 */
1413 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1414 set_tsk_thread_flag(p, TIF_SECCOMP);
1415 #endif
1416 }
1417
1418 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1419 {
1420 current->clear_child_tid = tidptr;
1421
1422 return task_pid_vnr(current);
1423 }
1424
1425 static void rt_mutex_init_task(struct task_struct *p)
1426 {
1427 raw_spin_lock_init(&p->pi_lock);
1428 #ifdef CONFIG_RT_MUTEXES
1429 p->pi_waiters = RB_ROOT;
1430 p->pi_waiters_leftmost = NULL;
1431 p->pi_blocked_on = NULL;
1432 #endif
1433 }
1434
1435 #ifdef CONFIG_POSIX_TIMERS
1436 /*
1437 * Initialize POSIX timer handling for a single task.
1438 */
1439 static void posix_cpu_timers_init(struct task_struct *tsk)
1440 {
1441 tsk->cputime_expires.prof_exp = 0;
1442 tsk->cputime_expires.virt_exp = 0;
1443 tsk->cputime_expires.sched_exp = 0;
1444 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1445 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1446 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1447 }
1448 #else
1449 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1450 #endif
1451
1452 static inline void
1453 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1454 {
1455 task->pids[type].pid = pid;
1456 }
1457
1458 /*
1459 * This creates a new process as a copy of the old one,
1460 * but does not actually start it yet.
1461 *
1462 * It copies the registers, and all the appropriate
1463 * parts of the process environment (as per the clone
1464 * flags). The actual kick-off is left to the caller.
1465 */
1466 static __latent_entropy struct task_struct *copy_process(
1467 unsigned long clone_flags,
1468 unsigned long stack_start,
1469 unsigned long stack_size,
1470 int __user *child_tidptr,
1471 struct pid *pid,
1472 int trace,
1473 unsigned long tls,
1474 int node)
1475 {
1476 int retval;
1477 struct task_struct *p;
1478
1479 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1480 return ERR_PTR(-EINVAL);
1481
1482 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1483 return ERR_PTR(-EINVAL);
1484
1485 /*
1486 * Thread groups must share signals as well, and detached threads
1487 * can only be started up within the thread group.
1488 */
1489 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1490 return ERR_PTR(-EINVAL);
1491
1492 /*
1493 * Shared signal handlers imply shared VM. By way of the above,
1494 * thread groups also imply shared VM. Blocking this case allows
1495 * for various simplifications in other code.
1496 */
1497 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1498 return ERR_PTR(-EINVAL);
1499
1500 /*
1501 * Siblings of global init remain as zombies on exit since they are
1502 * not reaped by their parent (swapper). To solve this and to avoid
1503 * multi-rooted process trees, prevent global and container-inits
1504 * from creating siblings.
1505 */
1506 if ((clone_flags & CLONE_PARENT) &&
1507 current->signal->flags & SIGNAL_UNKILLABLE)
1508 return ERR_PTR(-EINVAL);
1509
1510 /*
1511 * If the new process will be in a different pid or user namespace
1512 * do not allow it to share a thread group with the forking task.
1513 */
1514 if (clone_flags & CLONE_THREAD) {
1515 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1516 (task_active_pid_ns(current) !=
1517 current->nsproxy->pid_ns_for_children))
1518 return ERR_PTR(-EINVAL);
1519 }
1520
1521 retval = security_task_create(clone_flags);
1522 if (retval)
1523 goto fork_out;
1524
1525 retval = -ENOMEM;
1526 p = dup_task_struct(current, node);
1527 if (!p)
1528 goto fork_out;
1529
1530 ftrace_graph_init_task(p);
1531
1532 rt_mutex_init_task(p);
1533
1534 #ifdef CONFIG_PROVE_LOCKING
1535 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1536 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1537 #endif
1538 retval = -EAGAIN;
1539 if (atomic_read(&p->real_cred->user->processes) >=
1540 task_rlimit(p, RLIMIT_NPROC)) {
1541 if (p->real_cred->user != INIT_USER &&
1542 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1543 goto bad_fork_free;
1544 }
1545 current->flags &= ~PF_NPROC_EXCEEDED;
1546
1547 retval = copy_creds(p, clone_flags);
1548 if (retval < 0)
1549 goto bad_fork_free;
1550
1551 /*
1552 * If multiple threads are within copy_process(), then this check
1553 * triggers too late. This doesn't hurt, the check is only there
1554 * to stop root fork bombs.
1555 */
1556 retval = -EAGAIN;
1557 if (nr_threads >= max_threads)
1558 goto bad_fork_cleanup_count;
1559
1560 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1561 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1562 p->flags |= PF_FORKNOEXEC;
1563 INIT_LIST_HEAD(&p->children);
1564 INIT_LIST_HEAD(&p->sibling);
1565 rcu_copy_process(p);
1566 p->vfork_done = NULL;
1567 spin_lock_init(&p->alloc_lock);
1568
1569 init_sigpending(&p->pending);
1570
1571 p->utime = p->stime = p->gtime = 0;
1572 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1573 p->utimescaled = p->stimescaled = 0;
1574 #endif
1575 prev_cputime_init(&p->prev_cputime);
1576
1577 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1578 seqcount_init(&p->vtime_seqcount);
1579 p->vtime_snap = 0;
1580 p->vtime_snap_whence = VTIME_INACTIVE;
1581 #endif
1582
1583 #if defined(SPLIT_RSS_COUNTING)
1584 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1585 #endif
1586
1587 p->default_timer_slack_ns = current->timer_slack_ns;
1588
1589 task_io_accounting_init(&p->ioac);
1590 acct_clear_integrals(p);
1591
1592 posix_cpu_timers_init(p);
1593
1594 p->start_time = ktime_get_ns();
1595 p->real_start_time = ktime_get_boot_ns();
1596 p->io_context = NULL;
1597 p->audit_context = NULL;
1598 cgroup_fork(p);
1599 #ifdef CONFIG_NUMA
1600 p->mempolicy = mpol_dup(p->mempolicy);
1601 if (IS_ERR(p->mempolicy)) {
1602 retval = PTR_ERR(p->mempolicy);
1603 p->mempolicy = NULL;
1604 goto bad_fork_cleanup_threadgroup_lock;
1605 }
1606 #endif
1607 #ifdef CONFIG_CPUSETS
1608 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1609 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1610 seqcount_init(&p->mems_allowed_seq);
1611 #endif
1612 #ifdef CONFIG_TRACE_IRQFLAGS
1613 p->irq_events = 0;
1614 p->hardirqs_enabled = 0;
1615 p->hardirq_enable_ip = 0;
1616 p->hardirq_enable_event = 0;
1617 p->hardirq_disable_ip = _THIS_IP_;
1618 p->hardirq_disable_event = 0;
1619 p->softirqs_enabled = 1;
1620 p->softirq_enable_ip = _THIS_IP_;
1621 p->softirq_enable_event = 0;
1622 p->softirq_disable_ip = 0;
1623 p->softirq_disable_event = 0;
1624 p->hardirq_context = 0;
1625 p->softirq_context = 0;
1626 #endif
1627
1628 p->pagefault_disabled = 0;
1629
1630 #ifdef CONFIG_LOCKDEP
1631 p->lockdep_depth = 0; /* no locks held yet */
1632 p->curr_chain_key = 0;
1633 p->lockdep_recursion = 0;
1634 #endif
1635
1636 #ifdef CONFIG_DEBUG_MUTEXES
1637 p->blocked_on = NULL; /* not blocked yet */
1638 #endif
1639 #ifdef CONFIG_BCACHE
1640 p->sequential_io = 0;
1641 p->sequential_io_avg = 0;
1642 #endif
1643
1644 /* Perform scheduler related setup. Assign this task to a CPU. */
1645 retval = sched_fork(clone_flags, p);
1646 if (retval)
1647 goto bad_fork_cleanup_policy;
1648
1649 retval = perf_event_init_task(p);
1650 if (retval)
1651 goto bad_fork_cleanup_policy;
1652 retval = audit_alloc(p);
1653 if (retval)
1654 goto bad_fork_cleanup_perf;
1655 /* copy all the process information */
1656 shm_init_task(p);
1657 retval = copy_semundo(clone_flags, p);
1658 if (retval)
1659 goto bad_fork_cleanup_audit;
1660 retval = copy_files(clone_flags, p);
1661 if (retval)
1662 goto bad_fork_cleanup_semundo;
1663 retval = copy_fs(clone_flags, p);
1664 if (retval)
1665 goto bad_fork_cleanup_files;
1666 retval = copy_sighand(clone_flags, p);
1667 if (retval)
1668 goto bad_fork_cleanup_fs;
1669 retval = copy_signal(clone_flags, p);
1670 if (retval)
1671 goto bad_fork_cleanup_sighand;
1672 retval = copy_mm(clone_flags, p);
1673 if (retval)
1674 goto bad_fork_cleanup_signal;
1675 retval = copy_namespaces(clone_flags, p);
1676 if (retval)
1677 goto bad_fork_cleanup_mm;
1678 retval = copy_io(clone_flags, p);
1679 if (retval)
1680 goto bad_fork_cleanup_namespaces;
1681 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1682 if (retval)
1683 goto bad_fork_cleanup_io;
1684
1685 if (pid != &init_struct_pid) {
1686 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1687 if (IS_ERR(pid)) {
1688 retval = PTR_ERR(pid);
1689 goto bad_fork_cleanup_thread;
1690 }
1691 }
1692
1693 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1694 /*
1695 * Clear TID on mm_release()?
1696 */
1697 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1698 #ifdef CONFIG_BLOCK
1699 p->plug = NULL;
1700 #endif
1701 #ifdef CONFIG_FUTEX
1702 p->robust_list = NULL;
1703 #ifdef CONFIG_COMPAT
1704 p->compat_robust_list = NULL;
1705 #endif
1706 INIT_LIST_HEAD(&p->pi_state_list);
1707 p->pi_state_cache = NULL;
1708 #endif
1709 /*
1710 * sigaltstack should be cleared when sharing the same VM
1711 */
1712 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1713 sas_ss_reset(p);
1714
1715 /*
1716 * Syscall tracing and stepping should be turned off in the
1717 * child regardless of CLONE_PTRACE.
1718 */
1719 user_disable_single_step(p);
1720 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1721 #ifdef TIF_SYSCALL_EMU
1722 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1723 #endif
1724 clear_all_latency_tracing(p);
1725
1726 /* ok, now we should be set up.. */
1727 p->pid = pid_nr(pid);
1728 if (clone_flags & CLONE_THREAD) {
1729 p->exit_signal = -1;
1730 p->group_leader = current->group_leader;
1731 p->tgid = current->tgid;
1732 } else {
1733 if (clone_flags & CLONE_PARENT)
1734 p->exit_signal = current->group_leader->exit_signal;
1735 else
1736 p->exit_signal = (clone_flags & CSIGNAL);
1737 p->group_leader = p;
1738 p->tgid = p->pid;
1739 }
1740
1741 p->nr_dirtied = 0;
1742 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1743 p->dirty_paused_when = 0;
1744
1745 p->pdeath_signal = 0;
1746 INIT_LIST_HEAD(&p->thread_group);
1747 p->task_works = NULL;
1748
1749 threadgroup_change_begin(current);
1750 /*
1751 * Ensure that the cgroup subsystem policies allow the new process to be
1752 * forked. It should be noted the the new process's css_set can be changed
1753 * between here and cgroup_post_fork() if an organisation operation is in
1754 * progress.
1755 */
1756 retval = cgroup_can_fork(p);
1757 if (retval)
1758 goto bad_fork_free_pid;
1759
1760 /*
1761 * Make it visible to the rest of the system, but dont wake it up yet.
1762 * Need tasklist lock for parent etc handling!
1763 */
1764 write_lock_irq(&tasklist_lock);
1765
1766 /* CLONE_PARENT re-uses the old parent */
1767 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1768 p->real_parent = current->real_parent;
1769 p->parent_exec_id = current->parent_exec_id;
1770 } else {
1771 p->real_parent = current;
1772 p->parent_exec_id = current->self_exec_id;
1773 }
1774
1775 spin_lock(&current->sighand->siglock);
1776
1777 /*
1778 * Copy seccomp details explicitly here, in case they were changed
1779 * before holding sighand lock.
1780 */
1781 copy_seccomp(p);
1782
1783 /*
1784 * Process group and session signals need to be delivered to just the
1785 * parent before the fork or both the parent and the child after the
1786 * fork. Restart if a signal comes in before we add the new process to
1787 * it's process group.
1788 * A fatal signal pending means that current will exit, so the new
1789 * thread can't slip out of an OOM kill (or normal SIGKILL).
1790 */
1791 recalc_sigpending();
1792 if (signal_pending(current)) {
1793 spin_unlock(&current->sighand->siglock);
1794 write_unlock_irq(&tasklist_lock);
1795 retval = -ERESTARTNOINTR;
1796 goto bad_fork_cancel_cgroup;
1797 }
1798
1799 if (likely(p->pid)) {
1800 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1801
1802 init_task_pid(p, PIDTYPE_PID, pid);
1803 if (thread_group_leader(p)) {
1804 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1805 init_task_pid(p, PIDTYPE_SID, task_session(current));
1806
1807 if (is_child_reaper(pid)) {
1808 ns_of_pid(pid)->child_reaper = p;
1809 p->signal->flags |= SIGNAL_UNKILLABLE;
1810 }
1811
1812 p->signal->leader_pid = pid;
1813 p->signal->tty = tty_kref_get(current->signal->tty);
1814 /*
1815 * Inherit has_child_subreaper flag under the same
1816 * tasklist_lock with adding child to the process tree
1817 * for propagate_has_child_subreaper optimization.
1818 */
1819 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1820 p->real_parent->signal->is_child_subreaper;
1821 list_add_tail(&p->sibling, &p->real_parent->children);
1822 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1823 attach_pid(p, PIDTYPE_PGID);
1824 attach_pid(p, PIDTYPE_SID);
1825 __this_cpu_inc(process_counts);
1826 } else {
1827 current->signal->nr_threads++;
1828 atomic_inc(&current->signal->live);
1829 atomic_inc(&current->signal->sigcnt);
1830 list_add_tail_rcu(&p->thread_group,
1831 &p->group_leader->thread_group);
1832 list_add_tail_rcu(&p->thread_node,
1833 &p->signal->thread_head);
1834 }
1835 attach_pid(p, PIDTYPE_PID);
1836 nr_threads++;
1837 }
1838
1839 total_forks++;
1840 spin_unlock(&current->sighand->siglock);
1841 syscall_tracepoint_update(p);
1842 write_unlock_irq(&tasklist_lock);
1843
1844 proc_fork_connector(p);
1845 cgroup_post_fork(p);
1846 threadgroup_change_end(current);
1847 perf_event_fork(p);
1848
1849 trace_task_newtask(p, clone_flags);
1850 uprobe_copy_process(p, clone_flags);
1851
1852 return p;
1853
1854 bad_fork_cancel_cgroup:
1855 cgroup_cancel_fork(p);
1856 bad_fork_free_pid:
1857 threadgroup_change_end(current);
1858 if (pid != &init_struct_pid)
1859 free_pid(pid);
1860 bad_fork_cleanup_thread:
1861 exit_thread(p);
1862 bad_fork_cleanup_io:
1863 if (p->io_context)
1864 exit_io_context(p);
1865 bad_fork_cleanup_namespaces:
1866 exit_task_namespaces(p);
1867 bad_fork_cleanup_mm:
1868 if (p->mm)
1869 mmput(p->mm);
1870 bad_fork_cleanup_signal:
1871 if (!(clone_flags & CLONE_THREAD))
1872 free_signal_struct(p->signal);
1873 bad_fork_cleanup_sighand:
1874 __cleanup_sighand(p->sighand);
1875 bad_fork_cleanup_fs:
1876 exit_fs(p); /* blocking */
1877 bad_fork_cleanup_files:
1878 exit_files(p); /* blocking */
1879 bad_fork_cleanup_semundo:
1880 exit_sem(p);
1881 bad_fork_cleanup_audit:
1882 audit_free(p);
1883 bad_fork_cleanup_perf:
1884 perf_event_free_task(p);
1885 bad_fork_cleanup_policy:
1886 #ifdef CONFIG_NUMA
1887 mpol_put(p->mempolicy);
1888 bad_fork_cleanup_threadgroup_lock:
1889 #endif
1890 delayacct_tsk_free(p);
1891 bad_fork_cleanup_count:
1892 atomic_dec(&p->cred->user->processes);
1893 exit_creds(p);
1894 bad_fork_free:
1895 p->state = TASK_DEAD;
1896 put_task_stack(p);
1897 free_task(p);
1898 fork_out:
1899 return ERR_PTR(retval);
1900 }
1901
1902 static inline void init_idle_pids(struct pid_link *links)
1903 {
1904 enum pid_type type;
1905
1906 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1907 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1908 links[type].pid = &init_struct_pid;
1909 }
1910 }
1911
1912 struct task_struct *fork_idle(int cpu)
1913 {
1914 struct task_struct *task;
1915 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1916 cpu_to_node(cpu));
1917 if (!IS_ERR(task)) {
1918 init_idle_pids(task->pids);
1919 init_idle(task, cpu);
1920 }
1921
1922 return task;
1923 }
1924
1925 /*
1926 * Ok, this is the main fork-routine.
1927 *
1928 * It copies the process, and if successful kick-starts
1929 * it and waits for it to finish using the VM if required.
1930 */
1931 long _do_fork(unsigned long clone_flags,
1932 unsigned long stack_start,
1933 unsigned long stack_size,
1934 int __user *parent_tidptr,
1935 int __user *child_tidptr,
1936 unsigned long tls)
1937 {
1938 struct task_struct *p;
1939 int trace = 0;
1940 long nr;
1941
1942 /*
1943 * Determine whether and which event to report to ptracer. When
1944 * called from kernel_thread or CLONE_UNTRACED is explicitly
1945 * requested, no event is reported; otherwise, report if the event
1946 * for the type of forking is enabled.
1947 */
1948 if (!(clone_flags & CLONE_UNTRACED)) {
1949 if (clone_flags & CLONE_VFORK)
1950 trace = PTRACE_EVENT_VFORK;
1951 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1952 trace = PTRACE_EVENT_CLONE;
1953 else
1954 trace = PTRACE_EVENT_FORK;
1955
1956 if (likely(!ptrace_event_enabled(current, trace)))
1957 trace = 0;
1958 }
1959
1960 p = copy_process(clone_flags, stack_start, stack_size,
1961 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1962 add_latent_entropy();
1963 /*
1964 * Do this prior waking up the new thread - the thread pointer
1965 * might get invalid after that point, if the thread exits quickly.
1966 */
1967 if (!IS_ERR(p)) {
1968 struct completion vfork;
1969 struct pid *pid;
1970
1971 trace_sched_process_fork(current, p);
1972
1973 pid = get_task_pid(p, PIDTYPE_PID);
1974 nr = pid_vnr(pid);
1975
1976 if (clone_flags & CLONE_PARENT_SETTID)
1977 put_user(nr, parent_tidptr);
1978
1979 if (clone_flags & CLONE_VFORK) {
1980 p->vfork_done = &vfork;
1981 init_completion(&vfork);
1982 get_task_struct(p);
1983 }
1984
1985 wake_up_new_task(p);
1986
1987 /* forking complete and child started to run, tell ptracer */
1988 if (unlikely(trace))
1989 ptrace_event_pid(trace, pid);
1990
1991 if (clone_flags & CLONE_VFORK) {
1992 if (!wait_for_vfork_done(p, &vfork))
1993 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1994 }
1995
1996 put_pid(pid);
1997 } else {
1998 nr = PTR_ERR(p);
1999 }
2000 return nr;
2001 }
2002
2003 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2004 /* For compatibility with architectures that call do_fork directly rather than
2005 * using the syscall entry points below. */
2006 long do_fork(unsigned long clone_flags,
2007 unsigned long stack_start,
2008 unsigned long stack_size,
2009 int __user *parent_tidptr,
2010 int __user *child_tidptr)
2011 {
2012 return _do_fork(clone_flags, stack_start, stack_size,
2013 parent_tidptr, child_tidptr, 0);
2014 }
2015 #endif
2016
2017 /*
2018 * Create a kernel thread.
2019 */
2020 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2021 {
2022 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2023 (unsigned long)arg, NULL, NULL, 0);
2024 }
2025
2026 #ifdef __ARCH_WANT_SYS_FORK
2027 SYSCALL_DEFINE0(fork)
2028 {
2029 #ifdef CONFIG_MMU
2030 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2031 #else
2032 /* can not support in nommu mode */
2033 return -EINVAL;
2034 #endif
2035 }
2036 #endif
2037
2038 #ifdef __ARCH_WANT_SYS_VFORK
2039 SYSCALL_DEFINE0(vfork)
2040 {
2041 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2042 0, NULL, NULL, 0);
2043 }
2044 #endif
2045
2046 #ifdef __ARCH_WANT_SYS_CLONE
2047 #ifdef CONFIG_CLONE_BACKWARDS
2048 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2049 int __user *, parent_tidptr,
2050 unsigned long, tls,
2051 int __user *, child_tidptr)
2052 #elif defined(CONFIG_CLONE_BACKWARDS2)
2053 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2054 int __user *, parent_tidptr,
2055 int __user *, child_tidptr,
2056 unsigned long, tls)
2057 #elif defined(CONFIG_CLONE_BACKWARDS3)
2058 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2059 int, stack_size,
2060 int __user *, parent_tidptr,
2061 int __user *, child_tidptr,
2062 unsigned long, tls)
2063 #else
2064 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2065 int __user *, parent_tidptr,
2066 int __user *, child_tidptr,
2067 unsigned long, tls)
2068 #endif
2069 {
2070 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2071 }
2072 #endif
2073
2074 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2075 {
2076 struct task_struct *leader, *parent, *child;
2077 int res;
2078
2079 read_lock(&tasklist_lock);
2080 leader = top = top->group_leader;
2081 down:
2082 for_each_thread(leader, parent) {
2083 list_for_each_entry(child, &parent->children, sibling) {
2084 res = visitor(child, data);
2085 if (res) {
2086 if (res < 0)
2087 goto out;
2088 leader = child;
2089 goto down;
2090 }
2091 up:
2092 ;
2093 }
2094 }
2095
2096 if (leader != top) {
2097 child = leader;
2098 parent = child->real_parent;
2099 leader = parent->group_leader;
2100 goto up;
2101 }
2102 out:
2103 read_unlock(&tasklist_lock);
2104 }
2105
2106 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2107 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2108 #endif
2109
2110 static void sighand_ctor(void *data)
2111 {
2112 struct sighand_struct *sighand = data;
2113
2114 spin_lock_init(&sighand->siglock);
2115 init_waitqueue_head(&sighand->signalfd_wqh);
2116 }
2117
2118 void __init proc_caches_init(void)
2119 {
2120 sighand_cachep = kmem_cache_create("sighand_cache",
2121 sizeof(struct sighand_struct), 0,
2122 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2123 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2124 signal_cachep = kmem_cache_create("signal_cache",
2125 sizeof(struct signal_struct), 0,
2126 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2127 NULL);
2128 files_cachep = kmem_cache_create("files_cache",
2129 sizeof(struct files_struct), 0,
2130 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2131 NULL);
2132 fs_cachep = kmem_cache_create("fs_cache",
2133 sizeof(struct fs_struct), 0,
2134 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2135 NULL);
2136 /*
2137 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2138 * whole struct cpumask for the OFFSTACK case. We could change
2139 * this to *only* allocate as much of it as required by the
2140 * maximum number of CPU's we can ever have. The cpumask_allocation
2141 * is at the end of the structure, exactly for that reason.
2142 */
2143 mm_cachep = kmem_cache_create("mm_struct",
2144 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2145 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2146 NULL);
2147 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2148 mmap_init();
2149 nsproxy_cache_init();
2150 }
2151
2152 /*
2153 * Check constraints on flags passed to the unshare system call.
2154 */
2155 static int check_unshare_flags(unsigned long unshare_flags)
2156 {
2157 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2158 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2159 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2160 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2161 return -EINVAL;
2162 /*
2163 * Not implemented, but pretend it works if there is nothing
2164 * to unshare. Note that unsharing the address space or the
2165 * signal handlers also need to unshare the signal queues (aka
2166 * CLONE_THREAD).
2167 */
2168 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2169 if (!thread_group_empty(current))
2170 return -EINVAL;
2171 }
2172 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2173 if (atomic_read(&current->sighand->count) > 1)
2174 return -EINVAL;
2175 }
2176 if (unshare_flags & CLONE_VM) {
2177 if (!current_is_single_threaded())
2178 return -EINVAL;
2179 }
2180
2181 return 0;
2182 }
2183
2184 /*
2185 * Unshare the filesystem structure if it is being shared
2186 */
2187 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2188 {
2189 struct fs_struct *fs = current->fs;
2190
2191 if (!(unshare_flags & CLONE_FS) || !fs)
2192 return 0;
2193
2194 /* don't need lock here; in the worst case we'll do useless copy */
2195 if (fs->users == 1)
2196 return 0;
2197
2198 *new_fsp = copy_fs_struct(fs);
2199 if (!*new_fsp)
2200 return -ENOMEM;
2201
2202 return 0;
2203 }
2204
2205 /*
2206 * Unshare file descriptor table if it is being shared
2207 */
2208 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2209 {
2210 struct files_struct *fd = current->files;
2211 int error = 0;
2212
2213 if ((unshare_flags & CLONE_FILES) &&
2214 (fd && atomic_read(&fd->count) > 1)) {
2215 *new_fdp = dup_fd(fd, &error);
2216 if (!*new_fdp)
2217 return error;
2218 }
2219
2220 return 0;
2221 }
2222
2223 /*
2224 * unshare allows a process to 'unshare' part of the process
2225 * context which was originally shared using clone. copy_*
2226 * functions used by do_fork() cannot be used here directly
2227 * because they modify an inactive task_struct that is being
2228 * constructed. Here we are modifying the current, active,
2229 * task_struct.
2230 */
2231 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2232 {
2233 struct fs_struct *fs, *new_fs = NULL;
2234 struct files_struct *fd, *new_fd = NULL;
2235 struct cred *new_cred = NULL;
2236 struct nsproxy *new_nsproxy = NULL;
2237 int do_sysvsem = 0;
2238 int err;
2239
2240 /*
2241 * If unsharing a user namespace must also unshare the thread group
2242 * and unshare the filesystem root and working directories.
2243 */
2244 if (unshare_flags & CLONE_NEWUSER)
2245 unshare_flags |= CLONE_THREAD | CLONE_FS;
2246 /*
2247 * If unsharing vm, must also unshare signal handlers.
2248 */
2249 if (unshare_flags & CLONE_VM)
2250 unshare_flags |= CLONE_SIGHAND;
2251 /*
2252 * If unsharing a signal handlers, must also unshare the signal queues.
2253 */
2254 if (unshare_flags & CLONE_SIGHAND)
2255 unshare_flags |= CLONE_THREAD;
2256 /*
2257 * If unsharing namespace, must also unshare filesystem information.
2258 */
2259 if (unshare_flags & CLONE_NEWNS)
2260 unshare_flags |= CLONE_FS;
2261
2262 err = check_unshare_flags(unshare_flags);
2263 if (err)
2264 goto bad_unshare_out;
2265 /*
2266 * CLONE_NEWIPC must also detach from the undolist: after switching
2267 * to a new ipc namespace, the semaphore arrays from the old
2268 * namespace are unreachable.
2269 */
2270 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2271 do_sysvsem = 1;
2272 err = unshare_fs(unshare_flags, &new_fs);
2273 if (err)
2274 goto bad_unshare_out;
2275 err = unshare_fd(unshare_flags, &new_fd);
2276 if (err)
2277 goto bad_unshare_cleanup_fs;
2278 err = unshare_userns(unshare_flags, &new_cred);
2279 if (err)
2280 goto bad_unshare_cleanup_fd;
2281 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2282 new_cred, new_fs);
2283 if (err)
2284 goto bad_unshare_cleanup_cred;
2285
2286 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2287 if (do_sysvsem) {
2288 /*
2289 * CLONE_SYSVSEM is equivalent to sys_exit().
2290 */
2291 exit_sem(current);
2292 }
2293 if (unshare_flags & CLONE_NEWIPC) {
2294 /* Orphan segments in old ns (see sem above). */
2295 exit_shm(current);
2296 shm_init_task(current);
2297 }
2298
2299 if (new_nsproxy)
2300 switch_task_namespaces(current, new_nsproxy);
2301
2302 task_lock(current);
2303
2304 if (new_fs) {
2305 fs = current->fs;
2306 spin_lock(&fs->lock);
2307 current->fs = new_fs;
2308 if (--fs->users)
2309 new_fs = NULL;
2310 else
2311 new_fs = fs;
2312 spin_unlock(&fs->lock);
2313 }
2314
2315 if (new_fd) {
2316 fd = current->files;
2317 current->files = new_fd;
2318 new_fd = fd;
2319 }
2320
2321 task_unlock(current);
2322
2323 if (new_cred) {
2324 /* Install the new user namespace */
2325 commit_creds(new_cred);
2326 new_cred = NULL;
2327 }
2328 }
2329
2330 bad_unshare_cleanup_cred:
2331 if (new_cred)
2332 put_cred(new_cred);
2333 bad_unshare_cleanup_fd:
2334 if (new_fd)
2335 put_files_struct(new_fd);
2336
2337 bad_unshare_cleanup_fs:
2338 if (new_fs)
2339 free_fs_struct(new_fs);
2340
2341 bad_unshare_out:
2342 return err;
2343 }
2344
2345 /*
2346 * Helper to unshare the files of the current task.
2347 * We don't want to expose copy_files internals to
2348 * the exec layer of the kernel.
2349 */
2350
2351 int unshare_files(struct files_struct **displaced)
2352 {
2353 struct task_struct *task = current;
2354 struct files_struct *copy = NULL;
2355 int error;
2356
2357 error = unshare_fd(CLONE_FILES, &copy);
2358 if (error || !copy) {
2359 *displaced = NULL;
2360 return error;
2361 }
2362 *displaced = task->files;
2363 task_lock(task);
2364 task->files = copy;
2365 task_unlock(task);
2366 return 0;
2367 }
2368
2369 int sysctl_max_threads(struct ctl_table *table, int write,
2370 void __user *buffer, size_t *lenp, loff_t *ppos)
2371 {
2372 struct ctl_table t;
2373 int ret;
2374 int threads = max_threads;
2375 int min = MIN_THREADS;
2376 int max = MAX_THREADS;
2377
2378 t = *table;
2379 t.data = &threads;
2380 t.extra1 = &min;
2381 t.extra2 = &max;
2382
2383 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2384 if (ret || !write)
2385 return ret;
2386
2387 set_max_threads(threads);
2388
2389 return 0;
2390 }