]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/fork.c
perf/core: Fix address filter parser for multiple filters
[mirror_ubuntu-jammy-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 #ifdef CONFIG_USER_NS
112 extern int unprivileged_userns_clone;
113 #else
114 #define unprivileged_userns_clone 0
115 #endif
116
117 /*
118 * Minimum number of threads to boot the kernel
119 */
120 #define MIN_THREADS 20
121
122 /*
123 * Maximum number of threads
124 */
125 #define MAX_THREADS FUTEX_TID_MASK
126
127 /*
128 * Protected counters by write_lock_irq(&tasklist_lock)
129 */
130 unsigned long total_forks; /* Handle normal Linux uptimes. */
131 int nr_threads; /* The idle threads do not count.. */
132
133 static int max_threads; /* tunable limit on nr_threads */
134
135 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
136
137 static const char * const resident_page_types[] = {
138 NAMED_ARRAY_INDEX(MM_FILEPAGES),
139 NAMED_ARRAY_INDEX(MM_ANONPAGES),
140 NAMED_ARRAY_INDEX(MM_SWAPENTS),
141 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
142 };
143
144 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
145
146 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
147
148 #ifdef CONFIG_PROVE_RCU
149 int lockdep_tasklist_lock_is_held(void)
150 {
151 return lockdep_is_held(&tasklist_lock);
152 }
153 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
154 #endif /* #ifdef CONFIG_PROVE_RCU */
155
156 int nr_processes(void)
157 {
158 int cpu;
159 int total = 0;
160
161 for_each_possible_cpu(cpu)
162 total += per_cpu(process_counts, cpu);
163
164 return total;
165 }
166
167 void __weak arch_release_task_struct(struct task_struct *tsk)
168 {
169 }
170
171 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
172 static struct kmem_cache *task_struct_cachep;
173
174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178
179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 kmem_cache_free(task_struct_cachep, tsk);
182 }
183 #endif
184
185 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
186
187 /*
188 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189 * kmemcache based allocator.
190 */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192
193 #ifdef CONFIG_VMAP_STACK
194 /*
195 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196 * flush. Try to minimize the number of calls by caching stacks.
197 */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200
201 static int free_vm_stack_cache(unsigned int cpu)
202 {
203 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
204 int i;
205
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 struct vm_struct *vm_stack = cached_vm_stacks[i];
208
209 if (!vm_stack)
210 continue;
211
212 vfree(vm_stack->addr);
213 cached_vm_stacks[i] = NULL;
214 }
215
216 return 0;
217 }
218 #endif
219
220 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
221 {
222 #ifdef CONFIG_VMAP_STACK
223 void *stack;
224 int i;
225
226 for (i = 0; i < NR_CACHED_STACKS; i++) {
227 struct vm_struct *s;
228
229 s = this_cpu_xchg(cached_stacks[i], NULL);
230
231 if (!s)
232 continue;
233
234 /* Mark stack accessible for KASAN. */
235 kasan_unpoison_range(s->addr, THREAD_SIZE);
236
237 /* Clear stale pointers from reused stack. */
238 memset(s->addr, 0, THREAD_SIZE);
239
240 tsk->stack_vm_area = s;
241 tsk->stack = s->addr;
242 return s->addr;
243 }
244
245 /*
246 * Allocated stacks are cached and later reused by new threads,
247 * so memcg accounting is performed manually on assigning/releasing
248 * stacks to tasks. Drop __GFP_ACCOUNT.
249 */
250 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
251 VMALLOC_START, VMALLOC_END,
252 THREADINFO_GFP & ~__GFP_ACCOUNT,
253 PAGE_KERNEL,
254 0, node, __builtin_return_address(0));
255
256 /*
257 * We can't call find_vm_area() in interrupt context, and
258 * free_thread_stack() can be called in interrupt context,
259 * so cache the vm_struct.
260 */
261 if (stack) {
262 tsk->stack_vm_area = find_vm_area(stack);
263 tsk->stack = stack;
264 }
265 return stack;
266 #else
267 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
268 THREAD_SIZE_ORDER);
269
270 if (likely(page)) {
271 tsk->stack = kasan_reset_tag(page_address(page));
272 return tsk->stack;
273 }
274 return NULL;
275 #endif
276 }
277
278 static inline void free_thread_stack(struct task_struct *tsk)
279 {
280 #ifdef CONFIG_VMAP_STACK
281 struct vm_struct *vm = task_stack_vm_area(tsk);
282
283 if (vm) {
284 int i;
285
286 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
287 memcg_kmem_uncharge_page(vm->pages[i], 0);
288
289 for (i = 0; i < NR_CACHED_STACKS; i++) {
290 if (this_cpu_cmpxchg(cached_stacks[i],
291 NULL, tsk->stack_vm_area) != NULL)
292 continue;
293
294 return;
295 }
296
297 vfree_atomic(tsk->stack);
298 return;
299 }
300 #endif
301
302 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306
307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 int node)
309 {
310 unsigned long *stack;
311 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 stack = kasan_reset_tag(stack);
313 tsk->stack = stack;
314 return stack;
315 }
316
317 static void free_thread_stack(struct task_struct *tsk)
318 {
319 kmem_cache_free(thread_stack_cache, tsk->stack);
320 }
321
322 void thread_stack_cache_init(void)
323 {
324 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
325 THREAD_SIZE, THREAD_SIZE, 0, 0,
326 THREAD_SIZE, NULL);
327 BUG_ON(thread_stack_cache == NULL);
328 }
329 # endif
330 #endif
331
332 /* SLAB cache for signal_struct structures (tsk->signal) */
333 static struct kmem_cache *signal_cachep;
334
335 /* SLAB cache for sighand_struct structures (tsk->sighand) */
336 struct kmem_cache *sighand_cachep;
337
338 /* SLAB cache for files_struct structures (tsk->files) */
339 struct kmem_cache *files_cachep;
340
341 /* SLAB cache for fs_struct structures (tsk->fs) */
342 struct kmem_cache *fs_cachep;
343
344 /* SLAB cache for vm_area_struct structures */
345 static struct kmem_cache *vm_area_cachep;
346
347 /* SLAB cache for mm_struct structures (tsk->mm) */
348 static struct kmem_cache *mm_cachep;
349
350 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
351 {
352 struct vm_area_struct *vma;
353
354 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 if (vma)
356 vma_init(vma, mm);
357 return vma;
358 }
359
360 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
361 {
362 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363
364 if (new) {
365 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
366 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
367 /*
368 * orig->shared.rb may be modified concurrently, but the clone
369 * will be reinitialized.
370 */
371 *new = data_race(*orig);
372 INIT_LIST_HEAD(&new->anon_vma_chain);
373 new->vm_next = new->vm_prev = NULL;
374 }
375 return new;
376 }
377
378 void vm_area_free(struct vm_area_struct *vma)
379 {
380 kmem_cache_free(vm_area_cachep, vma);
381 }
382
383 static void account_kernel_stack(struct task_struct *tsk, int account)
384 {
385 void *stack = task_stack_page(tsk);
386 struct vm_struct *vm = task_stack_vm_area(tsk);
387
388 if (vm) {
389 int i;
390
391 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
392 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
393 account * (PAGE_SIZE / 1024));
394 } else {
395 /* All stack pages are in the same node. */
396 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
397 account * (THREAD_SIZE / 1024));
398 }
399 }
400
401 static int memcg_charge_kernel_stack(struct task_struct *tsk)
402 {
403 #ifdef CONFIG_VMAP_STACK
404 struct vm_struct *vm = task_stack_vm_area(tsk);
405 int ret;
406
407 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
408
409 if (vm) {
410 int i;
411
412 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
413
414 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
415 /*
416 * If memcg_kmem_charge_page() fails, page's
417 * memory cgroup pointer is NULL, and
418 * memcg_kmem_uncharge_page() in free_thread_stack()
419 * will ignore this page.
420 */
421 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
422 0);
423 if (ret)
424 return ret;
425 }
426 }
427 #endif
428 return 0;
429 }
430
431 static void release_task_stack(struct task_struct *tsk)
432 {
433 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
434 return; /* Better to leak the stack than to free prematurely */
435
436 account_kernel_stack(tsk, -1);
437 free_thread_stack(tsk);
438 tsk->stack = NULL;
439 #ifdef CONFIG_VMAP_STACK
440 tsk->stack_vm_area = NULL;
441 #endif
442 }
443
444 #ifdef CONFIG_THREAD_INFO_IN_TASK
445 void put_task_stack(struct task_struct *tsk)
446 {
447 if (refcount_dec_and_test(&tsk->stack_refcount))
448 release_task_stack(tsk);
449 }
450 #endif
451
452 void free_task(struct task_struct *tsk)
453 {
454 release_user_cpus_ptr(tsk);
455 scs_release(tsk);
456
457 #ifndef CONFIG_THREAD_INFO_IN_TASK
458 /*
459 * The task is finally done with both the stack and thread_info,
460 * so free both.
461 */
462 release_task_stack(tsk);
463 #else
464 /*
465 * If the task had a separate stack allocation, it should be gone
466 * by now.
467 */
468 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
469 #endif
470 rt_mutex_debug_task_free(tsk);
471 ftrace_graph_exit_task(tsk);
472 arch_release_task_struct(tsk);
473 if (tsk->flags & PF_KTHREAD)
474 free_kthread_struct(tsk);
475 free_task_struct(tsk);
476 }
477 EXPORT_SYMBOL(free_task);
478
479 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
480 {
481 struct file *exe_file;
482
483 exe_file = get_mm_exe_file(oldmm);
484 RCU_INIT_POINTER(mm->exe_file, exe_file);
485 /*
486 * We depend on the oldmm having properly denied write access to the
487 * exe_file already.
488 */
489 if (exe_file && deny_write_access(exe_file))
490 pr_warn_once("deny_write_access() failed in %s\n", __func__);
491 }
492
493 #ifdef CONFIG_MMU
494 static __latent_entropy int dup_mmap(struct mm_struct *mm,
495 struct mm_struct *oldmm)
496 {
497 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
498 struct rb_node **rb_link, *rb_parent;
499 int retval;
500 unsigned long charge;
501 LIST_HEAD(uf);
502
503 uprobe_start_dup_mmap();
504 if (mmap_write_lock_killable(oldmm)) {
505 retval = -EINTR;
506 goto fail_uprobe_end;
507 }
508 flush_cache_dup_mm(oldmm);
509 uprobe_dup_mmap(oldmm, mm);
510 /*
511 * Not linked in yet - no deadlock potential:
512 */
513 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
514
515 /* No ordering required: file already has been exposed. */
516 dup_mm_exe_file(mm, oldmm);
517
518 mm->total_vm = oldmm->total_vm;
519 mm->data_vm = oldmm->data_vm;
520 mm->exec_vm = oldmm->exec_vm;
521 mm->stack_vm = oldmm->stack_vm;
522
523 rb_link = &mm->mm_rb.rb_node;
524 rb_parent = NULL;
525 pprev = &mm->mmap;
526 retval = ksm_fork(mm, oldmm);
527 if (retval)
528 goto out;
529 retval = khugepaged_fork(mm, oldmm);
530 if (retval)
531 goto out;
532
533 prev = NULL;
534 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
535 struct file *file;
536
537 if (mpnt->vm_flags & VM_DONTCOPY) {
538 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
539 continue;
540 }
541 charge = 0;
542 /*
543 * Don't duplicate many vmas if we've been oom-killed (for
544 * example)
545 */
546 if (fatal_signal_pending(current)) {
547 retval = -EINTR;
548 goto out;
549 }
550 if (mpnt->vm_flags & VM_ACCOUNT) {
551 unsigned long len = vma_pages(mpnt);
552
553 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
554 goto fail_nomem;
555 charge = len;
556 }
557 tmp = vm_area_dup(mpnt);
558 if (!tmp)
559 goto fail_nomem;
560 retval = vma_dup_policy(mpnt, tmp);
561 if (retval)
562 goto fail_nomem_policy;
563 tmp->vm_mm = mm;
564 retval = dup_userfaultfd(tmp, &uf);
565 if (retval)
566 goto fail_nomem_anon_vma_fork;
567 if (tmp->vm_flags & VM_WIPEONFORK) {
568 /*
569 * VM_WIPEONFORK gets a clean slate in the child.
570 * Don't prepare anon_vma until fault since we don't
571 * copy page for current vma.
572 */
573 tmp->anon_vma = NULL;
574 } else if (anon_vma_fork(tmp, mpnt))
575 goto fail_nomem_anon_vma_fork;
576 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
577 file = tmp->vm_file;
578 if (file) {
579 struct address_space *mapping = file->f_mapping;
580
581 vma_get_file(tmp);
582 i_mmap_lock_write(mapping);
583 if (tmp->vm_flags & VM_SHARED)
584 mapping_allow_writable(mapping);
585 flush_dcache_mmap_lock(mapping);
586 /* insert tmp into the share list, just after mpnt */
587 vma_interval_tree_insert_after(tmp, mpnt,
588 &mapping->i_mmap);
589 flush_dcache_mmap_unlock(mapping);
590 i_mmap_unlock_write(mapping);
591 }
592
593 /*
594 * Clear hugetlb-related page reserves for children. This only
595 * affects MAP_PRIVATE mappings. Faults generated by the child
596 * are not guaranteed to succeed, even if read-only
597 */
598 if (is_vm_hugetlb_page(tmp))
599 reset_vma_resv_huge_pages(tmp);
600
601 /*
602 * Link in the new vma and copy the page table entries.
603 */
604 *pprev = tmp;
605 pprev = &tmp->vm_next;
606 tmp->vm_prev = prev;
607 prev = tmp;
608
609 __vma_link_rb(mm, tmp, rb_link, rb_parent);
610 rb_link = &tmp->vm_rb.rb_right;
611 rb_parent = &tmp->vm_rb;
612
613 mm->map_count++;
614 if (!(tmp->vm_flags & VM_WIPEONFORK))
615 retval = copy_page_range(tmp, mpnt);
616
617 if (tmp->vm_ops && tmp->vm_ops->open)
618 tmp->vm_ops->open(tmp);
619
620 if (retval)
621 goto out;
622 }
623 /* a new mm has just been created */
624 retval = arch_dup_mmap(oldmm, mm);
625 out:
626 mmap_write_unlock(mm);
627 flush_tlb_mm(oldmm);
628 mmap_write_unlock(oldmm);
629 dup_userfaultfd_complete(&uf);
630 fail_uprobe_end:
631 uprobe_end_dup_mmap();
632 return retval;
633 fail_nomem_anon_vma_fork:
634 mpol_put(vma_policy(tmp));
635 fail_nomem_policy:
636 vm_area_free(tmp);
637 fail_nomem:
638 retval = -ENOMEM;
639 vm_unacct_memory(charge);
640 goto out;
641 }
642
643 static inline int mm_alloc_pgd(struct mm_struct *mm)
644 {
645 mm->pgd = pgd_alloc(mm);
646 if (unlikely(!mm->pgd))
647 return -ENOMEM;
648 return 0;
649 }
650
651 static inline void mm_free_pgd(struct mm_struct *mm)
652 {
653 pgd_free(mm, mm->pgd);
654 }
655 #else
656 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
657 {
658 mmap_write_lock(oldmm);
659 dup_mm_exe_file(mm, oldmm);
660 mmap_write_unlock(oldmm);
661 return 0;
662 }
663 #define mm_alloc_pgd(mm) (0)
664 #define mm_free_pgd(mm)
665 #endif /* CONFIG_MMU */
666
667 static void check_mm(struct mm_struct *mm)
668 {
669 int i;
670
671 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
672 "Please make sure 'struct resident_page_types[]' is updated as well");
673
674 for (i = 0; i < NR_MM_COUNTERS; i++) {
675 long x = atomic_long_read(&mm->rss_stat.count[i]);
676
677 if (unlikely(x))
678 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
679 mm, resident_page_types[i], x);
680 }
681
682 if (mm_pgtables_bytes(mm))
683 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
684 mm_pgtables_bytes(mm));
685
686 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
687 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
688 #endif
689 }
690
691 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
692 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
693
694 /*
695 * Called when the last reference to the mm
696 * is dropped: either by a lazy thread or by
697 * mmput. Free the page directory and the mm.
698 */
699 void __mmdrop(struct mm_struct *mm)
700 {
701 BUG_ON(mm == &init_mm);
702 WARN_ON_ONCE(mm == current->mm);
703 WARN_ON_ONCE(mm == current->active_mm);
704 mm_free_pgd(mm);
705 destroy_context(mm);
706 mmu_notifier_subscriptions_destroy(mm);
707 check_mm(mm);
708 put_user_ns(mm->user_ns);
709 free_mm(mm);
710 }
711 EXPORT_SYMBOL_GPL(__mmdrop);
712
713 static void mmdrop_async_fn(struct work_struct *work)
714 {
715 struct mm_struct *mm;
716
717 mm = container_of(work, struct mm_struct, async_put_work);
718 __mmdrop(mm);
719 }
720
721 static void mmdrop_async(struct mm_struct *mm)
722 {
723 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
724 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
725 schedule_work(&mm->async_put_work);
726 }
727 }
728
729 static inline void free_signal_struct(struct signal_struct *sig)
730 {
731 taskstats_tgid_free(sig);
732 sched_autogroup_exit(sig);
733 /*
734 * __mmdrop is not safe to call from softirq context on x86 due to
735 * pgd_dtor so postpone it to the async context
736 */
737 if (sig->oom_mm)
738 mmdrop_async(sig->oom_mm);
739 kmem_cache_free(signal_cachep, sig);
740 }
741
742 static inline void put_signal_struct(struct signal_struct *sig)
743 {
744 if (refcount_dec_and_test(&sig->sigcnt))
745 free_signal_struct(sig);
746 }
747
748 void __put_task_struct(struct task_struct *tsk)
749 {
750 WARN_ON(!tsk->exit_state);
751 WARN_ON(refcount_read(&tsk->usage));
752 WARN_ON(tsk == current);
753
754 io_uring_free(tsk);
755 cgroup_free(tsk);
756 task_numa_free(tsk, true);
757 security_task_free(tsk);
758 bpf_task_storage_free(tsk);
759 exit_creds(tsk);
760 delayacct_tsk_free(tsk);
761 put_signal_struct(tsk->signal);
762 sched_core_free(tsk);
763
764 if (!profile_handoff_task(tsk))
765 free_task(tsk);
766 }
767 EXPORT_SYMBOL_GPL(__put_task_struct);
768
769 void __init __weak arch_task_cache_init(void) { }
770
771 /*
772 * set_max_threads
773 */
774 static void set_max_threads(unsigned int max_threads_suggested)
775 {
776 u64 threads;
777 unsigned long nr_pages = totalram_pages();
778
779 /*
780 * The number of threads shall be limited such that the thread
781 * structures may only consume a small part of the available memory.
782 */
783 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
784 threads = MAX_THREADS;
785 else
786 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
787 (u64) THREAD_SIZE * 8UL);
788
789 if (threads > max_threads_suggested)
790 threads = max_threads_suggested;
791
792 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
793 }
794
795 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
796 /* Initialized by the architecture: */
797 int arch_task_struct_size __read_mostly;
798 #endif
799
800 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
801 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
802 {
803 /* Fetch thread_struct whitelist for the architecture. */
804 arch_thread_struct_whitelist(offset, size);
805
806 /*
807 * Handle zero-sized whitelist or empty thread_struct, otherwise
808 * adjust offset to position of thread_struct in task_struct.
809 */
810 if (unlikely(*size == 0))
811 *offset = 0;
812 else
813 *offset += offsetof(struct task_struct, thread);
814 }
815 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
816
817 void __init fork_init(void)
818 {
819 int i;
820 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
821 #ifndef ARCH_MIN_TASKALIGN
822 #define ARCH_MIN_TASKALIGN 0
823 #endif
824 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
825 unsigned long useroffset, usersize;
826
827 /* create a slab on which task_structs can be allocated */
828 task_struct_whitelist(&useroffset, &usersize);
829 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
830 arch_task_struct_size, align,
831 SLAB_PANIC|SLAB_ACCOUNT,
832 useroffset, usersize, NULL);
833 #endif
834
835 /* do the arch specific task caches init */
836 arch_task_cache_init();
837
838 set_max_threads(MAX_THREADS);
839
840 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
841 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
842 init_task.signal->rlim[RLIMIT_SIGPENDING] =
843 init_task.signal->rlim[RLIMIT_NPROC];
844
845 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
846 init_user_ns.ucount_max[i] = max_threads/2;
847
848 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
849 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
850 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
851 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
852
853 #ifdef CONFIG_VMAP_STACK
854 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
855 NULL, free_vm_stack_cache);
856 #endif
857
858 scs_init();
859
860 lockdep_init_task(&init_task);
861 uprobes_init();
862 }
863
864 int __weak arch_dup_task_struct(struct task_struct *dst,
865 struct task_struct *src)
866 {
867 *dst = *src;
868 return 0;
869 }
870
871 void set_task_stack_end_magic(struct task_struct *tsk)
872 {
873 unsigned long *stackend;
874
875 stackend = end_of_stack(tsk);
876 *stackend = STACK_END_MAGIC; /* for overflow detection */
877 }
878
879 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
880 {
881 struct task_struct *tsk;
882 unsigned long *stack;
883 struct vm_struct *stack_vm_area __maybe_unused;
884 int err;
885
886 if (node == NUMA_NO_NODE)
887 node = tsk_fork_get_node(orig);
888 tsk = alloc_task_struct_node(node);
889 if (!tsk)
890 return NULL;
891
892 stack = alloc_thread_stack_node(tsk, node);
893 if (!stack)
894 goto free_tsk;
895
896 if (memcg_charge_kernel_stack(tsk))
897 goto free_stack;
898
899 stack_vm_area = task_stack_vm_area(tsk);
900
901 err = arch_dup_task_struct(tsk, orig);
902
903 /*
904 * arch_dup_task_struct() clobbers the stack-related fields. Make
905 * sure they're properly initialized before using any stack-related
906 * functions again.
907 */
908 tsk->stack = stack;
909 #ifdef CONFIG_VMAP_STACK
910 tsk->stack_vm_area = stack_vm_area;
911 #endif
912 #ifdef CONFIG_THREAD_INFO_IN_TASK
913 refcount_set(&tsk->stack_refcount, 1);
914 #endif
915
916 if (err)
917 goto free_stack;
918
919 err = scs_prepare(tsk, node);
920 if (err)
921 goto free_stack;
922
923 #ifdef CONFIG_SECCOMP
924 /*
925 * We must handle setting up seccomp filters once we're under
926 * the sighand lock in case orig has changed between now and
927 * then. Until then, filter must be NULL to avoid messing up
928 * the usage counts on the error path calling free_task.
929 */
930 tsk->seccomp.filter = NULL;
931 #endif
932
933 setup_thread_stack(tsk, orig);
934 clear_user_return_notifier(tsk);
935 clear_tsk_need_resched(tsk);
936 set_task_stack_end_magic(tsk);
937 clear_syscall_work_syscall_user_dispatch(tsk);
938
939 #ifdef CONFIG_STACKPROTECTOR
940 tsk->stack_canary = get_random_canary();
941 #endif
942 if (orig->cpus_ptr == &orig->cpus_mask)
943 tsk->cpus_ptr = &tsk->cpus_mask;
944 dup_user_cpus_ptr(tsk, orig, node);
945
946 /*
947 * One for the user space visible state that goes away when reaped.
948 * One for the scheduler.
949 */
950 refcount_set(&tsk->rcu_users, 2);
951 /* One for the rcu users */
952 refcount_set(&tsk->usage, 1);
953 #ifdef CONFIG_BLK_DEV_IO_TRACE
954 tsk->btrace_seq = 0;
955 #endif
956 tsk->splice_pipe = NULL;
957 tsk->task_frag.page = NULL;
958 tsk->wake_q.next = NULL;
959 tsk->pf_io_worker = NULL;
960
961 account_kernel_stack(tsk, 1);
962
963 kcov_task_init(tsk);
964 kmap_local_fork(tsk);
965
966 #ifdef CONFIG_FAULT_INJECTION
967 tsk->fail_nth = 0;
968 #endif
969
970 #ifdef CONFIG_BLK_CGROUP
971 tsk->throttle_queue = NULL;
972 tsk->use_memdelay = 0;
973 #endif
974
975 #ifdef CONFIG_MEMCG
976 tsk->active_memcg = NULL;
977 #endif
978 return tsk;
979
980 free_stack:
981 free_thread_stack(tsk);
982 free_tsk:
983 free_task_struct(tsk);
984 return NULL;
985 }
986
987 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
988
989 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
990
991 static int __init coredump_filter_setup(char *s)
992 {
993 default_dump_filter =
994 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
995 MMF_DUMP_FILTER_MASK;
996 return 1;
997 }
998
999 __setup("coredump_filter=", coredump_filter_setup);
1000
1001 #include <linux/init_task.h>
1002
1003 static void mm_init_aio(struct mm_struct *mm)
1004 {
1005 #ifdef CONFIG_AIO
1006 spin_lock_init(&mm->ioctx_lock);
1007 mm->ioctx_table = NULL;
1008 #endif
1009 }
1010
1011 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1012 struct task_struct *p)
1013 {
1014 #ifdef CONFIG_MEMCG
1015 if (mm->owner == p)
1016 WRITE_ONCE(mm->owner, NULL);
1017 #endif
1018 }
1019
1020 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1021 {
1022 #ifdef CONFIG_MEMCG
1023 mm->owner = p;
1024 #endif
1025 }
1026
1027 static void mm_init_pasid(struct mm_struct *mm)
1028 {
1029 #ifdef CONFIG_IOMMU_SUPPORT
1030 mm->pasid = INIT_PASID;
1031 #endif
1032 }
1033
1034 static void mm_init_uprobes_state(struct mm_struct *mm)
1035 {
1036 #ifdef CONFIG_UPROBES
1037 mm->uprobes_state.xol_area = NULL;
1038 #endif
1039 }
1040
1041 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1042 struct user_namespace *user_ns)
1043 {
1044 mm->mmap = NULL;
1045 mm->mm_rb = RB_ROOT;
1046 mm->vmacache_seqnum = 0;
1047 atomic_set(&mm->mm_users, 1);
1048 atomic_set(&mm->mm_count, 1);
1049 seqcount_init(&mm->write_protect_seq);
1050 mmap_init_lock(mm);
1051 INIT_LIST_HEAD(&mm->mmlist);
1052 mm->core_state = NULL;
1053 mm_pgtables_bytes_init(mm);
1054 mm->map_count = 0;
1055 mm->locked_vm = 0;
1056 atomic64_set(&mm->pinned_vm, 0);
1057 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1058 spin_lock_init(&mm->page_table_lock);
1059 spin_lock_init(&mm->arg_lock);
1060 mm_init_cpumask(mm);
1061 mm_init_aio(mm);
1062 mm_init_owner(mm, p);
1063 mm_init_pasid(mm);
1064 RCU_INIT_POINTER(mm->exe_file, NULL);
1065 mmu_notifier_subscriptions_init(mm);
1066 init_tlb_flush_pending(mm);
1067 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1068 mm->pmd_huge_pte = NULL;
1069 #endif
1070 mm_init_uprobes_state(mm);
1071 hugetlb_count_init(mm);
1072
1073 if (current->mm) {
1074 mm->flags = current->mm->flags & MMF_INIT_MASK;
1075 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1076 } else {
1077 mm->flags = default_dump_filter;
1078 mm->def_flags = 0;
1079 }
1080
1081 if (mm_alloc_pgd(mm))
1082 goto fail_nopgd;
1083
1084 if (init_new_context(p, mm))
1085 goto fail_nocontext;
1086
1087 mm->user_ns = get_user_ns(user_ns);
1088 return mm;
1089
1090 fail_nocontext:
1091 mm_free_pgd(mm);
1092 fail_nopgd:
1093 free_mm(mm);
1094 return NULL;
1095 }
1096
1097 /*
1098 * Allocate and initialize an mm_struct.
1099 */
1100 struct mm_struct *mm_alloc(void)
1101 {
1102 struct mm_struct *mm;
1103
1104 mm = allocate_mm();
1105 if (!mm)
1106 return NULL;
1107
1108 memset(mm, 0, sizeof(*mm));
1109 return mm_init(mm, current, current_user_ns());
1110 }
1111
1112 static inline void __mmput(struct mm_struct *mm)
1113 {
1114 VM_BUG_ON(atomic_read(&mm->mm_users));
1115
1116 uprobe_clear_state(mm);
1117 exit_aio(mm);
1118 ksm_exit(mm);
1119 khugepaged_exit(mm); /* must run before exit_mmap */
1120 exit_mmap(mm);
1121 mm_put_huge_zero_page(mm);
1122 set_mm_exe_file(mm, NULL);
1123 if (!list_empty(&mm->mmlist)) {
1124 spin_lock(&mmlist_lock);
1125 list_del(&mm->mmlist);
1126 spin_unlock(&mmlist_lock);
1127 }
1128 if (mm->binfmt)
1129 module_put(mm->binfmt->module);
1130 mmdrop(mm);
1131 }
1132
1133 /*
1134 * Decrement the use count and release all resources for an mm.
1135 */
1136 void mmput(struct mm_struct *mm)
1137 {
1138 might_sleep();
1139
1140 if (atomic_dec_and_test(&mm->mm_users))
1141 __mmput(mm);
1142 }
1143 EXPORT_SYMBOL_GPL(mmput);
1144
1145 #ifdef CONFIG_MMU
1146 static void mmput_async_fn(struct work_struct *work)
1147 {
1148 struct mm_struct *mm = container_of(work, struct mm_struct,
1149 async_put_work);
1150
1151 __mmput(mm);
1152 }
1153
1154 void mmput_async(struct mm_struct *mm)
1155 {
1156 if (atomic_dec_and_test(&mm->mm_users)) {
1157 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1158 schedule_work(&mm->async_put_work);
1159 }
1160 }
1161 EXPORT_SYMBOL(mmput_async);
1162 #endif
1163
1164 /**
1165 * set_mm_exe_file - change a reference to the mm's executable file
1166 *
1167 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1168 *
1169 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1170 * invocations: in mmput() nobody alive left, in execve task is single
1171 * threaded.
1172 *
1173 * Can only fail if new_exe_file != NULL.
1174 */
1175 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1176 {
1177 struct file *old_exe_file;
1178
1179 /*
1180 * It is safe to dereference the exe_file without RCU as
1181 * this function is only called if nobody else can access
1182 * this mm -- see comment above for justification.
1183 */
1184 old_exe_file = rcu_dereference_raw(mm->exe_file);
1185
1186 if (new_exe_file) {
1187 /*
1188 * We expect the caller (i.e., sys_execve) to already denied
1189 * write access, so this is unlikely to fail.
1190 */
1191 if (unlikely(deny_write_access(new_exe_file)))
1192 return -EACCES;
1193 get_file(new_exe_file);
1194 }
1195 rcu_assign_pointer(mm->exe_file, new_exe_file);
1196 if (old_exe_file) {
1197 allow_write_access(old_exe_file);
1198 fput(old_exe_file);
1199 }
1200 return 0;
1201 }
1202
1203 /**
1204 * replace_mm_exe_file - replace a reference to the mm's executable file
1205 *
1206 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1207 * dealing with concurrent invocation and without grabbing the mmap lock in
1208 * write mode.
1209 *
1210 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1211 */
1212 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1213 {
1214 struct vm_area_struct *vma;
1215 struct file *old_exe_file;
1216 int ret = 0;
1217
1218 /* Forbid mm->exe_file change if old file still mapped. */
1219 old_exe_file = get_mm_exe_file(mm);
1220 if (old_exe_file) {
1221 mmap_read_lock(mm);
1222 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1223 if (!vma->vm_file)
1224 continue;
1225 if (path_equal(&vma->vm_file->f_path,
1226 &old_exe_file->f_path))
1227 ret = -EBUSY;
1228 }
1229 mmap_read_unlock(mm);
1230 fput(old_exe_file);
1231 if (ret)
1232 return ret;
1233 }
1234
1235 /* set the new file, lockless */
1236 ret = deny_write_access(new_exe_file);
1237 if (ret)
1238 return -EACCES;
1239 get_file(new_exe_file);
1240
1241 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1242 if (old_exe_file) {
1243 /*
1244 * Don't race with dup_mmap() getting the file and disallowing
1245 * write access while someone might open the file writable.
1246 */
1247 mmap_read_lock(mm);
1248 allow_write_access(old_exe_file);
1249 fput(old_exe_file);
1250 mmap_read_unlock(mm);
1251 }
1252 return 0;
1253 }
1254
1255 /**
1256 * get_mm_exe_file - acquire a reference to the mm's executable file
1257 *
1258 * Returns %NULL if mm has no associated executable file.
1259 * User must release file via fput().
1260 */
1261 struct file *get_mm_exe_file(struct mm_struct *mm)
1262 {
1263 struct file *exe_file;
1264
1265 rcu_read_lock();
1266 exe_file = rcu_dereference(mm->exe_file);
1267 if (exe_file && !get_file_rcu(exe_file))
1268 exe_file = NULL;
1269 rcu_read_unlock();
1270 return exe_file;
1271 }
1272
1273 /**
1274 * get_task_exe_file - acquire a reference to the task's executable file
1275 *
1276 * Returns %NULL if task's mm (if any) has no associated executable file or
1277 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1278 * User must release file via fput().
1279 */
1280 struct file *get_task_exe_file(struct task_struct *task)
1281 {
1282 struct file *exe_file = NULL;
1283 struct mm_struct *mm;
1284
1285 task_lock(task);
1286 mm = task->mm;
1287 if (mm) {
1288 if (!(task->flags & PF_KTHREAD))
1289 exe_file = get_mm_exe_file(mm);
1290 }
1291 task_unlock(task);
1292 return exe_file;
1293 }
1294
1295 /**
1296 * get_task_mm - acquire a reference to the task's mm
1297 *
1298 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1299 * this kernel workthread has transiently adopted a user mm with use_mm,
1300 * to do its AIO) is not set and if so returns a reference to it, after
1301 * bumping up the use count. User must release the mm via mmput()
1302 * after use. Typically used by /proc and ptrace.
1303 */
1304 struct mm_struct *get_task_mm(struct task_struct *task)
1305 {
1306 struct mm_struct *mm;
1307
1308 task_lock(task);
1309 mm = task->mm;
1310 if (mm) {
1311 if (task->flags & PF_KTHREAD)
1312 mm = NULL;
1313 else
1314 mmget(mm);
1315 }
1316 task_unlock(task);
1317 return mm;
1318 }
1319 EXPORT_SYMBOL_GPL(get_task_mm);
1320
1321 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1322 {
1323 struct mm_struct *mm;
1324 int err;
1325
1326 err = down_read_killable(&task->signal->exec_update_lock);
1327 if (err)
1328 return ERR_PTR(err);
1329
1330 mm = get_task_mm(task);
1331 if (mm && mm != current->mm &&
1332 !ptrace_may_access(task, mode)) {
1333 mmput(mm);
1334 mm = ERR_PTR(-EACCES);
1335 }
1336 up_read(&task->signal->exec_update_lock);
1337
1338 return mm;
1339 }
1340
1341 static void complete_vfork_done(struct task_struct *tsk)
1342 {
1343 struct completion *vfork;
1344
1345 task_lock(tsk);
1346 vfork = tsk->vfork_done;
1347 if (likely(vfork)) {
1348 tsk->vfork_done = NULL;
1349 complete(vfork);
1350 }
1351 task_unlock(tsk);
1352 }
1353
1354 static int wait_for_vfork_done(struct task_struct *child,
1355 struct completion *vfork)
1356 {
1357 int killed;
1358
1359 freezer_do_not_count();
1360 cgroup_enter_frozen();
1361 killed = wait_for_completion_killable(vfork);
1362 cgroup_leave_frozen(false);
1363 freezer_count();
1364
1365 if (killed) {
1366 task_lock(child);
1367 child->vfork_done = NULL;
1368 task_unlock(child);
1369 }
1370
1371 put_task_struct(child);
1372 return killed;
1373 }
1374
1375 /* Please note the differences between mmput and mm_release.
1376 * mmput is called whenever we stop holding onto a mm_struct,
1377 * error success whatever.
1378 *
1379 * mm_release is called after a mm_struct has been removed
1380 * from the current process.
1381 *
1382 * This difference is important for error handling, when we
1383 * only half set up a mm_struct for a new process and need to restore
1384 * the old one. Because we mmput the new mm_struct before
1385 * restoring the old one. . .
1386 * Eric Biederman 10 January 1998
1387 */
1388 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1389 {
1390 uprobe_free_utask(tsk);
1391
1392 /* Get rid of any cached register state */
1393 deactivate_mm(tsk, mm);
1394
1395 /*
1396 * Signal userspace if we're not exiting with a core dump
1397 * because we want to leave the value intact for debugging
1398 * purposes.
1399 */
1400 if (tsk->clear_child_tid) {
1401 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1402 atomic_read(&mm->mm_users) > 1) {
1403 /*
1404 * We don't check the error code - if userspace has
1405 * not set up a proper pointer then tough luck.
1406 */
1407 put_user(0, tsk->clear_child_tid);
1408 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1409 1, NULL, NULL, 0, 0);
1410 }
1411 tsk->clear_child_tid = NULL;
1412 }
1413
1414 /*
1415 * All done, finally we can wake up parent and return this mm to him.
1416 * Also kthread_stop() uses this completion for synchronization.
1417 */
1418 if (tsk->vfork_done)
1419 complete_vfork_done(tsk);
1420 }
1421
1422 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1423 {
1424 futex_exit_release(tsk);
1425 mm_release(tsk, mm);
1426 }
1427
1428 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1429 {
1430 futex_exec_release(tsk);
1431 mm_release(tsk, mm);
1432 }
1433
1434 /**
1435 * dup_mm() - duplicates an existing mm structure
1436 * @tsk: the task_struct with which the new mm will be associated.
1437 * @oldmm: the mm to duplicate.
1438 *
1439 * Allocates a new mm structure and duplicates the provided @oldmm structure
1440 * content into it.
1441 *
1442 * Return: the duplicated mm or NULL on failure.
1443 */
1444 static struct mm_struct *dup_mm(struct task_struct *tsk,
1445 struct mm_struct *oldmm)
1446 {
1447 struct mm_struct *mm;
1448 int err;
1449
1450 mm = allocate_mm();
1451 if (!mm)
1452 goto fail_nomem;
1453
1454 memcpy(mm, oldmm, sizeof(*mm));
1455
1456 if (!mm_init(mm, tsk, mm->user_ns))
1457 goto fail_nomem;
1458
1459 err = dup_mmap(mm, oldmm);
1460 if (err)
1461 goto free_pt;
1462
1463 mm->hiwater_rss = get_mm_rss(mm);
1464 mm->hiwater_vm = mm->total_vm;
1465
1466 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1467 goto free_pt;
1468
1469 return mm;
1470
1471 free_pt:
1472 /* don't put binfmt in mmput, we haven't got module yet */
1473 mm->binfmt = NULL;
1474 mm_init_owner(mm, NULL);
1475 mmput(mm);
1476
1477 fail_nomem:
1478 return NULL;
1479 }
1480
1481 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1482 {
1483 struct mm_struct *mm, *oldmm;
1484
1485 tsk->min_flt = tsk->maj_flt = 0;
1486 tsk->nvcsw = tsk->nivcsw = 0;
1487 #ifdef CONFIG_DETECT_HUNG_TASK
1488 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1489 tsk->last_switch_time = 0;
1490 #endif
1491
1492 tsk->mm = NULL;
1493 tsk->active_mm = NULL;
1494
1495 /*
1496 * Are we cloning a kernel thread?
1497 *
1498 * We need to steal a active VM for that..
1499 */
1500 oldmm = current->mm;
1501 if (!oldmm)
1502 return 0;
1503
1504 /* initialize the new vmacache entries */
1505 vmacache_flush(tsk);
1506
1507 if (clone_flags & CLONE_VM) {
1508 mmget(oldmm);
1509 mm = oldmm;
1510 } else {
1511 mm = dup_mm(tsk, current->mm);
1512 if (!mm)
1513 return -ENOMEM;
1514 }
1515
1516 tsk->mm = mm;
1517 tsk->active_mm = mm;
1518 return 0;
1519 }
1520
1521 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1522 {
1523 struct fs_struct *fs = current->fs;
1524 if (clone_flags & CLONE_FS) {
1525 /* tsk->fs is already what we want */
1526 spin_lock(&fs->lock);
1527 if (fs->in_exec) {
1528 spin_unlock(&fs->lock);
1529 return -EAGAIN;
1530 }
1531 fs->users++;
1532 spin_unlock(&fs->lock);
1533 return 0;
1534 }
1535 tsk->fs = copy_fs_struct(fs);
1536 if (!tsk->fs)
1537 return -ENOMEM;
1538 return 0;
1539 }
1540
1541 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1542 {
1543 struct files_struct *oldf, *newf;
1544 int error = 0;
1545
1546 /*
1547 * A background process may not have any files ...
1548 */
1549 oldf = current->files;
1550 if (!oldf)
1551 goto out;
1552
1553 if (clone_flags & CLONE_FILES) {
1554 atomic_inc(&oldf->count);
1555 goto out;
1556 }
1557
1558 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1559 if (!newf)
1560 goto out;
1561
1562 tsk->files = newf;
1563 error = 0;
1564 out:
1565 return error;
1566 }
1567
1568 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1569 {
1570 #ifdef CONFIG_BLOCK
1571 struct io_context *ioc = current->io_context;
1572 struct io_context *new_ioc;
1573
1574 if (!ioc)
1575 return 0;
1576 /*
1577 * Share io context with parent, if CLONE_IO is set
1578 */
1579 if (clone_flags & CLONE_IO) {
1580 ioc_task_link(ioc);
1581 tsk->io_context = ioc;
1582 } else if (ioprio_valid(ioc->ioprio)) {
1583 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1584 if (unlikely(!new_ioc))
1585 return -ENOMEM;
1586
1587 new_ioc->ioprio = ioc->ioprio;
1588 put_io_context(new_ioc);
1589 }
1590 #endif
1591 return 0;
1592 }
1593
1594 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1595 {
1596 struct sighand_struct *sig;
1597
1598 if (clone_flags & CLONE_SIGHAND) {
1599 refcount_inc(&current->sighand->count);
1600 return 0;
1601 }
1602 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1603 RCU_INIT_POINTER(tsk->sighand, sig);
1604 if (!sig)
1605 return -ENOMEM;
1606
1607 refcount_set(&sig->count, 1);
1608 spin_lock_irq(&current->sighand->siglock);
1609 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1610 spin_unlock_irq(&current->sighand->siglock);
1611
1612 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1613 if (clone_flags & CLONE_CLEAR_SIGHAND)
1614 flush_signal_handlers(tsk, 0);
1615
1616 return 0;
1617 }
1618
1619 void __cleanup_sighand(struct sighand_struct *sighand)
1620 {
1621 if (refcount_dec_and_test(&sighand->count)) {
1622 signalfd_cleanup(sighand);
1623 /*
1624 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1625 * without an RCU grace period, see __lock_task_sighand().
1626 */
1627 kmem_cache_free(sighand_cachep, sighand);
1628 }
1629 }
1630
1631 /*
1632 * Initialize POSIX timer handling for a thread group.
1633 */
1634 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1635 {
1636 struct posix_cputimers *pct = &sig->posix_cputimers;
1637 unsigned long cpu_limit;
1638
1639 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1640 posix_cputimers_group_init(pct, cpu_limit);
1641 }
1642
1643 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1644 {
1645 struct signal_struct *sig;
1646
1647 if (clone_flags & CLONE_THREAD)
1648 return 0;
1649
1650 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1651 tsk->signal = sig;
1652 if (!sig)
1653 return -ENOMEM;
1654
1655 sig->nr_threads = 1;
1656 atomic_set(&sig->live, 1);
1657 refcount_set(&sig->sigcnt, 1);
1658
1659 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1660 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1661 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1662
1663 init_waitqueue_head(&sig->wait_chldexit);
1664 sig->curr_target = tsk;
1665 init_sigpending(&sig->shared_pending);
1666 INIT_HLIST_HEAD(&sig->multiprocess);
1667 seqlock_init(&sig->stats_lock);
1668 prev_cputime_init(&sig->prev_cputime);
1669
1670 #ifdef CONFIG_POSIX_TIMERS
1671 INIT_LIST_HEAD(&sig->posix_timers);
1672 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1673 sig->real_timer.function = it_real_fn;
1674 #endif
1675
1676 task_lock(current->group_leader);
1677 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1678 task_unlock(current->group_leader);
1679
1680 posix_cpu_timers_init_group(sig);
1681
1682 tty_audit_fork(sig);
1683 sched_autogroup_fork(sig);
1684
1685 sig->oom_score_adj = current->signal->oom_score_adj;
1686 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1687
1688 mutex_init(&sig->cred_guard_mutex);
1689 init_rwsem(&sig->exec_update_lock);
1690
1691 return 0;
1692 }
1693
1694 static void copy_seccomp(struct task_struct *p)
1695 {
1696 #ifdef CONFIG_SECCOMP
1697 /*
1698 * Must be called with sighand->lock held, which is common to
1699 * all threads in the group. Holding cred_guard_mutex is not
1700 * needed because this new task is not yet running and cannot
1701 * be racing exec.
1702 */
1703 assert_spin_locked(&current->sighand->siglock);
1704
1705 /* Ref-count the new filter user, and assign it. */
1706 get_seccomp_filter(current);
1707 p->seccomp = current->seccomp;
1708
1709 /*
1710 * Explicitly enable no_new_privs here in case it got set
1711 * between the task_struct being duplicated and holding the
1712 * sighand lock. The seccomp state and nnp must be in sync.
1713 */
1714 if (task_no_new_privs(current))
1715 task_set_no_new_privs(p);
1716
1717 /*
1718 * If the parent gained a seccomp mode after copying thread
1719 * flags and between before we held the sighand lock, we have
1720 * to manually enable the seccomp thread flag here.
1721 */
1722 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1723 set_task_syscall_work(p, SECCOMP);
1724 #endif
1725 }
1726
1727 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1728 {
1729 current->clear_child_tid = tidptr;
1730
1731 return task_pid_vnr(current);
1732 }
1733
1734 static void rt_mutex_init_task(struct task_struct *p)
1735 {
1736 raw_spin_lock_init(&p->pi_lock);
1737 #ifdef CONFIG_RT_MUTEXES
1738 p->pi_waiters = RB_ROOT_CACHED;
1739 p->pi_top_task = NULL;
1740 p->pi_blocked_on = NULL;
1741 #endif
1742 }
1743
1744 static inline void init_task_pid_links(struct task_struct *task)
1745 {
1746 enum pid_type type;
1747
1748 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1749 INIT_HLIST_NODE(&task->pid_links[type]);
1750 }
1751
1752 static inline void
1753 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1754 {
1755 if (type == PIDTYPE_PID)
1756 task->thread_pid = pid;
1757 else
1758 task->signal->pids[type] = pid;
1759 }
1760
1761 static inline void rcu_copy_process(struct task_struct *p)
1762 {
1763 #ifdef CONFIG_PREEMPT_RCU
1764 p->rcu_read_lock_nesting = 0;
1765 p->rcu_read_unlock_special.s = 0;
1766 p->rcu_blocked_node = NULL;
1767 INIT_LIST_HEAD(&p->rcu_node_entry);
1768 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1769 #ifdef CONFIG_TASKS_RCU
1770 p->rcu_tasks_holdout = false;
1771 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1772 p->rcu_tasks_idle_cpu = -1;
1773 #endif /* #ifdef CONFIG_TASKS_RCU */
1774 #ifdef CONFIG_TASKS_TRACE_RCU
1775 p->trc_reader_nesting = 0;
1776 p->trc_reader_special.s = 0;
1777 INIT_LIST_HEAD(&p->trc_holdout_list);
1778 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1779 }
1780
1781 struct pid *pidfd_pid(const struct file *file)
1782 {
1783 if (file->f_op == &pidfd_fops)
1784 return file->private_data;
1785
1786 return ERR_PTR(-EBADF);
1787 }
1788
1789 static int pidfd_release(struct inode *inode, struct file *file)
1790 {
1791 struct pid *pid = file->private_data;
1792
1793 file->private_data = NULL;
1794 put_pid(pid);
1795 return 0;
1796 }
1797
1798 #ifdef CONFIG_PROC_FS
1799 /**
1800 * pidfd_show_fdinfo - print information about a pidfd
1801 * @m: proc fdinfo file
1802 * @f: file referencing a pidfd
1803 *
1804 * Pid:
1805 * This function will print the pid that a given pidfd refers to in the
1806 * pid namespace of the procfs instance.
1807 * If the pid namespace of the process is not a descendant of the pid
1808 * namespace of the procfs instance 0 will be shown as its pid. This is
1809 * similar to calling getppid() on a process whose parent is outside of
1810 * its pid namespace.
1811 *
1812 * NSpid:
1813 * If pid namespaces are supported then this function will also print
1814 * the pid of a given pidfd refers to for all descendant pid namespaces
1815 * starting from the current pid namespace of the instance, i.e. the
1816 * Pid field and the first entry in the NSpid field will be identical.
1817 * If the pid namespace of the process is not a descendant of the pid
1818 * namespace of the procfs instance 0 will be shown as its first NSpid
1819 * entry and no others will be shown.
1820 * Note that this differs from the Pid and NSpid fields in
1821 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1822 * the pid namespace of the procfs instance. The difference becomes
1823 * obvious when sending around a pidfd between pid namespaces from a
1824 * different branch of the tree, i.e. where no ancestral relation is
1825 * present between the pid namespaces:
1826 * - create two new pid namespaces ns1 and ns2 in the initial pid
1827 * namespace (also take care to create new mount namespaces in the
1828 * new pid namespace and mount procfs)
1829 * - create a process with a pidfd in ns1
1830 * - send pidfd from ns1 to ns2
1831 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1832 * have exactly one entry, which is 0
1833 */
1834 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1835 {
1836 struct pid *pid = f->private_data;
1837 struct pid_namespace *ns;
1838 pid_t nr = -1;
1839
1840 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1841 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1842 nr = pid_nr_ns(pid, ns);
1843 }
1844
1845 seq_put_decimal_ll(m, "Pid:\t", nr);
1846
1847 #ifdef CONFIG_PID_NS
1848 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1849 if (nr > 0) {
1850 int i;
1851
1852 /* If nr is non-zero it means that 'pid' is valid and that
1853 * ns, i.e. the pid namespace associated with the procfs
1854 * instance, is in the pid namespace hierarchy of pid.
1855 * Start at one below the already printed level.
1856 */
1857 for (i = ns->level + 1; i <= pid->level; i++)
1858 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1859 }
1860 #endif
1861 seq_putc(m, '\n');
1862 }
1863 #endif
1864
1865 /*
1866 * Poll support for process exit notification.
1867 */
1868 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1869 {
1870 struct pid *pid = file->private_data;
1871 __poll_t poll_flags = 0;
1872
1873 poll_wait(file, &pid->wait_pidfd, pts);
1874
1875 /*
1876 * Inform pollers only when the whole thread group exits.
1877 * If the thread group leader exits before all other threads in the
1878 * group, then poll(2) should block, similar to the wait(2) family.
1879 */
1880 if (thread_group_exited(pid))
1881 poll_flags = EPOLLIN | EPOLLRDNORM;
1882
1883 return poll_flags;
1884 }
1885
1886 const struct file_operations pidfd_fops = {
1887 .release = pidfd_release,
1888 .poll = pidfd_poll,
1889 #ifdef CONFIG_PROC_FS
1890 .show_fdinfo = pidfd_show_fdinfo,
1891 #endif
1892 };
1893
1894 static void __delayed_free_task(struct rcu_head *rhp)
1895 {
1896 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1897
1898 free_task(tsk);
1899 }
1900
1901 static __always_inline void delayed_free_task(struct task_struct *tsk)
1902 {
1903 if (IS_ENABLED(CONFIG_MEMCG))
1904 call_rcu(&tsk->rcu, __delayed_free_task);
1905 else
1906 free_task(tsk);
1907 }
1908
1909 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1910 {
1911 /* Skip if kernel thread */
1912 if (!tsk->mm)
1913 return;
1914
1915 /* Skip if spawning a thread or using vfork */
1916 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1917 return;
1918
1919 /* We need to synchronize with __set_oom_adj */
1920 mutex_lock(&oom_adj_mutex);
1921 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1922 /* Update the values in case they were changed after copy_signal */
1923 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1924 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1925 mutex_unlock(&oom_adj_mutex);
1926 }
1927
1928 /*
1929 * This creates a new process as a copy of the old one,
1930 * but does not actually start it yet.
1931 *
1932 * It copies the registers, and all the appropriate
1933 * parts of the process environment (as per the clone
1934 * flags). The actual kick-off is left to the caller.
1935 */
1936 static __latent_entropy struct task_struct *copy_process(
1937 struct pid *pid,
1938 int trace,
1939 int node,
1940 struct kernel_clone_args *args)
1941 {
1942 int pidfd = -1, retval;
1943 struct task_struct *p;
1944 struct multiprocess_signals delayed;
1945 struct file *pidfile = NULL;
1946 u64 clone_flags = args->flags;
1947 struct nsproxy *nsp = current->nsproxy;
1948
1949 /*
1950 * Don't allow sharing the root directory with processes in a different
1951 * namespace
1952 */
1953 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1954 return ERR_PTR(-EINVAL);
1955
1956 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1957 return ERR_PTR(-EINVAL);
1958
1959 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1960 if (!capable(CAP_SYS_ADMIN))
1961 return ERR_PTR(-EPERM);
1962
1963 /*
1964 * Thread groups must share signals as well, and detached threads
1965 * can only be started up within the thread group.
1966 */
1967 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1968 return ERR_PTR(-EINVAL);
1969
1970 /*
1971 * Shared signal handlers imply shared VM. By way of the above,
1972 * thread groups also imply shared VM. Blocking this case allows
1973 * for various simplifications in other code.
1974 */
1975 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1976 return ERR_PTR(-EINVAL);
1977
1978 /*
1979 * Siblings of global init remain as zombies on exit since they are
1980 * not reaped by their parent (swapper). To solve this and to avoid
1981 * multi-rooted process trees, prevent global and container-inits
1982 * from creating siblings.
1983 */
1984 if ((clone_flags & CLONE_PARENT) &&
1985 current->signal->flags & SIGNAL_UNKILLABLE)
1986 return ERR_PTR(-EINVAL);
1987
1988 /*
1989 * If the new process will be in a different pid or user namespace
1990 * do not allow it to share a thread group with the forking task.
1991 */
1992 if (clone_flags & CLONE_THREAD) {
1993 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1994 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1995 return ERR_PTR(-EINVAL);
1996 }
1997
1998 /*
1999 * If the new process will be in a different time namespace
2000 * do not allow it to share VM or a thread group with the forking task.
2001 */
2002 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2003 if (nsp->time_ns != nsp->time_ns_for_children)
2004 return ERR_PTR(-EINVAL);
2005 }
2006
2007 if (clone_flags & CLONE_PIDFD) {
2008 /*
2009 * - CLONE_DETACHED is blocked so that we can potentially
2010 * reuse it later for CLONE_PIDFD.
2011 * - CLONE_THREAD is blocked until someone really needs it.
2012 */
2013 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2014 return ERR_PTR(-EINVAL);
2015 }
2016
2017 /*
2018 * Force any signals received before this point to be delivered
2019 * before the fork happens. Collect up signals sent to multiple
2020 * processes that happen during the fork and delay them so that
2021 * they appear to happen after the fork.
2022 */
2023 sigemptyset(&delayed.signal);
2024 INIT_HLIST_NODE(&delayed.node);
2025
2026 spin_lock_irq(&current->sighand->siglock);
2027 if (!(clone_flags & CLONE_THREAD))
2028 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2029 recalc_sigpending();
2030 spin_unlock_irq(&current->sighand->siglock);
2031 retval = -ERESTARTNOINTR;
2032 if (task_sigpending(current))
2033 goto fork_out;
2034
2035 retval = -ENOMEM;
2036 p = dup_task_struct(current, node);
2037 if (!p)
2038 goto fork_out;
2039 if (args->io_thread) {
2040 /*
2041 * Mark us an IO worker, and block any signal that isn't
2042 * fatal or STOP
2043 */
2044 p->flags |= PF_IO_WORKER;
2045 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2046 }
2047
2048 /*
2049 * This _must_ happen before we call free_task(), i.e. before we jump
2050 * to any of the bad_fork_* labels. This is to avoid freeing
2051 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2052 * kernel threads (PF_KTHREAD).
2053 */
2054 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2055 /*
2056 * Clear TID on mm_release()?
2057 */
2058 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2059
2060 ftrace_graph_init_task(p);
2061
2062 rt_mutex_init_task(p);
2063
2064 lockdep_assert_irqs_enabled();
2065 #ifdef CONFIG_PROVE_LOCKING
2066 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2067 #endif
2068 retval = copy_creds(p, clone_flags);
2069 if (retval < 0)
2070 goto bad_fork_free;
2071
2072 retval = -EAGAIN;
2073 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2074 if (p->real_cred->user != INIT_USER &&
2075 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2076 goto bad_fork_cleanup_count;
2077 }
2078 current->flags &= ~PF_NPROC_EXCEEDED;
2079
2080 /*
2081 * If multiple threads are within copy_process(), then this check
2082 * triggers too late. This doesn't hurt, the check is only there
2083 * to stop root fork bombs.
2084 */
2085 retval = -EAGAIN;
2086 if (data_race(nr_threads >= max_threads))
2087 goto bad_fork_cleanup_count;
2088
2089 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2090 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2091 p->flags |= PF_FORKNOEXEC;
2092 INIT_LIST_HEAD(&p->children);
2093 INIT_LIST_HEAD(&p->sibling);
2094 rcu_copy_process(p);
2095 p->vfork_done = NULL;
2096 spin_lock_init(&p->alloc_lock);
2097
2098 init_sigpending(&p->pending);
2099
2100 p->utime = p->stime = p->gtime = 0;
2101 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2102 p->utimescaled = p->stimescaled = 0;
2103 #endif
2104 prev_cputime_init(&p->prev_cputime);
2105
2106 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2107 seqcount_init(&p->vtime.seqcount);
2108 p->vtime.starttime = 0;
2109 p->vtime.state = VTIME_INACTIVE;
2110 #endif
2111
2112 #ifdef CONFIG_IO_URING
2113 p->io_uring = NULL;
2114 #endif
2115
2116 #if defined(SPLIT_RSS_COUNTING)
2117 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2118 #endif
2119
2120 p->default_timer_slack_ns = current->timer_slack_ns;
2121
2122 #ifdef CONFIG_PSI
2123 p->psi_flags = 0;
2124 #endif
2125
2126 task_io_accounting_init(&p->ioac);
2127 acct_clear_integrals(p);
2128
2129 posix_cputimers_init(&p->posix_cputimers);
2130
2131 p->io_context = NULL;
2132 audit_set_context(p, NULL);
2133 cgroup_fork(p);
2134 #ifdef CONFIG_NUMA
2135 p->mempolicy = mpol_dup(p->mempolicy);
2136 if (IS_ERR(p->mempolicy)) {
2137 retval = PTR_ERR(p->mempolicy);
2138 p->mempolicy = NULL;
2139 goto bad_fork_cleanup_threadgroup_lock;
2140 }
2141 #endif
2142 #ifdef CONFIG_CPUSETS
2143 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2144 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2145 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2146 #endif
2147 #ifdef CONFIG_TRACE_IRQFLAGS
2148 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2149 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2150 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2151 p->softirqs_enabled = 1;
2152 p->softirq_context = 0;
2153 #endif
2154
2155 p->pagefault_disabled = 0;
2156
2157 #ifdef CONFIG_LOCKDEP
2158 lockdep_init_task(p);
2159 #endif
2160
2161 #ifdef CONFIG_DEBUG_MUTEXES
2162 p->blocked_on = NULL; /* not blocked yet */
2163 #endif
2164 #ifdef CONFIG_BCACHE
2165 p->sequential_io = 0;
2166 p->sequential_io_avg = 0;
2167 #endif
2168 #ifdef CONFIG_BPF_SYSCALL
2169 RCU_INIT_POINTER(p->bpf_storage, NULL);
2170 p->bpf_ctx = NULL;
2171 #endif
2172
2173 /* Perform scheduler related setup. Assign this task to a CPU. */
2174 retval = sched_fork(clone_flags, p);
2175 if (retval)
2176 goto bad_fork_cleanup_policy;
2177
2178 retval = perf_event_init_task(p, clone_flags);
2179 if (retval)
2180 goto bad_fork_cleanup_policy;
2181 retval = audit_alloc(p);
2182 if (retval)
2183 goto bad_fork_cleanup_perf;
2184 /* copy all the process information */
2185 shm_init_task(p);
2186 retval = security_task_alloc(p, clone_flags);
2187 if (retval)
2188 goto bad_fork_cleanup_audit;
2189 retval = copy_semundo(clone_flags, p);
2190 if (retval)
2191 goto bad_fork_cleanup_security;
2192 retval = copy_files(clone_flags, p);
2193 if (retval)
2194 goto bad_fork_cleanup_semundo;
2195 retval = copy_fs(clone_flags, p);
2196 if (retval)
2197 goto bad_fork_cleanup_files;
2198 retval = copy_sighand(clone_flags, p);
2199 if (retval)
2200 goto bad_fork_cleanup_fs;
2201 retval = copy_signal(clone_flags, p);
2202 if (retval)
2203 goto bad_fork_cleanup_sighand;
2204 retval = copy_mm(clone_flags, p);
2205 if (retval)
2206 goto bad_fork_cleanup_signal;
2207 retval = copy_namespaces(clone_flags, p);
2208 if (retval)
2209 goto bad_fork_cleanup_mm;
2210 retval = copy_io(clone_flags, p);
2211 if (retval)
2212 goto bad_fork_cleanup_namespaces;
2213 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2214 if (retval)
2215 goto bad_fork_cleanup_io;
2216
2217 stackleak_task_init(p);
2218
2219 if (pid != &init_struct_pid) {
2220 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2221 args->set_tid_size);
2222 if (IS_ERR(pid)) {
2223 retval = PTR_ERR(pid);
2224 goto bad_fork_cleanup_thread;
2225 }
2226 }
2227
2228 /*
2229 * This has to happen after we've potentially unshared the file
2230 * descriptor table (so that the pidfd doesn't leak into the child
2231 * if the fd table isn't shared).
2232 */
2233 if (clone_flags & CLONE_PIDFD) {
2234 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2235 if (retval < 0)
2236 goto bad_fork_free_pid;
2237
2238 pidfd = retval;
2239
2240 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2241 O_RDWR | O_CLOEXEC);
2242 if (IS_ERR(pidfile)) {
2243 put_unused_fd(pidfd);
2244 retval = PTR_ERR(pidfile);
2245 goto bad_fork_free_pid;
2246 }
2247 get_pid(pid); /* held by pidfile now */
2248
2249 retval = put_user(pidfd, args->pidfd);
2250 if (retval)
2251 goto bad_fork_put_pidfd;
2252 }
2253
2254 #ifdef CONFIG_BLOCK
2255 p->plug = NULL;
2256 #endif
2257 futex_init_task(p);
2258
2259 /*
2260 * sigaltstack should be cleared when sharing the same VM
2261 */
2262 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2263 sas_ss_reset(p);
2264
2265 /*
2266 * Syscall tracing and stepping should be turned off in the
2267 * child regardless of CLONE_PTRACE.
2268 */
2269 user_disable_single_step(p);
2270 clear_task_syscall_work(p, SYSCALL_TRACE);
2271 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2272 clear_task_syscall_work(p, SYSCALL_EMU);
2273 #endif
2274 clear_tsk_latency_tracing(p);
2275
2276 /* ok, now we should be set up.. */
2277 p->pid = pid_nr(pid);
2278 if (clone_flags & CLONE_THREAD) {
2279 p->group_leader = current->group_leader;
2280 p->tgid = current->tgid;
2281 } else {
2282 p->group_leader = p;
2283 p->tgid = p->pid;
2284 }
2285
2286 p->nr_dirtied = 0;
2287 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2288 p->dirty_paused_when = 0;
2289
2290 p->pdeath_signal = 0;
2291 INIT_LIST_HEAD(&p->thread_group);
2292 p->task_works = NULL;
2293 clear_posix_cputimers_work(p);
2294
2295 #ifdef CONFIG_KRETPROBES
2296 p->kretprobe_instances.first = NULL;
2297 #endif
2298
2299 /*
2300 * Ensure that the cgroup subsystem policies allow the new process to be
2301 * forked. It should be noted that the new process's css_set can be changed
2302 * between here and cgroup_post_fork() if an organisation operation is in
2303 * progress.
2304 */
2305 retval = cgroup_can_fork(p, args);
2306 if (retval)
2307 goto bad_fork_put_pidfd;
2308
2309 /*
2310 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2311 * the new task on the correct runqueue. All this *before* the task
2312 * becomes visible.
2313 *
2314 * This isn't part of ->can_fork() because while the re-cloning is
2315 * cgroup specific, it unconditionally needs to place the task on a
2316 * runqueue.
2317 */
2318 sched_cgroup_fork(p, args);
2319
2320 /*
2321 * From this point on we must avoid any synchronous user-space
2322 * communication until we take the tasklist-lock. In particular, we do
2323 * not want user-space to be able to predict the process start-time by
2324 * stalling fork(2) after we recorded the start_time but before it is
2325 * visible to the system.
2326 */
2327
2328 p->start_time = ktime_get_ns();
2329 p->start_boottime = ktime_get_boottime_ns();
2330
2331 /*
2332 * Make it visible to the rest of the system, but dont wake it up yet.
2333 * Need tasklist lock for parent etc handling!
2334 */
2335 write_lock_irq(&tasklist_lock);
2336
2337 /* CLONE_PARENT re-uses the old parent */
2338 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2339 p->real_parent = current->real_parent;
2340 p->parent_exec_id = current->parent_exec_id;
2341 if (clone_flags & CLONE_THREAD)
2342 p->exit_signal = -1;
2343 else
2344 p->exit_signal = current->group_leader->exit_signal;
2345 } else {
2346 p->real_parent = current;
2347 p->parent_exec_id = current->self_exec_id;
2348 p->exit_signal = args->exit_signal;
2349 }
2350
2351 klp_copy_process(p);
2352
2353 sched_core_fork(p);
2354
2355 spin_lock(&current->sighand->siglock);
2356
2357 /*
2358 * Copy seccomp details explicitly here, in case they were changed
2359 * before holding sighand lock.
2360 */
2361 copy_seccomp(p);
2362
2363 rseq_fork(p, clone_flags);
2364
2365 /* Don't start children in a dying pid namespace */
2366 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2367 retval = -ENOMEM;
2368 goto bad_fork_cancel_cgroup;
2369 }
2370
2371 /* Let kill terminate clone/fork in the middle */
2372 if (fatal_signal_pending(current)) {
2373 retval = -EINTR;
2374 goto bad_fork_cancel_cgroup;
2375 }
2376
2377 init_task_pid_links(p);
2378 if (likely(p->pid)) {
2379 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2380
2381 init_task_pid(p, PIDTYPE_PID, pid);
2382 if (thread_group_leader(p)) {
2383 init_task_pid(p, PIDTYPE_TGID, pid);
2384 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2385 init_task_pid(p, PIDTYPE_SID, task_session(current));
2386
2387 if (is_child_reaper(pid)) {
2388 ns_of_pid(pid)->child_reaper = p;
2389 p->signal->flags |= SIGNAL_UNKILLABLE;
2390 }
2391 p->signal->shared_pending.signal = delayed.signal;
2392 p->signal->tty = tty_kref_get(current->signal->tty);
2393 /*
2394 * Inherit has_child_subreaper flag under the same
2395 * tasklist_lock with adding child to the process tree
2396 * for propagate_has_child_subreaper optimization.
2397 */
2398 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2399 p->real_parent->signal->is_child_subreaper;
2400 list_add_tail(&p->sibling, &p->real_parent->children);
2401 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2402 attach_pid(p, PIDTYPE_TGID);
2403 attach_pid(p, PIDTYPE_PGID);
2404 attach_pid(p, PIDTYPE_SID);
2405 __this_cpu_inc(process_counts);
2406 } else {
2407 current->signal->nr_threads++;
2408 atomic_inc(&current->signal->live);
2409 refcount_inc(&current->signal->sigcnt);
2410 task_join_group_stop(p);
2411 list_add_tail_rcu(&p->thread_group,
2412 &p->group_leader->thread_group);
2413 list_add_tail_rcu(&p->thread_node,
2414 &p->signal->thread_head);
2415 }
2416 attach_pid(p, PIDTYPE_PID);
2417 nr_threads++;
2418 }
2419 total_forks++;
2420 hlist_del_init(&delayed.node);
2421 spin_unlock(&current->sighand->siglock);
2422 syscall_tracepoint_update(p);
2423 write_unlock_irq(&tasklist_lock);
2424
2425 if (pidfile)
2426 fd_install(pidfd, pidfile);
2427
2428 proc_fork_connector(p);
2429 sched_post_fork(p);
2430 cgroup_post_fork(p, args);
2431 perf_event_fork(p);
2432
2433 trace_task_newtask(p, clone_flags);
2434 uprobe_copy_process(p, clone_flags);
2435
2436 copy_oom_score_adj(clone_flags, p);
2437
2438 return p;
2439
2440 bad_fork_cancel_cgroup:
2441 sched_core_free(p);
2442 spin_unlock(&current->sighand->siglock);
2443 write_unlock_irq(&tasklist_lock);
2444 cgroup_cancel_fork(p, args);
2445 bad_fork_put_pidfd:
2446 if (clone_flags & CLONE_PIDFD) {
2447 fput(pidfile);
2448 put_unused_fd(pidfd);
2449 }
2450 bad_fork_free_pid:
2451 if (pid != &init_struct_pid)
2452 free_pid(pid);
2453 bad_fork_cleanup_thread:
2454 exit_thread(p);
2455 bad_fork_cleanup_io:
2456 if (p->io_context)
2457 exit_io_context(p);
2458 bad_fork_cleanup_namespaces:
2459 exit_task_namespaces(p);
2460 bad_fork_cleanup_mm:
2461 if (p->mm) {
2462 mm_clear_owner(p->mm, p);
2463 mmput(p->mm);
2464 }
2465 bad_fork_cleanup_signal:
2466 if (!(clone_flags & CLONE_THREAD))
2467 free_signal_struct(p->signal);
2468 bad_fork_cleanup_sighand:
2469 __cleanup_sighand(p->sighand);
2470 bad_fork_cleanup_fs:
2471 exit_fs(p); /* blocking */
2472 bad_fork_cleanup_files:
2473 exit_files(p); /* blocking */
2474 bad_fork_cleanup_semundo:
2475 exit_sem(p);
2476 bad_fork_cleanup_security:
2477 security_task_free(p);
2478 bad_fork_cleanup_audit:
2479 audit_free(p);
2480 bad_fork_cleanup_perf:
2481 perf_event_free_task(p);
2482 bad_fork_cleanup_policy:
2483 lockdep_free_task(p);
2484 #ifdef CONFIG_NUMA
2485 mpol_put(p->mempolicy);
2486 bad_fork_cleanup_threadgroup_lock:
2487 #endif
2488 delayacct_tsk_free(p);
2489 bad_fork_cleanup_count:
2490 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2491 exit_creds(p);
2492 bad_fork_free:
2493 WRITE_ONCE(p->__state, TASK_DEAD);
2494 put_task_stack(p);
2495 delayed_free_task(p);
2496 fork_out:
2497 spin_lock_irq(&current->sighand->siglock);
2498 hlist_del_init(&delayed.node);
2499 spin_unlock_irq(&current->sighand->siglock);
2500 return ERR_PTR(retval);
2501 }
2502
2503 static inline void init_idle_pids(struct task_struct *idle)
2504 {
2505 enum pid_type type;
2506
2507 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2508 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2509 init_task_pid(idle, type, &init_struct_pid);
2510 }
2511 }
2512
2513 struct task_struct * __init fork_idle(int cpu)
2514 {
2515 struct task_struct *task;
2516 struct kernel_clone_args args = {
2517 .flags = CLONE_VM,
2518 };
2519
2520 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2521 if (!IS_ERR(task)) {
2522 init_idle_pids(task);
2523 init_idle(task, cpu);
2524 }
2525
2526 return task;
2527 }
2528
2529 struct mm_struct *copy_init_mm(void)
2530 {
2531 return dup_mm(NULL, &init_mm);
2532 }
2533
2534 /*
2535 * This is like kernel_clone(), but shaved down and tailored to just
2536 * creating io_uring workers. It returns a created task, or an error pointer.
2537 * The returned task is inactive, and the caller must fire it up through
2538 * wake_up_new_task(p). All signals are blocked in the created task.
2539 */
2540 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2541 {
2542 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2543 CLONE_IO;
2544 struct kernel_clone_args args = {
2545 .flags = ((lower_32_bits(flags) | CLONE_VM |
2546 CLONE_UNTRACED) & ~CSIGNAL),
2547 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2548 .stack = (unsigned long)fn,
2549 .stack_size = (unsigned long)arg,
2550 .io_thread = 1,
2551 };
2552
2553 return copy_process(NULL, 0, node, &args);
2554 }
2555
2556 /*
2557 * Ok, this is the main fork-routine.
2558 *
2559 * It copies the process, and if successful kick-starts
2560 * it and waits for it to finish using the VM if required.
2561 *
2562 * args->exit_signal is expected to be checked for sanity by the caller.
2563 */
2564 pid_t kernel_clone(struct kernel_clone_args *args)
2565 {
2566 u64 clone_flags = args->flags;
2567 struct completion vfork;
2568 struct pid *pid;
2569 struct task_struct *p;
2570 int trace = 0;
2571 pid_t nr;
2572
2573 /*
2574 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2575 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2576 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2577 * field in struct clone_args and it still doesn't make sense to have
2578 * them both point at the same memory location. Performing this check
2579 * here has the advantage that we don't need to have a separate helper
2580 * to check for legacy clone().
2581 */
2582 if ((args->flags & CLONE_PIDFD) &&
2583 (args->flags & CLONE_PARENT_SETTID) &&
2584 (args->pidfd == args->parent_tid))
2585 return -EINVAL;
2586
2587 /*
2588 * Determine whether and which event to report to ptracer. When
2589 * called from kernel_thread or CLONE_UNTRACED is explicitly
2590 * requested, no event is reported; otherwise, report if the event
2591 * for the type of forking is enabled.
2592 */
2593 if (!(clone_flags & CLONE_UNTRACED)) {
2594 if (clone_flags & CLONE_VFORK)
2595 trace = PTRACE_EVENT_VFORK;
2596 else if (args->exit_signal != SIGCHLD)
2597 trace = PTRACE_EVENT_CLONE;
2598 else
2599 trace = PTRACE_EVENT_FORK;
2600
2601 if (likely(!ptrace_event_enabled(current, trace)))
2602 trace = 0;
2603 }
2604
2605 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2606 add_latent_entropy();
2607
2608 if (IS_ERR(p))
2609 return PTR_ERR(p);
2610
2611 /*
2612 * Do this prior waking up the new thread - the thread pointer
2613 * might get invalid after that point, if the thread exits quickly.
2614 */
2615 trace_sched_process_fork(current, p);
2616
2617 pid = get_task_pid(p, PIDTYPE_PID);
2618 nr = pid_vnr(pid);
2619
2620 if (clone_flags & CLONE_PARENT_SETTID)
2621 put_user(nr, args->parent_tid);
2622
2623 if (clone_flags & CLONE_VFORK) {
2624 p->vfork_done = &vfork;
2625 init_completion(&vfork);
2626 get_task_struct(p);
2627 }
2628
2629 wake_up_new_task(p);
2630
2631 /* forking complete and child started to run, tell ptracer */
2632 if (unlikely(trace))
2633 ptrace_event_pid(trace, pid);
2634
2635 if (clone_flags & CLONE_VFORK) {
2636 if (!wait_for_vfork_done(p, &vfork))
2637 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2638 }
2639
2640 put_pid(pid);
2641 return nr;
2642 }
2643
2644 /*
2645 * Create a kernel thread.
2646 */
2647 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2648 {
2649 struct kernel_clone_args args = {
2650 .flags = ((lower_32_bits(flags) | CLONE_VM |
2651 CLONE_UNTRACED) & ~CSIGNAL),
2652 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2653 .stack = (unsigned long)fn,
2654 .stack_size = (unsigned long)arg,
2655 };
2656
2657 return kernel_clone(&args);
2658 }
2659
2660 #ifdef __ARCH_WANT_SYS_FORK
2661 SYSCALL_DEFINE0(fork)
2662 {
2663 #ifdef CONFIG_MMU
2664 struct kernel_clone_args args = {
2665 .exit_signal = SIGCHLD,
2666 };
2667
2668 return kernel_clone(&args);
2669 #else
2670 /* can not support in nommu mode */
2671 return -EINVAL;
2672 #endif
2673 }
2674 #endif
2675
2676 #ifdef __ARCH_WANT_SYS_VFORK
2677 SYSCALL_DEFINE0(vfork)
2678 {
2679 struct kernel_clone_args args = {
2680 .flags = CLONE_VFORK | CLONE_VM,
2681 .exit_signal = SIGCHLD,
2682 };
2683
2684 return kernel_clone(&args);
2685 }
2686 #endif
2687
2688 #ifdef __ARCH_WANT_SYS_CLONE
2689 #ifdef CONFIG_CLONE_BACKWARDS
2690 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2691 int __user *, parent_tidptr,
2692 unsigned long, tls,
2693 int __user *, child_tidptr)
2694 #elif defined(CONFIG_CLONE_BACKWARDS2)
2695 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2696 int __user *, parent_tidptr,
2697 int __user *, child_tidptr,
2698 unsigned long, tls)
2699 #elif defined(CONFIG_CLONE_BACKWARDS3)
2700 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2701 int, stack_size,
2702 int __user *, parent_tidptr,
2703 int __user *, child_tidptr,
2704 unsigned long, tls)
2705 #else
2706 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2707 int __user *, parent_tidptr,
2708 int __user *, child_tidptr,
2709 unsigned long, tls)
2710 #endif
2711 {
2712 struct kernel_clone_args args = {
2713 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2714 .pidfd = parent_tidptr,
2715 .child_tid = child_tidptr,
2716 .parent_tid = parent_tidptr,
2717 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2718 .stack = newsp,
2719 .tls = tls,
2720 };
2721
2722 return kernel_clone(&args);
2723 }
2724 #endif
2725
2726 #ifdef __ARCH_WANT_SYS_CLONE3
2727
2728 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2729 struct clone_args __user *uargs,
2730 size_t usize)
2731 {
2732 int err;
2733 struct clone_args args;
2734 pid_t *kset_tid = kargs->set_tid;
2735
2736 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2737 CLONE_ARGS_SIZE_VER0);
2738 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2739 CLONE_ARGS_SIZE_VER1);
2740 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2741 CLONE_ARGS_SIZE_VER2);
2742 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2743
2744 if (unlikely(usize > PAGE_SIZE))
2745 return -E2BIG;
2746 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2747 return -EINVAL;
2748
2749 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2750 if (err)
2751 return err;
2752
2753 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2754 return -EINVAL;
2755
2756 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2757 return -EINVAL;
2758
2759 if (unlikely(args.set_tid && args.set_tid_size == 0))
2760 return -EINVAL;
2761
2762 /*
2763 * Verify that higher 32bits of exit_signal are unset and that
2764 * it is a valid signal
2765 */
2766 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2767 !valid_signal(args.exit_signal)))
2768 return -EINVAL;
2769
2770 if ((args.flags & CLONE_INTO_CGROUP) &&
2771 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2772 return -EINVAL;
2773
2774 *kargs = (struct kernel_clone_args){
2775 .flags = args.flags,
2776 .pidfd = u64_to_user_ptr(args.pidfd),
2777 .child_tid = u64_to_user_ptr(args.child_tid),
2778 .parent_tid = u64_to_user_ptr(args.parent_tid),
2779 .exit_signal = args.exit_signal,
2780 .stack = args.stack,
2781 .stack_size = args.stack_size,
2782 .tls = args.tls,
2783 .set_tid_size = args.set_tid_size,
2784 .cgroup = args.cgroup,
2785 };
2786
2787 if (args.set_tid &&
2788 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2789 (kargs->set_tid_size * sizeof(pid_t))))
2790 return -EFAULT;
2791
2792 kargs->set_tid = kset_tid;
2793
2794 return 0;
2795 }
2796
2797 /**
2798 * clone3_stack_valid - check and prepare stack
2799 * @kargs: kernel clone args
2800 *
2801 * Verify that the stack arguments userspace gave us are sane.
2802 * In addition, set the stack direction for userspace since it's easy for us to
2803 * determine.
2804 */
2805 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2806 {
2807 if (kargs->stack == 0) {
2808 if (kargs->stack_size > 0)
2809 return false;
2810 } else {
2811 if (kargs->stack_size == 0)
2812 return false;
2813
2814 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2815 return false;
2816
2817 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2818 kargs->stack += kargs->stack_size;
2819 #endif
2820 }
2821
2822 return true;
2823 }
2824
2825 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2826 {
2827 /* Verify that no unknown flags are passed along. */
2828 if (kargs->flags &
2829 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2830 return false;
2831
2832 /*
2833 * - make the CLONE_DETACHED bit reusable for clone3
2834 * - make the CSIGNAL bits reusable for clone3
2835 */
2836 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2837 return false;
2838
2839 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2840 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2841 return false;
2842
2843 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2844 kargs->exit_signal)
2845 return false;
2846
2847 if (!clone3_stack_valid(kargs))
2848 return false;
2849
2850 return true;
2851 }
2852
2853 /**
2854 * clone3 - create a new process with specific properties
2855 * @uargs: argument structure
2856 * @size: size of @uargs
2857 *
2858 * clone3() is the extensible successor to clone()/clone2().
2859 * It takes a struct as argument that is versioned by its size.
2860 *
2861 * Return: On success, a positive PID for the child process.
2862 * On error, a negative errno number.
2863 */
2864 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2865 {
2866 int err;
2867
2868 struct kernel_clone_args kargs;
2869 pid_t set_tid[MAX_PID_NS_LEVEL];
2870
2871 kargs.set_tid = set_tid;
2872
2873 err = copy_clone_args_from_user(&kargs, uargs, size);
2874 if (err)
2875 return err;
2876
2877 if (!clone3_args_valid(&kargs))
2878 return -EINVAL;
2879
2880 return kernel_clone(&kargs);
2881 }
2882 #endif
2883
2884 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2885 {
2886 struct task_struct *leader, *parent, *child;
2887 int res;
2888
2889 read_lock(&tasklist_lock);
2890 leader = top = top->group_leader;
2891 down:
2892 for_each_thread(leader, parent) {
2893 list_for_each_entry(child, &parent->children, sibling) {
2894 res = visitor(child, data);
2895 if (res) {
2896 if (res < 0)
2897 goto out;
2898 leader = child;
2899 goto down;
2900 }
2901 up:
2902 ;
2903 }
2904 }
2905
2906 if (leader != top) {
2907 child = leader;
2908 parent = child->real_parent;
2909 leader = parent->group_leader;
2910 goto up;
2911 }
2912 out:
2913 read_unlock(&tasklist_lock);
2914 }
2915
2916 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2917 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2918 #endif
2919
2920 static void sighand_ctor(void *data)
2921 {
2922 struct sighand_struct *sighand = data;
2923
2924 spin_lock_init(&sighand->siglock);
2925 init_waitqueue_head(&sighand->signalfd_wqh);
2926 }
2927
2928 void __init proc_caches_init(void)
2929 {
2930 unsigned int mm_size;
2931
2932 sighand_cachep = kmem_cache_create("sighand_cache",
2933 sizeof(struct sighand_struct), 0,
2934 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2935 SLAB_ACCOUNT, sighand_ctor);
2936 signal_cachep = kmem_cache_create("signal_cache",
2937 sizeof(struct signal_struct), 0,
2938 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2939 NULL);
2940 files_cachep = kmem_cache_create("files_cache",
2941 sizeof(struct files_struct), 0,
2942 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2943 NULL);
2944 fs_cachep = kmem_cache_create("fs_cache",
2945 sizeof(struct fs_struct), 0,
2946 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2947 NULL);
2948
2949 /*
2950 * The mm_cpumask is located at the end of mm_struct, and is
2951 * dynamically sized based on the maximum CPU number this system
2952 * can have, taking hotplug into account (nr_cpu_ids).
2953 */
2954 mm_size = sizeof(struct mm_struct) + cpumask_size();
2955
2956 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2957 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2958 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2959 offsetof(struct mm_struct, saved_auxv),
2960 sizeof_field(struct mm_struct, saved_auxv),
2961 NULL);
2962 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2963 mmap_init();
2964 nsproxy_cache_init();
2965 }
2966
2967 /*
2968 * Check constraints on flags passed to the unshare system call.
2969 */
2970 static int check_unshare_flags(unsigned long unshare_flags)
2971 {
2972 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2973 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2974 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2975 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2976 CLONE_NEWTIME))
2977 return -EINVAL;
2978 /*
2979 * Not implemented, but pretend it works if there is nothing
2980 * to unshare. Note that unsharing the address space or the
2981 * signal handlers also need to unshare the signal queues (aka
2982 * CLONE_THREAD).
2983 */
2984 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2985 if (!thread_group_empty(current))
2986 return -EINVAL;
2987 }
2988 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2989 if (refcount_read(&current->sighand->count) > 1)
2990 return -EINVAL;
2991 }
2992 if (unshare_flags & CLONE_VM) {
2993 if (!current_is_single_threaded())
2994 return -EINVAL;
2995 }
2996
2997 return 0;
2998 }
2999
3000 /*
3001 * Unshare the filesystem structure if it is being shared
3002 */
3003 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3004 {
3005 struct fs_struct *fs = current->fs;
3006
3007 if (!(unshare_flags & CLONE_FS) || !fs)
3008 return 0;
3009
3010 /* don't need lock here; in the worst case we'll do useless copy */
3011 if (fs->users == 1)
3012 return 0;
3013
3014 *new_fsp = copy_fs_struct(fs);
3015 if (!*new_fsp)
3016 return -ENOMEM;
3017
3018 return 0;
3019 }
3020
3021 /*
3022 * Unshare file descriptor table if it is being shared
3023 */
3024 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3025 struct files_struct **new_fdp)
3026 {
3027 struct files_struct *fd = current->files;
3028 int error = 0;
3029
3030 if ((unshare_flags & CLONE_FILES) &&
3031 (fd && atomic_read(&fd->count) > 1)) {
3032 *new_fdp = dup_fd(fd, max_fds, &error);
3033 if (!*new_fdp)
3034 return error;
3035 }
3036
3037 return 0;
3038 }
3039
3040 /*
3041 * unshare allows a process to 'unshare' part of the process
3042 * context which was originally shared using clone. copy_*
3043 * functions used by kernel_clone() cannot be used here directly
3044 * because they modify an inactive task_struct that is being
3045 * constructed. Here we are modifying the current, active,
3046 * task_struct.
3047 */
3048 int ksys_unshare(unsigned long unshare_flags)
3049 {
3050 struct fs_struct *fs, *new_fs = NULL;
3051 struct files_struct *fd, *new_fd = NULL;
3052 struct cred *new_cred = NULL;
3053 struct nsproxy *new_nsproxy = NULL;
3054 int do_sysvsem = 0;
3055 int err;
3056
3057 /*
3058 * If unsharing a user namespace must also unshare the thread group
3059 * and unshare the filesystem root and working directories.
3060 */
3061 if (unshare_flags & CLONE_NEWUSER)
3062 unshare_flags |= CLONE_THREAD | CLONE_FS;
3063 /*
3064 * If unsharing vm, must also unshare signal handlers.
3065 */
3066 if (unshare_flags & CLONE_VM)
3067 unshare_flags |= CLONE_SIGHAND;
3068 /*
3069 * If unsharing a signal handlers, must also unshare the signal queues.
3070 */
3071 if (unshare_flags & CLONE_SIGHAND)
3072 unshare_flags |= CLONE_THREAD;
3073 /*
3074 * If unsharing namespace, must also unshare filesystem information.
3075 */
3076 if (unshare_flags & CLONE_NEWNS)
3077 unshare_flags |= CLONE_FS;
3078
3079 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
3080 err = -EPERM;
3081 if (!capable(CAP_SYS_ADMIN))
3082 goto bad_unshare_out;
3083 }
3084
3085 err = check_unshare_flags(unshare_flags);
3086 if (err)
3087 goto bad_unshare_out;
3088 /*
3089 * CLONE_NEWIPC must also detach from the undolist: after switching
3090 * to a new ipc namespace, the semaphore arrays from the old
3091 * namespace are unreachable.
3092 */
3093 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3094 do_sysvsem = 1;
3095 err = unshare_fs(unshare_flags, &new_fs);
3096 if (err)
3097 goto bad_unshare_out;
3098 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3099 if (err)
3100 goto bad_unshare_cleanup_fs;
3101 err = unshare_userns(unshare_flags, &new_cred);
3102 if (err)
3103 goto bad_unshare_cleanup_fd;
3104 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3105 new_cred, new_fs);
3106 if (err)
3107 goto bad_unshare_cleanup_cred;
3108
3109 if (new_cred) {
3110 err = set_cred_ucounts(new_cred);
3111 if (err)
3112 goto bad_unshare_cleanup_cred;
3113 }
3114
3115 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3116 if (do_sysvsem) {
3117 /*
3118 * CLONE_SYSVSEM is equivalent to sys_exit().
3119 */
3120 exit_sem(current);
3121 }
3122 if (unshare_flags & CLONE_NEWIPC) {
3123 /* Orphan segments in old ns (see sem above). */
3124 exit_shm(current);
3125 shm_init_task(current);
3126 }
3127
3128 if (new_nsproxy)
3129 switch_task_namespaces(current, new_nsproxy);
3130
3131 task_lock(current);
3132
3133 if (new_fs) {
3134 fs = current->fs;
3135 spin_lock(&fs->lock);
3136 current->fs = new_fs;
3137 if (--fs->users)
3138 new_fs = NULL;
3139 else
3140 new_fs = fs;
3141 spin_unlock(&fs->lock);
3142 }
3143
3144 if (new_fd) {
3145 fd = current->files;
3146 current->files = new_fd;
3147 new_fd = fd;
3148 }
3149
3150 task_unlock(current);
3151
3152 if (new_cred) {
3153 /* Install the new user namespace */
3154 commit_creds(new_cred);
3155 new_cred = NULL;
3156 }
3157 }
3158
3159 perf_event_namespaces(current);
3160
3161 bad_unshare_cleanup_cred:
3162 if (new_cred)
3163 put_cred(new_cred);
3164 bad_unshare_cleanup_fd:
3165 if (new_fd)
3166 put_files_struct(new_fd);
3167
3168 bad_unshare_cleanup_fs:
3169 if (new_fs)
3170 free_fs_struct(new_fs);
3171
3172 bad_unshare_out:
3173 return err;
3174 }
3175
3176 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3177 {
3178 return ksys_unshare(unshare_flags);
3179 }
3180
3181 /*
3182 * Helper to unshare the files of the current task.
3183 * We don't want to expose copy_files internals to
3184 * the exec layer of the kernel.
3185 */
3186
3187 int unshare_files(void)
3188 {
3189 struct task_struct *task = current;
3190 struct files_struct *old, *copy = NULL;
3191 int error;
3192
3193 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3194 if (error || !copy)
3195 return error;
3196
3197 old = task->files;
3198 task_lock(task);
3199 task->files = copy;
3200 task_unlock(task);
3201 put_files_struct(old);
3202 return 0;
3203 }
3204
3205 int sysctl_max_threads(struct ctl_table *table, int write,
3206 void *buffer, size_t *lenp, loff_t *ppos)
3207 {
3208 struct ctl_table t;
3209 int ret;
3210 int threads = max_threads;
3211 int min = 1;
3212 int max = MAX_THREADS;
3213
3214 t = *table;
3215 t.data = &threads;
3216 t.extra1 = &min;
3217 t.extra2 = &max;
3218
3219 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3220 if (ret || !write)
3221 return ret;
3222
3223 max_threads = threads;
3224
3225 return 0;
3226 }