]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
blkcg: Introduce blkg_root_lookup()
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100
101 #include <trace/events/sched.h>
102
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
105 #ifdef CONFIG_USER_NS
106 extern int unprivileged_userns_clone;
107 #else
108 #define unprivileged_userns_clone 0
109 #endif
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 int max_threads; /* tunable limit on nr_threads */
128
129 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
130
131 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
132
133 #ifdef CONFIG_PROVE_RCU
134 int lockdep_tasklist_lock_is_held(void)
135 {
136 return lockdep_is_held(&tasklist_lock);
137 }
138 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
139 #endif /* #ifdef CONFIG_PROVE_RCU */
140
141 int nr_processes(void)
142 {
143 int cpu;
144 int total = 0;
145
146 for_each_possible_cpu(cpu)
147 total += per_cpu(process_counts, cpu);
148
149 return total;
150 }
151
152 void __weak arch_release_task_struct(struct task_struct *tsk)
153 {
154 }
155
156 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
157 static struct kmem_cache *task_struct_cachep;
158
159 static inline struct task_struct *alloc_task_struct_node(int node)
160 {
161 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
162 }
163
164 static inline void free_task_struct(struct task_struct *tsk)
165 {
166 kmem_cache_free(task_struct_cachep, tsk);
167 }
168 #endif
169
170 void __weak arch_release_thread_stack(unsigned long *stack)
171 {
172 }
173
174 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
175
176 /*
177 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
178 * kmemcache based allocator.
179 */
180 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
181
182 #ifdef CONFIG_VMAP_STACK
183 /*
184 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
185 * flush. Try to minimize the number of calls by caching stacks.
186 */
187 #define NR_CACHED_STACKS 2
188 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
189
190 static int free_vm_stack_cache(unsigned int cpu)
191 {
192 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
193 int i;
194
195 for (i = 0; i < NR_CACHED_STACKS; i++) {
196 struct vm_struct *vm_stack = cached_vm_stacks[i];
197
198 if (!vm_stack)
199 continue;
200
201 vfree(vm_stack->addr);
202 cached_vm_stacks[i] = NULL;
203 }
204
205 return 0;
206 }
207 #endif
208
209 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
210 {
211 #ifdef CONFIG_VMAP_STACK
212 void *stack;
213 int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *s;
217
218 s = this_cpu_xchg(cached_stacks[i], NULL);
219
220 if (!s)
221 continue;
222
223 /* Clear stale pointers from reused stack. */
224 memset(s->addr, 0, THREAD_SIZE);
225
226 tsk->stack_vm_area = s;
227 return s->addr;
228 }
229
230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
231 VMALLOC_START, VMALLOC_END,
232 THREADINFO_GFP,
233 PAGE_KERNEL,
234 0, node, __builtin_return_address(0));
235
236 /*
237 * We can't call find_vm_area() in interrupt context, and
238 * free_thread_stack() can be called in interrupt context,
239 * so cache the vm_struct.
240 */
241 if (stack)
242 tsk->stack_vm_area = find_vm_area(stack);
243 return stack;
244 #else
245 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
246 THREAD_SIZE_ORDER);
247
248 return page ? page_address(page) : NULL;
249 #endif
250 }
251
252 static inline void free_thread_stack(struct task_struct *tsk)
253 {
254 #ifdef CONFIG_VMAP_STACK
255 if (task_stack_vm_area(tsk)) {
256 int i;
257
258 for (i = 0; i < NR_CACHED_STACKS; i++) {
259 if (this_cpu_cmpxchg(cached_stacks[i],
260 NULL, tsk->stack_vm_area) != NULL)
261 continue;
262
263 return;
264 }
265
266 vfree_atomic(tsk->stack);
267 return;
268 }
269 #endif
270
271 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
272 }
273 # else
274 static struct kmem_cache *thread_stack_cache;
275
276 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
277 int node)
278 {
279 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
280 }
281
282 static void free_thread_stack(struct task_struct *tsk)
283 {
284 kmem_cache_free(thread_stack_cache, tsk->stack);
285 }
286
287 void thread_stack_cache_init(void)
288 {
289 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
290 THREAD_SIZE, 0, NULL);
291 BUG_ON(thread_stack_cache == NULL);
292 }
293 # endif
294 #endif
295
296 /* SLAB cache for signal_struct structures (tsk->signal) */
297 static struct kmem_cache *signal_cachep;
298
299 /* SLAB cache for sighand_struct structures (tsk->sighand) */
300 struct kmem_cache *sighand_cachep;
301
302 /* SLAB cache for files_struct structures (tsk->files) */
303 struct kmem_cache *files_cachep;
304
305 /* SLAB cache for fs_struct structures (tsk->fs) */
306 struct kmem_cache *fs_cachep;
307
308 /* SLAB cache for vm_area_struct structures */
309 static struct kmem_cache *vm_area_cachep;
310
311 /* SLAB cache for mm_struct structures (tsk->mm) */
312 static struct kmem_cache *mm_cachep;
313
314 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
315 {
316 struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
317
318 if (vma) {
319 vma->vm_mm = mm;
320 INIT_LIST_HEAD(&vma->anon_vma_chain);
321 }
322 return vma;
323 }
324
325 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
326 {
327 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
328
329 if (new) {
330 *new = *orig;
331 INIT_LIST_HEAD(&new->anon_vma_chain);
332 }
333 return new;
334 }
335
336 void vm_area_free(struct vm_area_struct *vma)
337 {
338 kmem_cache_free(vm_area_cachep, vma);
339 }
340
341 static void account_kernel_stack(struct task_struct *tsk, int account)
342 {
343 void *stack = task_stack_page(tsk);
344 struct vm_struct *vm = task_stack_vm_area(tsk);
345
346 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
347
348 if (vm) {
349 int i;
350
351 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
352
353 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
354 mod_zone_page_state(page_zone(vm->pages[i]),
355 NR_KERNEL_STACK_KB,
356 PAGE_SIZE / 1024 * account);
357 }
358
359 /* All stack pages belong to the same memcg. */
360 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
361 account * (THREAD_SIZE / 1024));
362 } else {
363 /*
364 * All stack pages are in the same zone and belong to the
365 * same memcg.
366 */
367 struct page *first_page = virt_to_page(stack);
368
369 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
370 THREAD_SIZE / 1024 * account);
371
372 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
373 account * (THREAD_SIZE / 1024));
374 }
375 }
376
377 static void release_task_stack(struct task_struct *tsk)
378 {
379 if (WARN_ON(tsk->state != TASK_DEAD))
380 return; /* Better to leak the stack than to free prematurely */
381
382 account_kernel_stack(tsk, -1);
383 arch_release_thread_stack(tsk->stack);
384 free_thread_stack(tsk);
385 tsk->stack = NULL;
386 #ifdef CONFIG_VMAP_STACK
387 tsk->stack_vm_area = NULL;
388 #endif
389 }
390
391 #ifdef CONFIG_THREAD_INFO_IN_TASK
392 void put_task_stack(struct task_struct *tsk)
393 {
394 if (atomic_dec_and_test(&tsk->stack_refcount))
395 release_task_stack(tsk);
396 }
397 #endif
398
399 void free_task(struct task_struct *tsk)
400 {
401 #ifndef CONFIG_THREAD_INFO_IN_TASK
402 /*
403 * The task is finally done with both the stack and thread_info,
404 * so free both.
405 */
406 release_task_stack(tsk);
407 #else
408 /*
409 * If the task had a separate stack allocation, it should be gone
410 * by now.
411 */
412 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
413 #endif
414 rt_mutex_debug_task_free(tsk);
415 ftrace_graph_exit_task(tsk);
416 put_seccomp_filter(tsk);
417 arch_release_task_struct(tsk);
418 if (tsk->flags & PF_KTHREAD)
419 free_kthread_struct(tsk);
420 free_task_struct(tsk);
421 }
422 EXPORT_SYMBOL(free_task);
423
424 static inline void free_signal_struct(struct signal_struct *sig)
425 {
426 taskstats_tgid_free(sig);
427 sched_autogroup_exit(sig);
428 /*
429 * __mmdrop is not safe to call from softirq context on x86 due to
430 * pgd_dtor so postpone it to the async context
431 */
432 if (sig->oom_mm)
433 mmdrop_async(sig->oom_mm);
434 kmem_cache_free(signal_cachep, sig);
435 }
436
437 static inline void put_signal_struct(struct signal_struct *sig)
438 {
439 if (atomic_dec_and_test(&sig->sigcnt))
440 free_signal_struct(sig);
441 }
442
443 void __put_task_struct(struct task_struct *tsk)
444 {
445 WARN_ON(!tsk->exit_state);
446 WARN_ON(atomic_read(&tsk->usage));
447 WARN_ON(tsk == current);
448
449 cgroup_free(tsk);
450 task_numa_free(tsk);
451 security_task_free(tsk);
452 exit_creds(tsk);
453 delayacct_tsk_free(tsk);
454 put_signal_struct(tsk->signal);
455
456 if (!profile_handoff_task(tsk))
457 free_task(tsk);
458 }
459 EXPORT_SYMBOL_GPL(__put_task_struct);
460
461 void __init __weak arch_task_cache_init(void) { }
462
463 /*
464 * set_max_threads
465 */
466 static void set_max_threads(unsigned int max_threads_suggested)
467 {
468 u64 threads;
469
470 /*
471 * The number of threads shall be limited such that the thread
472 * structures may only consume a small part of the available memory.
473 */
474 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
475 threads = MAX_THREADS;
476 else
477 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
478 (u64) THREAD_SIZE * 8UL);
479
480 if (threads > max_threads_suggested)
481 threads = max_threads_suggested;
482
483 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
484 }
485
486 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
487 /* Initialized by the architecture: */
488 int arch_task_struct_size __read_mostly;
489 #endif
490
491 void __init fork_init(void)
492 {
493 int i;
494 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
495 #ifndef ARCH_MIN_TASKALIGN
496 #define ARCH_MIN_TASKALIGN 0
497 #endif
498 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
499
500 /* create a slab on which task_structs can be allocated */
501 task_struct_cachep = kmem_cache_create("task_struct",
502 arch_task_struct_size, align,
503 SLAB_PANIC|SLAB_ACCOUNT, NULL);
504 #endif
505
506 /* do the arch specific task caches init */
507 arch_task_cache_init();
508
509 set_max_threads(MAX_THREADS);
510
511 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
512 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
513 init_task.signal->rlim[RLIMIT_SIGPENDING] =
514 init_task.signal->rlim[RLIMIT_NPROC];
515
516 for (i = 0; i < UCOUNT_COUNTS; i++) {
517 init_user_ns.ucount_max[i] = max_threads/2;
518 }
519
520 #ifdef CONFIG_VMAP_STACK
521 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
522 NULL, free_vm_stack_cache);
523 #endif
524
525 lockdep_init_task(&init_task);
526 }
527
528 int __weak arch_dup_task_struct(struct task_struct *dst,
529 struct task_struct *src)
530 {
531 *dst = *src;
532 return 0;
533 }
534
535 void set_task_stack_end_magic(struct task_struct *tsk)
536 {
537 unsigned long *stackend;
538
539 stackend = end_of_stack(tsk);
540 *stackend = STACK_END_MAGIC; /* for overflow detection */
541 }
542
543 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
544 {
545 struct task_struct *tsk;
546 unsigned long *stack;
547 struct vm_struct *stack_vm_area;
548 int err;
549
550 if (node == NUMA_NO_NODE)
551 node = tsk_fork_get_node(orig);
552 tsk = alloc_task_struct_node(node);
553 if (!tsk)
554 return NULL;
555
556 stack = alloc_thread_stack_node(tsk, node);
557 if (!stack)
558 goto free_tsk;
559
560 stack_vm_area = task_stack_vm_area(tsk);
561
562 err = arch_dup_task_struct(tsk, orig);
563
564 /*
565 * arch_dup_task_struct() clobbers the stack-related fields. Make
566 * sure they're properly initialized before using any stack-related
567 * functions again.
568 */
569 tsk->stack = stack;
570 #ifdef CONFIG_VMAP_STACK
571 tsk->stack_vm_area = stack_vm_area;
572 #endif
573 #ifdef CONFIG_THREAD_INFO_IN_TASK
574 atomic_set(&tsk->stack_refcount, 1);
575 #endif
576
577 if (err)
578 goto free_stack;
579
580 #ifdef CONFIG_SECCOMP
581 /*
582 * We must handle setting up seccomp filters once we're under
583 * the sighand lock in case orig has changed between now and
584 * then. Until then, filter must be NULL to avoid messing up
585 * the usage counts on the error path calling free_task.
586 */
587 tsk->seccomp.filter = NULL;
588 #endif
589
590 setup_thread_stack(tsk, orig);
591 clear_user_return_notifier(tsk);
592 clear_tsk_need_resched(tsk);
593 set_task_stack_end_magic(tsk);
594
595 #ifdef CONFIG_CC_STACKPROTECTOR
596 tsk->stack_canary = get_random_canary();
597 #endif
598
599 /*
600 * One for us, one for whoever does the "release_task()" (usually
601 * parent)
602 */
603 atomic_set(&tsk->usage, 2);
604 #ifdef CONFIG_BLK_DEV_IO_TRACE
605 tsk->btrace_seq = 0;
606 #endif
607 tsk->splice_pipe = NULL;
608 tsk->task_frag.page = NULL;
609 tsk->wake_q.next = NULL;
610
611 account_kernel_stack(tsk, 1);
612
613 kcov_task_init(tsk);
614
615 #ifdef CONFIG_FAULT_INJECTION
616 tsk->fail_nth = 0;
617 #endif
618
619 return tsk;
620
621 free_stack:
622 free_thread_stack(tsk);
623 free_tsk:
624 free_task_struct(tsk);
625 return NULL;
626 }
627
628 #ifdef CONFIG_MMU
629 static __latent_entropy int dup_mmap(struct mm_struct *mm,
630 struct mm_struct *oldmm)
631 {
632 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
633 struct rb_node **rb_link, *rb_parent;
634 int retval;
635 unsigned long charge;
636 LIST_HEAD(uf);
637
638 uprobe_start_dup_mmap();
639 if (down_write_killable(&oldmm->mmap_sem)) {
640 retval = -EINTR;
641 goto fail_uprobe_end;
642 }
643 flush_cache_dup_mm(oldmm);
644 uprobe_dup_mmap(oldmm, mm);
645 /*
646 * Not linked in yet - no deadlock potential:
647 */
648 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
649
650 /* No ordering required: file already has been exposed. */
651 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
652
653 mm->total_vm = oldmm->total_vm;
654 mm->data_vm = oldmm->data_vm;
655 mm->exec_vm = oldmm->exec_vm;
656 mm->stack_vm = oldmm->stack_vm;
657
658 rb_link = &mm->mm_rb.rb_node;
659 rb_parent = NULL;
660 pprev = &mm->mmap;
661 retval = ksm_fork(mm, oldmm);
662 if (retval)
663 goto out;
664 retval = khugepaged_fork(mm, oldmm);
665 if (retval)
666 goto out;
667
668 prev = NULL;
669 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
670 struct file *file;
671
672 if (mpnt->vm_flags & VM_DONTCOPY) {
673 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
674 continue;
675 }
676 charge = 0;
677 /*
678 * Don't duplicate many vmas if we've been oom-killed (for
679 * example)
680 */
681 if (fatal_signal_pending(current)) {
682 retval = -EINTR;
683 goto out;
684 }
685 if (mpnt->vm_flags & VM_ACCOUNT) {
686 unsigned long len = vma_pages(mpnt);
687
688 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
689 goto fail_nomem;
690 charge = len;
691 }
692 tmp = vm_area_dup(mpnt);
693 if (!tmp)
694 goto fail_nomem;
695 retval = vma_dup_policy(mpnt, tmp);
696 if (retval)
697 goto fail_nomem_policy;
698 tmp->vm_mm = mm;
699 retval = dup_userfaultfd(tmp, &uf);
700 if (retval)
701 goto fail_nomem_anon_vma_fork;
702 if (tmp->vm_flags & VM_WIPEONFORK) {
703 /* VM_WIPEONFORK gets a clean slate in the child. */
704 tmp->anon_vma = NULL;
705 if (anon_vma_prepare(tmp))
706 goto fail_nomem_anon_vma_fork;
707 } else if (anon_vma_fork(tmp, mpnt))
708 goto fail_nomem_anon_vma_fork;
709 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
710 tmp->vm_next = tmp->vm_prev = NULL;
711 file = tmp->vm_file;
712 if (file) {
713 struct inode *inode = file_inode(file);
714 struct address_space *mapping = file->f_mapping;
715
716 vma_get_file(tmp);
717 if (tmp->vm_flags & VM_DENYWRITE)
718 atomic_dec(&inode->i_writecount);
719 i_mmap_lock_write(mapping);
720 if (tmp->vm_flags & VM_SHARED)
721 atomic_inc(&mapping->i_mmap_writable);
722 flush_dcache_mmap_lock(mapping);
723 /* insert tmp into the share list, just after mpnt */
724 vma_interval_tree_insert_after(tmp, mpnt,
725 &mapping->i_mmap);
726 flush_dcache_mmap_unlock(mapping);
727 i_mmap_unlock_write(mapping);
728 }
729
730 /*
731 * Clear hugetlb-related page reserves for children. This only
732 * affects MAP_PRIVATE mappings. Faults generated by the child
733 * are not guaranteed to succeed, even if read-only
734 */
735 if (is_vm_hugetlb_page(tmp))
736 reset_vma_resv_huge_pages(tmp);
737
738 /*
739 * Link in the new vma and copy the page table entries.
740 */
741 *pprev = tmp;
742 pprev = &tmp->vm_next;
743 tmp->vm_prev = prev;
744 prev = tmp;
745
746 __vma_link_rb(mm, tmp, rb_link, rb_parent);
747 rb_link = &tmp->vm_rb.rb_right;
748 rb_parent = &tmp->vm_rb;
749
750 mm->map_count++;
751 if (!(tmp->vm_flags & VM_WIPEONFORK))
752 retval = copy_page_range(mm, oldmm, mpnt);
753
754 if (tmp->vm_ops && tmp->vm_ops->open)
755 tmp->vm_ops->open(tmp);
756
757 if (retval)
758 goto out;
759 }
760 /* a new mm has just been created */
761 retval = arch_dup_mmap(oldmm, mm);
762 out:
763 up_write(&mm->mmap_sem);
764 flush_tlb_mm(oldmm);
765 up_write(&oldmm->mmap_sem);
766 dup_userfaultfd_complete(&uf);
767 fail_uprobe_end:
768 uprobe_end_dup_mmap();
769 return retval;
770 fail_nomem_anon_vma_fork:
771 mpol_put(vma_policy(tmp));
772 fail_nomem_policy:
773 vm_area_free(tmp);
774 fail_nomem:
775 retval = -ENOMEM;
776 vm_unacct_memory(charge);
777 goto out;
778 }
779
780 static inline int mm_alloc_pgd(struct mm_struct *mm)
781 {
782 mm->pgd = pgd_alloc(mm);
783 if (unlikely(!mm->pgd))
784 return -ENOMEM;
785 return 0;
786 }
787
788 static inline void mm_free_pgd(struct mm_struct *mm)
789 {
790 pgd_free(mm, mm->pgd);
791 }
792 #else
793 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
794 {
795 down_write(&oldmm->mmap_sem);
796 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
797 up_write(&oldmm->mmap_sem);
798 return 0;
799 }
800 #define mm_alloc_pgd(mm) (0)
801 #define mm_free_pgd(mm)
802 #endif /* CONFIG_MMU */
803
804 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
805
806 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
807 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
808
809 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
810
811 static int __init coredump_filter_setup(char *s)
812 {
813 default_dump_filter =
814 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
815 MMF_DUMP_FILTER_MASK;
816 return 1;
817 }
818
819 __setup("coredump_filter=", coredump_filter_setup);
820
821 #include <linux/init_task.h>
822
823 static void mm_init_aio(struct mm_struct *mm)
824 {
825 #ifdef CONFIG_AIO
826 spin_lock_init(&mm->ioctx_lock);
827 mm->ioctx_table = NULL;
828 #endif
829 }
830
831 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
832 {
833 #ifdef CONFIG_MEMCG
834 mm->owner = p;
835 #endif
836 }
837
838 static void mm_init_uprobes_state(struct mm_struct *mm)
839 {
840 #ifdef CONFIG_UPROBES
841 mm->uprobes_state.xol_area = NULL;
842 #endif
843 }
844
845 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
846 struct user_namespace *user_ns)
847 {
848 mm->mmap = NULL;
849 mm->mm_rb = RB_ROOT;
850 mm->vmacache_seqnum = 0;
851 atomic_set(&mm->mm_users, 1);
852 atomic_set(&mm->mm_count, 1);
853 init_rwsem(&mm->mmap_sem);
854 INIT_LIST_HEAD(&mm->mmlist);
855 mm->core_state = NULL;
856 mm_pgtables_bytes_init(mm);
857 mm->map_count = 0;
858 mm->locked_vm = 0;
859 mm->pinned_vm = 0;
860 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
861 spin_lock_init(&mm->page_table_lock);
862 mm_init_cpumask(mm);
863 mm_init_aio(mm);
864 mm_init_owner(mm, p);
865 RCU_INIT_POINTER(mm->exe_file, NULL);
866 mmu_notifier_mm_init(mm);
867 hmm_mm_init(mm);
868 init_tlb_flush_pending(mm);
869 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
870 mm->pmd_huge_pte = NULL;
871 #endif
872 mm_init_uprobes_state(mm);
873
874 if (current->mm) {
875 mm->flags = current->mm->flags & MMF_INIT_MASK;
876 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
877 } else {
878 mm->flags = default_dump_filter;
879 mm->def_flags = 0;
880 }
881
882 if (mm_alloc_pgd(mm))
883 goto fail_nopgd;
884
885 if (init_new_context(p, mm))
886 goto fail_nocontext;
887
888 mm->user_ns = get_user_ns(user_ns);
889 return mm;
890
891 fail_nocontext:
892 mm_free_pgd(mm);
893 fail_nopgd:
894 free_mm(mm);
895 return NULL;
896 }
897
898 static void check_mm(struct mm_struct *mm)
899 {
900 int i;
901
902 for (i = 0; i < NR_MM_COUNTERS; i++) {
903 long x = atomic_long_read(&mm->rss_stat.count[i]);
904
905 if (unlikely(x))
906 printk(KERN_ALERT "BUG: Bad rss-counter state "
907 "mm:%p idx:%d val:%ld\n", mm, i, x);
908 }
909
910 if (mm_pgtables_bytes(mm))
911 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
912 mm_pgtables_bytes(mm));
913
914 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
915 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
916 #endif
917 }
918
919 /*
920 * Allocate and initialize an mm_struct.
921 */
922 struct mm_struct *mm_alloc(void)
923 {
924 struct mm_struct *mm;
925
926 mm = allocate_mm();
927 if (!mm)
928 return NULL;
929
930 memset(mm, 0, sizeof(*mm));
931 return mm_init(mm, current, current_user_ns());
932 }
933
934 /*
935 * Called when the last reference to the mm
936 * is dropped: either by a lazy thread or by
937 * mmput. Free the page directory and the mm.
938 */
939 void __mmdrop(struct mm_struct *mm)
940 {
941 BUG_ON(mm == &init_mm);
942 mm_free_pgd(mm);
943 destroy_context(mm);
944 hmm_mm_destroy(mm);
945 mmu_notifier_mm_destroy(mm);
946 check_mm(mm);
947 put_user_ns(mm->user_ns);
948 free_mm(mm);
949 }
950 EXPORT_SYMBOL_GPL(__mmdrop);
951
952 static inline void __mmput(struct mm_struct *mm)
953 {
954 VM_BUG_ON(atomic_read(&mm->mm_users));
955
956 uprobe_clear_state(mm);
957 exit_aio(mm);
958 ksm_exit(mm);
959 khugepaged_exit(mm); /* must run before exit_mmap */
960 exit_mmap(mm);
961 mm_put_huge_zero_page(mm);
962 set_mm_exe_file(mm, NULL);
963 if (!list_empty(&mm->mmlist)) {
964 spin_lock(&mmlist_lock);
965 list_del(&mm->mmlist);
966 spin_unlock(&mmlist_lock);
967 }
968 if (mm->binfmt)
969 module_put(mm->binfmt->module);
970 mmdrop(mm);
971 }
972
973 /*
974 * Decrement the use count and release all resources for an mm.
975 */
976 void mmput(struct mm_struct *mm)
977 {
978 might_sleep();
979
980 if (atomic_dec_and_test(&mm->mm_users))
981 __mmput(mm);
982 }
983 EXPORT_SYMBOL_GPL(mmput);
984
985 #ifdef CONFIG_MMU
986 static void mmput_async_fn(struct work_struct *work)
987 {
988 struct mm_struct *mm = container_of(work, struct mm_struct,
989 async_put_work);
990
991 __mmput(mm);
992 }
993
994 void mmput_async(struct mm_struct *mm)
995 {
996 if (atomic_dec_and_test(&mm->mm_users)) {
997 INIT_WORK(&mm->async_put_work, mmput_async_fn);
998 schedule_work(&mm->async_put_work);
999 }
1000 }
1001 #endif
1002
1003 /**
1004 * set_mm_exe_file - change a reference to the mm's executable file
1005 *
1006 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1007 *
1008 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1009 * invocations: in mmput() nobody alive left, in execve task is single
1010 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1011 * mm->exe_file, but does so without using set_mm_exe_file() in order
1012 * to do avoid the need for any locks.
1013 */
1014 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1015 {
1016 struct file *old_exe_file;
1017
1018 /*
1019 * It is safe to dereference the exe_file without RCU as
1020 * this function is only called if nobody else can access
1021 * this mm -- see comment above for justification.
1022 */
1023 old_exe_file = rcu_dereference_raw(mm->exe_file);
1024
1025 if (new_exe_file)
1026 get_file(new_exe_file);
1027 rcu_assign_pointer(mm->exe_file, new_exe_file);
1028 if (old_exe_file)
1029 fput(old_exe_file);
1030 }
1031
1032 /**
1033 * get_mm_exe_file - acquire a reference to the mm's executable file
1034 *
1035 * Returns %NULL if mm has no associated executable file.
1036 * User must release file via fput().
1037 */
1038 struct file *get_mm_exe_file(struct mm_struct *mm)
1039 {
1040 struct file *exe_file;
1041
1042 rcu_read_lock();
1043 exe_file = rcu_dereference(mm->exe_file);
1044 if (exe_file && !get_file_rcu(exe_file))
1045 exe_file = NULL;
1046 rcu_read_unlock();
1047 return exe_file;
1048 }
1049 EXPORT_SYMBOL(get_mm_exe_file);
1050
1051 /**
1052 * get_task_exe_file - acquire a reference to the task's executable file
1053 *
1054 * Returns %NULL if task's mm (if any) has no associated executable file or
1055 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1056 * User must release file via fput().
1057 */
1058 struct file *get_task_exe_file(struct task_struct *task)
1059 {
1060 struct file *exe_file = NULL;
1061 struct mm_struct *mm;
1062
1063 task_lock(task);
1064 mm = task->mm;
1065 if (mm) {
1066 if (!(task->flags & PF_KTHREAD))
1067 exe_file = get_mm_exe_file(mm);
1068 }
1069 task_unlock(task);
1070 return exe_file;
1071 }
1072 EXPORT_SYMBOL(get_task_exe_file);
1073
1074 /**
1075 * get_task_mm - acquire a reference to the task's mm
1076 *
1077 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1078 * this kernel workthread has transiently adopted a user mm with use_mm,
1079 * to do its AIO) is not set and if so returns a reference to it, after
1080 * bumping up the use count. User must release the mm via mmput()
1081 * after use. Typically used by /proc and ptrace.
1082 */
1083 struct mm_struct *get_task_mm(struct task_struct *task)
1084 {
1085 struct mm_struct *mm;
1086
1087 task_lock(task);
1088 mm = task->mm;
1089 if (mm) {
1090 if (task->flags & PF_KTHREAD)
1091 mm = NULL;
1092 else
1093 mmget(mm);
1094 }
1095 task_unlock(task);
1096 return mm;
1097 }
1098 EXPORT_SYMBOL_GPL(get_task_mm);
1099
1100 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1101 {
1102 struct mm_struct *mm;
1103 int err;
1104
1105 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1106 if (err)
1107 return ERR_PTR(err);
1108
1109 mm = get_task_mm(task);
1110 if (mm && mm != current->mm &&
1111 !ptrace_may_access(task, mode)) {
1112 mmput(mm);
1113 mm = ERR_PTR(-EACCES);
1114 }
1115 mutex_unlock(&task->signal->cred_guard_mutex);
1116
1117 return mm;
1118 }
1119
1120 static void complete_vfork_done(struct task_struct *tsk)
1121 {
1122 struct completion *vfork;
1123
1124 task_lock(tsk);
1125 vfork = tsk->vfork_done;
1126 if (likely(vfork)) {
1127 tsk->vfork_done = NULL;
1128 complete(vfork);
1129 }
1130 task_unlock(tsk);
1131 }
1132
1133 static int wait_for_vfork_done(struct task_struct *child,
1134 struct completion *vfork)
1135 {
1136 int killed;
1137
1138 freezer_do_not_count();
1139 killed = wait_for_completion_killable(vfork);
1140 freezer_count();
1141
1142 if (killed) {
1143 task_lock(child);
1144 child->vfork_done = NULL;
1145 task_unlock(child);
1146 }
1147
1148 put_task_struct(child);
1149 return killed;
1150 }
1151
1152 /* Please note the differences between mmput and mm_release.
1153 * mmput is called whenever we stop holding onto a mm_struct,
1154 * error success whatever.
1155 *
1156 * mm_release is called after a mm_struct has been removed
1157 * from the current process.
1158 *
1159 * This difference is important for error handling, when we
1160 * only half set up a mm_struct for a new process and need to restore
1161 * the old one. Because we mmput the new mm_struct before
1162 * restoring the old one. . .
1163 * Eric Biederman 10 January 1998
1164 */
1165 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1166 {
1167 /* Get rid of any futexes when releasing the mm */
1168 #ifdef CONFIG_FUTEX
1169 if (unlikely(tsk->robust_list)) {
1170 exit_robust_list(tsk);
1171 tsk->robust_list = NULL;
1172 }
1173 #ifdef CONFIG_COMPAT
1174 if (unlikely(tsk->compat_robust_list)) {
1175 compat_exit_robust_list(tsk);
1176 tsk->compat_robust_list = NULL;
1177 }
1178 #endif
1179 if (unlikely(!list_empty(&tsk->pi_state_list)))
1180 exit_pi_state_list(tsk);
1181 #endif
1182
1183 uprobe_free_utask(tsk);
1184
1185 /* Get rid of any cached register state */
1186 deactivate_mm(tsk, mm);
1187
1188 /*
1189 * Signal userspace if we're not exiting with a core dump
1190 * because we want to leave the value intact for debugging
1191 * purposes.
1192 */
1193 if (tsk->clear_child_tid) {
1194 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1195 atomic_read(&mm->mm_users) > 1) {
1196 /*
1197 * We don't check the error code - if userspace has
1198 * not set up a proper pointer then tough luck.
1199 */
1200 put_user(0, tsk->clear_child_tid);
1201 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1202 1, NULL, NULL, 0);
1203 }
1204 tsk->clear_child_tid = NULL;
1205 }
1206
1207 /*
1208 * All done, finally we can wake up parent and return this mm to him.
1209 * Also kthread_stop() uses this completion for synchronization.
1210 */
1211 if (tsk->vfork_done)
1212 complete_vfork_done(tsk);
1213 }
1214
1215 /*
1216 * Allocate a new mm structure and copy contents from the
1217 * mm structure of the passed in task structure.
1218 */
1219 static struct mm_struct *dup_mm(struct task_struct *tsk)
1220 {
1221 struct mm_struct *mm, *oldmm = current->mm;
1222 int err;
1223
1224 mm = allocate_mm();
1225 if (!mm)
1226 goto fail_nomem;
1227
1228 memcpy(mm, oldmm, sizeof(*mm));
1229
1230 if (!mm_init(mm, tsk, mm->user_ns))
1231 goto fail_nomem;
1232
1233 err = dup_mmap(mm, oldmm);
1234 if (err)
1235 goto free_pt;
1236
1237 mm->hiwater_rss = get_mm_rss(mm);
1238 mm->hiwater_vm = mm->total_vm;
1239
1240 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1241 goto free_pt;
1242
1243 return mm;
1244
1245 free_pt:
1246 /* don't put binfmt in mmput, we haven't got module yet */
1247 mm->binfmt = NULL;
1248 mmput(mm);
1249
1250 fail_nomem:
1251 return NULL;
1252 }
1253
1254 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1255 {
1256 struct mm_struct *mm, *oldmm;
1257 int retval;
1258
1259 tsk->min_flt = tsk->maj_flt = 0;
1260 tsk->nvcsw = tsk->nivcsw = 0;
1261 #ifdef CONFIG_DETECT_HUNG_TASK
1262 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1263 #endif
1264
1265 tsk->mm = NULL;
1266 tsk->active_mm = NULL;
1267
1268 /*
1269 * Are we cloning a kernel thread?
1270 *
1271 * We need to steal a active VM for that..
1272 */
1273 oldmm = current->mm;
1274 if (!oldmm)
1275 return 0;
1276
1277 /* initialize the new vmacache entries */
1278 vmacache_flush(tsk);
1279
1280 if (clone_flags & CLONE_VM) {
1281 mmget(oldmm);
1282 mm = oldmm;
1283 goto good_mm;
1284 }
1285
1286 retval = -ENOMEM;
1287 mm = dup_mm(tsk);
1288 if (!mm)
1289 goto fail_nomem;
1290
1291 good_mm:
1292 tsk->mm = mm;
1293 tsk->active_mm = mm;
1294 return 0;
1295
1296 fail_nomem:
1297 return retval;
1298 }
1299
1300 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1301 {
1302 struct fs_struct *fs = current->fs;
1303 if (clone_flags & CLONE_FS) {
1304 /* tsk->fs is already what we want */
1305 spin_lock(&fs->lock);
1306 if (fs->in_exec) {
1307 spin_unlock(&fs->lock);
1308 return -EAGAIN;
1309 }
1310 fs->users++;
1311 spin_unlock(&fs->lock);
1312 return 0;
1313 }
1314 tsk->fs = copy_fs_struct(fs);
1315 if (!tsk->fs)
1316 return -ENOMEM;
1317 return 0;
1318 }
1319
1320 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1321 {
1322 struct files_struct *oldf, *newf;
1323 int error = 0;
1324
1325 /*
1326 * A background process may not have any files ...
1327 */
1328 oldf = current->files;
1329 if (!oldf)
1330 goto out;
1331
1332 if (clone_flags & CLONE_FILES) {
1333 atomic_inc(&oldf->count);
1334 goto out;
1335 }
1336
1337 newf = dup_fd(oldf, &error);
1338 if (!newf)
1339 goto out;
1340
1341 tsk->files = newf;
1342 error = 0;
1343 out:
1344 return error;
1345 }
1346
1347 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1348 {
1349 #ifdef CONFIG_BLOCK
1350 struct io_context *ioc = current->io_context;
1351 struct io_context *new_ioc;
1352
1353 if (!ioc)
1354 return 0;
1355 /*
1356 * Share io context with parent, if CLONE_IO is set
1357 */
1358 if (clone_flags & CLONE_IO) {
1359 ioc_task_link(ioc);
1360 tsk->io_context = ioc;
1361 } else if (ioprio_valid(ioc->ioprio)) {
1362 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1363 if (unlikely(!new_ioc))
1364 return -ENOMEM;
1365
1366 new_ioc->ioprio = ioc->ioprio;
1367 put_io_context(new_ioc);
1368 }
1369 #endif
1370 return 0;
1371 }
1372
1373 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1374 {
1375 struct sighand_struct *sig;
1376
1377 if (clone_flags & CLONE_SIGHAND) {
1378 atomic_inc(&current->sighand->count);
1379 return 0;
1380 }
1381 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1382 rcu_assign_pointer(tsk->sighand, sig);
1383 if (!sig)
1384 return -ENOMEM;
1385
1386 atomic_set(&sig->count, 1);
1387 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1388 return 0;
1389 }
1390
1391 void __cleanup_sighand(struct sighand_struct *sighand)
1392 {
1393 if (atomic_dec_and_test(&sighand->count)) {
1394 signalfd_cleanup(sighand);
1395 /*
1396 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1397 * without an RCU grace period, see __lock_task_sighand().
1398 */
1399 kmem_cache_free(sighand_cachep, sighand);
1400 }
1401 }
1402
1403 #ifdef CONFIG_POSIX_TIMERS
1404 /*
1405 * Initialize POSIX timer handling for a thread group.
1406 */
1407 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1408 {
1409 unsigned long cpu_limit;
1410
1411 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1412 if (cpu_limit != RLIM_INFINITY) {
1413 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1414 sig->cputimer.running = true;
1415 }
1416
1417 /* The timer lists. */
1418 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1419 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1420 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1421 }
1422 #else
1423 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1424 #endif
1425
1426 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1427 {
1428 struct signal_struct *sig;
1429
1430 if (clone_flags & CLONE_THREAD)
1431 return 0;
1432
1433 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1434 tsk->signal = sig;
1435 if (!sig)
1436 return -ENOMEM;
1437
1438 sig->nr_threads = 1;
1439 atomic_set(&sig->live, 1);
1440 atomic_set(&sig->sigcnt, 1);
1441
1442 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1443 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1444 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1445
1446 init_waitqueue_head(&sig->wait_chldexit);
1447 sig->curr_target = tsk;
1448 init_sigpending(&sig->shared_pending);
1449 seqlock_init(&sig->stats_lock);
1450 prev_cputime_init(&sig->prev_cputime);
1451
1452 #ifdef CONFIG_POSIX_TIMERS
1453 INIT_LIST_HEAD(&sig->posix_timers);
1454 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1455 sig->real_timer.function = it_real_fn;
1456 #endif
1457
1458 task_lock(current->group_leader);
1459 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1460 task_unlock(current->group_leader);
1461
1462 posix_cpu_timers_init_group(sig);
1463
1464 tty_audit_fork(sig);
1465 sched_autogroup_fork(sig);
1466
1467 sig->oom_score_adj = current->signal->oom_score_adj;
1468 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1469
1470 mutex_init(&sig->cred_guard_mutex);
1471
1472 return 0;
1473 }
1474
1475 static void copy_seccomp(struct task_struct *p)
1476 {
1477 #ifdef CONFIG_SECCOMP
1478 /*
1479 * Must be called with sighand->lock held, which is common to
1480 * all threads in the group. Holding cred_guard_mutex is not
1481 * needed because this new task is not yet running and cannot
1482 * be racing exec.
1483 */
1484 assert_spin_locked(&current->sighand->siglock);
1485
1486 /* Ref-count the new filter user, and assign it. */
1487 get_seccomp_filter(current);
1488 p->seccomp = current->seccomp;
1489
1490 /*
1491 * Explicitly enable no_new_privs here in case it got set
1492 * between the task_struct being duplicated and holding the
1493 * sighand lock. The seccomp state and nnp must be in sync.
1494 */
1495 if (task_no_new_privs(current))
1496 task_set_no_new_privs(p);
1497
1498 /*
1499 * If the parent gained a seccomp mode after copying thread
1500 * flags and between before we held the sighand lock, we have
1501 * to manually enable the seccomp thread flag here.
1502 */
1503 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1504 set_tsk_thread_flag(p, TIF_SECCOMP);
1505 #endif
1506 }
1507
1508 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1509 {
1510 current->clear_child_tid = tidptr;
1511
1512 return task_pid_vnr(current);
1513 }
1514
1515 static void rt_mutex_init_task(struct task_struct *p)
1516 {
1517 raw_spin_lock_init(&p->pi_lock);
1518 #ifdef CONFIG_RT_MUTEXES
1519 p->pi_waiters = RB_ROOT_CACHED;
1520 p->pi_top_task = NULL;
1521 p->pi_blocked_on = NULL;
1522 #endif
1523 }
1524
1525 #ifdef CONFIG_POSIX_TIMERS
1526 /*
1527 * Initialize POSIX timer handling for a single task.
1528 */
1529 static void posix_cpu_timers_init(struct task_struct *tsk)
1530 {
1531 tsk->cputime_expires.prof_exp = 0;
1532 tsk->cputime_expires.virt_exp = 0;
1533 tsk->cputime_expires.sched_exp = 0;
1534 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1535 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1536 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1537 }
1538 #else
1539 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1540 #endif
1541
1542 static inline void
1543 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1544 {
1545 task->pids[type].pid = pid;
1546 }
1547
1548 static inline void rcu_copy_process(struct task_struct *p)
1549 {
1550 #ifdef CONFIG_PREEMPT_RCU
1551 p->rcu_read_lock_nesting = 0;
1552 p->rcu_read_unlock_special.s = 0;
1553 p->rcu_blocked_node = NULL;
1554 INIT_LIST_HEAD(&p->rcu_node_entry);
1555 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1556 #ifdef CONFIG_TASKS_RCU
1557 p->rcu_tasks_holdout = false;
1558 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1559 p->rcu_tasks_idle_cpu = -1;
1560 #endif /* #ifdef CONFIG_TASKS_RCU */
1561 }
1562
1563 /*
1564 * This creates a new process as a copy of the old one,
1565 * but does not actually start it yet.
1566 *
1567 * It copies the registers, and all the appropriate
1568 * parts of the process environment (as per the clone
1569 * flags). The actual kick-off is left to the caller.
1570 */
1571 static __latent_entropy struct task_struct *copy_process(
1572 unsigned long clone_flags,
1573 unsigned long stack_start,
1574 unsigned long stack_size,
1575 int __user *child_tidptr,
1576 struct pid *pid,
1577 int trace,
1578 unsigned long tls,
1579 int node)
1580 {
1581 int retval;
1582 struct task_struct *p;
1583
1584 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1585 return ERR_PTR(-EINVAL);
1586
1587 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1588 return ERR_PTR(-EINVAL);
1589
1590 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1591 if (!capable(CAP_SYS_ADMIN))
1592 return ERR_PTR(-EPERM);
1593
1594 /*
1595 * Thread groups must share signals as well, and detached threads
1596 * can only be started up within the thread group.
1597 */
1598 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1599 return ERR_PTR(-EINVAL);
1600
1601 /*
1602 * Shared signal handlers imply shared VM. By way of the above,
1603 * thread groups also imply shared VM. Blocking this case allows
1604 * for various simplifications in other code.
1605 */
1606 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1607 return ERR_PTR(-EINVAL);
1608
1609 /*
1610 * Siblings of global init remain as zombies on exit since they are
1611 * not reaped by their parent (swapper). To solve this and to avoid
1612 * multi-rooted process trees, prevent global and container-inits
1613 * from creating siblings.
1614 */
1615 if ((clone_flags & CLONE_PARENT) &&
1616 current->signal->flags & SIGNAL_UNKILLABLE)
1617 return ERR_PTR(-EINVAL);
1618
1619 /*
1620 * If the new process will be in a different pid or user namespace
1621 * do not allow it to share a thread group with the forking task.
1622 */
1623 if (clone_flags & CLONE_THREAD) {
1624 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1625 (task_active_pid_ns(current) !=
1626 current->nsproxy->pid_ns_for_children))
1627 return ERR_PTR(-EINVAL);
1628 }
1629
1630 retval = -ENOMEM;
1631 p = dup_task_struct(current, node);
1632 if (!p)
1633 goto fork_out;
1634
1635 /*
1636 * This _must_ happen before we call free_task(), i.e. before we jump
1637 * to any of the bad_fork_* labels. This is to avoid freeing
1638 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1639 * kernel threads (PF_KTHREAD).
1640 */
1641 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1642 /*
1643 * Clear TID on mm_release()?
1644 */
1645 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1646
1647 ftrace_graph_init_task(p);
1648
1649 rt_mutex_init_task(p);
1650
1651 #ifdef CONFIG_PROVE_LOCKING
1652 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1653 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1654 #endif
1655 retval = -EAGAIN;
1656 if (atomic_read(&p->real_cred->user->processes) >=
1657 task_rlimit(p, RLIMIT_NPROC)) {
1658 if (p->real_cred->user != INIT_USER &&
1659 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1660 goto bad_fork_free;
1661 }
1662 current->flags &= ~PF_NPROC_EXCEEDED;
1663
1664 retval = copy_creds(p, clone_flags);
1665 if (retval < 0)
1666 goto bad_fork_free;
1667
1668 /*
1669 * If multiple threads are within copy_process(), then this check
1670 * triggers too late. This doesn't hurt, the check is only there
1671 * to stop root fork bombs.
1672 */
1673 retval = -EAGAIN;
1674 if (nr_threads >= max_threads)
1675 goto bad_fork_cleanup_count;
1676
1677 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1678 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1679 p->flags |= PF_FORKNOEXEC;
1680 INIT_LIST_HEAD(&p->children);
1681 INIT_LIST_HEAD(&p->sibling);
1682 rcu_copy_process(p);
1683 p->vfork_done = NULL;
1684 spin_lock_init(&p->alloc_lock);
1685
1686 init_sigpending(&p->pending);
1687
1688 p->utime = p->stime = p->gtime = 0;
1689 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1690 p->utimescaled = p->stimescaled = 0;
1691 #endif
1692 prev_cputime_init(&p->prev_cputime);
1693
1694 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1695 seqcount_init(&p->vtime.seqcount);
1696 p->vtime.starttime = 0;
1697 p->vtime.state = VTIME_INACTIVE;
1698 #endif
1699
1700 #if defined(SPLIT_RSS_COUNTING)
1701 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1702 #endif
1703
1704 p->default_timer_slack_ns = current->timer_slack_ns;
1705
1706 task_io_accounting_init(&p->ioac);
1707 acct_clear_integrals(p);
1708
1709 posix_cpu_timers_init(p);
1710
1711 p->io_context = NULL;
1712 p->audit_context = NULL;
1713 cgroup_fork(p);
1714 #ifdef CONFIG_NUMA
1715 p->mempolicy = mpol_dup(p->mempolicy);
1716 if (IS_ERR(p->mempolicy)) {
1717 retval = PTR_ERR(p->mempolicy);
1718 p->mempolicy = NULL;
1719 goto bad_fork_cleanup_threadgroup_lock;
1720 }
1721 #endif
1722 #ifdef CONFIG_CPUSETS
1723 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1724 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1725 seqcount_init(&p->mems_allowed_seq);
1726 #endif
1727 #ifdef CONFIG_TRACE_IRQFLAGS
1728 p->irq_events = 0;
1729 p->hardirqs_enabled = 0;
1730 p->hardirq_enable_ip = 0;
1731 p->hardirq_enable_event = 0;
1732 p->hardirq_disable_ip = _THIS_IP_;
1733 p->hardirq_disable_event = 0;
1734 p->softirqs_enabled = 1;
1735 p->softirq_enable_ip = _THIS_IP_;
1736 p->softirq_enable_event = 0;
1737 p->softirq_disable_ip = 0;
1738 p->softirq_disable_event = 0;
1739 p->hardirq_context = 0;
1740 p->softirq_context = 0;
1741 #endif
1742
1743 p->pagefault_disabled = 0;
1744
1745 #ifdef CONFIG_LOCKDEP
1746 p->lockdep_depth = 0; /* no locks held yet */
1747 p->curr_chain_key = 0;
1748 p->lockdep_recursion = 0;
1749 lockdep_init_task(p);
1750 #endif
1751
1752 #ifdef CONFIG_DEBUG_MUTEXES
1753 p->blocked_on = NULL; /* not blocked yet */
1754 #endif
1755 #ifdef CONFIG_BCACHE
1756 p->sequential_io = 0;
1757 p->sequential_io_avg = 0;
1758 #endif
1759 #ifdef CONFIG_SECURITY
1760 p->security = NULL;
1761 #endif
1762
1763 /* Perform scheduler related setup. Assign this task to a CPU. */
1764 retval = sched_fork(clone_flags, p);
1765 if (retval)
1766 goto bad_fork_cleanup_policy;
1767
1768 retval = perf_event_init_task(p);
1769 if (retval)
1770 goto bad_fork_cleanup_policy;
1771 retval = audit_alloc(p);
1772 if (retval)
1773 goto bad_fork_cleanup_perf;
1774 /* copy all the process information */
1775 shm_init_task(p);
1776 retval = security_task_alloc(p, clone_flags);
1777 if (retval)
1778 goto bad_fork_cleanup_audit;
1779 retval = copy_semundo(clone_flags, p);
1780 if (retval)
1781 goto bad_fork_cleanup_security;
1782 retval = copy_files(clone_flags, p);
1783 if (retval)
1784 goto bad_fork_cleanup_semundo;
1785 retval = copy_fs(clone_flags, p);
1786 if (retval)
1787 goto bad_fork_cleanup_files;
1788 retval = copy_sighand(clone_flags, p);
1789 if (retval)
1790 goto bad_fork_cleanup_fs;
1791 retval = copy_signal(clone_flags, p);
1792 if (retval)
1793 goto bad_fork_cleanup_sighand;
1794 retval = copy_mm(clone_flags, p);
1795 if (retval)
1796 goto bad_fork_cleanup_signal;
1797 retval = copy_namespaces(clone_flags, p);
1798 if (retval)
1799 goto bad_fork_cleanup_mm;
1800 retval = copy_io(clone_flags, p);
1801 if (retval)
1802 goto bad_fork_cleanup_namespaces;
1803 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1804 if (retval)
1805 goto bad_fork_cleanup_io;
1806
1807 if (pid != &init_struct_pid) {
1808 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1809 if (IS_ERR(pid)) {
1810 retval = PTR_ERR(pid);
1811 goto bad_fork_cleanup_thread;
1812 }
1813 }
1814
1815 #ifdef CONFIG_BLOCK
1816 p->plug = NULL;
1817 #endif
1818 #ifdef CONFIG_FUTEX
1819 p->robust_list = NULL;
1820 #ifdef CONFIG_COMPAT
1821 p->compat_robust_list = NULL;
1822 #endif
1823 INIT_LIST_HEAD(&p->pi_state_list);
1824 p->pi_state_cache = NULL;
1825 #endif
1826 /*
1827 * sigaltstack should be cleared when sharing the same VM
1828 */
1829 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1830 sas_ss_reset(p);
1831
1832 /*
1833 * Syscall tracing and stepping should be turned off in the
1834 * child regardless of CLONE_PTRACE.
1835 */
1836 user_disable_single_step(p);
1837 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1838 #ifdef TIF_SYSCALL_EMU
1839 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1840 #endif
1841 clear_all_latency_tracing(p);
1842
1843 /* ok, now we should be set up.. */
1844 p->pid = pid_nr(pid);
1845 if (clone_flags & CLONE_THREAD) {
1846 p->exit_signal = -1;
1847 p->group_leader = current->group_leader;
1848 p->tgid = current->tgid;
1849 } else {
1850 if (clone_flags & CLONE_PARENT)
1851 p->exit_signal = current->group_leader->exit_signal;
1852 else
1853 p->exit_signal = (clone_flags & CSIGNAL);
1854 p->group_leader = p;
1855 p->tgid = p->pid;
1856 }
1857
1858 p->nr_dirtied = 0;
1859 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1860 p->dirty_paused_when = 0;
1861
1862 p->pdeath_signal = 0;
1863 INIT_LIST_HEAD(&p->thread_group);
1864 p->task_works = NULL;
1865
1866 cgroup_threadgroup_change_begin(current);
1867 /*
1868 * Ensure that the cgroup subsystem policies allow the new process to be
1869 * forked. It should be noted the the new process's css_set can be changed
1870 * between here and cgroup_post_fork() if an organisation operation is in
1871 * progress.
1872 */
1873 retval = cgroup_can_fork(p);
1874 if (retval)
1875 goto bad_fork_free_pid;
1876
1877 /*
1878 * From this point on we must avoid any synchronous user-space
1879 * communication until we take the tasklist-lock. In particular, we do
1880 * not want user-space to be able to predict the process start-time by
1881 * stalling fork(2) after we recorded the start_time but before it is
1882 * visible to the system.
1883 */
1884
1885 p->start_time = ktime_get_ns();
1886 p->real_start_time = ktime_get_boot_ns();
1887
1888 /*
1889 * Make it visible to the rest of the system, but dont wake it up yet.
1890 * Need tasklist lock for parent etc handling!
1891 */
1892 write_lock_irq(&tasklist_lock);
1893
1894 /* CLONE_PARENT re-uses the old parent */
1895 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1896 p->real_parent = current->real_parent;
1897 p->parent_exec_id = current->parent_exec_id;
1898 } else {
1899 p->real_parent = current;
1900 p->parent_exec_id = current->self_exec_id;
1901 }
1902
1903 klp_copy_process(p);
1904
1905 spin_lock(&current->sighand->siglock);
1906
1907 /*
1908 * Copy seccomp details explicitly here, in case they were changed
1909 * before holding sighand lock.
1910 */
1911 copy_seccomp(p);
1912
1913 /*
1914 * Process group and session signals need to be delivered to just the
1915 * parent before the fork or both the parent and the child after the
1916 * fork. Restart if a signal comes in before we add the new process to
1917 * it's process group.
1918 * A fatal signal pending means that current will exit, so the new
1919 * thread can't slip out of an OOM kill (or normal SIGKILL).
1920 */
1921 recalc_sigpending();
1922 if (signal_pending(current)) {
1923 retval = -ERESTARTNOINTR;
1924 goto bad_fork_cancel_cgroup;
1925 }
1926 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1927 retval = -ENOMEM;
1928 goto bad_fork_cancel_cgroup;
1929 }
1930
1931 if (likely(p->pid)) {
1932 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1933
1934 init_task_pid(p, PIDTYPE_PID, pid);
1935 if (thread_group_leader(p)) {
1936 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1937 init_task_pid(p, PIDTYPE_SID, task_session(current));
1938
1939 if (is_child_reaper(pid)) {
1940 ns_of_pid(pid)->child_reaper = p;
1941 p->signal->flags |= SIGNAL_UNKILLABLE;
1942 }
1943
1944 p->signal->leader_pid = pid;
1945 p->signal->tty = tty_kref_get(current->signal->tty);
1946 /*
1947 * Inherit has_child_subreaper flag under the same
1948 * tasklist_lock with adding child to the process tree
1949 * for propagate_has_child_subreaper optimization.
1950 */
1951 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1952 p->real_parent->signal->is_child_subreaper;
1953 list_add_tail(&p->sibling, &p->real_parent->children);
1954 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1955 attach_pid(p, PIDTYPE_PGID);
1956 attach_pid(p, PIDTYPE_SID);
1957 __this_cpu_inc(process_counts);
1958 } else {
1959 current->signal->nr_threads++;
1960 atomic_inc(&current->signal->live);
1961 atomic_inc(&current->signal->sigcnt);
1962 list_add_tail_rcu(&p->thread_group,
1963 &p->group_leader->thread_group);
1964 list_add_tail_rcu(&p->thread_node,
1965 &p->signal->thread_head);
1966 }
1967 attach_pid(p, PIDTYPE_PID);
1968 nr_threads++;
1969 }
1970
1971 total_forks++;
1972 spin_unlock(&current->sighand->siglock);
1973 syscall_tracepoint_update(p);
1974 write_unlock_irq(&tasklist_lock);
1975
1976 proc_fork_connector(p);
1977 cgroup_post_fork(p);
1978 cgroup_threadgroup_change_end(current);
1979 perf_event_fork(p);
1980
1981 trace_task_newtask(p, clone_flags);
1982 uprobe_copy_process(p, clone_flags);
1983
1984 return p;
1985
1986 bad_fork_cancel_cgroup:
1987 spin_unlock(&current->sighand->siglock);
1988 write_unlock_irq(&tasklist_lock);
1989 cgroup_cancel_fork(p);
1990 bad_fork_free_pid:
1991 cgroup_threadgroup_change_end(current);
1992 if (pid != &init_struct_pid)
1993 free_pid(pid);
1994 bad_fork_cleanup_thread:
1995 exit_thread(p);
1996 bad_fork_cleanup_io:
1997 if (p->io_context)
1998 exit_io_context(p);
1999 bad_fork_cleanup_namespaces:
2000 exit_task_namespaces(p);
2001 bad_fork_cleanup_mm:
2002 if (p->mm)
2003 mmput(p->mm);
2004 bad_fork_cleanup_signal:
2005 if (!(clone_flags & CLONE_THREAD))
2006 free_signal_struct(p->signal);
2007 bad_fork_cleanup_sighand:
2008 __cleanup_sighand(p->sighand);
2009 bad_fork_cleanup_fs:
2010 exit_fs(p); /* blocking */
2011 bad_fork_cleanup_files:
2012 exit_files(p); /* blocking */
2013 bad_fork_cleanup_semundo:
2014 exit_sem(p);
2015 bad_fork_cleanup_security:
2016 security_task_free(p);
2017 bad_fork_cleanup_audit:
2018 audit_free(p);
2019 bad_fork_cleanup_perf:
2020 perf_event_free_task(p);
2021 bad_fork_cleanup_policy:
2022 lockdep_free_task(p);
2023 #ifdef CONFIG_NUMA
2024 mpol_put(p->mempolicy);
2025 bad_fork_cleanup_threadgroup_lock:
2026 #endif
2027 delayacct_tsk_free(p);
2028 bad_fork_cleanup_count:
2029 atomic_dec(&p->cred->user->processes);
2030 exit_creds(p);
2031 bad_fork_free:
2032 p->state = TASK_DEAD;
2033 put_task_stack(p);
2034 free_task(p);
2035 fork_out:
2036 return ERR_PTR(retval);
2037 }
2038
2039 static inline void init_idle_pids(struct pid_link *links)
2040 {
2041 enum pid_type type;
2042
2043 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2044 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2045 links[type].pid = &init_struct_pid;
2046 }
2047 }
2048
2049 struct task_struct *fork_idle(int cpu)
2050 {
2051 struct task_struct *task;
2052 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2053 cpu_to_node(cpu));
2054 if (!IS_ERR(task)) {
2055 init_idle_pids(task->pids);
2056 init_idle(task, cpu);
2057 }
2058
2059 return task;
2060 }
2061
2062 /*
2063 * Ok, this is the main fork-routine.
2064 *
2065 * It copies the process, and if successful kick-starts
2066 * it and waits for it to finish using the VM if required.
2067 */
2068 long _do_fork(unsigned long clone_flags,
2069 unsigned long stack_start,
2070 unsigned long stack_size,
2071 int __user *parent_tidptr,
2072 int __user *child_tidptr,
2073 unsigned long tls)
2074 {
2075 struct task_struct *p;
2076 int trace = 0;
2077 long nr;
2078
2079 /*
2080 * Determine whether and which event to report to ptracer. When
2081 * called from kernel_thread or CLONE_UNTRACED is explicitly
2082 * requested, no event is reported; otherwise, report if the event
2083 * for the type of forking is enabled.
2084 */
2085 if (!(clone_flags & CLONE_UNTRACED)) {
2086 if (clone_flags & CLONE_VFORK)
2087 trace = PTRACE_EVENT_VFORK;
2088 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2089 trace = PTRACE_EVENT_CLONE;
2090 else
2091 trace = PTRACE_EVENT_FORK;
2092
2093 if (likely(!ptrace_event_enabled(current, trace)))
2094 trace = 0;
2095 }
2096
2097 p = copy_process(clone_flags, stack_start, stack_size,
2098 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2099 add_latent_entropy();
2100 /*
2101 * Do this prior waking up the new thread - the thread pointer
2102 * might get invalid after that point, if the thread exits quickly.
2103 */
2104 if (!IS_ERR(p)) {
2105 struct completion vfork;
2106 struct pid *pid;
2107
2108 trace_sched_process_fork(current, p);
2109
2110 pid = get_task_pid(p, PIDTYPE_PID);
2111 nr = pid_vnr(pid);
2112
2113 if (clone_flags & CLONE_PARENT_SETTID)
2114 put_user(nr, parent_tidptr);
2115
2116 if (clone_flags & CLONE_VFORK) {
2117 p->vfork_done = &vfork;
2118 init_completion(&vfork);
2119 get_task_struct(p);
2120 }
2121
2122 wake_up_new_task(p);
2123
2124 /* forking complete and child started to run, tell ptracer */
2125 if (unlikely(trace))
2126 ptrace_event_pid(trace, pid);
2127
2128 if (clone_flags & CLONE_VFORK) {
2129 if (!wait_for_vfork_done(p, &vfork))
2130 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2131 }
2132
2133 put_pid(pid);
2134 } else {
2135 nr = PTR_ERR(p);
2136 }
2137 return nr;
2138 }
2139
2140 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2141 /* For compatibility with architectures that call do_fork directly rather than
2142 * using the syscall entry points below. */
2143 long do_fork(unsigned long clone_flags,
2144 unsigned long stack_start,
2145 unsigned long stack_size,
2146 int __user *parent_tidptr,
2147 int __user *child_tidptr)
2148 {
2149 return _do_fork(clone_flags, stack_start, stack_size,
2150 parent_tidptr, child_tidptr, 0);
2151 }
2152 #endif
2153
2154 /*
2155 * Create a kernel thread.
2156 */
2157 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2158 {
2159 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2160 (unsigned long)arg, NULL, NULL, 0);
2161 }
2162
2163 #ifdef __ARCH_WANT_SYS_FORK
2164 SYSCALL_DEFINE0(fork)
2165 {
2166 #ifdef CONFIG_MMU
2167 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2168 #else
2169 /* can not support in nommu mode */
2170 return -EINVAL;
2171 #endif
2172 }
2173 #endif
2174
2175 #ifdef __ARCH_WANT_SYS_VFORK
2176 SYSCALL_DEFINE0(vfork)
2177 {
2178 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2179 0, NULL, NULL, 0);
2180 }
2181 #endif
2182
2183 #ifdef __ARCH_WANT_SYS_CLONE
2184 #ifdef CONFIG_CLONE_BACKWARDS
2185 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2186 int __user *, parent_tidptr,
2187 unsigned long, tls,
2188 int __user *, child_tidptr)
2189 #elif defined(CONFIG_CLONE_BACKWARDS2)
2190 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2191 int __user *, parent_tidptr,
2192 int __user *, child_tidptr,
2193 unsigned long, tls)
2194 #elif defined(CONFIG_CLONE_BACKWARDS3)
2195 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2196 int, stack_size,
2197 int __user *, parent_tidptr,
2198 int __user *, child_tidptr,
2199 unsigned long, tls)
2200 #else
2201 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2202 int __user *, parent_tidptr,
2203 int __user *, child_tidptr,
2204 unsigned long, tls)
2205 #endif
2206 {
2207 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2208 }
2209 #endif
2210
2211 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2212 {
2213 struct task_struct *leader, *parent, *child;
2214 int res;
2215
2216 read_lock(&tasklist_lock);
2217 leader = top = top->group_leader;
2218 down:
2219 for_each_thread(leader, parent) {
2220 list_for_each_entry(child, &parent->children, sibling) {
2221 res = visitor(child, data);
2222 if (res) {
2223 if (res < 0)
2224 goto out;
2225 leader = child;
2226 goto down;
2227 }
2228 up:
2229 ;
2230 }
2231 }
2232
2233 if (leader != top) {
2234 child = leader;
2235 parent = child->real_parent;
2236 leader = parent->group_leader;
2237 goto up;
2238 }
2239 out:
2240 read_unlock(&tasklist_lock);
2241 }
2242
2243 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2244 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2245 #endif
2246
2247 static void sighand_ctor(void *data)
2248 {
2249 struct sighand_struct *sighand = data;
2250
2251 spin_lock_init(&sighand->siglock);
2252 init_waitqueue_head(&sighand->signalfd_wqh);
2253 }
2254
2255 void __init proc_caches_init(void)
2256 {
2257 sighand_cachep = kmem_cache_create("sighand_cache",
2258 sizeof(struct sighand_struct), 0,
2259 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2260 SLAB_ACCOUNT, sighand_ctor);
2261 signal_cachep = kmem_cache_create("signal_cache",
2262 sizeof(struct signal_struct), 0,
2263 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2264 NULL);
2265 files_cachep = kmem_cache_create("files_cache",
2266 sizeof(struct files_struct), 0,
2267 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2268 NULL);
2269 fs_cachep = kmem_cache_create("fs_cache",
2270 sizeof(struct fs_struct), 0,
2271 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2272 NULL);
2273 /*
2274 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2275 * whole struct cpumask for the OFFSTACK case. We could change
2276 * this to *only* allocate as much of it as required by the
2277 * maximum number of CPU's we can ever have. The cpumask_allocation
2278 * is at the end of the structure, exactly for that reason.
2279 */
2280 mm_cachep = kmem_cache_create("mm_struct",
2281 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2282 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2283 NULL);
2284 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2285 mmap_init();
2286 nsproxy_cache_init();
2287 }
2288
2289 /*
2290 * Check constraints on flags passed to the unshare system call.
2291 */
2292 static int check_unshare_flags(unsigned long unshare_flags)
2293 {
2294 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2295 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2296 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2297 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2298 return -EINVAL;
2299 /*
2300 * Not implemented, but pretend it works if there is nothing
2301 * to unshare. Note that unsharing the address space or the
2302 * signal handlers also need to unshare the signal queues (aka
2303 * CLONE_THREAD).
2304 */
2305 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2306 if (!thread_group_empty(current))
2307 return -EINVAL;
2308 }
2309 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2310 if (atomic_read(&current->sighand->count) > 1)
2311 return -EINVAL;
2312 }
2313 if (unshare_flags & CLONE_VM) {
2314 if (!current_is_single_threaded())
2315 return -EINVAL;
2316 }
2317
2318 return 0;
2319 }
2320
2321 /*
2322 * Unshare the filesystem structure if it is being shared
2323 */
2324 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2325 {
2326 struct fs_struct *fs = current->fs;
2327
2328 if (!(unshare_flags & CLONE_FS) || !fs)
2329 return 0;
2330
2331 /* don't need lock here; in the worst case we'll do useless copy */
2332 if (fs->users == 1)
2333 return 0;
2334
2335 *new_fsp = copy_fs_struct(fs);
2336 if (!*new_fsp)
2337 return -ENOMEM;
2338
2339 return 0;
2340 }
2341
2342 /*
2343 * Unshare file descriptor table if it is being shared
2344 */
2345 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2346 {
2347 struct files_struct *fd = current->files;
2348 int error = 0;
2349
2350 if ((unshare_flags & CLONE_FILES) &&
2351 (fd && atomic_read(&fd->count) > 1)) {
2352 *new_fdp = dup_fd(fd, &error);
2353 if (!*new_fdp)
2354 return error;
2355 }
2356
2357 return 0;
2358 }
2359
2360 /*
2361 * unshare allows a process to 'unshare' part of the process
2362 * context which was originally shared using clone. copy_*
2363 * functions used by do_fork() cannot be used here directly
2364 * because they modify an inactive task_struct that is being
2365 * constructed. Here we are modifying the current, active,
2366 * task_struct.
2367 */
2368 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2369 {
2370 struct fs_struct *fs, *new_fs = NULL;
2371 struct files_struct *fd, *new_fd = NULL;
2372 struct cred *new_cred = NULL;
2373 struct nsproxy *new_nsproxy = NULL;
2374 int do_sysvsem = 0;
2375 int err;
2376
2377 /*
2378 * If unsharing a user namespace must also unshare the thread group
2379 * and unshare the filesystem root and working directories.
2380 */
2381 if (unshare_flags & CLONE_NEWUSER)
2382 unshare_flags |= CLONE_THREAD | CLONE_FS;
2383 /*
2384 * If unsharing vm, must also unshare signal handlers.
2385 */
2386 if (unshare_flags & CLONE_VM)
2387 unshare_flags |= CLONE_SIGHAND;
2388 /*
2389 * If unsharing a signal handlers, must also unshare the signal queues.
2390 */
2391 if (unshare_flags & CLONE_SIGHAND)
2392 unshare_flags |= CLONE_THREAD;
2393 /*
2394 * If unsharing namespace, must also unshare filesystem information.
2395 */
2396 if (unshare_flags & CLONE_NEWNS)
2397 unshare_flags |= CLONE_FS;
2398
2399 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2400 err = -EPERM;
2401 if (!capable(CAP_SYS_ADMIN))
2402 goto bad_unshare_out;
2403 }
2404
2405 err = check_unshare_flags(unshare_flags);
2406 if (err)
2407 goto bad_unshare_out;
2408 /*
2409 * CLONE_NEWIPC must also detach from the undolist: after switching
2410 * to a new ipc namespace, the semaphore arrays from the old
2411 * namespace are unreachable.
2412 */
2413 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2414 do_sysvsem = 1;
2415 err = unshare_fs(unshare_flags, &new_fs);
2416 if (err)
2417 goto bad_unshare_out;
2418 err = unshare_fd(unshare_flags, &new_fd);
2419 if (err)
2420 goto bad_unshare_cleanup_fs;
2421 err = unshare_userns(unshare_flags, &new_cred);
2422 if (err)
2423 goto bad_unshare_cleanup_fd;
2424 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2425 new_cred, new_fs);
2426 if (err)
2427 goto bad_unshare_cleanup_cred;
2428
2429 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2430 if (do_sysvsem) {
2431 /*
2432 * CLONE_SYSVSEM is equivalent to sys_exit().
2433 */
2434 exit_sem(current);
2435 }
2436 if (unshare_flags & CLONE_NEWIPC) {
2437 /* Orphan segments in old ns (see sem above). */
2438 exit_shm(current);
2439 shm_init_task(current);
2440 }
2441
2442 if (new_nsproxy)
2443 switch_task_namespaces(current, new_nsproxy);
2444
2445 task_lock(current);
2446
2447 if (new_fs) {
2448 fs = current->fs;
2449 spin_lock(&fs->lock);
2450 current->fs = new_fs;
2451 if (--fs->users)
2452 new_fs = NULL;
2453 else
2454 new_fs = fs;
2455 spin_unlock(&fs->lock);
2456 }
2457
2458 if (new_fd) {
2459 fd = current->files;
2460 current->files = new_fd;
2461 new_fd = fd;
2462 }
2463
2464 task_unlock(current);
2465
2466 if (new_cred) {
2467 /* Install the new user namespace */
2468 commit_creds(new_cred);
2469 new_cred = NULL;
2470 }
2471 }
2472
2473 perf_event_namespaces(current);
2474
2475 bad_unshare_cleanup_cred:
2476 if (new_cred)
2477 put_cred(new_cred);
2478 bad_unshare_cleanup_fd:
2479 if (new_fd)
2480 put_files_struct(new_fd);
2481
2482 bad_unshare_cleanup_fs:
2483 if (new_fs)
2484 free_fs_struct(new_fs);
2485
2486 bad_unshare_out:
2487 return err;
2488 }
2489
2490 /*
2491 * Helper to unshare the files of the current task.
2492 * We don't want to expose copy_files internals to
2493 * the exec layer of the kernel.
2494 */
2495
2496 int unshare_files(struct files_struct **displaced)
2497 {
2498 struct task_struct *task = current;
2499 struct files_struct *copy = NULL;
2500 int error;
2501
2502 error = unshare_fd(CLONE_FILES, &copy);
2503 if (error || !copy) {
2504 *displaced = NULL;
2505 return error;
2506 }
2507 *displaced = task->files;
2508 task_lock(task);
2509 task->files = copy;
2510 task_unlock(task);
2511 return 0;
2512 }
2513
2514 int sysctl_max_threads(struct ctl_table *table, int write,
2515 void __user *buffer, size_t *lenp, loff_t *ppos)
2516 {
2517 struct ctl_table t;
2518 int ret;
2519 int threads = max_threads;
2520 int min = MIN_THREADS;
2521 int max = MAX_THREADS;
2522
2523 t = *table;
2524 t.data = &threads;
2525 t.extra1 = &min;
2526 t.extra2 = &max;
2527
2528 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2529 if (ret || !write)
2530 return ret;
2531
2532 set_max_threads(threads);
2533
2534 return 0;
2535 }