]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/fork.c
Merge tag 'printk-for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/printk...
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105
106 #include <trace/events/sched.h>
107
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 static int max_threads; /* tunable limit on nr_threads */
128
129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
130
131 static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
141
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145 return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149
150 int nr_processes(void)
151 {
152 int cpu;
153 int total = 0;
154
155 for_each_possible_cpu(cpu)
156 total += per_cpu(process_counts, cpu);
157
158 return total;
159 }
160
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180
181 /*
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
184 */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186
187 #ifdef CONFIG_VMAP_STACK
188 /*
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
191 */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 int i;
199
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
202
203 if (!vm_stack)
204 continue;
205
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
208 }
209
210 return 0;
211 }
212 #endif
213
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 void *stack;
218 int i;
219
220 for (i = 0; i < NR_CACHED_STACKS; i++) {
221 struct vm_struct *s;
222
223 s = this_cpu_xchg(cached_stacks[i], NULL);
224
225 if (!s)
226 continue;
227
228 /* Clear the KASAN shadow of the stack. */
229 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
233
234 tsk->stack_vm_area = s;
235 tsk->stack = s->addr;
236 return s->addr;
237 }
238
239 /*
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
243 */
244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 VMALLOC_START, VMALLOC_END,
246 THREADINFO_GFP & ~__GFP_ACCOUNT,
247 PAGE_KERNEL,
248 0, node, __builtin_return_address(0));
249
250 /*
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
254 */
255 if (stack) {
256 tsk->stack_vm_area = find_vm_area(stack);
257 tsk->stack = stack;
258 }
259 return stack;
260 #else
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 THREAD_SIZE_ORDER);
263
264 if (likely(page)) {
265 tsk->stack = kasan_reset_tag(page_address(page));
266 return tsk->stack;
267 }
268 return NULL;
269 #endif
270 }
271
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 struct vm_struct *vm = task_stack_vm_area(tsk);
276
277 if (vm) {
278 int i;
279
280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 memcg_kmem_uncharge_page(vm->pages[i], 0);
282
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 if (this_cpu_cmpxchg(cached_stacks[i],
285 NULL, tsk->stack_vm_area) != NULL)
286 continue;
287
288 return;
289 }
290
291 vfree_atomic(tsk->stack);
292 return;
293 }
294 #endif
295
296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 int node)
303 {
304 unsigned long *stack;
305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 stack = kasan_reset_tag(stack);
307 tsk->stack = stack;
308 return stack;
309 }
310
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
316 void thread_stack_cache_init(void)
317 {
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352 }
353
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 /*
362 * orig->shared.rb may be modified concurrently, but the clone
363 * will be reinitialized.
364 */
365 *new = data_race(*orig);
366 INIT_LIST_HEAD(&new->anon_vma_chain);
367 new->vm_next = new->vm_prev = NULL;
368 }
369 return new;
370 }
371
372 void vm_area_free(struct vm_area_struct *vma)
373 {
374 kmem_cache_free(vm_area_cachep, vma);
375 }
376
377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379 void *stack = task_stack_page(tsk);
380 struct vm_struct *vm = task_stack_vm_area(tsk);
381
382
383 /* All stack pages are in the same node. */
384 if (vm)
385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
387 else
388 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
390 }
391
392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_VMAP_STACK
395 struct vm_struct *vm = task_stack_vm_area(tsk);
396 int ret;
397
398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399
400 if (vm) {
401 int i;
402
403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404
405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406 /*
407 * If memcg_kmem_charge_page() fails, page's
408 * memory cgroup pointer is NULL, and
409 * memcg_kmem_uncharge_page() in free_thread_stack()
410 * will ignore this page.
411 */
412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
413 0);
414 if (ret)
415 return ret;
416 }
417 }
418 #endif
419 return 0;
420 }
421
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 if (WARN_ON(tsk->state != TASK_DEAD))
425 return; /* Better to leak the stack than to free prematurely */
426
427 account_kernel_stack(tsk, -1);
428 free_thread_stack(tsk);
429 tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 tsk->stack_vm_area = NULL;
432 #endif
433 }
434
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 if (refcount_dec_and_test(&tsk->stack_refcount))
439 release_task_stack(tsk);
440 }
441 #endif
442
443 void free_task(struct task_struct *tsk)
444 {
445 scs_release(tsk);
446
447 #ifndef CONFIG_THREAD_INFO_IN_TASK
448 /*
449 * The task is finally done with both the stack and thread_info,
450 * so free both.
451 */
452 release_task_stack(tsk);
453 #else
454 /*
455 * If the task had a separate stack allocation, it should be gone
456 * by now.
457 */
458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
459 #endif
460 rt_mutex_debug_task_free(tsk);
461 ftrace_graph_exit_task(tsk);
462 arch_release_task_struct(tsk);
463 if (tsk->flags & PF_KTHREAD)
464 free_kthread_struct(tsk);
465 free_task_struct(tsk);
466 }
467 EXPORT_SYMBOL(free_task);
468
469 #ifdef CONFIG_MMU
470 static __latent_entropy int dup_mmap(struct mm_struct *mm,
471 struct mm_struct *oldmm)
472 {
473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
474 struct rb_node **rb_link, *rb_parent;
475 int retval;
476 unsigned long charge;
477 LIST_HEAD(uf);
478
479 uprobe_start_dup_mmap();
480 if (mmap_write_lock_killable(oldmm)) {
481 retval = -EINTR;
482 goto fail_uprobe_end;
483 }
484 flush_cache_dup_mm(oldmm);
485 uprobe_dup_mmap(oldmm, mm);
486 /*
487 * Not linked in yet - no deadlock potential:
488 */
489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
490
491 /* No ordering required: file already has been exposed. */
492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
493
494 mm->total_vm = oldmm->total_vm;
495 mm->data_vm = oldmm->data_vm;
496 mm->exec_vm = oldmm->exec_vm;
497 mm->stack_vm = oldmm->stack_vm;
498
499 rb_link = &mm->mm_rb.rb_node;
500 rb_parent = NULL;
501 pprev = &mm->mmap;
502 retval = ksm_fork(mm, oldmm);
503 if (retval)
504 goto out;
505 retval = khugepaged_fork(mm, oldmm);
506 if (retval)
507 goto out;
508
509 prev = NULL;
510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
511 struct file *file;
512
513 if (mpnt->vm_flags & VM_DONTCOPY) {
514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
515 continue;
516 }
517 charge = 0;
518 /*
519 * Don't duplicate many vmas if we've been oom-killed (for
520 * example)
521 */
522 if (fatal_signal_pending(current)) {
523 retval = -EINTR;
524 goto out;
525 }
526 if (mpnt->vm_flags & VM_ACCOUNT) {
527 unsigned long len = vma_pages(mpnt);
528
529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
530 goto fail_nomem;
531 charge = len;
532 }
533 tmp = vm_area_dup(mpnt);
534 if (!tmp)
535 goto fail_nomem;
536 retval = vma_dup_policy(mpnt, tmp);
537 if (retval)
538 goto fail_nomem_policy;
539 tmp->vm_mm = mm;
540 retval = dup_userfaultfd(tmp, &uf);
541 if (retval)
542 goto fail_nomem_anon_vma_fork;
543 if (tmp->vm_flags & VM_WIPEONFORK) {
544 /*
545 * VM_WIPEONFORK gets a clean slate in the child.
546 * Don't prepare anon_vma until fault since we don't
547 * copy page for current vma.
548 */
549 tmp->anon_vma = NULL;
550 } else if (anon_vma_fork(tmp, mpnt))
551 goto fail_nomem_anon_vma_fork;
552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
553 file = tmp->vm_file;
554 if (file) {
555 struct inode *inode = file_inode(file);
556 struct address_space *mapping = file->f_mapping;
557
558 get_file(file);
559 if (tmp->vm_flags & VM_DENYWRITE)
560 put_write_access(inode);
561 i_mmap_lock_write(mapping);
562 if (tmp->vm_flags & VM_SHARED)
563 mapping_allow_writable(mapping);
564 flush_dcache_mmap_lock(mapping);
565 /* insert tmp into the share list, just after mpnt */
566 vma_interval_tree_insert_after(tmp, mpnt,
567 &mapping->i_mmap);
568 flush_dcache_mmap_unlock(mapping);
569 i_mmap_unlock_write(mapping);
570 }
571
572 /*
573 * Clear hugetlb-related page reserves for children. This only
574 * affects MAP_PRIVATE mappings. Faults generated by the child
575 * are not guaranteed to succeed, even if read-only
576 */
577 if (is_vm_hugetlb_page(tmp))
578 reset_vma_resv_huge_pages(tmp);
579
580 /*
581 * Link in the new vma and copy the page table entries.
582 */
583 *pprev = tmp;
584 pprev = &tmp->vm_next;
585 tmp->vm_prev = prev;
586 prev = tmp;
587
588 __vma_link_rb(mm, tmp, rb_link, rb_parent);
589 rb_link = &tmp->vm_rb.rb_right;
590 rb_parent = &tmp->vm_rb;
591
592 mm->map_count++;
593 if (!(tmp->vm_flags & VM_WIPEONFORK))
594 retval = copy_page_range(tmp, mpnt);
595
596 if (tmp->vm_ops && tmp->vm_ops->open)
597 tmp->vm_ops->open(tmp);
598
599 if (retval)
600 goto out;
601 }
602 /* a new mm has just been created */
603 retval = arch_dup_mmap(oldmm, mm);
604 out:
605 mmap_write_unlock(mm);
606 flush_tlb_mm(oldmm);
607 mmap_write_unlock(oldmm);
608 dup_userfaultfd_complete(&uf);
609 fail_uprobe_end:
610 uprobe_end_dup_mmap();
611 return retval;
612 fail_nomem_anon_vma_fork:
613 mpol_put(vma_policy(tmp));
614 fail_nomem_policy:
615 vm_area_free(tmp);
616 fail_nomem:
617 retval = -ENOMEM;
618 vm_unacct_memory(charge);
619 goto out;
620 }
621
622 static inline int mm_alloc_pgd(struct mm_struct *mm)
623 {
624 mm->pgd = pgd_alloc(mm);
625 if (unlikely(!mm->pgd))
626 return -ENOMEM;
627 return 0;
628 }
629
630 static inline void mm_free_pgd(struct mm_struct *mm)
631 {
632 pgd_free(mm, mm->pgd);
633 }
634 #else
635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
636 {
637 mmap_write_lock(oldmm);
638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
639 mmap_write_unlock(oldmm);
640 return 0;
641 }
642 #define mm_alloc_pgd(mm) (0)
643 #define mm_free_pgd(mm)
644 #endif /* CONFIG_MMU */
645
646 static void check_mm(struct mm_struct *mm)
647 {
648 int i;
649
650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
651 "Please make sure 'struct resident_page_types[]' is updated as well");
652
653 for (i = 0; i < NR_MM_COUNTERS; i++) {
654 long x = atomic_long_read(&mm->rss_stat.count[i]);
655
656 if (unlikely(x))
657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
658 mm, resident_page_types[i], x);
659 }
660
661 if (mm_pgtables_bytes(mm))
662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
663 mm_pgtables_bytes(mm));
664
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667 #endif
668 }
669
670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
672
673 /*
674 * Called when the last reference to the mm
675 * is dropped: either by a lazy thread or by
676 * mmput. Free the page directory and the mm.
677 */
678 void __mmdrop(struct mm_struct *mm)
679 {
680 BUG_ON(mm == &init_mm);
681 WARN_ON_ONCE(mm == current->mm);
682 WARN_ON_ONCE(mm == current->active_mm);
683 mm_free_pgd(mm);
684 destroy_context(mm);
685 mmu_notifier_subscriptions_destroy(mm);
686 check_mm(mm);
687 put_user_ns(mm->user_ns);
688 free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691
692 static void mmdrop_async_fn(struct work_struct *work)
693 {
694 struct mm_struct *mm;
695
696 mm = container_of(work, struct mm_struct, async_put_work);
697 __mmdrop(mm);
698 }
699
700 static void mmdrop_async(struct mm_struct *mm)
701 {
702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
704 schedule_work(&mm->async_put_work);
705 }
706 }
707
708 static inline void free_signal_struct(struct signal_struct *sig)
709 {
710 taskstats_tgid_free(sig);
711 sched_autogroup_exit(sig);
712 /*
713 * __mmdrop is not safe to call from softirq context on x86 due to
714 * pgd_dtor so postpone it to the async context
715 */
716 if (sig->oom_mm)
717 mmdrop_async(sig->oom_mm);
718 kmem_cache_free(signal_cachep, sig);
719 }
720
721 static inline void put_signal_struct(struct signal_struct *sig)
722 {
723 if (refcount_dec_and_test(&sig->sigcnt))
724 free_signal_struct(sig);
725 }
726
727 void __put_task_struct(struct task_struct *tsk)
728 {
729 WARN_ON(!tsk->exit_state);
730 WARN_ON(refcount_read(&tsk->usage));
731 WARN_ON(tsk == current);
732
733 io_uring_free(tsk);
734 cgroup_free(tsk);
735 task_numa_free(tsk, true);
736 security_task_free(tsk);
737 exit_creds(tsk);
738 delayacct_tsk_free(tsk);
739 put_signal_struct(tsk->signal);
740
741 if (!profile_handoff_task(tsk))
742 free_task(tsk);
743 }
744 EXPORT_SYMBOL_GPL(__put_task_struct);
745
746 void __init __weak arch_task_cache_init(void) { }
747
748 /*
749 * set_max_threads
750 */
751 static void set_max_threads(unsigned int max_threads_suggested)
752 {
753 u64 threads;
754 unsigned long nr_pages = totalram_pages();
755
756 /*
757 * The number of threads shall be limited such that the thread
758 * structures may only consume a small part of the available memory.
759 */
760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
761 threads = MAX_THREADS;
762 else
763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
764 (u64) THREAD_SIZE * 8UL);
765
766 if (threads > max_threads_suggested)
767 threads = max_threads_suggested;
768
769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
770 }
771
772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
773 /* Initialized by the architecture: */
774 int arch_task_struct_size __read_mostly;
775 #endif
776
777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
779 {
780 /* Fetch thread_struct whitelist for the architecture. */
781 arch_thread_struct_whitelist(offset, size);
782
783 /*
784 * Handle zero-sized whitelist or empty thread_struct, otherwise
785 * adjust offset to position of thread_struct in task_struct.
786 */
787 if (unlikely(*size == 0))
788 *offset = 0;
789 else
790 *offset += offsetof(struct task_struct, thread);
791 }
792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
793
794 void __init fork_init(void)
795 {
796 int i;
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
798 #ifndef ARCH_MIN_TASKALIGN
799 #define ARCH_MIN_TASKALIGN 0
800 #endif
801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
802 unsigned long useroffset, usersize;
803
804 /* create a slab on which task_structs can be allocated */
805 task_struct_whitelist(&useroffset, &usersize);
806 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
807 arch_task_struct_size, align,
808 SLAB_PANIC|SLAB_ACCOUNT,
809 useroffset, usersize, NULL);
810 #endif
811
812 /* do the arch specific task caches init */
813 arch_task_cache_init();
814
815 set_max_threads(MAX_THREADS);
816
817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
819 init_task.signal->rlim[RLIMIT_SIGPENDING] =
820 init_task.signal->rlim[RLIMIT_NPROC];
821
822 for (i = 0; i < UCOUNT_COUNTS; i++) {
823 init_user_ns.ucount_max[i] = max_threads/2;
824 }
825
826 #ifdef CONFIG_VMAP_STACK
827 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
828 NULL, free_vm_stack_cache);
829 #endif
830
831 scs_init();
832
833 lockdep_init_task(&init_task);
834 uprobes_init();
835 }
836
837 int __weak arch_dup_task_struct(struct task_struct *dst,
838 struct task_struct *src)
839 {
840 *dst = *src;
841 return 0;
842 }
843
844 void set_task_stack_end_magic(struct task_struct *tsk)
845 {
846 unsigned long *stackend;
847
848 stackend = end_of_stack(tsk);
849 *stackend = STACK_END_MAGIC; /* for overflow detection */
850 }
851
852 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
853 {
854 struct task_struct *tsk;
855 unsigned long *stack;
856 struct vm_struct *stack_vm_area __maybe_unused;
857 int err;
858
859 if (node == NUMA_NO_NODE)
860 node = tsk_fork_get_node(orig);
861 tsk = alloc_task_struct_node(node);
862 if (!tsk)
863 return NULL;
864
865 stack = alloc_thread_stack_node(tsk, node);
866 if (!stack)
867 goto free_tsk;
868
869 if (memcg_charge_kernel_stack(tsk))
870 goto free_stack;
871
872 stack_vm_area = task_stack_vm_area(tsk);
873
874 err = arch_dup_task_struct(tsk, orig);
875
876 /*
877 * arch_dup_task_struct() clobbers the stack-related fields. Make
878 * sure they're properly initialized before using any stack-related
879 * functions again.
880 */
881 tsk->stack = stack;
882 #ifdef CONFIG_VMAP_STACK
883 tsk->stack_vm_area = stack_vm_area;
884 #endif
885 #ifdef CONFIG_THREAD_INFO_IN_TASK
886 refcount_set(&tsk->stack_refcount, 1);
887 #endif
888
889 if (err)
890 goto free_stack;
891
892 err = scs_prepare(tsk, node);
893 if (err)
894 goto free_stack;
895
896 #ifdef CONFIG_SECCOMP
897 /*
898 * We must handle setting up seccomp filters once we're under
899 * the sighand lock in case orig has changed between now and
900 * then. Until then, filter must be NULL to avoid messing up
901 * the usage counts on the error path calling free_task.
902 */
903 tsk->seccomp.filter = NULL;
904 #endif
905
906 setup_thread_stack(tsk, orig);
907 clear_user_return_notifier(tsk);
908 clear_tsk_need_resched(tsk);
909 set_task_stack_end_magic(tsk);
910 clear_syscall_work_syscall_user_dispatch(tsk);
911
912 #ifdef CONFIG_STACKPROTECTOR
913 tsk->stack_canary = get_random_canary();
914 #endif
915 if (orig->cpus_ptr == &orig->cpus_mask)
916 tsk->cpus_ptr = &tsk->cpus_mask;
917
918 /*
919 * One for the user space visible state that goes away when reaped.
920 * One for the scheduler.
921 */
922 refcount_set(&tsk->rcu_users, 2);
923 /* One for the rcu users */
924 refcount_set(&tsk->usage, 1);
925 #ifdef CONFIG_BLK_DEV_IO_TRACE
926 tsk->btrace_seq = 0;
927 #endif
928 tsk->splice_pipe = NULL;
929 tsk->task_frag.page = NULL;
930 tsk->wake_q.next = NULL;
931
932 account_kernel_stack(tsk, 1);
933
934 kcov_task_init(tsk);
935 kmap_local_fork(tsk);
936
937 #ifdef CONFIG_FAULT_INJECTION
938 tsk->fail_nth = 0;
939 #endif
940
941 #ifdef CONFIG_BLK_CGROUP
942 tsk->throttle_queue = NULL;
943 tsk->use_memdelay = 0;
944 #endif
945
946 #ifdef CONFIG_MEMCG
947 tsk->active_memcg = NULL;
948 #endif
949 return tsk;
950
951 free_stack:
952 free_thread_stack(tsk);
953 free_tsk:
954 free_task_struct(tsk);
955 return NULL;
956 }
957
958 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
959
960 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
961
962 static int __init coredump_filter_setup(char *s)
963 {
964 default_dump_filter =
965 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
966 MMF_DUMP_FILTER_MASK;
967 return 1;
968 }
969
970 __setup("coredump_filter=", coredump_filter_setup);
971
972 #include <linux/init_task.h>
973
974 static void mm_init_aio(struct mm_struct *mm)
975 {
976 #ifdef CONFIG_AIO
977 spin_lock_init(&mm->ioctx_lock);
978 mm->ioctx_table = NULL;
979 #endif
980 }
981
982 static __always_inline void mm_clear_owner(struct mm_struct *mm,
983 struct task_struct *p)
984 {
985 #ifdef CONFIG_MEMCG
986 if (mm->owner == p)
987 WRITE_ONCE(mm->owner, NULL);
988 #endif
989 }
990
991 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
992 {
993 #ifdef CONFIG_MEMCG
994 mm->owner = p;
995 #endif
996 }
997
998 static void mm_init_uprobes_state(struct mm_struct *mm)
999 {
1000 #ifdef CONFIG_UPROBES
1001 mm->uprobes_state.xol_area = NULL;
1002 #endif
1003 }
1004
1005 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1006 struct user_namespace *user_ns)
1007 {
1008 mm->mmap = NULL;
1009 mm->mm_rb = RB_ROOT;
1010 mm->vmacache_seqnum = 0;
1011 atomic_set(&mm->mm_users, 1);
1012 atomic_set(&mm->mm_count, 1);
1013 seqcount_init(&mm->write_protect_seq);
1014 mmap_init_lock(mm);
1015 INIT_LIST_HEAD(&mm->mmlist);
1016 mm->core_state = NULL;
1017 mm_pgtables_bytes_init(mm);
1018 mm->map_count = 0;
1019 mm->locked_vm = 0;
1020 atomic_set(&mm->has_pinned, 0);
1021 atomic64_set(&mm->pinned_vm, 0);
1022 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1023 spin_lock_init(&mm->page_table_lock);
1024 spin_lock_init(&mm->arg_lock);
1025 mm_init_cpumask(mm);
1026 mm_init_aio(mm);
1027 mm_init_owner(mm, p);
1028 RCU_INIT_POINTER(mm->exe_file, NULL);
1029 mmu_notifier_subscriptions_init(mm);
1030 init_tlb_flush_pending(mm);
1031 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1032 mm->pmd_huge_pte = NULL;
1033 #endif
1034 mm_init_uprobes_state(mm);
1035
1036 if (current->mm) {
1037 mm->flags = current->mm->flags & MMF_INIT_MASK;
1038 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1039 } else {
1040 mm->flags = default_dump_filter;
1041 mm->def_flags = 0;
1042 }
1043
1044 if (mm_alloc_pgd(mm))
1045 goto fail_nopgd;
1046
1047 if (init_new_context(p, mm))
1048 goto fail_nocontext;
1049
1050 mm->user_ns = get_user_ns(user_ns);
1051 return mm;
1052
1053 fail_nocontext:
1054 mm_free_pgd(mm);
1055 fail_nopgd:
1056 free_mm(mm);
1057 return NULL;
1058 }
1059
1060 /*
1061 * Allocate and initialize an mm_struct.
1062 */
1063 struct mm_struct *mm_alloc(void)
1064 {
1065 struct mm_struct *mm;
1066
1067 mm = allocate_mm();
1068 if (!mm)
1069 return NULL;
1070
1071 memset(mm, 0, sizeof(*mm));
1072 return mm_init(mm, current, current_user_ns());
1073 }
1074
1075 static inline void __mmput(struct mm_struct *mm)
1076 {
1077 VM_BUG_ON(atomic_read(&mm->mm_users));
1078
1079 uprobe_clear_state(mm);
1080 exit_aio(mm);
1081 ksm_exit(mm);
1082 khugepaged_exit(mm); /* must run before exit_mmap */
1083 exit_mmap(mm);
1084 mm_put_huge_zero_page(mm);
1085 set_mm_exe_file(mm, NULL);
1086 if (!list_empty(&mm->mmlist)) {
1087 spin_lock(&mmlist_lock);
1088 list_del(&mm->mmlist);
1089 spin_unlock(&mmlist_lock);
1090 }
1091 if (mm->binfmt)
1092 module_put(mm->binfmt->module);
1093 mmdrop(mm);
1094 }
1095
1096 /*
1097 * Decrement the use count and release all resources for an mm.
1098 */
1099 void mmput(struct mm_struct *mm)
1100 {
1101 might_sleep();
1102
1103 if (atomic_dec_and_test(&mm->mm_users))
1104 __mmput(mm);
1105 }
1106 EXPORT_SYMBOL_GPL(mmput);
1107
1108 #ifdef CONFIG_MMU
1109 static void mmput_async_fn(struct work_struct *work)
1110 {
1111 struct mm_struct *mm = container_of(work, struct mm_struct,
1112 async_put_work);
1113
1114 __mmput(mm);
1115 }
1116
1117 void mmput_async(struct mm_struct *mm)
1118 {
1119 if (atomic_dec_and_test(&mm->mm_users)) {
1120 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1121 schedule_work(&mm->async_put_work);
1122 }
1123 }
1124 #endif
1125
1126 /**
1127 * set_mm_exe_file - change a reference to the mm's executable file
1128 *
1129 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1130 *
1131 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1132 * invocations: in mmput() nobody alive left, in execve task is single
1133 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1134 * mm->exe_file, but does so without using set_mm_exe_file() in order
1135 * to do avoid the need for any locks.
1136 */
1137 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1138 {
1139 struct file *old_exe_file;
1140
1141 /*
1142 * It is safe to dereference the exe_file without RCU as
1143 * this function is only called if nobody else can access
1144 * this mm -- see comment above for justification.
1145 */
1146 old_exe_file = rcu_dereference_raw(mm->exe_file);
1147
1148 if (new_exe_file)
1149 get_file(new_exe_file);
1150 rcu_assign_pointer(mm->exe_file, new_exe_file);
1151 if (old_exe_file)
1152 fput(old_exe_file);
1153 }
1154
1155 /**
1156 * get_mm_exe_file - acquire a reference to the mm's executable file
1157 *
1158 * Returns %NULL if mm has no associated executable file.
1159 * User must release file via fput().
1160 */
1161 struct file *get_mm_exe_file(struct mm_struct *mm)
1162 {
1163 struct file *exe_file;
1164
1165 rcu_read_lock();
1166 exe_file = rcu_dereference(mm->exe_file);
1167 if (exe_file && !get_file_rcu(exe_file))
1168 exe_file = NULL;
1169 rcu_read_unlock();
1170 return exe_file;
1171 }
1172 EXPORT_SYMBOL(get_mm_exe_file);
1173
1174 /**
1175 * get_task_exe_file - acquire a reference to the task's executable file
1176 *
1177 * Returns %NULL if task's mm (if any) has no associated executable file or
1178 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1179 * User must release file via fput().
1180 */
1181 struct file *get_task_exe_file(struct task_struct *task)
1182 {
1183 struct file *exe_file = NULL;
1184 struct mm_struct *mm;
1185
1186 task_lock(task);
1187 mm = task->mm;
1188 if (mm) {
1189 if (!(task->flags & PF_KTHREAD))
1190 exe_file = get_mm_exe_file(mm);
1191 }
1192 task_unlock(task);
1193 return exe_file;
1194 }
1195 EXPORT_SYMBOL(get_task_exe_file);
1196
1197 /**
1198 * get_task_mm - acquire a reference to the task's mm
1199 *
1200 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1201 * this kernel workthread has transiently adopted a user mm with use_mm,
1202 * to do its AIO) is not set and if so returns a reference to it, after
1203 * bumping up the use count. User must release the mm via mmput()
1204 * after use. Typically used by /proc and ptrace.
1205 */
1206 struct mm_struct *get_task_mm(struct task_struct *task)
1207 {
1208 struct mm_struct *mm;
1209
1210 task_lock(task);
1211 mm = task->mm;
1212 if (mm) {
1213 if (task->flags & PF_KTHREAD)
1214 mm = NULL;
1215 else
1216 mmget(mm);
1217 }
1218 task_unlock(task);
1219 return mm;
1220 }
1221 EXPORT_SYMBOL_GPL(get_task_mm);
1222
1223 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1224 {
1225 struct mm_struct *mm;
1226 int err;
1227
1228 err = down_read_killable(&task->signal->exec_update_lock);
1229 if (err)
1230 return ERR_PTR(err);
1231
1232 mm = get_task_mm(task);
1233 if (mm && mm != current->mm &&
1234 !ptrace_may_access(task, mode)) {
1235 mmput(mm);
1236 mm = ERR_PTR(-EACCES);
1237 }
1238 up_read(&task->signal->exec_update_lock);
1239
1240 return mm;
1241 }
1242
1243 static void complete_vfork_done(struct task_struct *tsk)
1244 {
1245 struct completion *vfork;
1246
1247 task_lock(tsk);
1248 vfork = tsk->vfork_done;
1249 if (likely(vfork)) {
1250 tsk->vfork_done = NULL;
1251 complete(vfork);
1252 }
1253 task_unlock(tsk);
1254 }
1255
1256 static int wait_for_vfork_done(struct task_struct *child,
1257 struct completion *vfork)
1258 {
1259 int killed;
1260
1261 freezer_do_not_count();
1262 cgroup_enter_frozen();
1263 killed = wait_for_completion_killable(vfork);
1264 cgroup_leave_frozen(false);
1265 freezer_count();
1266
1267 if (killed) {
1268 task_lock(child);
1269 child->vfork_done = NULL;
1270 task_unlock(child);
1271 }
1272
1273 put_task_struct(child);
1274 return killed;
1275 }
1276
1277 /* Please note the differences between mmput and mm_release.
1278 * mmput is called whenever we stop holding onto a mm_struct,
1279 * error success whatever.
1280 *
1281 * mm_release is called after a mm_struct has been removed
1282 * from the current process.
1283 *
1284 * This difference is important for error handling, when we
1285 * only half set up a mm_struct for a new process and need to restore
1286 * the old one. Because we mmput the new mm_struct before
1287 * restoring the old one. . .
1288 * Eric Biederman 10 January 1998
1289 */
1290 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1291 {
1292 uprobe_free_utask(tsk);
1293
1294 /* Get rid of any cached register state */
1295 deactivate_mm(tsk, mm);
1296
1297 /*
1298 * Signal userspace if we're not exiting with a core dump
1299 * because we want to leave the value intact for debugging
1300 * purposes.
1301 */
1302 if (tsk->clear_child_tid) {
1303 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1304 atomic_read(&mm->mm_users) > 1) {
1305 /*
1306 * We don't check the error code - if userspace has
1307 * not set up a proper pointer then tough luck.
1308 */
1309 put_user(0, tsk->clear_child_tid);
1310 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1311 1, NULL, NULL, 0, 0);
1312 }
1313 tsk->clear_child_tid = NULL;
1314 }
1315
1316 /*
1317 * All done, finally we can wake up parent and return this mm to him.
1318 * Also kthread_stop() uses this completion for synchronization.
1319 */
1320 if (tsk->vfork_done)
1321 complete_vfork_done(tsk);
1322 }
1323
1324 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325 {
1326 futex_exit_release(tsk);
1327 mm_release(tsk, mm);
1328 }
1329
1330 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1331 {
1332 futex_exec_release(tsk);
1333 mm_release(tsk, mm);
1334 }
1335
1336 /**
1337 * dup_mm() - duplicates an existing mm structure
1338 * @tsk: the task_struct with which the new mm will be associated.
1339 * @oldmm: the mm to duplicate.
1340 *
1341 * Allocates a new mm structure and duplicates the provided @oldmm structure
1342 * content into it.
1343 *
1344 * Return: the duplicated mm or NULL on failure.
1345 */
1346 static struct mm_struct *dup_mm(struct task_struct *tsk,
1347 struct mm_struct *oldmm)
1348 {
1349 struct mm_struct *mm;
1350 int err;
1351
1352 mm = allocate_mm();
1353 if (!mm)
1354 goto fail_nomem;
1355
1356 memcpy(mm, oldmm, sizeof(*mm));
1357
1358 if (!mm_init(mm, tsk, mm->user_ns))
1359 goto fail_nomem;
1360
1361 err = dup_mmap(mm, oldmm);
1362 if (err)
1363 goto free_pt;
1364
1365 mm->hiwater_rss = get_mm_rss(mm);
1366 mm->hiwater_vm = mm->total_vm;
1367
1368 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1369 goto free_pt;
1370
1371 return mm;
1372
1373 free_pt:
1374 /* don't put binfmt in mmput, we haven't got module yet */
1375 mm->binfmt = NULL;
1376 mm_init_owner(mm, NULL);
1377 mmput(mm);
1378
1379 fail_nomem:
1380 return NULL;
1381 }
1382
1383 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1384 {
1385 struct mm_struct *mm, *oldmm;
1386 int retval;
1387
1388 tsk->min_flt = tsk->maj_flt = 0;
1389 tsk->nvcsw = tsk->nivcsw = 0;
1390 #ifdef CONFIG_DETECT_HUNG_TASK
1391 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1392 tsk->last_switch_time = 0;
1393 #endif
1394
1395 tsk->mm = NULL;
1396 tsk->active_mm = NULL;
1397
1398 /*
1399 * Are we cloning a kernel thread?
1400 *
1401 * We need to steal a active VM for that..
1402 */
1403 oldmm = current->mm;
1404 if (!oldmm)
1405 return 0;
1406
1407 /* initialize the new vmacache entries */
1408 vmacache_flush(tsk);
1409
1410 if (clone_flags & CLONE_VM) {
1411 mmget(oldmm);
1412 mm = oldmm;
1413 goto good_mm;
1414 }
1415
1416 retval = -ENOMEM;
1417 mm = dup_mm(tsk, current->mm);
1418 if (!mm)
1419 goto fail_nomem;
1420
1421 good_mm:
1422 tsk->mm = mm;
1423 tsk->active_mm = mm;
1424 return 0;
1425
1426 fail_nomem:
1427 return retval;
1428 }
1429
1430 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1431 {
1432 struct fs_struct *fs = current->fs;
1433 if (clone_flags & CLONE_FS) {
1434 /* tsk->fs is already what we want */
1435 spin_lock(&fs->lock);
1436 if (fs->in_exec) {
1437 spin_unlock(&fs->lock);
1438 return -EAGAIN;
1439 }
1440 fs->users++;
1441 spin_unlock(&fs->lock);
1442 return 0;
1443 }
1444 tsk->fs = copy_fs_struct(fs);
1445 if (!tsk->fs)
1446 return -ENOMEM;
1447 return 0;
1448 }
1449
1450 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1451 {
1452 struct files_struct *oldf, *newf;
1453 int error = 0;
1454
1455 /*
1456 * A background process may not have any files ...
1457 */
1458 oldf = current->files;
1459 if (!oldf)
1460 goto out;
1461
1462 if (clone_flags & CLONE_FILES) {
1463 atomic_inc(&oldf->count);
1464 goto out;
1465 }
1466
1467 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1468 if (!newf)
1469 goto out;
1470
1471 tsk->files = newf;
1472 error = 0;
1473 out:
1474 return error;
1475 }
1476
1477 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1478 {
1479 #ifdef CONFIG_BLOCK
1480 struct io_context *ioc = current->io_context;
1481 struct io_context *new_ioc;
1482
1483 if (!ioc)
1484 return 0;
1485 /*
1486 * Share io context with parent, if CLONE_IO is set
1487 */
1488 if (clone_flags & CLONE_IO) {
1489 ioc_task_link(ioc);
1490 tsk->io_context = ioc;
1491 } else if (ioprio_valid(ioc->ioprio)) {
1492 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1493 if (unlikely(!new_ioc))
1494 return -ENOMEM;
1495
1496 new_ioc->ioprio = ioc->ioprio;
1497 put_io_context(new_ioc);
1498 }
1499 #endif
1500 return 0;
1501 }
1502
1503 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1504 {
1505 struct sighand_struct *sig;
1506
1507 if (clone_flags & CLONE_SIGHAND) {
1508 refcount_inc(&current->sighand->count);
1509 return 0;
1510 }
1511 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1512 RCU_INIT_POINTER(tsk->sighand, sig);
1513 if (!sig)
1514 return -ENOMEM;
1515
1516 refcount_set(&sig->count, 1);
1517 spin_lock_irq(&current->sighand->siglock);
1518 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1519 spin_unlock_irq(&current->sighand->siglock);
1520
1521 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1522 if (clone_flags & CLONE_CLEAR_SIGHAND)
1523 flush_signal_handlers(tsk, 0);
1524
1525 return 0;
1526 }
1527
1528 void __cleanup_sighand(struct sighand_struct *sighand)
1529 {
1530 if (refcount_dec_and_test(&sighand->count)) {
1531 signalfd_cleanup(sighand);
1532 /*
1533 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1534 * without an RCU grace period, see __lock_task_sighand().
1535 */
1536 kmem_cache_free(sighand_cachep, sighand);
1537 }
1538 }
1539
1540 /*
1541 * Initialize POSIX timer handling for a thread group.
1542 */
1543 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1544 {
1545 struct posix_cputimers *pct = &sig->posix_cputimers;
1546 unsigned long cpu_limit;
1547
1548 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1549 posix_cputimers_group_init(pct, cpu_limit);
1550 }
1551
1552 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1553 {
1554 struct signal_struct *sig;
1555
1556 if (clone_flags & CLONE_THREAD)
1557 return 0;
1558
1559 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1560 tsk->signal = sig;
1561 if (!sig)
1562 return -ENOMEM;
1563
1564 sig->nr_threads = 1;
1565 atomic_set(&sig->live, 1);
1566 refcount_set(&sig->sigcnt, 1);
1567
1568 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1569 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1570 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1571
1572 init_waitqueue_head(&sig->wait_chldexit);
1573 sig->curr_target = tsk;
1574 init_sigpending(&sig->shared_pending);
1575 INIT_HLIST_HEAD(&sig->multiprocess);
1576 seqlock_init(&sig->stats_lock);
1577 prev_cputime_init(&sig->prev_cputime);
1578
1579 #ifdef CONFIG_POSIX_TIMERS
1580 INIT_LIST_HEAD(&sig->posix_timers);
1581 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1582 sig->real_timer.function = it_real_fn;
1583 #endif
1584
1585 task_lock(current->group_leader);
1586 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1587 task_unlock(current->group_leader);
1588
1589 posix_cpu_timers_init_group(sig);
1590
1591 tty_audit_fork(sig);
1592 sched_autogroup_fork(sig);
1593
1594 sig->oom_score_adj = current->signal->oom_score_adj;
1595 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1596
1597 mutex_init(&sig->cred_guard_mutex);
1598 init_rwsem(&sig->exec_update_lock);
1599
1600 return 0;
1601 }
1602
1603 static void copy_seccomp(struct task_struct *p)
1604 {
1605 #ifdef CONFIG_SECCOMP
1606 /*
1607 * Must be called with sighand->lock held, which is common to
1608 * all threads in the group. Holding cred_guard_mutex is not
1609 * needed because this new task is not yet running and cannot
1610 * be racing exec.
1611 */
1612 assert_spin_locked(&current->sighand->siglock);
1613
1614 /* Ref-count the new filter user, and assign it. */
1615 get_seccomp_filter(current);
1616 p->seccomp = current->seccomp;
1617
1618 /*
1619 * Explicitly enable no_new_privs here in case it got set
1620 * between the task_struct being duplicated and holding the
1621 * sighand lock. The seccomp state and nnp must be in sync.
1622 */
1623 if (task_no_new_privs(current))
1624 task_set_no_new_privs(p);
1625
1626 /*
1627 * If the parent gained a seccomp mode after copying thread
1628 * flags and between before we held the sighand lock, we have
1629 * to manually enable the seccomp thread flag here.
1630 */
1631 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1632 set_task_syscall_work(p, SECCOMP);
1633 #endif
1634 }
1635
1636 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1637 {
1638 current->clear_child_tid = tidptr;
1639
1640 return task_pid_vnr(current);
1641 }
1642
1643 static void rt_mutex_init_task(struct task_struct *p)
1644 {
1645 raw_spin_lock_init(&p->pi_lock);
1646 #ifdef CONFIG_RT_MUTEXES
1647 p->pi_waiters = RB_ROOT_CACHED;
1648 p->pi_top_task = NULL;
1649 p->pi_blocked_on = NULL;
1650 #endif
1651 }
1652
1653 static inline void init_task_pid_links(struct task_struct *task)
1654 {
1655 enum pid_type type;
1656
1657 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1658 INIT_HLIST_NODE(&task->pid_links[type]);
1659 }
1660 }
1661
1662 static inline void
1663 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1664 {
1665 if (type == PIDTYPE_PID)
1666 task->thread_pid = pid;
1667 else
1668 task->signal->pids[type] = pid;
1669 }
1670
1671 static inline void rcu_copy_process(struct task_struct *p)
1672 {
1673 #ifdef CONFIG_PREEMPT_RCU
1674 p->rcu_read_lock_nesting = 0;
1675 p->rcu_read_unlock_special.s = 0;
1676 p->rcu_blocked_node = NULL;
1677 INIT_LIST_HEAD(&p->rcu_node_entry);
1678 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1679 #ifdef CONFIG_TASKS_RCU
1680 p->rcu_tasks_holdout = false;
1681 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1682 p->rcu_tasks_idle_cpu = -1;
1683 #endif /* #ifdef CONFIG_TASKS_RCU */
1684 #ifdef CONFIG_TASKS_TRACE_RCU
1685 p->trc_reader_nesting = 0;
1686 p->trc_reader_special.s = 0;
1687 INIT_LIST_HEAD(&p->trc_holdout_list);
1688 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1689 }
1690
1691 struct pid *pidfd_pid(const struct file *file)
1692 {
1693 if (file->f_op == &pidfd_fops)
1694 return file->private_data;
1695
1696 return ERR_PTR(-EBADF);
1697 }
1698
1699 static int pidfd_release(struct inode *inode, struct file *file)
1700 {
1701 struct pid *pid = file->private_data;
1702
1703 file->private_data = NULL;
1704 put_pid(pid);
1705 return 0;
1706 }
1707
1708 #ifdef CONFIG_PROC_FS
1709 /**
1710 * pidfd_show_fdinfo - print information about a pidfd
1711 * @m: proc fdinfo file
1712 * @f: file referencing a pidfd
1713 *
1714 * Pid:
1715 * This function will print the pid that a given pidfd refers to in the
1716 * pid namespace of the procfs instance.
1717 * If the pid namespace of the process is not a descendant of the pid
1718 * namespace of the procfs instance 0 will be shown as its pid. This is
1719 * similar to calling getppid() on a process whose parent is outside of
1720 * its pid namespace.
1721 *
1722 * NSpid:
1723 * If pid namespaces are supported then this function will also print
1724 * the pid of a given pidfd refers to for all descendant pid namespaces
1725 * starting from the current pid namespace of the instance, i.e. the
1726 * Pid field and the first entry in the NSpid field will be identical.
1727 * If the pid namespace of the process is not a descendant of the pid
1728 * namespace of the procfs instance 0 will be shown as its first NSpid
1729 * entry and no others will be shown.
1730 * Note that this differs from the Pid and NSpid fields in
1731 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1732 * the pid namespace of the procfs instance. The difference becomes
1733 * obvious when sending around a pidfd between pid namespaces from a
1734 * different branch of the tree, i.e. where no ancestoral relation is
1735 * present between the pid namespaces:
1736 * - create two new pid namespaces ns1 and ns2 in the initial pid
1737 * namespace (also take care to create new mount namespaces in the
1738 * new pid namespace and mount procfs)
1739 * - create a process with a pidfd in ns1
1740 * - send pidfd from ns1 to ns2
1741 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1742 * have exactly one entry, which is 0
1743 */
1744 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1745 {
1746 struct pid *pid = f->private_data;
1747 struct pid_namespace *ns;
1748 pid_t nr = -1;
1749
1750 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1751 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1752 nr = pid_nr_ns(pid, ns);
1753 }
1754
1755 seq_put_decimal_ll(m, "Pid:\t", nr);
1756
1757 #ifdef CONFIG_PID_NS
1758 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1759 if (nr > 0) {
1760 int i;
1761
1762 /* If nr is non-zero it means that 'pid' is valid and that
1763 * ns, i.e. the pid namespace associated with the procfs
1764 * instance, is in the pid namespace hierarchy of pid.
1765 * Start at one below the already printed level.
1766 */
1767 for (i = ns->level + 1; i <= pid->level; i++)
1768 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1769 }
1770 #endif
1771 seq_putc(m, '\n');
1772 }
1773 #endif
1774
1775 /*
1776 * Poll support for process exit notification.
1777 */
1778 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1779 {
1780 struct pid *pid = file->private_data;
1781 __poll_t poll_flags = 0;
1782
1783 poll_wait(file, &pid->wait_pidfd, pts);
1784
1785 /*
1786 * Inform pollers only when the whole thread group exits.
1787 * If the thread group leader exits before all other threads in the
1788 * group, then poll(2) should block, similar to the wait(2) family.
1789 */
1790 if (thread_group_exited(pid))
1791 poll_flags = EPOLLIN | EPOLLRDNORM;
1792
1793 return poll_flags;
1794 }
1795
1796 const struct file_operations pidfd_fops = {
1797 .release = pidfd_release,
1798 .poll = pidfd_poll,
1799 #ifdef CONFIG_PROC_FS
1800 .show_fdinfo = pidfd_show_fdinfo,
1801 #endif
1802 };
1803
1804 static void __delayed_free_task(struct rcu_head *rhp)
1805 {
1806 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1807
1808 free_task(tsk);
1809 }
1810
1811 static __always_inline void delayed_free_task(struct task_struct *tsk)
1812 {
1813 if (IS_ENABLED(CONFIG_MEMCG))
1814 call_rcu(&tsk->rcu, __delayed_free_task);
1815 else
1816 free_task(tsk);
1817 }
1818
1819 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1820 {
1821 /* Skip if kernel thread */
1822 if (!tsk->mm)
1823 return;
1824
1825 /* Skip if spawning a thread or using vfork */
1826 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1827 return;
1828
1829 /* We need to synchronize with __set_oom_adj */
1830 mutex_lock(&oom_adj_mutex);
1831 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1832 /* Update the values in case they were changed after copy_signal */
1833 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1834 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1835 mutex_unlock(&oom_adj_mutex);
1836 }
1837
1838 /*
1839 * This creates a new process as a copy of the old one,
1840 * but does not actually start it yet.
1841 *
1842 * It copies the registers, and all the appropriate
1843 * parts of the process environment (as per the clone
1844 * flags). The actual kick-off is left to the caller.
1845 */
1846 static __latent_entropy struct task_struct *copy_process(
1847 struct pid *pid,
1848 int trace,
1849 int node,
1850 struct kernel_clone_args *args)
1851 {
1852 int pidfd = -1, retval;
1853 struct task_struct *p;
1854 struct multiprocess_signals delayed;
1855 struct file *pidfile = NULL;
1856 u64 clone_flags = args->flags;
1857 struct nsproxy *nsp = current->nsproxy;
1858
1859 /*
1860 * Don't allow sharing the root directory with processes in a different
1861 * namespace
1862 */
1863 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1864 return ERR_PTR(-EINVAL);
1865
1866 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1867 return ERR_PTR(-EINVAL);
1868
1869 /*
1870 * Thread groups must share signals as well, and detached threads
1871 * can only be started up within the thread group.
1872 */
1873 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1874 return ERR_PTR(-EINVAL);
1875
1876 /*
1877 * Shared signal handlers imply shared VM. By way of the above,
1878 * thread groups also imply shared VM. Blocking this case allows
1879 * for various simplifications in other code.
1880 */
1881 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1882 return ERR_PTR(-EINVAL);
1883
1884 /*
1885 * Siblings of global init remain as zombies on exit since they are
1886 * not reaped by their parent (swapper). To solve this and to avoid
1887 * multi-rooted process trees, prevent global and container-inits
1888 * from creating siblings.
1889 */
1890 if ((clone_flags & CLONE_PARENT) &&
1891 current->signal->flags & SIGNAL_UNKILLABLE)
1892 return ERR_PTR(-EINVAL);
1893
1894 /*
1895 * If the new process will be in a different pid or user namespace
1896 * do not allow it to share a thread group with the forking task.
1897 */
1898 if (clone_flags & CLONE_THREAD) {
1899 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1900 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1901 return ERR_PTR(-EINVAL);
1902 }
1903
1904 /*
1905 * If the new process will be in a different time namespace
1906 * do not allow it to share VM or a thread group with the forking task.
1907 */
1908 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1909 if (nsp->time_ns != nsp->time_ns_for_children)
1910 return ERR_PTR(-EINVAL);
1911 }
1912
1913 if (clone_flags & CLONE_PIDFD) {
1914 /*
1915 * - CLONE_DETACHED is blocked so that we can potentially
1916 * reuse it later for CLONE_PIDFD.
1917 * - CLONE_THREAD is blocked until someone really needs it.
1918 */
1919 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1920 return ERR_PTR(-EINVAL);
1921 }
1922
1923 /*
1924 * Force any signals received before this point to be delivered
1925 * before the fork happens. Collect up signals sent to multiple
1926 * processes that happen during the fork and delay them so that
1927 * they appear to happen after the fork.
1928 */
1929 sigemptyset(&delayed.signal);
1930 INIT_HLIST_NODE(&delayed.node);
1931
1932 spin_lock_irq(&current->sighand->siglock);
1933 if (!(clone_flags & CLONE_THREAD))
1934 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1935 recalc_sigpending();
1936 spin_unlock_irq(&current->sighand->siglock);
1937 retval = -ERESTARTNOINTR;
1938 if (signal_pending(current))
1939 goto fork_out;
1940
1941 retval = -ENOMEM;
1942 p = dup_task_struct(current, node);
1943 if (!p)
1944 goto fork_out;
1945
1946 /*
1947 * This _must_ happen before we call free_task(), i.e. before we jump
1948 * to any of the bad_fork_* labels. This is to avoid freeing
1949 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1950 * kernel threads (PF_KTHREAD).
1951 */
1952 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1953 /*
1954 * Clear TID on mm_release()?
1955 */
1956 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1957
1958 ftrace_graph_init_task(p);
1959
1960 rt_mutex_init_task(p);
1961
1962 lockdep_assert_irqs_enabled();
1963 #ifdef CONFIG_PROVE_LOCKING
1964 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1965 #endif
1966 retval = -EAGAIN;
1967 if (atomic_read(&p->real_cred->user->processes) >=
1968 task_rlimit(p, RLIMIT_NPROC)) {
1969 if (p->real_cred->user != INIT_USER &&
1970 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1971 goto bad_fork_free;
1972 }
1973 current->flags &= ~PF_NPROC_EXCEEDED;
1974
1975 retval = copy_creds(p, clone_flags);
1976 if (retval < 0)
1977 goto bad_fork_free;
1978
1979 /*
1980 * If multiple threads are within copy_process(), then this check
1981 * triggers too late. This doesn't hurt, the check is only there
1982 * to stop root fork bombs.
1983 */
1984 retval = -EAGAIN;
1985 if (data_race(nr_threads >= max_threads))
1986 goto bad_fork_cleanup_count;
1987
1988 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1989 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1990 p->flags |= PF_FORKNOEXEC;
1991 INIT_LIST_HEAD(&p->children);
1992 INIT_LIST_HEAD(&p->sibling);
1993 rcu_copy_process(p);
1994 p->vfork_done = NULL;
1995 spin_lock_init(&p->alloc_lock);
1996
1997 init_sigpending(&p->pending);
1998
1999 p->utime = p->stime = p->gtime = 0;
2000 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2001 p->utimescaled = p->stimescaled = 0;
2002 #endif
2003 prev_cputime_init(&p->prev_cputime);
2004
2005 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2006 seqcount_init(&p->vtime.seqcount);
2007 p->vtime.starttime = 0;
2008 p->vtime.state = VTIME_INACTIVE;
2009 #endif
2010
2011 #ifdef CONFIG_IO_URING
2012 p->io_uring = NULL;
2013 #endif
2014
2015 #if defined(SPLIT_RSS_COUNTING)
2016 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2017 #endif
2018
2019 p->default_timer_slack_ns = current->timer_slack_ns;
2020
2021 #ifdef CONFIG_PSI
2022 p->psi_flags = 0;
2023 #endif
2024
2025 task_io_accounting_init(&p->ioac);
2026 acct_clear_integrals(p);
2027
2028 posix_cputimers_init(&p->posix_cputimers);
2029
2030 p->io_context = NULL;
2031 audit_set_context(p, NULL);
2032 cgroup_fork(p);
2033 #ifdef CONFIG_NUMA
2034 p->mempolicy = mpol_dup(p->mempolicy);
2035 if (IS_ERR(p->mempolicy)) {
2036 retval = PTR_ERR(p->mempolicy);
2037 p->mempolicy = NULL;
2038 goto bad_fork_cleanup_threadgroup_lock;
2039 }
2040 #endif
2041 #ifdef CONFIG_CPUSETS
2042 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2043 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2044 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2045 #endif
2046 #ifdef CONFIG_TRACE_IRQFLAGS
2047 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2048 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2049 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2050 p->softirqs_enabled = 1;
2051 p->softirq_context = 0;
2052 #endif
2053
2054 p->pagefault_disabled = 0;
2055
2056 #ifdef CONFIG_LOCKDEP
2057 lockdep_init_task(p);
2058 #endif
2059
2060 #ifdef CONFIG_DEBUG_MUTEXES
2061 p->blocked_on = NULL; /* not blocked yet */
2062 #endif
2063 #ifdef CONFIG_BCACHE
2064 p->sequential_io = 0;
2065 p->sequential_io_avg = 0;
2066 #endif
2067
2068 /* Perform scheduler related setup. Assign this task to a CPU. */
2069 retval = sched_fork(clone_flags, p);
2070 if (retval)
2071 goto bad_fork_cleanup_policy;
2072
2073 retval = perf_event_init_task(p);
2074 if (retval)
2075 goto bad_fork_cleanup_policy;
2076 retval = audit_alloc(p);
2077 if (retval)
2078 goto bad_fork_cleanup_perf;
2079 /* copy all the process information */
2080 shm_init_task(p);
2081 retval = security_task_alloc(p, clone_flags);
2082 if (retval)
2083 goto bad_fork_cleanup_audit;
2084 retval = copy_semundo(clone_flags, p);
2085 if (retval)
2086 goto bad_fork_cleanup_security;
2087 retval = copy_files(clone_flags, p);
2088 if (retval)
2089 goto bad_fork_cleanup_semundo;
2090 retval = copy_fs(clone_flags, p);
2091 if (retval)
2092 goto bad_fork_cleanup_files;
2093 retval = copy_sighand(clone_flags, p);
2094 if (retval)
2095 goto bad_fork_cleanup_fs;
2096 retval = copy_signal(clone_flags, p);
2097 if (retval)
2098 goto bad_fork_cleanup_sighand;
2099 retval = copy_mm(clone_flags, p);
2100 if (retval)
2101 goto bad_fork_cleanup_signal;
2102 retval = copy_namespaces(clone_flags, p);
2103 if (retval)
2104 goto bad_fork_cleanup_mm;
2105 retval = copy_io(clone_flags, p);
2106 if (retval)
2107 goto bad_fork_cleanup_namespaces;
2108 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2109 if (retval)
2110 goto bad_fork_cleanup_io;
2111
2112 stackleak_task_init(p);
2113
2114 if (pid != &init_struct_pid) {
2115 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2116 args->set_tid_size);
2117 if (IS_ERR(pid)) {
2118 retval = PTR_ERR(pid);
2119 goto bad_fork_cleanup_thread;
2120 }
2121 }
2122
2123 /*
2124 * This has to happen after we've potentially unshared the file
2125 * descriptor table (so that the pidfd doesn't leak into the child
2126 * if the fd table isn't shared).
2127 */
2128 if (clone_flags & CLONE_PIDFD) {
2129 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2130 if (retval < 0)
2131 goto bad_fork_free_pid;
2132
2133 pidfd = retval;
2134
2135 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2136 O_RDWR | O_CLOEXEC);
2137 if (IS_ERR(pidfile)) {
2138 put_unused_fd(pidfd);
2139 retval = PTR_ERR(pidfile);
2140 goto bad_fork_free_pid;
2141 }
2142 get_pid(pid); /* held by pidfile now */
2143
2144 retval = put_user(pidfd, args->pidfd);
2145 if (retval)
2146 goto bad_fork_put_pidfd;
2147 }
2148
2149 #ifdef CONFIG_BLOCK
2150 p->plug = NULL;
2151 #endif
2152 futex_init_task(p);
2153
2154 /*
2155 * sigaltstack should be cleared when sharing the same VM
2156 */
2157 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2158 sas_ss_reset(p);
2159
2160 /*
2161 * Syscall tracing and stepping should be turned off in the
2162 * child regardless of CLONE_PTRACE.
2163 */
2164 user_disable_single_step(p);
2165 clear_task_syscall_work(p, SYSCALL_TRACE);
2166 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2167 clear_task_syscall_work(p, SYSCALL_EMU);
2168 #endif
2169 clear_tsk_latency_tracing(p);
2170
2171 /* ok, now we should be set up.. */
2172 p->pid = pid_nr(pid);
2173 if (clone_flags & CLONE_THREAD) {
2174 p->group_leader = current->group_leader;
2175 p->tgid = current->tgid;
2176 } else {
2177 p->group_leader = p;
2178 p->tgid = p->pid;
2179 }
2180
2181 p->nr_dirtied = 0;
2182 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2183 p->dirty_paused_when = 0;
2184
2185 p->pdeath_signal = 0;
2186 INIT_LIST_HEAD(&p->thread_group);
2187 p->task_works = NULL;
2188
2189 #ifdef CONFIG_KRETPROBES
2190 p->kretprobe_instances.first = NULL;
2191 #endif
2192
2193 /*
2194 * Ensure that the cgroup subsystem policies allow the new process to be
2195 * forked. It should be noted that the new process's css_set can be changed
2196 * between here and cgroup_post_fork() if an organisation operation is in
2197 * progress.
2198 */
2199 retval = cgroup_can_fork(p, args);
2200 if (retval)
2201 goto bad_fork_put_pidfd;
2202
2203 /*
2204 * From this point on we must avoid any synchronous user-space
2205 * communication until we take the tasklist-lock. In particular, we do
2206 * not want user-space to be able to predict the process start-time by
2207 * stalling fork(2) after we recorded the start_time but before it is
2208 * visible to the system.
2209 */
2210
2211 p->start_time = ktime_get_ns();
2212 p->start_boottime = ktime_get_boottime_ns();
2213
2214 /*
2215 * Make it visible to the rest of the system, but dont wake it up yet.
2216 * Need tasklist lock for parent etc handling!
2217 */
2218 write_lock_irq(&tasklist_lock);
2219
2220 /* CLONE_PARENT re-uses the old parent */
2221 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2222 p->real_parent = current->real_parent;
2223 p->parent_exec_id = current->parent_exec_id;
2224 if (clone_flags & CLONE_THREAD)
2225 p->exit_signal = -1;
2226 else
2227 p->exit_signal = current->group_leader->exit_signal;
2228 } else {
2229 p->real_parent = current;
2230 p->parent_exec_id = current->self_exec_id;
2231 p->exit_signal = args->exit_signal;
2232 }
2233
2234 klp_copy_process(p);
2235
2236 spin_lock(&current->sighand->siglock);
2237
2238 /*
2239 * Copy seccomp details explicitly here, in case they were changed
2240 * before holding sighand lock.
2241 */
2242 copy_seccomp(p);
2243
2244 rseq_fork(p, clone_flags);
2245
2246 /* Don't start children in a dying pid namespace */
2247 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2248 retval = -ENOMEM;
2249 goto bad_fork_cancel_cgroup;
2250 }
2251
2252 /* Let kill terminate clone/fork in the middle */
2253 if (fatal_signal_pending(current)) {
2254 retval = -EINTR;
2255 goto bad_fork_cancel_cgroup;
2256 }
2257
2258 /* past the last point of failure */
2259 if (pidfile)
2260 fd_install(pidfd, pidfile);
2261
2262 init_task_pid_links(p);
2263 if (likely(p->pid)) {
2264 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2265
2266 init_task_pid(p, PIDTYPE_PID, pid);
2267 if (thread_group_leader(p)) {
2268 init_task_pid(p, PIDTYPE_TGID, pid);
2269 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2270 init_task_pid(p, PIDTYPE_SID, task_session(current));
2271
2272 if (is_child_reaper(pid)) {
2273 ns_of_pid(pid)->child_reaper = p;
2274 p->signal->flags |= SIGNAL_UNKILLABLE;
2275 }
2276 p->signal->shared_pending.signal = delayed.signal;
2277 p->signal->tty = tty_kref_get(current->signal->tty);
2278 /*
2279 * Inherit has_child_subreaper flag under the same
2280 * tasklist_lock with adding child to the process tree
2281 * for propagate_has_child_subreaper optimization.
2282 */
2283 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2284 p->real_parent->signal->is_child_subreaper;
2285 list_add_tail(&p->sibling, &p->real_parent->children);
2286 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2287 attach_pid(p, PIDTYPE_TGID);
2288 attach_pid(p, PIDTYPE_PGID);
2289 attach_pid(p, PIDTYPE_SID);
2290 __this_cpu_inc(process_counts);
2291 } else {
2292 current->signal->nr_threads++;
2293 atomic_inc(&current->signal->live);
2294 refcount_inc(&current->signal->sigcnt);
2295 task_join_group_stop(p);
2296 list_add_tail_rcu(&p->thread_group,
2297 &p->group_leader->thread_group);
2298 list_add_tail_rcu(&p->thread_node,
2299 &p->signal->thread_head);
2300 }
2301 attach_pid(p, PIDTYPE_PID);
2302 nr_threads++;
2303 }
2304 total_forks++;
2305 hlist_del_init(&delayed.node);
2306 spin_unlock(&current->sighand->siglock);
2307 syscall_tracepoint_update(p);
2308 write_unlock_irq(&tasklist_lock);
2309
2310 proc_fork_connector(p);
2311 sched_post_fork(p);
2312 cgroup_post_fork(p, args);
2313 perf_event_fork(p);
2314
2315 trace_task_newtask(p, clone_flags);
2316 uprobe_copy_process(p, clone_flags);
2317
2318 copy_oom_score_adj(clone_flags, p);
2319
2320 return p;
2321
2322 bad_fork_cancel_cgroup:
2323 spin_unlock(&current->sighand->siglock);
2324 write_unlock_irq(&tasklist_lock);
2325 cgroup_cancel_fork(p, args);
2326 bad_fork_put_pidfd:
2327 if (clone_flags & CLONE_PIDFD) {
2328 fput(pidfile);
2329 put_unused_fd(pidfd);
2330 }
2331 bad_fork_free_pid:
2332 if (pid != &init_struct_pid)
2333 free_pid(pid);
2334 bad_fork_cleanup_thread:
2335 exit_thread(p);
2336 bad_fork_cleanup_io:
2337 if (p->io_context)
2338 exit_io_context(p);
2339 bad_fork_cleanup_namespaces:
2340 exit_task_namespaces(p);
2341 bad_fork_cleanup_mm:
2342 if (p->mm) {
2343 mm_clear_owner(p->mm, p);
2344 mmput(p->mm);
2345 }
2346 bad_fork_cleanup_signal:
2347 if (!(clone_flags & CLONE_THREAD))
2348 free_signal_struct(p->signal);
2349 bad_fork_cleanup_sighand:
2350 __cleanup_sighand(p->sighand);
2351 bad_fork_cleanup_fs:
2352 exit_fs(p); /* blocking */
2353 bad_fork_cleanup_files:
2354 exit_files(p); /* blocking */
2355 bad_fork_cleanup_semundo:
2356 exit_sem(p);
2357 bad_fork_cleanup_security:
2358 security_task_free(p);
2359 bad_fork_cleanup_audit:
2360 audit_free(p);
2361 bad_fork_cleanup_perf:
2362 perf_event_free_task(p);
2363 bad_fork_cleanup_policy:
2364 lockdep_free_task(p);
2365 #ifdef CONFIG_NUMA
2366 mpol_put(p->mempolicy);
2367 bad_fork_cleanup_threadgroup_lock:
2368 #endif
2369 delayacct_tsk_free(p);
2370 bad_fork_cleanup_count:
2371 atomic_dec(&p->cred->user->processes);
2372 exit_creds(p);
2373 bad_fork_free:
2374 p->state = TASK_DEAD;
2375 put_task_stack(p);
2376 delayed_free_task(p);
2377 fork_out:
2378 spin_lock_irq(&current->sighand->siglock);
2379 hlist_del_init(&delayed.node);
2380 spin_unlock_irq(&current->sighand->siglock);
2381 return ERR_PTR(retval);
2382 }
2383
2384 static inline void init_idle_pids(struct task_struct *idle)
2385 {
2386 enum pid_type type;
2387
2388 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2389 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2390 init_task_pid(idle, type, &init_struct_pid);
2391 }
2392 }
2393
2394 struct task_struct *fork_idle(int cpu)
2395 {
2396 struct task_struct *task;
2397 struct kernel_clone_args args = {
2398 .flags = CLONE_VM,
2399 };
2400
2401 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2402 if (!IS_ERR(task)) {
2403 init_idle_pids(task);
2404 init_idle(task, cpu);
2405 }
2406
2407 return task;
2408 }
2409
2410 struct mm_struct *copy_init_mm(void)
2411 {
2412 return dup_mm(NULL, &init_mm);
2413 }
2414
2415 /*
2416 * Ok, this is the main fork-routine.
2417 *
2418 * It copies the process, and if successful kick-starts
2419 * it and waits for it to finish using the VM if required.
2420 *
2421 * args->exit_signal is expected to be checked for sanity by the caller.
2422 */
2423 pid_t kernel_clone(struct kernel_clone_args *args)
2424 {
2425 u64 clone_flags = args->flags;
2426 struct completion vfork;
2427 struct pid *pid;
2428 struct task_struct *p;
2429 int trace = 0;
2430 pid_t nr;
2431
2432 /*
2433 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2434 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2435 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2436 * field in struct clone_args and it still doesn't make sense to have
2437 * them both point at the same memory location. Performing this check
2438 * here has the advantage that we don't need to have a separate helper
2439 * to check for legacy clone().
2440 */
2441 if ((args->flags & CLONE_PIDFD) &&
2442 (args->flags & CLONE_PARENT_SETTID) &&
2443 (args->pidfd == args->parent_tid))
2444 return -EINVAL;
2445
2446 /*
2447 * Determine whether and which event to report to ptracer. When
2448 * called from kernel_thread or CLONE_UNTRACED is explicitly
2449 * requested, no event is reported; otherwise, report if the event
2450 * for the type of forking is enabled.
2451 */
2452 if (!(clone_flags & CLONE_UNTRACED)) {
2453 if (clone_flags & CLONE_VFORK)
2454 trace = PTRACE_EVENT_VFORK;
2455 else if (args->exit_signal != SIGCHLD)
2456 trace = PTRACE_EVENT_CLONE;
2457 else
2458 trace = PTRACE_EVENT_FORK;
2459
2460 if (likely(!ptrace_event_enabled(current, trace)))
2461 trace = 0;
2462 }
2463
2464 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2465 add_latent_entropy();
2466
2467 if (IS_ERR(p))
2468 return PTR_ERR(p);
2469
2470 /*
2471 * Do this prior waking up the new thread - the thread pointer
2472 * might get invalid after that point, if the thread exits quickly.
2473 */
2474 trace_sched_process_fork(current, p);
2475
2476 pid = get_task_pid(p, PIDTYPE_PID);
2477 nr = pid_vnr(pid);
2478
2479 if (clone_flags & CLONE_PARENT_SETTID)
2480 put_user(nr, args->parent_tid);
2481
2482 if (clone_flags & CLONE_VFORK) {
2483 p->vfork_done = &vfork;
2484 init_completion(&vfork);
2485 get_task_struct(p);
2486 }
2487
2488 wake_up_new_task(p);
2489
2490 /* forking complete and child started to run, tell ptracer */
2491 if (unlikely(trace))
2492 ptrace_event_pid(trace, pid);
2493
2494 if (clone_flags & CLONE_VFORK) {
2495 if (!wait_for_vfork_done(p, &vfork))
2496 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2497 }
2498
2499 put_pid(pid);
2500 return nr;
2501 }
2502
2503 /*
2504 * Create a kernel thread.
2505 */
2506 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2507 {
2508 struct kernel_clone_args args = {
2509 .flags = ((lower_32_bits(flags) | CLONE_VM |
2510 CLONE_UNTRACED) & ~CSIGNAL),
2511 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2512 .stack = (unsigned long)fn,
2513 .stack_size = (unsigned long)arg,
2514 };
2515
2516 return kernel_clone(&args);
2517 }
2518
2519 #ifdef __ARCH_WANT_SYS_FORK
2520 SYSCALL_DEFINE0(fork)
2521 {
2522 #ifdef CONFIG_MMU
2523 struct kernel_clone_args args = {
2524 .exit_signal = SIGCHLD,
2525 };
2526
2527 return kernel_clone(&args);
2528 #else
2529 /* can not support in nommu mode */
2530 return -EINVAL;
2531 #endif
2532 }
2533 #endif
2534
2535 #ifdef __ARCH_WANT_SYS_VFORK
2536 SYSCALL_DEFINE0(vfork)
2537 {
2538 struct kernel_clone_args args = {
2539 .flags = CLONE_VFORK | CLONE_VM,
2540 .exit_signal = SIGCHLD,
2541 };
2542
2543 return kernel_clone(&args);
2544 }
2545 #endif
2546
2547 #ifdef __ARCH_WANT_SYS_CLONE
2548 #ifdef CONFIG_CLONE_BACKWARDS
2549 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2550 int __user *, parent_tidptr,
2551 unsigned long, tls,
2552 int __user *, child_tidptr)
2553 #elif defined(CONFIG_CLONE_BACKWARDS2)
2554 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2555 int __user *, parent_tidptr,
2556 int __user *, child_tidptr,
2557 unsigned long, tls)
2558 #elif defined(CONFIG_CLONE_BACKWARDS3)
2559 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2560 int, stack_size,
2561 int __user *, parent_tidptr,
2562 int __user *, child_tidptr,
2563 unsigned long, tls)
2564 #else
2565 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2566 int __user *, parent_tidptr,
2567 int __user *, child_tidptr,
2568 unsigned long, tls)
2569 #endif
2570 {
2571 struct kernel_clone_args args = {
2572 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2573 .pidfd = parent_tidptr,
2574 .child_tid = child_tidptr,
2575 .parent_tid = parent_tidptr,
2576 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2577 .stack = newsp,
2578 .tls = tls,
2579 };
2580
2581 return kernel_clone(&args);
2582 }
2583 #endif
2584
2585 #ifdef __ARCH_WANT_SYS_CLONE3
2586
2587 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2588 struct clone_args __user *uargs,
2589 size_t usize)
2590 {
2591 int err;
2592 struct clone_args args;
2593 pid_t *kset_tid = kargs->set_tid;
2594
2595 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2596 CLONE_ARGS_SIZE_VER0);
2597 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2598 CLONE_ARGS_SIZE_VER1);
2599 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2600 CLONE_ARGS_SIZE_VER2);
2601 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2602
2603 if (unlikely(usize > PAGE_SIZE))
2604 return -E2BIG;
2605 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2606 return -EINVAL;
2607
2608 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2609 if (err)
2610 return err;
2611
2612 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2613 return -EINVAL;
2614
2615 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2616 return -EINVAL;
2617
2618 if (unlikely(args.set_tid && args.set_tid_size == 0))
2619 return -EINVAL;
2620
2621 /*
2622 * Verify that higher 32bits of exit_signal are unset and that
2623 * it is a valid signal
2624 */
2625 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2626 !valid_signal(args.exit_signal)))
2627 return -EINVAL;
2628
2629 if ((args.flags & CLONE_INTO_CGROUP) &&
2630 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2631 return -EINVAL;
2632
2633 *kargs = (struct kernel_clone_args){
2634 .flags = args.flags,
2635 .pidfd = u64_to_user_ptr(args.pidfd),
2636 .child_tid = u64_to_user_ptr(args.child_tid),
2637 .parent_tid = u64_to_user_ptr(args.parent_tid),
2638 .exit_signal = args.exit_signal,
2639 .stack = args.stack,
2640 .stack_size = args.stack_size,
2641 .tls = args.tls,
2642 .set_tid_size = args.set_tid_size,
2643 .cgroup = args.cgroup,
2644 };
2645
2646 if (args.set_tid &&
2647 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2648 (kargs->set_tid_size * sizeof(pid_t))))
2649 return -EFAULT;
2650
2651 kargs->set_tid = kset_tid;
2652
2653 return 0;
2654 }
2655
2656 /**
2657 * clone3_stack_valid - check and prepare stack
2658 * @kargs: kernel clone args
2659 *
2660 * Verify that the stack arguments userspace gave us are sane.
2661 * In addition, set the stack direction for userspace since it's easy for us to
2662 * determine.
2663 */
2664 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2665 {
2666 if (kargs->stack == 0) {
2667 if (kargs->stack_size > 0)
2668 return false;
2669 } else {
2670 if (kargs->stack_size == 0)
2671 return false;
2672
2673 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2674 return false;
2675
2676 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2677 kargs->stack += kargs->stack_size;
2678 #endif
2679 }
2680
2681 return true;
2682 }
2683
2684 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2685 {
2686 /* Verify that no unknown flags are passed along. */
2687 if (kargs->flags &
2688 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2689 return false;
2690
2691 /*
2692 * - make the CLONE_DETACHED bit reuseable for clone3
2693 * - make the CSIGNAL bits reuseable for clone3
2694 */
2695 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2696 return false;
2697
2698 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2699 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2700 return false;
2701
2702 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2703 kargs->exit_signal)
2704 return false;
2705
2706 if (!clone3_stack_valid(kargs))
2707 return false;
2708
2709 return true;
2710 }
2711
2712 /**
2713 * clone3 - create a new process with specific properties
2714 * @uargs: argument structure
2715 * @size: size of @uargs
2716 *
2717 * clone3() is the extensible successor to clone()/clone2().
2718 * It takes a struct as argument that is versioned by its size.
2719 *
2720 * Return: On success, a positive PID for the child process.
2721 * On error, a negative errno number.
2722 */
2723 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2724 {
2725 int err;
2726
2727 struct kernel_clone_args kargs;
2728 pid_t set_tid[MAX_PID_NS_LEVEL];
2729
2730 kargs.set_tid = set_tid;
2731
2732 err = copy_clone_args_from_user(&kargs, uargs, size);
2733 if (err)
2734 return err;
2735
2736 if (!clone3_args_valid(&kargs))
2737 return -EINVAL;
2738
2739 return kernel_clone(&kargs);
2740 }
2741 #endif
2742
2743 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2744 {
2745 struct task_struct *leader, *parent, *child;
2746 int res;
2747
2748 read_lock(&tasklist_lock);
2749 leader = top = top->group_leader;
2750 down:
2751 for_each_thread(leader, parent) {
2752 list_for_each_entry(child, &parent->children, sibling) {
2753 res = visitor(child, data);
2754 if (res) {
2755 if (res < 0)
2756 goto out;
2757 leader = child;
2758 goto down;
2759 }
2760 up:
2761 ;
2762 }
2763 }
2764
2765 if (leader != top) {
2766 child = leader;
2767 parent = child->real_parent;
2768 leader = parent->group_leader;
2769 goto up;
2770 }
2771 out:
2772 read_unlock(&tasklist_lock);
2773 }
2774
2775 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2776 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2777 #endif
2778
2779 static void sighand_ctor(void *data)
2780 {
2781 struct sighand_struct *sighand = data;
2782
2783 spin_lock_init(&sighand->siglock);
2784 init_waitqueue_head(&sighand->signalfd_wqh);
2785 }
2786
2787 void __init proc_caches_init(void)
2788 {
2789 unsigned int mm_size;
2790
2791 sighand_cachep = kmem_cache_create("sighand_cache",
2792 sizeof(struct sighand_struct), 0,
2793 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2794 SLAB_ACCOUNT, sighand_ctor);
2795 signal_cachep = kmem_cache_create("signal_cache",
2796 sizeof(struct signal_struct), 0,
2797 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2798 NULL);
2799 files_cachep = kmem_cache_create("files_cache",
2800 sizeof(struct files_struct), 0,
2801 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2802 NULL);
2803 fs_cachep = kmem_cache_create("fs_cache",
2804 sizeof(struct fs_struct), 0,
2805 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2806 NULL);
2807
2808 /*
2809 * The mm_cpumask is located at the end of mm_struct, and is
2810 * dynamically sized based on the maximum CPU number this system
2811 * can have, taking hotplug into account (nr_cpu_ids).
2812 */
2813 mm_size = sizeof(struct mm_struct) + cpumask_size();
2814
2815 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2816 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2817 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2818 offsetof(struct mm_struct, saved_auxv),
2819 sizeof_field(struct mm_struct, saved_auxv),
2820 NULL);
2821 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2822 mmap_init();
2823 nsproxy_cache_init();
2824 }
2825
2826 /*
2827 * Check constraints on flags passed to the unshare system call.
2828 */
2829 static int check_unshare_flags(unsigned long unshare_flags)
2830 {
2831 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2832 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2833 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2834 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2835 CLONE_NEWTIME))
2836 return -EINVAL;
2837 /*
2838 * Not implemented, but pretend it works if there is nothing
2839 * to unshare. Note that unsharing the address space or the
2840 * signal handlers also need to unshare the signal queues (aka
2841 * CLONE_THREAD).
2842 */
2843 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2844 if (!thread_group_empty(current))
2845 return -EINVAL;
2846 }
2847 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2848 if (refcount_read(&current->sighand->count) > 1)
2849 return -EINVAL;
2850 }
2851 if (unshare_flags & CLONE_VM) {
2852 if (!current_is_single_threaded())
2853 return -EINVAL;
2854 }
2855
2856 return 0;
2857 }
2858
2859 /*
2860 * Unshare the filesystem structure if it is being shared
2861 */
2862 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2863 {
2864 struct fs_struct *fs = current->fs;
2865
2866 if (!(unshare_flags & CLONE_FS) || !fs)
2867 return 0;
2868
2869 /* don't need lock here; in the worst case we'll do useless copy */
2870 if (fs->users == 1)
2871 return 0;
2872
2873 *new_fsp = copy_fs_struct(fs);
2874 if (!*new_fsp)
2875 return -ENOMEM;
2876
2877 return 0;
2878 }
2879
2880 /*
2881 * Unshare file descriptor table if it is being shared
2882 */
2883 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2884 struct files_struct **new_fdp)
2885 {
2886 struct files_struct *fd = current->files;
2887 int error = 0;
2888
2889 if ((unshare_flags & CLONE_FILES) &&
2890 (fd && atomic_read(&fd->count) > 1)) {
2891 *new_fdp = dup_fd(fd, max_fds, &error);
2892 if (!*new_fdp)
2893 return error;
2894 }
2895
2896 return 0;
2897 }
2898
2899 /*
2900 * unshare allows a process to 'unshare' part of the process
2901 * context which was originally shared using clone. copy_*
2902 * functions used by kernel_clone() cannot be used here directly
2903 * because they modify an inactive task_struct that is being
2904 * constructed. Here we are modifying the current, active,
2905 * task_struct.
2906 */
2907 int ksys_unshare(unsigned long unshare_flags)
2908 {
2909 struct fs_struct *fs, *new_fs = NULL;
2910 struct files_struct *fd, *new_fd = NULL;
2911 struct cred *new_cred = NULL;
2912 struct nsproxy *new_nsproxy = NULL;
2913 int do_sysvsem = 0;
2914 int err;
2915
2916 /*
2917 * If unsharing a user namespace must also unshare the thread group
2918 * and unshare the filesystem root and working directories.
2919 */
2920 if (unshare_flags & CLONE_NEWUSER)
2921 unshare_flags |= CLONE_THREAD | CLONE_FS;
2922 /*
2923 * If unsharing vm, must also unshare signal handlers.
2924 */
2925 if (unshare_flags & CLONE_VM)
2926 unshare_flags |= CLONE_SIGHAND;
2927 /*
2928 * If unsharing a signal handlers, must also unshare the signal queues.
2929 */
2930 if (unshare_flags & CLONE_SIGHAND)
2931 unshare_flags |= CLONE_THREAD;
2932 /*
2933 * If unsharing namespace, must also unshare filesystem information.
2934 */
2935 if (unshare_flags & CLONE_NEWNS)
2936 unshare_flags |= CLONE_FS;
2937
2938 err = check_unshare_flags(unshare_flags);
2939 if (err)
2940 goto bad_unshare_out;
2941 /*
2942 * CLONE_NEWIPC must also detach from the undolist: after switching
2943 * to a new ipc namespace, the semaphore arrays from the old
2944 * namespace are unreachable.
2945 */
2946 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2947 do_sysvsem = 1;
2948 err = unshare_fs(unshare_flags, &new_fs);
2949 if (err)
2950 goto bad_unshare_out;
2951 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2952 if (err)
2953 goto bad_unshare_cleanup_fs;
2954 err = unshare_userns(unshare_flags, &new_cred);
2955 if (err)
2956 goto bad_unshare_cleanup_fd;
2957 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2958 new_cred, new_fs);
2959 if (err)
2960 goto bad_unshare_cleanup_cred;
2961
2962 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2963 if (do_sysvsem) {
2964 /*
2965 * CLONE_SYSVSEM is equivalent to sys_exit().
2966 */
2967 exit_sem(current);
2968 }
2969 if (unshare_flags & CLONE_NEWIPC) {
2970 /* Orphan segments in old ns (see sem above). */
2971 exit_shm(current);
2972 shm_init_task(current);
2973 }
2974
2975 if (new_nsproxy)
2976 switch_task_namespaces(current, new_nsproxy);
2977
2978 task_lock(current);
2979
2980 if (new_fs) {
2981 fs = current->fs;
2982 spin_lock(&fs->lock);
2983 current->fs = new_fs;
2984 if (--fs->users)
2985 new_fs = NULL;
2986 else
2987 new_fs = fs;
2988 spin_unlock(&fs->lock);
2989 }
2990
2991 if (new_fd) {
2992 fd = current->files;
2993 current->files = new_fd;
2994 new_fd = fd;
2995 }
2996
2997 task_unlock(current);
2998
2999 if (new_cred) {
3000 /* Install the new user namespace */
3001 commit_creds(new_cred);
3002 new_cred = NULL;
3003 }
3004 }
3005
3006 perf_event_namespaces(current);
3007
3008 bad_unshare_cleanup_cred:
3009 if (new_cred)
3010 put_cred(new_cred);
3011 bad_unshare_cleanup_fd:
3012 if (new_fd)
3013 put_files_struct(new_fd);
3014
3015 bad_unshare_cleanup_fs:
3016 if (new_fs)
3017 free_fs_struct(new_fs);
3018
3019 bad_unshare_out:
3020 return err;
3021 }
3022
3023 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3024 {
3025 return ksys_unshare(unshare_flags);
3026 }
3027
3028 /*
3029 * Helper to unshare the files of the current task.
3030 * We don't want to expose copy_files internals to
3031 * the exec layer of the kernel.
3032 */
3033
3034 int unshare_files(void)
3035 {
3036 struct task_struct *task = current;
3037 struct files_struct *old, *copy = NULL;
3038 int error;
3039
3040 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3041 if (error || !copy)
3042 return error;
3043
3044 old = task->files;
3045 task_lock(task);
3046 task->files = copy;
3047 task_unlock(task);
3048 put_files_struct(old);
3049 return 0;
3050 }
3051
3052 int sysctl_max_threads(struct ctl_table *table, int write,
3053 void *buffer, size_t *lenp, loff_t *ppos)
3054 {
3055 struct ctl_table t;
3056 int ret;
3057 int threads = max_threads;
3058 int min = 1;
3059 int max = MAX_THREADS;
3060
3061 t = *table;
3062 t.data = &threads;
3063 t.extra1 = &min;
3064 t.extra2 = &max;
3065
3066 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3067 if (ret || !write)
3068 return ret;
3069
3070 max_threads = threads;
3071
3072 return 0;
3073 }