]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/fork.c
pidns: fix vfork() after unshare(CLONE_NEWPID)
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
244
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
266
267 /*
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
271 */
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274 /*
275 * we need to allow at least 20 threads to boot a system
276 */
277 if (max_threads < 20)
278 max_threads = 20;
279
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
288 {
289 *dst = *src;
290 return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
300
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
304
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
308
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
312
313 tsk->stack = ti;
314
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
324
325 /*
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
328 */
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
335
336 account_kernel_stack(ti, 1);
337
338 return tsk;
339
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354 struct mempolicy *pol;
355
356 uprobe_start_dup_mmap();
357 down_write(&oldmm->mmap_sem);
358 flush_cache_dup_mm(oldmm);
359 uprobe_dup_mmap(oldmm, mm);
360 /*
361 * Not linked in yet - no deadlock potential:
362 */
363 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
364
365 mm->locked_vm = 0;
366 mm->mmap = NULL;
367 mm->mmap_cache = NULL;
368 mm->map_count = 0;
369 cpumask_clear(mm_cpumask(mm));
370 mm->mm_rb = RB_ROOT;
371 rb_link = &mm->mm_rb.rb_node;
372 rb_parent = NULL;
373 pprev = &mm->mmap;
374 retval = ksm_fork(mm, oldmm);
375 if (retval)
376 goto out;
377 retval = khugepaged_fork(mm, oldmm);
378 if (retval)
379 goto out;
380
381 prev = NULL;
382 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 struct file *file;
384
385 if (mpnt->vm_flags & VM_DONTCOPY) {
386 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 -vma_pages(mpnt));
388 continue;
389 }
390 charge = 0;
391 if (mpnt->vm_flags & VM_ACCOUNT) {
392 unsigned long len = vma_pages(mpnt);
393
394 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 goto fail_nomem;
396 charge = len;
397 }
398 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 if (!tmp)
400 goto fail_nomem;
401 *tmp = *mpnt;
402 INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 pol = mpol_dup(vma_policy(mpnt));
404 retval = PTR_ERR(pol);
405 if (IS_ERR(pol))
406 goto fail_nomem_policy;
407 vma_set_policy(tmp, pol);
408 tmp->vm_mm = mm;
409 if (anon_vma_fork(tmp, mpnt))
410 goto fail_nomem_anon_vma_fork;
411 tmp->vm_flags &= ~VM_LOCKED;
412 tmp->vm_next = tmp->vm_prev = NULL;
413 file = tmp->vm_file;
414 if (file) {
415 struct inode *inode = file_inode(file);
416 struct address_space *mapping = file->f_mapping;
417
418 get_file(file);
419 if (tmp->vm_flags & VM_DENYWRITE)
420 atomic_dec(&inode->i_writecount);
421 mutex_lock(&mapping->i_mmap_mutex);
422 if (tmp->vm_flags & VM_SHARED)
423 mapping->i_mmap_writable++;
424 flush_dcache_mmap_lock(mapping);
425 /* insert tmp into the share list, just after mpnt */
426 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427 vma_nonlinear_insert(tmp,
428 &mapping->i_mmap_nonlinear);
429 else
430 vma_interval_tree_insert_after(tmp, mpnt,
431 &mapping->i_mmap);
432 flush_dcache_mmap_unlock(mapping);
433 mutex_unlock(&mapping->i_mmap_mutex);
434 }
435
436 /*
437 * Clear hugetlb-related page reserves for children. This only
438 * affects MAP_PRIVATE mappings. Faults generated by the child
439 * are not guaranteed to succeed, even if read-only
440 */
441 if (is_vm_hugetlb_page(tmp))
442 reset_vma_resv_huge_pages(tmp);
443
444 /*
445 * Link in the new vma and copy the page table entries.
446 */
447 *pprev = tmp;
448 pprev = &tmp->vm_next;
449 tmp->vm_prev = prev;
450 prev = tmp;
451
452 __vma_link_rb(mm, tmp, rb_link, rb_parent);
453 rb_link = &tmp->vm_rb.rb_right;
454 rb_parent = &tmp->vm_rb;
455
456 mm->map_count++;
457 retval = copy_page_range(mm, oldmm, mpnt);
458
459 if (tmp->vm_ops && tmp->vm_ops->open)
460 tmp->vm_ops->open(tmp);
461
462 if (retval)
463 goto out;
464 }
465 /* a new mm has just been created */
466 arch_dup_mmap(oldmm, mm);
467 retval = 0;
468 out:
469 up_write(&mm->mmap_sem);
470 flush_tlb_mm(oldmm);
471 up_write(&oldmm->mmap_sem);
472 uprobe_end_dup_mmap();
473 return retval;
474 fail_nomem_anon_vma_fork:
475 mpol_put(pol);
476 fail_nomem_policy:
477 kmem_cache_free(vm_area_cachep, tmp);
478 fail_nomem:
479 retval = -ENOMEM;
480 vm_unacct_memory(charge);
481 goto out;
482 }
483
484 static inline int mm_alloc_pgd(struct mm_struct *mm)
485 {
486 mm->pgd = pgd_alloc(mm);
487 if (unlikely(!mm->pgd))
488 return -ENOMEM;
489 return 0;
490 }
491
492 static inline void mm_free_pgd(struct mm_struct *mm)
493 {
494 pgd_free(mm, mm->pgd);
495 }
496 #else
497 #define dup_mmap(mm, oldmm) (0)
498 #define mm_alloc_pgd(mm) (0)
499 #define mm_free_pgd(mm)
500 #endif /* CONFIG_MMU */
501
502 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
503
504 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
505 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
506
507 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
508
509 static int __init coredump_filter_setup(char *s)
510 {
511 default_dump_filter =
512 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
513 MMF_DUMP_FILTER_MASK;
514 return 1;
515 }
516
517 __setup("coredump_filter=", coredump_filter_setup);
518
519 #include <linux/init_task.h>
520
521 static void mm_init_aio(struct mm_struct *mm)
522 {
523 #ifdef CONFIG_AIO
524 spin_lock_init(&mm->ioctx_lock);
525 INIT_HLIST_HEAD(&mm->ioctx_list);
526 #endif
527 }
528
529 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
530 {
531 atomic_set(&mm->mm_users, 1);
532 atomic_set(&mm->mm_count, 1);
533 init_rwsem(&mm->mmap_sem);
534 INIT_LIST_HEAD(&mm->mmlist);
535 mm->flags = (current->mm) ?
536 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
537 mm->core_state = NULL;
538 mm->nr_ptes = 0;
539 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
540 spin_lock_init(&mm->page_table_lock);
541 mm_init_aio(mm);
542 mm_init_owner(mm, p);
543
544 if (likely(!mm_alloc_pgd(mm))) {
545 mm->def_flags = 0;
546 mmu_notifier_mm_init(mm);
547 return mm;
548 }
549
550 free_mm(mm);
551 return NULL;
552 }
553
554 static void check_mm(struct mm_struct *mm)
555 {
556 int i;
557
558 for (i = 0; i < NR_MM_COUNTERS; i++) {
559 long x = atomic_long_read(&mm->rss_stat.count[i]);
560
561 if (unlikely(x))
562 printk(KERN_ALERT "BUG: Bad rss-counter state "
563 "mm:%p idx:%d val:%ld\n", mm, i, x);
564 }
565
566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
567 VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
569 }
570
571 /*
572 * Allocate and initialize an mm_struct.
573 */
574 struct mm_struct *mm_alloc(void)
575 {
576 struct mm_struct *mm;
577
578 mm = allocate_mm();
579 if (!mm)
580 return NULL;
581
582 memset(mm, 0, sizeof(*mm));
583 mm_init_cpumask(mm);
584 return mm_init(mm, current);
585 }
586
587 /*
588 * Called when the last reference to the mm
589 * is dropped: either by a lazy thread or by
590 * mmput. Free the page directory and the mm.
591 */
592 void __mmdrop(struct mm_struct *mm)
593 {
594 BUG_ON(mm == &init_mm);
595 mm_free_pgd(mm);
596 destroy_context(mm);
597 mmu_notifier_mm_destroy(mm);
598 check_mm(mm);
599 free_mm(mm);
600 }
601 EXPORT_SYMBOL_GPL(__mmdrop);
602
603 /*
604 * Decrement the use count and release all resources for an mm.
605 */
606 void mmput(struct mm_struct *mm)
607 {
608 might_sleep();
609
610 if (atomic_dec_and_test(&mm->mm_users)) {
611 uprobe_clear_state(mm);
612 exit_aio(mm);
613 ksm_exit(mm);
614 khugepaged_exit(mm); /* must run before exit_mmap */
615 exit_mmap(mm);
616 set_mm_exe_file(mm, NULL);
617 if (!list_empty(&mm->mmlist)) {
618 spin_lock(&mmlist_lock);
619 list_del(&mm->mmlist);
620 spin_unlock(&mmlist_lock);
621 }
622 if (mm->binfmt)
623 module_put(mm->binfmt->module);
624 mmdrop(mm);
625 }
626 }
627 EXPORT_SYMBOL_GPL(mmput);
628
629 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
630 {
631 if (new_exe_file)
632 get_file(new_exe_file);
633 if (mm->exe_file)
634 fput(mm->exe_file);
635 mm->exe_file = new_exe_file;
636 }
637
638 struct file *get_mm_exe_file(struct mm_struct *mm)
639 {
640 struct file *exe_file;
641
642 /* We need mmap_sem to protect against races with removal of exe_file */
643 down_read(&mm->mmap_sem);
644 exe_file = mm->exe_file;
645 if (exe_file)
646 get_file(exe_file);
647 up_read(&mm->mmap_sem);
648 return exe_file;
649 }
650
651 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
652 {
653 /* It's safe to write the exe_file pointer without exe_file_lock because
654 * this is called during fork when the task is not yet in /proc */
655 newmm->exe_file = get_mm_exe_file(oldmm);
656 }
657
658 /**
659 * get_task_mm - acquire a reference to the task's mm
660 *
661 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
662 * this kernel workthread has transiently adopted a user mm with use_mm,
663 * to do its AIO) is not set and if so returns a reference to it, after
664 * bumping up the use count. User must release the mm via mmput()
665 * after use. Typically used by /proc and ptrace.
666 */
667 struct mm_struct *get_task_mm(struct task_struct *task)
668 {
669 struct mm_struct *mm;
670
671 task_lock(task);
672 mm = task->mm;
673 if (mm) {
674 if (task->flags & PF_KTHREAD)
675 mm = NULL;
676 else
677 atomic_inc(&mm->mm_users);
678 }
679 task_unlock(task);
680 return mm;
681 }
682 EXPORT_SYMBOL_GPL(get_task_mm);
683
684 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
685 {
686 struct mm_struct *mm;
687 int err;
688
689 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
690 if (err)
691 return ERR_PTR(err);
692
693 mm = get_task_mm(task);
694 if (mm && mm != current->mm &&
695 !ptrace_may_access(task, mode)) {
696 mmput(mm);
697 mm = ERR_PTR(-EACCES);
698 }
699 mutex_unlock(&task->signal->cred_guard_mutex);
700
701 return mm;
702 }
703
704 static void complete_vfork_done(struct task_struct *tsk)
705 {
706 struct completion *vfork;
707
708 task_lock(tsk);
709 vfork = tsk->vfork_done;
710 if (likely(vfork)) {
711 tsk->vfork_done = NULL;
712 complete(vfork);
713 }
714 task_unlock(tsk);
715 }
716
717 static int wait_for_vfork_done(struct task_struct *child,
718 struct completion *vfork)
719 {
720 int killed;
721
722 freezer_do_not_count();
723 killed = wait_for_completion_killable(vfork);
724 freezer_count();
725
726 if (killed) {
727 task_lock(child);
728 child->vfork_done = NULL;
729 task_unlock(child);
730 }
731
732 put_task_struct(child);
733 return killed;
734 }
735
736 /* Please note the differences between mmput and mm_release.
737 * mmput is called whenever we stop holding onto a mm_struct,
738 * error success whatever.
739 *
740 * mm_release is called after a mm_struct has been removed
741 * from the current process.
742 *
743 * This difference is important for error handling, when we
744 * only half set up a mm_struct for a new process and need to restore
745 * the old one. Because we mmput the new mm_struct before
746 * restoring the old one. . .
747 * Eric Biederman 10 January 1998
748 */
749 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
750 {
751 /* Get rid of any futexes when releasing the mm */
752 #ifdef CONFIG_FUTEX
753 if (unlikely(tsk->robust_list)) {
754 exit_robust_list(tsk);
755 tsk->robust_list = NULL;
756 }
757 #ifdef CONFIG_COMPAT
758 if (unlikely(tsk->compat_robust_list)) {
759 compat_exit_robust_list(tsk);
760 tsk->compat_robust_list = NULL;
761 }
762 #endif
763 if (unlikely(!list_empty(&tsk->pi_state_list)))
764 exit_pi_state_list(tsk);
765 #endif
766
767 uprobe_free_utask(tsk);
768
769 /* Get rid of any cached register state */
770 deactivate_mm(tsk, mm);
771
772 /*
773 * If we're exiting normally, clear a user-space tid field if
774 * requested. We leave this alone when dying by signal, to leave
775 * the value intact in a core dump, and to save the unnecessary
776 * trouble, say, a killed vfork parent shouldn't touch this mm.
777 * Userland only wants this done for a sys_exit.
778 */
779 if (tsk->clear_child_tid) {
780 if (!(tsk->flags & PF_SIGNALED) &&
781 atomic_read(&mm->mm_users) > 1) {
782 /*
783 * We don't check the error code - if userspace has
784 * not set up a proper pointer then tough luck.
785 */
786 put_user(0, tsk->clear_child_tid);
787 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
788 1, NULL, NULL, 0);
789 }
790 tsk->clear_child_tid = NULL;
791 }
792
793 /*
794 * All done, finally we can wake up parent and return this mm to him.
795 * Also kthread_stop() uses this completion for synchronization.
796 */
797 if (tsk->vfork_done)
798 complete_vfork_done(tsk);
799 }
800
801 /*
802 * Allocate a new mm structure and copy contents from the
803 * mm structure of the passed in task structure.
804 */
805 struct mm_struct *dup_mm(struct task_struct *tsk)
806 {
807 struct mm_struct *mm, *oldmm = current->mm;
808 int err;
809
810 if (!oldmm)
811 return NULL;
812
813 mm = allocate_mm();
814 if (!mm)
815 goto fail_nomem;
816
817 memcpy(mm, oldmm, sizeof(*mm));
818 mm_init_cpumask(mm);
819
820 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
821 mm->pmd_huge_pte = NULL;
822 #endif
823 #ifdef CONFIG_NUMA_BALANCING
824 mm->first_nid = NUMA_PTE_SCAN_INIT;
825 #endif
826 if (!mm_init(mm, tsk))
827 goto fail_nomem;
828
829 if (init_new_context(tsk, mm))
830 goto fail_nocontext;
831
832 dup_mm_exe_file(oldmm, mm);
833
834 err = dup_mmap(mm, oldmm);
835 if (err)
836 goto free_pt;
837
838 mm->hiwater_rss = get_mm_rss(mm);
839 mm->hiwater_vm = mm->total_vm;
840
841 if (mm->binfmt && !try_module_get(mm->binfmt->module))
842 goto free_pt;
843
844 return mm;
845
846 free_pt:
847 /* don't put binfmt in mmput, we haven't got module yet */
848 mm->binfmt = NULL;
849 mmput(mm);
850
851 fail_nomem:
852 return NULL;
853
854 fail_nocontext:
855 /*
856 * If init_new_context() failed, we cannot use mmput() to free the mm
857 * because it calls destroy_context()
858 */
859 mm_free_pgd(mm);
860 free_mm(mm);
861 return NULL;
862 }
863
864 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
865 {
866 struct mm_struct *mm, *oldmm;
867 int retval;
868
869 tsk->min_flt = tsk->maj_flt = 0;
870 tsk->nvcsw = tsk->nivcsw = 0;
871 #ifdef CONFIG_DETECT_HUNG_TASK
872 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
873 #endif
874
875 tsk->mm = NULL;
876 tsk->active_mm = NULL;
877
878 /*
879 * Are we cloning a kernel thread?
880 *
881 * We need to steal a active VM for that..
882 */
883 oldmm = current->mm;
884 if (!oldmm)
885 return 0;
886
887 if (clone_flags & CLONE_VM) {
888 atomic_inc(&oldmm->mm_users);
889 mm = oldmm;
890 goto good_mm;
891 }
892
893 retval = -ENOMEM;
894 mm = dup_mm(tsk);
895 if (!mm)
896 goto fail_nomem;
897
898 good_mm:
899 tsk->mm = mm;
900 tsk->active_mm = mm;
901 return 0;
902
903 fail_nomem:
904 return retval;
905 }
906
907 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
908 {
909 struct fs_struct *fs = current->fs;
910 if (clone_flags & CLONE_FS) {
911 /* tsk->fs is already what we want */
912 spin_lock(&fs->lock);
913 if (fs->in_exec) {
914 spin_unlock(&fs->lock);
915 return -EAGAIN;
916 }
917 fs->users++;
918 spin_unlock(&fs->lock);
919 return 0;
920 }
921 tsk->fs = copy_fs_struct(fs);
922 if (!tsk->fs)
923 return -ENOMEM;
924 return 0;
925 }
926
927 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
928 {
929 struct files_struct *oldf, *newf;
930 int error = 0;
931
932 /*
933 * A background process may not have any files ...
934 */
935 oldf = current->files;
936 if (!oldf)
937 goto out;
938
939 if (clone_flags & CLONE_FILES) {
940 atomic_inc(&oldf->count);
941 goto out;
942 }
943
944 newf = dup_fd(oldf, &error);
945 if (!newf)
946 goto out;
947
948 tsk->files = newf;
949 error = 0;
950 out:
951 return error;
952 }
953
954 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
955 {
956 #ifdef CONFIG_BLOCK
957 struct io_context *ioc = current->io_context;
958 struct io_context *new_ioc;
959
960 if (!ioc)
961 return 0;
962 /*
963 * Share io context with parent, if CLONE_IO is set
964 */
965 if (clone_flags & CLONE_IO) {
966 ioc_task_link(ioc);
967 tsk->io_context = ioc;
968 } else if (ioprio_valid(ioc->ioprio)) {
969 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
970 if (unlikely(!new_ioc))
971 return -ENOMEM;
972
973 new_ioc->ioprio = ioc->ioprio;
974 put_io_context(new_ioc);
975 }
976 #endif
977 return 0;
978 }
979
980 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
981 {
982 struct sighand_struct *sig;
983
984 if (clone_flags & CLONE_SIGHAND) {
985 atomic_inc(&current->sighand->count);
986 return 0;
987 }
988 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
989 rcu_assign_pointer(tsk->sighand, sig);
990 if (!sig)
991 return -ENOMEM;
992 atomic_set(&sig->count, 1);
993 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
994 return 0;
995 }
996
997 void __cleanup_sighand(struct sighand_struct *sighand)
998 {
999 if (atomic_dec_and_test(&sighand->count)) {
1000 signalfd_cleanup(sighand);
1001 kmem_cache_free(sighand_cachep, sighand);
1002 }
1003 }
1004
1005
1006 /*
1007 * Initialize POSIX timer handling for a thread group.
1008 */
1009 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1010 {
1011 unsigned long cpu_limit;
1012
1013 /* Thread group counters. */
1014 thread_group_cputime_init(sig);
1015
1016 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1017 if (cpu_limit != RLIM_INFINITY) {
1018 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1019 sig->cputimer.running = 1;
1020 }
1021
1022 /* The timer lists. */
1023 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1024 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1025 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1026 }
1027
1028 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1029 {
1030 struct signal_struct *sig;
1031
1032 if (clone_flags & CLONE_THREAD)
1033 return 0;
1034
1035 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1036 tsk->signal = sig;
1037 if (!sig)
1038 return -ENOMEM;
1039
1040 sig->nr_threads = 1;
1041 atomic_set(&sig->live, 1);
1042 atomic_set(&sig->sigcnt, 1);
1043 init_waitqueue_head(&sig->wait_chldexit);
1044 sig->curr_target = tsk;
1045 init_sigpending(&sig->shared_pending);
1046 INIT_LIST_HEAD(&sig->posix_timers);
1047
1048 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1049 sig->real_timer.function = it_real_fn;
1050
1051 task_lock(current->group_leader);
1052 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053 task_unlock(current->group_leader);
1054
1055 posix_cpu_timers_init_group(sig);
1056
1057 tty_audit_fork(sig);
1058 sched_autogroup_fork(sig);
1059
1060 #ifdef CONFIG_CGROUPS
1061 init_rwsem(&sig->group_rwsem);
1062 #endif
1063
1064 sig->oom_score_adj = current->signal->oom_score_adj;
1065 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1066
1067 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068 current->signal->is_child_subreaper;
1069
1070 mutex_init(&sig->cred_guard_mutex);
1071
1072 return 0;
1073 }
1074
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1076 {
1077 unsigned long new_flags = p->flags;
1078
1079 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080 new_flags |= PF_FORKNOEXEC;
1081 p->flags = new_flags;
1082 }
1083
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085 {
1086 current->clear_child_tid = tidptr;
1087
1088 return task_pid_vnr(current);
1089 }
1090
1091 static void rt_mutex_init_task(struct task_struct *p)
1092 {
1093 raw_spin_lock_init(&p->pi_lock);
1094 #ifdef CONFIG_RT_MUTEXES
1095 plist_head_init(&p->pi_waiters);
1096 p->pi_blocked_on = NULL;
1097 #endif
1098 }
1099
1100 #ifdef CONFIG_MM_OWNER
1101 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1102 {
1103 mm->owner = p;
1104 }
1105 #endif /* CONFIG_MM_OWNER */
1106
1107 /*
1108 * Initialize POSIX timer handling for a single task.
1109 */
1110 static void posix_cpu_timers_init(struct task_struct *tsk)
1111 {
1112 tsk->cputime_expires.prof_exp = 0;
1113 tsk->cputime_expires.virt_exp = 0;
1114 tsk->cputime_expires.sched_exp = 0;
1115 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1116 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1117 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1118 }
1119
1120 static inline void
1121 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1122 {
1123 task->pids[type].pid = pid;
1124 }
1125
1126 /*
1127 * This creates a new process as a copy of the old one,
1128 * but does not actually start it yet.
1129 *
1130 * It copies the registers, and all the appropriate
1131 * parts of the process environment (as per the clone
1132 * flags). The actual kick-off is left to the caller.
1133 */
1134 static struct task_struct *copy_process(unsigned long clone_flags,
1135 unsigned long stack_start,
1136 unsigned long stack_size,
1137 int __user *child_tidptr,
1138 struct pid *pid,
1139 int trace)
1140 {
1141 int retval;
1142 struct task_struct *p;
1143
1144 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1145 return ERR_PTR(-EINVAL);
1146
1147 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1148 return ERR_PTR(-EINVAL);
1149
1150 /*
1151 * Thread groups must share signals as well, and detached threads
1152 * can only be started up within the thread group.
1153 */
1154 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1155 return ERR_PTR(-EINVAL);
1156
1157 /*
1158 * Shared signal handlers imply shared VM. By way of the above,
1159 * thread groups also imply shared VM. Blocking this case allows
1160 * for various simplifications in other code.
1161 */
1162 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1163 return ERR_PTR(-EINVAL);
1164
1165 /*
1166 * Siblings of global init remain as zombies on exit since they are
1167 * not reaped by their parent (swapper). To solve this and to avoid
1168 * multi-rooted process trees, prevent global and container-inits
1169 * from creating siblings.
1170 */
1171 if ((clone_flags & CLONE_PARENT) &&
1172 current->signal->flags & SIGNAL_UNKILLABLE)
1173 return ERR_PTR(-EINVAL);
1174
1175 /*
1176 * If the new process will be in a different pid namespace don't
1177 * allow it to share a thread group or signal handlers with the
1178 * forking task.
1179 */
1180 if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1181 (task_active_pid_ns(current) !=
1182 current->nsproxy->pid_ns_for_children))
1183 return ERR_PTR(-EINVAL);
1184
1185 retval = security_task_create(clone_flags);
1186 if (retval)
1187 goto fork_out;
1188
1189 retval = -ENOMEM;
1190 p = dup_task_struct(current);
1191 if (!p)
1192 goto fork_out;
1193
1194 ftrace_graph_init_task(p);
1195 get_seccomp_filter(p);
1196
1197 rt_mutex_init_task(p);
1198
1199 #ifdef CONFIG_PROVE_LOCKING
1200 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1201 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1202 #endif
1203 retval = -EAGAIN;
1204 if (atomic_read(&p->real_cred->user->processes) >=
1205 task_rlimit(p, RLIMIT_NPROC)) {
1206 if (p->real_cred->user != INIT_USER &&
1207 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1208 goto bad_fork_free;
1209 }
1210 current->flags &= ~PF_NPROC_EXCEEDED;
1211
1212 retval = copy_creds(p, clone_flags);
1213 if (retval < 0)
1214 goto bad_fork_free;
1215
1216 /*
1217 * If multiple threads are within copy_process(), then this check
1218 * triggers too late. This doesn't hurt, the check is only there
1219 * to stop root fork bombs.
1220 */
1221 retval = -EAGAIN;
1222 if (nr_threads >= max_threads)
1223 goto bad_fork_cleanup_count;
1224
1225 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1226 goto bad_fork_cleanup_count;
1227
1228 p->did_exec = 0;
1229 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1230 copy_flags(clone_flags, p);
1231 INIT_LIST_HEAD(&p->children);
1232 INIT_LIST_HEAD(&p->sibling);
1233 rcu_copy_process(p);
1234 p->vfork_done = NULL;
1235 spin_lock_init(&p->alloc_lock);
1236
1237 init_sigpending(&p->pending);
1238
1239 p->utime = p->stime = p->gtime = 0;
1240 p->utimescaled = p->stimescaled = 0;
1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1242 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1243 #endif
1244 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1245 seqlock_init(&p->vtime_seqlock);
1246 p->vtime_snap = 0;
1247 p->vtime_snap_whence = VTIME_SLEEPING;
1248 #endif
1249
1250 #if defined(SPLIT_RSS_COUNTING)
1251 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1252 #endif
1253
1254 p->default_timer_slack_ns = current->timer_slack_ns;
1255
1256 task_io_accounting_init(&p->ioac);
1257 acct_clear_integrals(p);
1258
1259 posix_cpu_timers_init(p);
1260
1261 do_posix_clock_monotonic_gettime(&p->start_time);
1262 p->real_start_time = p->start_time;
1263 monotonic_to_bootbased(&p->real_start_time);
1264 p->io_context = NULL;
1265 p->audit_context = NULL;
1266 if (clone_flags & CLONE_THREAD)
1267 threadgroup_change_begin(current);
1268 cgroup_fork(p);
1269 #ifdef CONFIG_NUMA
1270 p->mempolicy = mpol_dup(p->mempolicy);
1271 if (IS_ERR(p->mempolicy)) {
1272 retval = PTR_ERR(p->mempolicy);
1273 p->mempolicy = NULL;
1274 goto bad_fork_cleanup_cgroup;
1275 }
1276 mpol_fix_fork_child_flag(p);
1277 #endif
1278 #ifdef CONFIG_CPUSETS
1279 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1280 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1281 seqcount_init(&p->mems_allowed_seq);
1282 #endif
1283 #ifdef CONFIG_TRACE_IRQFLAGS
1284 p->irq_events = 0;
1285 p->hardirqs_enabled = 0;
1286 p->hardirq_enable_ip = 0;
1287 p->hardirq_enable_event = 0;
1288 p->hardirq_disable_ip = _THIS_IP_;
1289 p->hardirq_disable_event = 0;
1290 p->softirqs_enabled = 1;
1291 p->softirq_enable_ip = _THIS_IP_;
1292 p->softirq_enable_event = 0;
1293 p->softirq_disable_ip = 0;
1294 p->softirq_disable_event = 0;
1295 p->hardirq_context = 0;
1296 p->softirq_context = 0;
1297 #endif
1298 #ifdef CONFIG_LOCKDEP
1299 p->lockdep_depth = 0; /* no locks held yet */
1300 p->curr_chain_key = 0;
1301 p->lockdep_recursion = 0;
1302 #endif
1303
1304 #ifdef CONFIG_DEBUG_MUTEXES
1305 p->blocked_on = NULL; /* not blocked yet */
1306 #endif
1307 #ifdef CONFIG_MEMCG
1308 p->memcg_batch.do_batch = 0;
1309 p->memcg_batch.memcg = NULL;
1310 #endif
1311 #ifdef CONFIG_BCACHE
1312 p->sequential_io = 0;
1313 p->sequential_io_avg = 0;
1314 #endif
1315
1316 /* Perform scheduler related setup. Assign this task to a CPU. */
1317 sched_fork(p);
1318
1319 retval = perf_event_init_task(p);
1320 if (retval)
1321 goto bad_fork_cleanup_policy;
1322 retval = audit_alloc(p);
1323 if (retval)
1324 goto bad_fork_cleanup_policy;
1325 /* copy all the process information */
1326 retval = copy_semundo(clone_flags, p);
1327 if (retval)
1328 goto bad_fork_cleanup_audit;
1329 retval = copy_files(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_semundo;
1332 retval = copy_fs(clone_flags, p);
1333 if (retval)
1334 goto bad_fork_cleanup_files;
1335 retval = copy_sighand(clone_flags, p);
1336 if (retval)
1337 goto bad_fork_cleanup_fs;
1338 retval = copy_signal(clone_flags, p);
1339 if (retval)
1340 goto bad_fork_cleanup_sighand;
1341 retval = copy_mm(clone_flags, p);
1342 if (retval)
1343 goto bad_fork_cleanup_signal;
1344 retval = copy_namespaces(clone_flags, p);
1345 if (retval)
1346 goto bad_fork_cleanup_mm;
1347 retval = copy_io(clone_flags, p);
1348 if (retval)
1349 goto bad_fork_cleanup_namespaces;
1350 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1351 if (retval)
1352 goto bad_fork_cleanup_io;
1353
1354 if (pid != &init_struct_pid) {
1355 retval = -ENOMEM;
1356 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1357 if (!pid)
1358 goto bad_fork_cleanup_io;
1359 }
1360
1361 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1362 /*
1363 * Clear TID on mm_release()?
1364 */
1365 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1366 #ifdef CONFIG_BLOCK
1367 p->plug = NULL;
1368 #endif
1369 #ifdef CONFIG_FUTEX
1370 p->robust_list = NULL;
1371 #ifdef CONFIG_COMPAT
1372 p->compat_robust_list = NULL;
1373 #endif
1374 INIT_LIST_HEAD(&p->pi_state_list);
1375 p->pi_state_cache = NULL;
1376 #endif
1377 uprobe_copy_process(p);
1378 /*
1379 * sigaltstack should be cleared when sharing the same VM
1380 */
1381 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1382 p->sas_ss_sp = p->sas_ss_size = 0;
1383
1384 /*
1385 * Syscall tracing and stepping should be turned off in the
1386 * child regardless of CLONE_PTRACE.
1387 */
1388 user_disable_single_step(p);
1389 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1390 #ifdef TIF_SYSCALL_EMU
1391 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1392 #endif
1393 clear_all_latency_tracing(p);
1394
1395 /* ok, now we should be set up.. */
1396 p->pid = pid_nr(pid);
1397 if (clone_flags & CLONE_THREAD) {
1398 p->exit_signal = -1;
1399 p->group_leader = current->group_leader;
1400 p->tgid = current->tgid;
1401 } else {
1402 if (clone_flags & CLONE_PARENT)
1403 p->exit_signal = current->group_leader->exit_signal;
1404 else
1405 p->exit_signal = (clone_flags & CSIGNAL);
1406 p->group_leader = p;
1407 p->tgid = p->pid;
1408 }
1409
1410 p->pdeath_signal = 0;
1411 p->exit_state = 0;
1412
1413 p->nr_dirtied = 0;
1414 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1415 p->dirty_paused_when = 0;
1416
1417 INIT_LIST_HEAD(&p->thread_group);
1418 p->task_works = NULL;
1419
1420 /*
1421 * Make it visible to the rest of the system, but dont wake it up yet.
1422 * Need tasklist lock for parent etc handling!
1423 */
1424 write_lock_irq(&tasklist_lock);
1425
1426 /* CLONE_PARENT re-uses the old parent */
1427 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1428 p->real_parent = current->real_parent;
1429 p->parent_exec_id = current->parent_exec_id;
1430 } else {
1431 p->real_parent = current;
1432 p->parent_exec_id = current->self_exec_id;
1433 }
1434
1435 spin_lock(&current->sighand->siglock);
1436
1437 /*
1438 * Process group and session signals need to be delivered to just the
1439 * parent before the fork or both the parent and the child after the
1440 * fork. Restart if a signal comes in before we add the new process to
1441 * it's process group.
1442 * A fatal signal pending means that current will exit, so the new
1443 * thread can't slip out of an OOM kill (or normal SIGKILL).
1444 */
1445 recalc_sigpending();
1446 if (signal_pending(current)) {
1447 spin_unlock(&current->sighand->siglock);
1448 write_unlock_irq(&tasklist_lock);
1449 retval = -ERESTARTNOINTR;
1450 goto bad_fork_free_pid;
1451 }
1452
1453 if (likely(p->pid)) {
1454 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1455
1456 init_task_pid(p, PIDTYPE_PID, pid);
1457 if (thread_group_leader(p)) {
1458 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1459 init_task_pid(p, PIDTYPE_SID, task_session(current));
1460
1461 if (is_child_reaper(pid)) {
1462 ns_of_pid(pid)->child_reaper = p;
1463 p->signal->flags |= SIGNAL_UNKILLABLE;
1464 }
1465
1466 p->signal->leader_pid = pid;
1467 p->signal->tty = tty_kref_get(current->signal->tty);
1468 list_add_tail(&p->sibling, &p->real_parent->children);
1469 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1470 attach_pid(p, PIDTYPE_PGID);
1471 attach_pid(p, PIDTYPE_SID);
1472 __this_cpu_inc(process_counts);
1473 } else {
1474 current->signal->nr_threads++;
1475 atomic_inc(&current->signal->live);
1476 atomic_inc(&current->signal->sigcnt);
1477 list_add_tail_rcu(&p->thread_group,
1478 &p->group_leader->thread_group);
1479 }
1480 attach_pid(p, PIDTYPE_PID);
1481 nr_threads++;
1482 }
1483
1484 total_forks++;
1485 spin_unlock(&current->sighand->siglock);
1486 write_unlock_irq(&tasklist_lock);
1487 proc_fork_connector(p);
1488 cgroup_post_fork(p);
1489 if (clone_flags & CLONE_THREAD)
1490 threadgroup_change_end(current);
1491 perf_event_fork(p);
1492
1493 trace_task_newtask(p, clone_flags);
1494
1495 return p;
1496
1497 bad_fork_free_pid:
1498 if (pid != &init_struct_pid)
1499 free_pid(pid);
1500 bad_fork_cleanup_io:
1501 if (p->io_context)
1502 exit_io_context(p);
1503 bad_fork_cleanup_namespaces:
1504 exit_task_namespaces(p);
1505 bad_fork_cleanup_mm:
1506 if (p->mm)
1507 mmput(p->mm);
1508 bad_fork_cleanup_signal:
1509 if (!(clone_flags & CLONE_THREAD))
1510 free_signal_struct(p->signal);
1511 bad_fork_cleanup_sighand:
1512 __cleanup_sighand(p->sighand);
1513 bad_fork_cleanup_fs:
1514 exit_fs(p); /* blocking */
1515 bad_fork_cleanup_files:
1516 exit_files(p); /* blocking */
1517 bad_fork_cleanup_semundo:
1518 exit_sem(p);
1519 bad_fork_cleanup_audit:
1520 audit_free(p);
1521 bad_fork_cleanup_policy:
1522 perf_event_free_task(p);
1523 #ifdef CONFIG_NUMA
1524 mpol_put(p->mempolicy);
1525 bad_fork_cleanup_cgroup:
1526 #endif
1527 if (clone_flags & CLONE_THREAD)
1528 threadgroup_change_end(current);
1529 cgroup_exit(p, 0);
1530 delayacct_tsk_free(p);
1531 module_put(task_thread_info(p)->exec_domain->module);
1532 bad_fork_cleanup_count:
1533 atomic_dec(&p->cred->user->processes);
1534 exit_creds(p);
1535 bad_fork_free:
1536 free_task(p);
1537 fork_out:
1538 return ERR_PTR(retval);
1539 }
1540
1541 static inline void init_idle_pids(struct pid_link *links)
1542 {
1543 enum pid_type type;
1544
1545 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1546 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1547 links[type].pid = &init_struct_pid;
1548 }
1549 }
1550
1551 struct task_struct *fork_idle(int cpu)
1552 {
1553 struct task_struct *task;
1554 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1555 if (!IS_ERR(task)) {
1556 init_idle_pids(task->pids);
1557 init_idle(task, cpu);
1558 }
1559
1560 return task;
1561 }
1562
1563 /*
1564 * Ok, this is the main fork-routine.
1565 *
1566 * It copies the process, and if successful kick-starts
1567 * it and waits for it to finish using the VM if required.
1568 */
1569 long do_fork(unsigned long clone_flags,
1570 unsigned long stack_start,
1571 unsigned long stack_size,
1572 int __user *parent_tidptr,
1573 int __user *child_tidptr)
1574 {
1575 struct task_struct *p;
1576 int trace = 0;
1577 long nr;
1578
1579 /*
1580 * Do some preliminary argument and permissions checking before we
1581 * actually start allocating stuff
1582 */
1583 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1584 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1585 return -EINVAL;
1586 }
1587
1588 /*
1589 * Determine whether and which event to report to ptracer. When
1590 * called from kernel_thread or CLONE_UNTRACED is explicitly
1591 * requested, no event is reported; otherwise, report if the event
1592 * for the type of forking is enabled.
1593 */
1594 if (!(clone_flags & CLONE_UNTRACED)) {
1595 if (clone_flags & CLONE_VFORK)
1596 trace = PTRACE_EVENT_VFORK;
1597 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1598 trace = PTRACE_EVENT_CLONE;
1599 else
1600 trace = PTRACE_EVENT_FORK;
1601
1602 if (likely(!ptrace_event_enabled(current, trace)))
1603 trace = 0;
1604 }
1605
1606 p = copy_process(clone_flags, stack_start, stack_size,
1607 child_tidptr, NULL, trace);
1608 /*
1609 * Do this prior waking up the new thread - the thread pointer
1610 * might get invalid after that point, if the thread exits quickly.
1611 */
1612 if (!IS_ERR(p)) {
1613 struct completion vfork;
1614
1615 trace_sched_process_fork(current, p);
1616
1617 nr = task_pid_vnr(p);
1618
1619 if (clone_flags & CLONE_PARENT_SETTID)
1620 put_user(nr, parent_tidptr);
1621
1622 if (clone_flags & CLONE_VFORK) {
1623 p->vfork_done = &vfork;
1624 init_completion(&vfork);
1625 get_task_struct(p);
1626 }
1627
1628 wake_up_new_task(p);
1629
1630 /* forking complete and child started to run, tell ptracer */
1631 if (unlikely(trace))
1632 ptrace_event(trace, nr);
1633
1634 if (clone_flags & CLONE_VFORK) {
1635 if (!wait_for_vfork_done(p, &vfork))
1636 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1637 }
1638 } else {
1639 nr = PTR_ERR(p);
1640 }
1641 return nr;
1642 }
1643
1644 /*
1645 * Create a kernel thread.
1646 */
1647 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1648 {
1649 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1650 (unsigned long)arg, NULL, NULL);
1651 }
1652
1653 #ifdef __ARCH_WANT_SYS_FORK
1654 SYSCALL_DEFINE0(fork)
1655 {
1656 #ifdef CONFIG_MMU
1657 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1658 #else
1659 /* can not support in nommu mode */
1660 return(-EINVAL);
1661 #endif
1662 }
1663 #endif
1664
1665 #ifdef __ARCH_WANT_SYS_VFORK
1666 SYSCALL_DEFINE0(vfork)
1667 {
1668 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1669 0, NULL, NULL);
1670 }
1671 #endif
1672
1673 #ifdef __ARCH_WANT_SYS_CLONE
1674 #ifdef CONFIG_CLONE_BACKWARDS
1675 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1676 int __user *, parent_tidptr,
1677 int, tls_val,
1678 int __user *, child_tidptr)
1679 #elif defined(CONFIG_CLONE_BACKWARDS2)
1680 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1681 int __user *, parent_tidptr,
1682 int __user *, child_tidptr,
1683 int, tls_val)
1684 #elif defined(CONFIG_CLONE_BACKWARDS3)
1685 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1686 int, stack_size,
1687 int __user *, parent_tidptr,
1688 int __user *, child_tidptr,
1689 int, tls_val)
1690 #else
1691 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1692 int __user *, parent_tidptr,
1693 int __user *, child_tidptr,
1694 int, tls_val)
1695 #endif
1696 {
1697 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1698 }
1699 #endif
1700
1701 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1702 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1703 #endif
1704
1705 static void sighand_ctor(void *data)
1706 {
1707 struct sighand_struct *sighand = data;
1708
1709 spin_lock_init(&sighand->siglock);
1710 init_waitqueue_head(&sighand->signalfd_wqh);
1711 }
1712
1713 void __init proc_caches_init(void)
1714 {
1715 sighand_cachep = kmem_cache_create("sighand_cache",
1716 sizeof(struct sighand_struct), 0,
1717 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1718 SLAB_NOTRACK, sighand_ctor);
1719 signal_cachep = kmem_cache_create("signal_cache",
1720 sizeof(struct signal_struct), 0,
1721 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1722 files_cachep = kmem_cache_create("files_cache",
1723 sizeof(struct files_struct), 0,
1724 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1725 fs_cachep = kmem_cache_create("fs_cache",
1726 sizeof(struct fs_struct), 0,
1727 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1728 /*
1729 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1730 * whole struct cpumask for the OFFSTACK case. We could change
1731 * this to *only* allocate as much of it as required by the
1732 * maximum number of CPU's we can ever have. The cpumask_allocation
1733 * is at the end of the structure, exactly for that reason.
1734 */
1735 mm_cachep = kmem_cache_create("mm_struct",
1736 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1737 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1738 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1739 mmap_init();
1740 nsproxy_cache_init();
1741 }
1742
1743 /*
1744 * Check constraints on flags passed to the unshare system call.
1745 */
1746 static int check_unshare_flags(unsigned long unshare_flags)
1747 {
1748 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1749 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1750 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1751 CLONE_NEWUSER|CLONE_NEWPID))
1752 return -EINVAL;
1753 /*
1754 * Not implemented, but pretend it works if there is nothing to
1755 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1756 * needs to unshare vm.
1757 */
1758 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1759 /* FIXME: get_task_mm() increments ->mm_users */
1760 if (atomic_read(&current->mm->mm_users) > 1)
1761 return -EINVAL;
1762 }
1763
1764 return 0;
1765 }
1766
1767 /*
1768 * Unshare the filesystem structure if it is being shared
1769 */
1770 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1771 {
1772 struct fs_struct *fs = current->fs;
1773
1774 if (!(unshare_flags & CLONE_FS) || !fs)
1775 return 0;
1776
1777 /* don't need lock here; in the worst case we'll do useless copy */
1778 if (fs->users == 1)
1779 return 0;
1780
1781 *new_fsp = copy_fs_struct(fs);
1782 if (!*new_fsp)
1783 return -ENOMEM;
1784
1785 return 0;
1786 }
1787
1788 /*
1789 * Unshare file descriptor table if it is being shared
1790 */
1791 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1792 {
1793 struct files_struct *fd = current->files;
1794 int error = 0;
1795
1796 if ((unshare_flags & CLONE_FILES) &&
1797 (fd && atomic_read(&fd->count) > 1)) {
1798 *new_fdp = dup_fd(fd, &error);
1799 if (!*new_fdp)
1800 return error;
1801 }
1802
1803 return 0;
1804 }
1805
1806 /*
1807 * unshare allows a process to 'unshare' part of the process
1808 * context which was originally shared using clone. copy_*
1809 * functions used by do_fork() cannot be used here directly
1810 * because they modify an inactive task_struct that is being
1811 * constructed. Here we are modifying the current, active,
1812 * task_struct.
1813 */
1814 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1815 {
1816 struct fs_struct *fs, *new_fs = NULL;
1817 struct files_struct *fd, *new_fd = NULL;
1818 struct cred *new_cred = NULL;
1819 struct nsproxy *new_nsproxy = NULL;
1820 int do_sysvsem = 0;
1821 int err;
1822
1823 /*
1824 * If unsharing a user namespace must also unshare the thread.
1825 */
1826 if (unshare_flags & CLONE_NEWUSER)
1827 unshare_flags |= CLONE_THREAD | CLONE_FS;
1828 /*
1829 * If unsharing a thread from a thread group, must also unshare vm.
1830 */
1831 if (unshare_flags & CLONE_THREAD)
1832 unshare_flags |= CLONE_VM;
1833 /*
1834 * If unsharing vm, must also unshare signal handlers.
1835 */
1836 if (unshare_flags & CLONE_VM)
1837 unshare_flags |= CLONE_SIGHAND;
1838 /*
1839 * If unsharing namespace, must also unshare filesystem information.
1840 */
1841 if (unshare_flags & CLONE_NEWNS)
1842 unshare_flags |= CLONE_FS;
1843
1844 err = check_unshare_flags(unshare_flags);
1845 if (err)
1846 goto bad_unshare_out;
1847 /*
1848 * CLONE_NEWIPC must also detach from the undolist: after switching
1849 * to a new ipc namespace, the semaphore arrays from the old
1850 * namespace are unreachable.
1851 */
1852 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1853 do_sysvsem = 1;
1854 err = unshare_fs(unshare_flags, &new_fs);
1855 if (err)
1856 goto bad_unshare_out;
1857 err = unshare_fd(unshare_flags, &new_fd);
1858 if (err)
1859 goto bad_unshare_cleanup_fs;
1860 err = unshare_userns(unshare_flags, &new_cred);
1861 if (err)
1862 goto bad_unshare_cleanup_fd;
1863 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1864 new_cred, new_fs);
1865 if (err)
1866 goto bad_unshare_cleanup_cred;
1867
1868 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1869 if (do_sysvsem) {
1870 /*
1871 * CLONE_SYSVSEM is equivalent to sys_exit().
1872 */
1873 exit_sem(current);
1874 }
1875
1876 if (new_nsproxy)
1877 switch_task_namespaces(current, new_nsproxy);
1878
1879 task_lock(current);
1880
1881 if (new_fs) {
1882 fs = current->fs;
1883 spin_lock(&fs->lock);
1884 current->fs = new_fs;
1885 if (--fs->users)
1886 new_fs = NULL;
1887 else
1888 new_fs = fs;
1889 spin_unlock(&fs->lock);
1890 }
1891
1892 if (new_fd) {
1893 fd = current->files;
1894 current->files = new_fd;
1895 new_fd = fd;
1896 }
1897
1898 task_unlock(current);
1899
1900 if (new_cred) {
1901 /* Install the new user namespace */
1902 commit_creds(new_cred);
1903 new_cred = NULL;
1904 }
1905 }
1906
1907 bad_unshare_cleanup_cred:
1908 if (new_cred)
1909 put_cred(new_cred);
1910 bad_unshare_cleanup_fd:
1911 if (new_fd)
1912 put_files_struct(new_fd);
1913
1914 bad_unshare_cleanup_fs:
1915 if (new_fs)
1916 free_fs_struct(new_fs);
1917
1918 bad_unshare_out:
1919 return err;
1920 }
1921
1922 /*
1923 * Helper to unshare the files of the current task.
1924 * We don't want to expose copy_files internals to
1925 * the exec layer of the kernel.
1926 */
1927
1928 int unshare_files(struct files_struct **displaced)
1929 {
1930 struct task_struct *task = current;
1931 struct files_struct *copy = NULL;
1932 int error;
1933
1934 error = unshare_fd(CLONE_FILES, &copy);
1935 if (error || !copy) {
1936 *displaced = NULL;
1937 return error;
1938 }
1939 *displaced = task->files;
1940 task_lock(task);
1941 task->files = copy;
1942 task_unlock(task);
1943 return 0;
1944 }