]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/fork.c
fork: reset mm->pinned_vm
[mirror_ubuntu-focal-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93 unsigned long total_forks; /* Handle normal Linux uptimes. */
94 int nr_threads; /* The idle threads do not count.. */
95
96 int max_threads; /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152 {
153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168 {
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174 kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261 #endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292 {
293 *dst = *src;
294 return 0;
295 }
296
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299 struct task_struct *tsk;
300 struct thread_info *ti;
301 unsigned long *stackend;
302 int node = tsk_fork_get_node(orig);
303 int err;
304
305 tsk = alloc_task_struct_node(node);
306 if (!tsk)
307 return NULL;
308
309 ti = alloc_thread_info_node(tsk, node);
310 if (!ti)
311 goto free_tsk;
312
313 err = arch_dup_task_struct(tsk, orig);
314 if (err)
315 goto free_ti;
316
317 tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319 /*
320 * We must handle setting up seccomp filters once we're under
321 * the sighand lock in case orig has changed between now and
322 * then. Until then, filter must be NULL to avoid messing up
323 * the usage counts on the error path calling free_task.
324 */
325 tsk->seccomp.filter = NULL;
326 #endif
327
328 setup_thread_stack(tsk, orig);
329 clear_user_return_notifier(tsk);
330 clear_tsk_need_resched(tsk);
331 stackend = end_of_stack(tsk);
332 *stackend = STACK_END_MAGIC; /* for overflow detection */
333
334 #ifdef CONFIG_CC_STACKPROTECTOR
335 tsk->stack_canary = get_random_int();
336 #endif
337
338 /*
339 * One for us, one for whoever does the "release_task()" (usually
340 * parent)
341 */
342 atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344 tsk->btrace_seq = 0;
345 #endif
346 tsk->splice_pipe = NULL;
347 tsk->task_frag.page = NULL;
348
349 account_kernel_stack(ti, 1);
350
351 return tsk;
352
353 free_ti:
354 free_thread_info(ti);
355 free_tsk:
356 free_task_struct(tsk);
357 return NULL;
358 }
359
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364 struct rb_node **rb_link, *rb_parent;
365 int retval;
366 unsigned long charge;
367
368 uprobe_start_dup_mmap();
369 down_write(&oldmm->mmap_sem);
370 flush_cache_dup_mm(oldmm);
371 uprobe_dup_mmap(oldmm, mm);
372 /*
373 * Not linked in yet - no deadlock potential:
374 */
375 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376
377 rb_link = &mm->mm_rb.rb_node;
378 rb_parent = NULL;
379 pprev = &mm->mmap;
380 retval = ksm_fork(mm, oldmm);
381 if (retval)
382 goto out;
383 retval = khugepaged_fork(mm, oldmm);
384 if (retval)
385 goto out;
386
387 prev = NULL;
388 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
389 struct file *file;
390
391 if (mpnt->vm_flags & VM_DONTCOPY) {
392 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
393 -vma_pages(mpnt));
394 continue;
395 }
396 charge = 0;
397 if (mpnt->vm_flags & VM_ACCOUNT) {
398 unsigned long len = vma_pages(mpnt);
399
400 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
401 goto fail_nomem;
402 charge = len;
403 }
404 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
405 if (!tmp)
406 goto fail_nomem;
407 *tmp = *mpnt;
408 INIT_LIST_HEAD(&tmp->anon_vma_chain);
409 retval = vma_dup_policy(mpnt, tmp);
410 if (retval)
411 goto fail_nomem_policy;
412 tmp->vm_mm = mm;
413 if (anon_vma_fork(tmp, mpnt))
414 goto fail_nomem_anon_vma_fork;
415 tmp->vm_flags &= ~VM_LOCKED;
416 tmp->vm_next = tmp->vm_prev = NULL;
417 file = tmp->vm_file;
418 if (file) {
419 struct inode *inode = file_inode(file);
420 struct address_space *mapping = file->f_mapping;
421
422 get_file(file);
423 if (tmp->vm_flags & VM_DENYWRITE)
424 atomic_dec(&inode->i_writecount);
425 mutex_lock(&mapping->i_mmap_mutex);
426 if (tmp->vm_flags & VM_SHARED)
427 mapping->i_mmap_writable++;
428 flush_dcache_mmap_lock(mapping);
429 /* insert tmp into the share list, just after mpnt */
430 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
431 vma_nonlinear_insert(tmp,
432 &mapping->i_mmap_nonlinear);
433 else
434 vma_interval_tree_insert_after(tmp, mpnt,
435 &mapping->i_mmap);
436 flush_dcache_mmap_unlock(mapping);
437 mutex_unlock(&mapping->i_mmap_mutex);
438 }
439
440 /*
441 * Clear hugetlb-related page reserves for children. This only
442 * affects MAP_PRIVATE mappings. Faults generated by the child
443 * are not guaranteed to succeed, even if read-only
444 */
445 if (is_vm_hugetlb_page(tmp))
446 reset_vma_resv_huge_pages(tmp);
447
448 /*
449 * Link in the new vma and copy the page table entries.
450 */
451 *pprev = tmp;
452 pprev = &tmp->vm_next;
453 tmp->vm_prev = prev;
454 prev = tmp;
455
456 __vma_link_rb(mm, tmp, rb_link, rb_parent);
457 rb_link = &tmp->vm_rb.rb_right;
458 rb_parent = &tmp->vm_rb;
459
460 mm->map_count++;
461 retval = copy_page_range(mm, oldmm, mpnt);
462
463 if (tmp->vm_ops && tmp->vm_ops->open)
464 tmp->vm_ops->open(tmp);
465
466 if (retval)
467 goto out;
468 }
469 /* a new mm has just been created */
470 arch_dup_mmap(oldmm, mm);
471 retval = 0;
472 out:
473 up_write(&mm->mmap_sem);
474 flush_tlb_mm(oldmm);
475 up_write(&oldmm->mmap_sem);
476 uprobe_end_dup_mmap();
477 return retval;
478 fail_nomem_anon_vma_fork:
479 mpol_put(vma_policy(tmp));
480 fail_nomem_policy:
481 kmem_cache_free(vm_area_cachep, tmp);
482 fail_nomem:
483 retval = -ENOMEM;
484 vm_unacct_memory(charge);
485 goto out;
486 }
487
488 static inline int mm_alloc_pgd(struct mm_struct *mm)
489 {
490 mm->pgd = pgd_alloc(mm);
491 if (unlikely(!mm->pgd))
492 return -ENOMEM;
493 return 0;
494 }
495
496 static inline void mm_free_pgd(struct mm_struct *mm)
497 {
498 pgd_free(mm, mm->pgd);
499 }
500 #else
501 #define dup_mmap(mm, oldmm) (0)
502 #define mm_alloc_pgd(mm) (0)
503 #define mm_free_pgd(mm)
504 #endif /* CONFIG_MMU */
505
506 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
507
508 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
509 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
510
511 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
512
513 static int __init coredump_filter_setup(char *s)
514 {
515 default_dump_filter =
516 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
517 MMF_DUMP_FILTER_MASK;
518 return 1;
519 }
520
521 __setup("coredump_filter=", coredump_filter_setup);
522
523 #include <linux/init_task.h>
524
525 static void mm_init_aio(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_AIO
528 spin_lock_init(&mm->ioctx_lock);
529 mm->ioctx_table = NULL;
530 #endif
531 }
532
533 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
534 {
535 mm->mmap = NULL;
536 mm->mm_rb = RB_ROOT;
537 mm->vmacache_seqnum = 0;
538 atomic_set(&mm->mm_users, 1);
539 atomic_set(&mm->mm_count, 1);
540 init_rwsem(&mm->mmap_sem);
541 INIT_LIST_HEAD(&mm->mmlist);
542 mm->core_state = NULL;
543 atomic_long_set(&mm->nr_ptes, 0);
544 mm->map_count = 0;
545 mm->locked_vm = 0;
546 mm->pinned_vm = 0;
547 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
548 spin_lock_init(&mm->page_table_lock);
549 mm_init_cpumask(mm);
550 mm_init_aio(mm);
551 mm_init_owner(mm, p);
552 mmu_notifier_mm_init(mm);
553 clear_tlb_flush_pending(mm);
554 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
555 mm->pmd_huge_pte = NULL;
556 #endif
557
558 if (current->mm) {
559 mm->flags = current->mm->flags & MMF_INIT_MASK;
560 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
561 } else {
562 mm->flags = default_dump_filter;
563 mm->def_flags = 0;
564 }
565
566 if (mm_alloc_pgd(mm))
567 goto fail_nopgd;
568
569 if (init_new_context(p, mm))
570 goto fail_nocontext;
571
572 return mm;
573
574 fail_nocontext:
575 mm_free_pgd(mm);
576 fail_nopgd:
577 free_mm(mm);
578 return NULL;
579 }
580
581 static void check_mm(struct mm_struct *mm)
582 {
583 int i;
584
585 for (i = 0; i < NR_MM_COUNTERS; i++) {
586 long x = atomic_long_read(&mm->rss_stat.count[i]);
587
588 if (unlikely(x))
589 printk(KERN_ALERT "BUG: Bad rss-counter state "
590 "mm:%p idx:%d val:%ld\n", mm, i, x);
591 }
592
593 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
594 VM_BUG_ON(mm->pmd_huge_pte);
595 #endif
596 }
597
598 /*
599 * Allocate and initialize an mm_struct.
600 */
601 struct mm_struct *mm_alloc(void)
602 {
603 struct mm_struct *mm;
604
605 mm = allocate_mm();
606 if (!mm)
607 return NULL;
608
609 memset(mm, 0, sizeof(*mm));
610 return mm_init(mm, current);
611 }
612
613 /*
614 * Called when the last reference to the mm
615 * is dropped: either by a lazy thread or by
616 * mmput. Free the page directory and the mm.
617 */
618 void __mmdrop(struct mm_struct *mm)
619 {
620 BUG_ON(mm == &init_mm);
621 mm_free_pgd(mm);
622 destroy_context(mm);
623 mmu_notifier_mm_destroy(mm);
624 check_mm(mm);
625 free_mm(mm);
626 }
627 EXPORT_SYMBOL_GPL(__mmdrop);
628
629 /*
630 * Decrement the use count and release all resources for an mm.
631 */
632 void mmput(struct mm_struct *mm)
633 {
634 might_sleep();
635
636 if (atomic_dec_and_test(&mm->mm_users)) {
637 uprobe_clear_state(mm);
638 exit_aio(mm);
639 ksm_exit(mm);
640 khugepaged_exit(mm); /* must run before exit_mmap */
641 exit_mmap(mm);
642 set_mm_exe_file(mm, NULL);
643 if (!list_empty(&mm->mmlist)) {
644 spin_lock(&mmlist_lock);
645 list_del(&mm->mmlist);
646 spin_unlock(&mmlist_lock);
647 }
648 if (mm->binfmt)
649 module_put(mm->binfmt->module);
650 mmdrop(mm);
651 }
652 }
653 EXPORT_SYMBOL_GPL(mmput);
654
655 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
656 {
657 if (new_exe_file)
658 get_file(new_exe_file);
659 if (mm->exe_file)
660 fput(mm->exe_file);
661 mm->exe_file = new_exe_file;
662 }
663
664 struct file *get_mm_exe_file(struct mm_struct *mm)
665 {
666 struct file *exe_file;
667
668 /* We need mmap_sem to protect against races with removal of exe_file */
669 down_read(&mm->mmap_sem);
670 exe_file = mm->exe_file;
671 if (exe_file)
672 get_file(exe_file);
673 up_read(&mm->mmap_sem);
674 return exe_file;
675 }
676
677 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
678 {
679 /* It's safe to write the exe_file pointer without exe_file_lock because
680 * this is called during fork when the task is not yet in /proc */
681 newmm->exe_file = get_mm_exe_file(oldmm);
682 }
683
684 /**
685 * get_task_mm - acquire a reference to the task's mm
686 *
687 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
688 * this kernel workthread has transiently adopted a user mm with use_mm,
689 * to do its AIO) is not set and if so returns a reference to it, after
690 * bumping up the use count. User must release the mm via mmput()
691 * after use. Typically used by /proc and ptrace.
692 */
693 struct mm_struct *get_task_mm(struct task_struct *task)
694 {
695 struct mm_struct *mm;
696
697 task_lock(task);
698 mm = task->mm;
699 if (mm) {
700 if (task->flags & PF_KTHREAD)
701 mm = NULL;
702 else
703 atomic_inc(&mm->mm_users);
704 }
705 task_unlock(task);
706 return mm;
707 }
708 EXPORT_SYMBOL_GPL(get_task_mm);
709
710 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
711 {
712 struct mm_struct *mm;
713 int err;
714
715 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
716 if (err)
717 return ERR_PTR(err);
718
719 mm = get_task_mm(task);
720 if (mm && mm != current->mm &&
721 !ptrace_may_access(task, mode)) {
722 mmput(mm);
723 mm = ERR_PTR(-EACCES);
724 }
725 mutex_unlock(&task->signal->cred_guard_mutex);
726
727 return mm;
728 }
729
730 static void complete_vfork_done(struct task_struct *tsk)
731 {
732 struct completion *vfork;
733
734 task_lock(tsk);
735 vfork = tsk->vfork_done;
736 if (likely(vfork)) {
737 tsk->vfork_done = NULL;
738 complete(vfork);
739 }
740 task_unlock(tsk);
741 }
742
743 static int wait_for_vfork_done(struct task_struct *child,
744 struct completion *vfork)
745 {
746 int killed;
747
748 freezer_do_not_count();
749 killed = wait_for_completion_killable(vfork);
750 freezer_count();
751
752 if (killed) {
753 task_lock(child);
754 child->vfork_done = NULL;
755 task_unlock(child);
756 }
757
758 put_task_struct(child);
759 return killed;
760 }
761
762 /* Please note the differences between mmput and mm_release.
763 * mmput is called whenever we stop holding onto a mm_struct,
764 * error success whatever.
765 *
766 * mm_release is called after a mm_struct has been removed
767 * from the current process.
768 *
769 * This difference is important for error handling, when we
770 * only half set up a mm_struct for a new process and need to restore
771 * the old one. Because we mmput the new mm_struct before
772 * restoring the old one. . .
773 * Eric Biederman 10 January 1998
774 */
775 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
776 {
777 /* Get rid of any futexes when releasing the mm */
778 #ifdef CONFIG_FUTEX
779 if (unlikely(tsk->robust_list)) {
780 exit_robust_list(tsk);
781 tsk->robust_list = NULL;
782 }
783 #ifdef CONFIG_COMPAT
784 if (unlikely(tsk->compat_robust_list)) {
785 compat_exit_robust_list(tsk);
786 tsk->compat_robust_list = NULL;
787 }
788 #endif
789 if (unlikely(!list_empty(&tsk->pi_state_list)))
790 exit_pi_state_list(tsk);
791 #endif
792
793 uprobe_free_utask(tsk);
794
795 /* Get rid of any cached register state */
796 deactivate_mm(tsk, mm);
797
798 /*
799 * If we're exiting normally, clear a user-space tid field if
800 * requested. We leave this alone when dying by signal, to leave
801 * the value intact in a core dump, and to save the unnecessary
802 * trouble, say, a killed vfork parent shouldn't touch this mm.
803 * Userland only wants this done for a sys_exit.
804 */
805 if (tsk->clear_child_tid) {
806 if (!(tsk->flags & PF_SIGNALED) &&
807 atomic_read(&mm->mm_users) > 1) {
808 /*
809 * We don't check the error code - if userspace has
810 * not set up a proper pointer then tough luck.
811 */
812 put_user(0, tsk->clear_child_tid);
813 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
814 1, NULL, NULL, 0);
815 }
816 tsk->clear_child_tid = NULL;
817 }
818
819 /*
820 * All done, finally we can wake up parent and return this mm to him.
821 * Also kthread_stop() uses this completion for synchronization.
822 */
823 if (tsk->vfork_done)
824 complete_vfork_done(tsk);
825 }
826
827 /*
828 * Allocate a new mm structure and copy contents from the
829 * mm structure of the passed in task structure.
830 */
831 static struct mm_struct *dup_mm(struct task_struct *tsk)
832 {
833 struct mm_struct *mm, *oldmm = current->mm;
834 int err;
835
836 mm = allocate_mm();
837 if (!mm)
838 goto fail_nomem;
839
840 memcpy(mm, oldmm, sizeof(*mm));
841
842 if (!mm_init(mm, tsk))
843 goto fail_nomem;
844
845 dup_mm_exe_file(oldmm, mm);
846
847 err = dup_mmap(mm, oldmm);
848 if (err)
849 goto free_pt;
850
851 mm->hiwater_rss = get_mm_rss(mm);
852 mm->hiwater_vm = mm->total_vm;
853
854 if (mm->binfmt && !try_module_get(mm->binfmt->module))
855 goto free_pt;
856
857 return mm;
858
859 free_pt:
860 /* don't put binfmt in mmput, we haven't got module yet */
861 mm->binfmt = NULL;
862 mmput(mm);
863
864 fail_nomem:
865 return NULL;
866 }
867
868 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
869 {
870 struct mm_struct *mm, *oldmm;
871 int retval;
872
873 tsk->min_flt = tsk->maj_flt = 0;
874 tsk->nvcsw = tsk->nivcsw = 0;
875 #ifdef CONFIG_DETECT_HUNG_TASK
876 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
877 #endif
878
879 tsk->mm = NULL;
880 tsk->active_mm = NULL;
881
882 /*
883 * Are we cloning a kernel thread?
884 *
885 * We need to steal a active VM for that..
886 */
887 oldmm = current->mm;
888 if (!oldmm)
889 return 0;
890
891 /* initialize the new vmacache entries */
892 vmacache_flush(tsk);
893
894 if (clone_flags & CLONE_VM) {
895 atomic_inc(&oldmm->mm_users);
896 mm = oldmm;
897 goto good_mm;
898 }
899
900 retval = -ENOMEM;
901 mm = dup_mm(tsk);
902 if (!mm)
903 goto fail_nomem;
904
905 good_mm:
906 tsk->mm = mm;
907 tsk->active_mm = mm;
908 return 0;
909
910 fail_nomem:
911 return retval;
912 }
913
914 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
915 {
916 struct fs_struct *fs = current->fs;
917 if (clone_flags & CLONE_FS) {
918 /* tsk->fs is already what we want */
919 spin_lock(&fs->lock);
920 if (fs->in_exec) {
921 spin_unlock(&fs->lock);
922 return -EAGAIN;
923 }
924 fs->users++;
925 spin_unlock(&fs->lock);
926 return 0;
927 }
928 tsk->fs = copy_fs_struct(fs);
929 if (!tsk->fs)
930 return -ENOMEM;
931 return 0;
932 }
933
934 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
935 {
936 struct files_struct *oldf, *newf;
937 int error = 0;
938
939 /*
940 * A background process may not have any files ...
941 */
942 oldf = current->files;
943 if (!oldf)
944 goto out;
945
946 if (clone_flags & CLONE_FILES) {
947 atomic_inc(&oldf->count);
948 goto out;
949 }
950
951 newf = dup_fd(oldf, &error);
952 if (!newf)
953 goto out;
954
955 tsk->files = newf;
956 error = 0;
957 out:
958 return error;
959 }
960
961 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
962 {
963 #ifdef CONFIG_BLOCK
964 struct io_context *ioc = current->io_context;
965 struct io_context *new_ioc;
966
967 if (!ioc)
968 return 0;
969 /*
970 * Share io context with parent, if CLONE_IO is set
971 */
972 if (clone_flags & CLONE_IO) {
973 ioc_task_link(ioc);
974 tsk->io_context = ioc;
975 } else if (ioprio_valid(ioc->ioprio)) {
976 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
977 if (unlikely(!new_ioc))
978 return -ENOMEM;
979
980 new_ioc->ioprio = ioc->ioprio;
981 put_io_context(new_ioc);
982 }
983 #endif
984 return 0;
985 }
986
987 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
988 {
989 struct sighand_struct *sig;
990
991 if (clone_flags & CLONE_SIGHAND) {
992 atomic_inc(&current->sighand->count);
993 return 0;
994 }
995 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
996 rcu_assign_pointer(tsk->sighand, sig);
997 if (!sig)
998 return -ENOMEM;
999 atomic_set(&sig->count, 1);
1000 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1001 return 0;
1002 }
1003
1004 void __cleanup_sighand(struct sighand_struct *sighand)
1005 {
1006 if (atomic_dec_and_test(&sighand->count)) {
1007 signalfd_cleanup(sighand);
1008 kmem_cache_free(sighand_cachep, sighand);
1009 }
1010 }
1011
1012
1013 /*
1014 * Initialize POSIX timer handling for a thread group.
1015 */
1016 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1017 {
1018 unsigned long cpu_limit;
1019
1020 /* Thread group counters. */
1021 thread_group_cputime_init(sig);
1022
1023 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1024 if (cpu_limit != RLIM_INFINITY) {
1025 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1026 sig->cputimer.running = 1;
1027 }
1028
1029 /* The timer lists. */
1030 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1031 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1032 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1033 }
1034
1035 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1036 {
1037 struct signal_struct *sig;
1038
1039 if (clone_flags & CLONE_THREAD)
1040 return 0;
1041
1042 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1043 tsk->signal = sig;
1044 if (!sig)
1045 return -ENOMEM;
1046
1047 sig->nr_threads = 1;
1048 atomic_set(&sig->live, 1);
1049 atomic_set(&sig->sigcnt, 1);
1050
1051 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1052 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1053 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1054
1055 init_waitqueue_head(&sig->wait_chldexit);
1056 sig->curr_target = tsk;
1057 init_sigpending(&sig->shared_pending);
1058 INIT_LIST_HEAD(&sig->posix_timers);
1059
1060 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1061 sig->real_timer.function = it_real_fn;
1062
1063 task_lock(current->group_leader);
1064 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1065 task_unlock(current->group_leader);
1066
1067 posix_cpu_timers_init_group(sig);
1068
1069 tty_audit_fork(sig);
1070 sched_autogroup_fork(sig);
1071
1072 #ifdef CONFIG_CGROUPS
1073 init_rwsem(&sig->group_rwsem);
1074 #endif
1075
1076 sig->oom_score_adj = current->signal->oom_score_adj;
1077 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1078
1079 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1080 current->signal->is_child_subreaper;
1081
1082 mutex_init(&sig->cred_guard_mutex);
1083
1084 return 0;
1085 }
1086
1087 static void copy_seccomp(struct task_struct *p)
1088 {
1089 #ifdef CONFIG_SECCOMP
1090 /*
1091 * Must be called with sighand->lock held, which is common to
1092 * all threads in the group. Holding cred_guard_mutex is not
1093 * needed because this new task is not yet running and cannot
1094 * be racing exec.
1095 */
1096 BUG_ON(!spin_is_locked(&current->sighand->siglock));
1097
1098 /* Ref-count the new filter user, and assign it. */
1099 get_seccomp_filter(current);
1100 p->seccomp = current->seccomp;
1101
1102 /*
1103 * Explicitly enable no_new_privs here in case it got set
1104 * between the task_struct being duplicated and holding the
1105 * sighand lock. The seccomp state and nnp must be in sync.
1106 */
1107 if (task_no_new_privs(current))
1108 task_set_no_new_privs(p);
1109
1110 /*
1111 * If the parent gained a seccomp mode after copying thread
1112 * flags and between before we held the sighand lock, we have
1113 * to manually enable the seccomp thread flag here.
1114 */
1115 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1116 set_tsk_thread_flag(p, TIF_SECCOMP);
1117 #endif
1118 }
1119
1120 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1121 {
1122 current->clear_child_tid = tidptr;
1123
1124 return task_pid_vnr(current);
1125 }
1126
1127 static void rt_mutex_init_task(struct task_struct *p)
1128 {
1129 raw_spin_lock_init(&p->pi_lock);
1130 #ifdef CONFIG_RT_MUTEXES
1131 p->pi_waiters = RB_ROOT;
1132 p->pi_waiters_leftmost = NULL;
1133 p->pi_blocked_on = NULL;
1134 #endif
1135 }
1136
1137 #ifdef CONFIG_MEMCG
1138 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1139 {
1140 mm->owner = p;
1141 }
1142 #endif /* CONFIG_MEMCG */
1143
1144 /*
1145 * Initialize POSIX timer handling for a single task.
1146 */
1147 static void posix_cpu_timers_init(struct task_struct *tsk)
1148 {
1149 tsk->cputime_expires.prof_exp = 0;
1150 tsk->cputime_expires.virt_exp = 0;
1151 tsk->cputime_expires.sched_exp = 0;
1152 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1153 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1154 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1155 }
1156
1157 static inline void
1158 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1159 {
1160 task->pids[type].pid = pid;
1161 }
1162
1163 /*
1164 * This creates a new process as a copy of the old one,
1165 * but does not actually start it yet.
1166 *
1167 * It copies the registers, and all the appropriate
1168 * parts of the process environment (as per the clone
1169 * flags). The actual kick-off is left to the caller.
1170 */
1171 static struct task_struct *copy_process(unsigned long clone_flags,
1172 unsigned long stack_start,
1173 unsigned long stack_size,
1174 int __user *child_tidptr,
1175 struct pid *pid,
1176 int trace)
1177 {
1178 int retval;
1179 struct task_struct *p;
1180
1181 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1182 return ERR_PTR(-EINVAL);
1183
1184 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1185 return ERR_PTR(-EINVAL);
1186
1187 /*
1188 * Thread groups must share signals as well, and detached threads
1189 * can only be started up within the thread group.
1190 */
1191 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1192 return ERR_PTR(-EINVAL);
1193
1194 /*
1195 * Shared signal handlers imply shared VM. By way of the above,
1196 * thread groups also imply shared VM. Blocking this case allows
1197 * for various simplifications in other code.
1198 */
1199 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1200 return ERR_PTR(-EINVAL);
1201
1202 /*
1203 * Siblings of global init remain as zombies on exit since they are
1204 * not reaped by their parent (swapper). To solve this and to avoid
1205 * multi-rooted process trees, prevent global and container-inits
1206 * from creating siblings.
1207 */
1208 if ((clone_flags & CLONE_PARENT) &&
1209 current->signal->flags & SIGNAL_UNKILLABLE)
1210 return ERR_PTR(-EINVAL);
1211
1212 /*
1213 * If the new process will be in a different pid or user namespace
1214 * do not allow it to share a thread group or signal handlers or
1215 * parent with the forking task.
1216 */
1217 if (clone_flags & CLONE_SIGHAND) {
1218 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1219 (task_active_pid_ns(current) !=
1220 current->nsproxy->pid_ns_for_children))
1221 return ERR_PTR(-EINVAL);
1222 }
1223
1224 retval = security_task_create(clone_flags);
1225 if (retval)
1226 goto fork_out;
1227
1228 retval = -ENOMEM;
1229 p = dup_task_struct(current);
1230 if (!p)
1231 goto fork_out;
1232
1233 ftrace_graph_init_task(p);
1234
1235 rt_mutex_init_task(p);
1236
1237 #ifdef CONFIG_PROVE_LOCKING
1238 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1239 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1240 #endif
1241 retval = -EAGAIN;
1242 if (atomic_read(&p->real_cred->user->processes) >=
1243 task_rlimit(p, RLIMIT_NPROC)) {
1244 if (p->real_cred->user != INIT_USER &&
1245 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1246 goto bad_fork_free;
1247 }
1248 current->flags &= ~PF_NPROC_EXCEEDED;
1249
1250 retval = copy_creds(p, clone_flags);
1251 if (retval < 0)
1252 goto bad_fork_free;
1253
1254 /*
1255 * If multiple threads are within copy_process(), then this check
1256 * triggers too late. This doesn't hurt, the check is only there
1257 * to stop root fork bombs.
1258 */
1259 retval = -EAGAIN;
1260 if (nr_threads >= max_threads)
1261 goto bad_fork_cleanup_count;
1262
1263 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1264 goto bad_fork_cleanup_count;
1265
1266 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1267 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1268 p->flags |= PF_FORKNOEXEC;
1269 INIT_LIST_HEAD(&p->children);
1270 INIT_LIST_HEAD(&p->sibling);
1271 rcu_copy_process(p);
1272 p->vfork_done = NULL;
1273 spin_lock_init(&p->alloc_lock);
1274
1275 init_sigpending(&p->pending);
1276
1277 p->utime = p->stime = p->gtime = 0;
1278 p->utimescaled = p->stimescaled = 0;
1279 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1280 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1281 #endif
1282 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1283 seqlock_init(&p->vtime_seqlock);
1284 p->vtime_snap = 0;
1285 p->vtime_snap_whence = VTIME_SLEEPING;
1286 #endif
1287
1288 #if defined(SPLIT_RSS_COUNTING)
1289 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1290 #endif
1291
1292 p->default_timer_slack_ns = current->timer_slack_ns;
1293
1294 task_io_accounting_init(&p->ioac);
1295 acct_clear_integrals(p);
1296
1297 posix_cpu_timers_init(p);
1298
1299 p->start_time = ktime_get_ns();
1300 p->real_start_time = ktime_get_boot_ns();
1301 p->io_context = NULL;
1302 p->audit_context = NULL;
1303 if (clone_flags & CLONE_THREAD)
1304 threadgroup_change_begin(current);
1305 cgroup_fork(p);
1306 #ifdef CONFIG_NUMA
1307 p->mempolicy = mpol_dup(p->mempolicy);
1308 if (IS_ERR(p->mempolicy)) {
1309 retval = PTR_ERR(p->mempolicy);
1310 p->mempolicy = NULL;
1311 goto bad_fork_cleanup_threadgroup_lock;
1312 }
1313 #endif
1314 #ifdef CONFIG_CPUSETS
1315 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1316 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1317 seqcount_init(&p->mems_allowed_seq);
1318 #endif
1319 #ifdef CONFIG_TRACE_IRQFLAGS
1320 p->irq_events = 0;
1321 p->hardirqs_enabled = 0;
1322 p->hardirq_enable_ip = 0;
1323 p->hardirq_enable_event = 0;
1324 p->hardirq_disable_ip = _THIS_IP_;
1325 p->hardirq_disable_event = 0;
1326 p->softirqs_enabled = 1;
1327 p->softirq_enable_ip = _THIS_IP_;
1328 p->softirq_enable_event = 0;
1329 p->softirq_disable_ip = 0;
1330 p->softirq_disable_event = 0;
1331 p->hardirq_context = 0;
1332 p->softirq_context = 0;
1333 #endif
1334 #ifdef CONFIG_LOCKDEP
1335 p->lockdep_depth = 0; /* no locks held yet */
1336 p->curr_chain_key = 0;
1337 p->lockdep_recursion = 0;
1338 #endif
1339
1340 #ifdef CONFIG_DEBUG_MUTEXES
1341 p->blocked_on = NULL; /* not blocked yet */
1342 #endif
1343 #ifdef CONFIG_BCACHE
1344 p->sequential_io = 0;
1345 p->sequential_io_avg = 0;
1346 #endif
1347
1348 /* Perform scheduler related setup. Assign this task to a CPU. */
1349 retval = sched_fork(clone_flags, p);
1350 if (retval)
1351 goto bad_fork_cleanup_policy;
1352
1353 retval = perf_event_init_task(p);
1354 if (retval)
1355 goto bad_fork_cleanup_policy;
1356 retval = audit_alloc(p);
1357 if (retval)
1358 goto bad_fork_cleanup_policy;
1359 /* copy all the process information */
1360 retval = copy_semundo(clone_flags, p);
1361 if (retval)
1362 goto bad_fork_cleanup_audit;
1363 retval = copy_files(clone_flags, p);
1364 if (retval)
1365 goto bad_fork_cleanup_semundo;
1366 retval = copy_fs(clone_flags, p);
1367 if (retval)
1368 goto bad_fork_cleanup_files;
1369 retval = copy_sighand(clone_flags, p);
1370 if (retval)
1371 goto bad_fork_cleanup_fs;
1372 retval = copy_signal(clone_flags, p);
1373 if (retval)
1374 goto bad_fork_cleanup_sighand;
1375 retval = copy_mm(clone_flags, p);
1376 if (retval)
1377 goto bad_fork_cleanup_signal;
1378 retval = copy_namespaces(clone_flags, p);
1379 if (retval)
1380 goto bad_fork_cleanup_mm;
1381 retval = copy_io(clone_flags, p);
1382 if (retval)
1383 goto bad_fork_cleanup_namespaces;
1384 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1385 if (retval)
1386 goto bad_fork_cleanup_io;
1387
1388 if (pid != &init_struct_pid) {
1389 retval = -ENOMEM;
1390 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1391 if (!pid)
1392 goto bad_fork_cleanup_io;
1393 }
1394
1395 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1396 /*
1397 * Clear TID on mm_release()?
1398 */
1399 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1400 #ifdef CONFIG_BLOCK
1401 p->plug = NULL;
1402 #endif
1403 #ifdef CONFIG_FUTEX
1404 p->robust_list = NULL;
1405 #ifdef CONFIG_COMPAT
1406 p->compat_robust_list = NULL;
1407 #endif
1408 INIT_LIST_HEAD(&p->pi_state_list);
1409 p->pi_state_cache = NULL;
1410 #endif
1411 /*
1412 * sigaltstack should be cleared when sharing the same VM
1413 */
1414 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1415 p->sas_ss_sp = p->sas_ss_size = 0;
1416
1417 /*
1418 * Syscall tracing and stepping should be turned off in the
1419 * child regardless of CLONE_PTRACE.
1420 */
1421 user_disable_single_step(p);
1422 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1423 #ifdef TIF_SYSCALL_EMU
1424 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1425 #endif
1426 clear_all_latency_tracing(p);
1427
1428 /* ok, now we should be set up.. */
1429 p->pid = pid_nr(pid);
1430 if (clone_flags & CLONE_THREAD) {
1431 p->exit_signal = -1;
1432 p->group_leader = current->group_leader;
1433 p->tgid = current->tgid;
1434 } else {
1435 if (clone_flags & CLONE_PARENT)
1436 p->exit_signal = current->group_leader->exit_signal;
1437 else
1438 p->exit_signal = (clone_flags & CSIGNAL);
1439 p->group_leader = p;
1440 p->tgid = p->pid;
1441 }
1442
1443 p->nr_dirtied = 0;
1444 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1445 p->dirty_paused_when = 0;
1446
1447 p->pdeath_signal = 0;
1448 INIT_LIST_HEAD(&p->thread_group);
1449 p->task_works = NULL;
1450
1451 /*
1452 * Make it visible to the rest of the system, but dont wake it up yet.
1453 * Need tasklist lock for parent etc handling!
1454 */
1455 write_lock_irq(&tasklist_lock);
1456
1457 /* CLONE_PARENT re-uses the old parent */
1458 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1459 p->real_parent = current->real_parent;
1460 p->parent_exec_id = current->parent_exec_id;
1461 } else {
1462 p->real_parent = current;
1463 p->parent_exec_id = current->self_exec_id;
1464 }
1465
1466 spin_lock(&current->sighand->siglock);
1467
1468 /*
1469 * Copy seccomp details explicitly here, in case they were changed
1470 * before holding sighand lock.
1471 */
1472 copy_seccomp(p);
1473
1474 /*
1475 * Process group and session signals need to be delivered to just the
1476 * parent before the fork or both the parent and the child after the
1477 * fork. Restart if a signal comes in before we add the new process to
1478 * it's process group.
1479 * A fatal signal pending means that current will exit, so the new
1480 * thread can't slip out of an OOM kill (or normal SIGKILL).
1481 */
1482 recalc_sigpending();
1483 if (signal_pending(current)) {
1484 spin_unlock(&current->sighand->siglock);
1485 write_unlock_irq(&tasklist_lock);
1486 retval = -ERESTARTNOINTR;
1487 goto bad_fork_free_pid;
1488 }
1489
1490 if (likely(p->pid)) {
1491 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1492
1493 init_task_pid(p, PIDTYPE_PID, pid);
1494 if (thread_group_leader(p)) {
1495 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1496 init_task_pid(p, PIDTYPE_SID, task_session(current));
1497
1498 if (is_child_reaper(pid)) {
1499 ns_of_pid(pid)->child_reaper = p;
1500 p->signal->flags |= SIGNAL_UNKILLABLE;
1501 }
1502
1503 p->signal->leader_pid = pid;
1504 p->signal->tty = tty_kref_get(current->signal->tty);
1505 list_add_tail(&p->sibling, &p->real_parent->children);
1506 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1507 attach_pid(p, PIDTYPE_PGID);
1508 attach_pid(p, PIDTYPE_SID);
1509 __this_cpu_inc(process_counts);
1510 } else {
1511 current->signal->nr_threads++;
1512 atomic_inc(&current->signal->live);
1513 atomic_inc(&current->signal->sigcnt);
1514 list_add_tail_rcu(&p->thread_group,
1515 &p->group_leader->thread_group);
1516 list_add_tail_rcu(&p->thread_node,
1517 &p->signal->thread_head);
1518 }
1519 attach_pid(p, PIDTYPE_PID);
1520 nr_threads++;
1521 }
1522
1523 total_forks++;
1524 spin_unlock(&current->sighand->siglock);
1525 syscall_tracepoint_update(p);
1526 write_unlock_irq(&tasklist_lock);
1527
1528 proc_fork_connector(p);
1529 cgroup_post_fork(p);
1530 if (clone_flags & CLONE_THREAD)
1531 threadgroup_change_end(current);
1532 perf_event_fork(p);
1533
1534 trace_task_newtask(p, clone_flags);
1535 uprobe_copy_process(p, clone_flags);
1536
1537 return p;
1538
1539 bad_fork_free_pid:
1540 if (pid != &init_struct_pid)
1541 free_pid(pid);
1542 bad_fork_cleanup_io:
1543 if (p->io_context)
1544 exit_io_context(p);
1545 bad_fork_cleanup_namespaces:
1546 exit_task_namespaces(p);
1547 bad_fork_cleanup_mm:
1548 if (p->mm)
1549 mmput(p->mm);
1550 bad_fork_cleanup_signal:
1551 if (!(clone_flags & CLONE_THREAD))
1552 free_signal_struct(p->signal);
1553 bad_fork_cleanup_sighand:
1554 __cleanup_sighand(p->sighand);
1555 bad_fork_cleanup_fs:
1556 exit_fs(p); /* blocking */
1557 bad_fork_cleanup_files:
1558 exit_files(p); /* blocking */
1559 bad_fork_cleanup_semundo:
1560 exit_sem(p);
1561 bad_fork_cleanup_audit:
1562 audit_free(p);
1563 bad_fork_cleanup_policy:
1564 perf_event_free_task(p);
1565 #ifdef CONFIG_NUMA
1566 mpol_put(p->mempolicy);
1567 bad_fork_cleanup_threadgroup_lock:
1568 #endif
1569 if (clone_flags & CLONE_THREAD)
1570 threadgroup_change_end(current);
1571 delayacct_tsk_free(p);
1572 module_put(task_thread_info(p)->exec_domain->module);
1573 bad_fork_cleanup_count:
1574 atomic_dec(&p->cred->user->processes);
1575 exit_creds(p);
1576 bad_fork_free:
1577 free_task(p);
1578 fork_out:
1579 return ERR_PTR(retval);
1580 }
1581
1582 static inline void init_idle_pids(struct pid_link *links)
1583 {
1584 enum pid_type type;
1585
1586 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1587 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1588 links[type].pid = &init_struct_pid;
1589 }
1590 }
1591
1592 struct task_struct *fork_idle(int cpu)
1593 {
1594 struct task_struct *task;
1595 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1596 if (!IS_ERR(task)) {
1597 init_idle_pids(task->pids);
1598 init_idle(task, cpu);
1599 }
1600
1601 return task;
1602 }
1603
1604 /*
1605 * Ok, this is the main fork-routine.
1606 *
1607 * It copies the process, and if successful kick-starts
1608 * it and waits for it to finish using the VM if required.
1609 */
1610 long do_fork(unsigned long clone_flags,
1611 unsigned long stack_start,
1612 unsigned long stack_size,
1613 int __user *parent_tidptr,
1614 int __user *child_tidptr)
1615 {
1616 struct task_struct *p;
1617 int trace = 0;
1618 long nr;
1619
1620 /*
1621 * Determine whether and which event to report to ptracer. When
1622 * called from kernel_thread or CLONE_UNTRACED is explicitly
1623 * requested, no event is reported; otherwise, report if the event
1624 * for the type of forking is enabled.
1625 */
1626 if (!(clone_flags & CLONE_UNTRACED)) {
1627 if (clone_flags & CLONE_VFORK)
1628 trace = PTRACE_EVENT_VFORK;
1629 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1630 trace = PTRACE_EVENT_CLONE;
1631 else
1632 trace = PTRACE_EVENT_FORK;
1633
1634 if (likely(!ptrace_event_enabled(current, trace)))
1635 trace = 0;
1636 }
1637
1638 p = copy_process(clone_flags, stack_start, stack_size,
1639 child_tidptr, NULL, trace);
1640 /*
1641 * Do this prior waking up the new thread - the thread pointer
1642 * might get invalid after that point, if the thread exits quickly.
1643 */
1644 if (!IS_ERR(p)) {
1645 struct completion vfork;
1646 struct pid *pid;
1647
1648 trace_sched_process_fork(current, p);
1649
1650 pid = get_task_pid(p, PIDTYPE_PID);
1651 nr = pid_vnr(pid);
1652
1653 if (clone_flags & CLONE_PARENT_SETTID)
1654 put_user(nr, parent_tidptr);
1655
1656 if (clone_flags & CLONE_VFORK) {
1657 p->vfork_done = &vfork;
1658 init_completion(&vfork);
1659 get_task_struct(p);
1660 }
1661
1662 wake_up_new_task(p);
1663
1664 /* forking complete and child started to run, tell ptracer */
1665 if (unlikely(trace))
1666 ptrace_event_pid(trace, pid);
1667
1668 if (clone_flags & CLONE_VFORK) {
1669 if (!wait_for_vfork_done(p, &vfork))
1670 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1671 }
1672
1673 put_pid(pid);
1674 } else {
1675 nr = PTR_ERR(p);
1676 }
1677 return nr;
1678 }
1679
1680 /*
1681 * Create a kernel thread.
1682 */
1683 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1684 {
1685 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1686 (unsigned long)arg, NULL, NULL);
1687 }
1688
1689 #ifdef __ARCH_WANT_SYS_FORK
1690 SYSCALL_DEFINE0(fork)
1691 {
1692 #ifdef CONFIG_MMU
1693 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1694 #else
1695 /* can not support in nommu mode */
1696 return -EINVAL;
1697 #endif
1698 }
1699 #endif
1700
1701 #ifdef __ARCH_WANT_SYS_VFORK
1702 SYSCALL_DEFINE0(vfork)
1703 {
1704 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1705 0, NULL, NULL);
1706 }
1707 #endif
1708
1709 #ifdef __ARCH_WANT_SYS_CLONE
1710 #ifdef CONFIG_CLONE_BACKWARDS
1711 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1712 int __user *, parent_tidptr,
1713 int, tls_val,
1714 int __user *, child_tidptr)
1715 #elif defined(CONFIG_CLONE_BACKWARDS2)
1716 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1717 int __user *, parent_tidptr,
1718 int __user *, child_tidptr,
1719 int, tls_val)
1720 #elif defined(CONFIG_CLONE_BACKWARDS3)
1721 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1722 int, stack_size,
1723 int __user *, parent_tidptr,
1724 int __user *, child_tidptr,
1725 int, tls_val)
1726 #else
1727 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1728 int __user *, parent_tidptr,
1729 int __user *, child_tidptr,
1730 int, tls_val)
1731 #endif
1732 {
1733 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1734 }
1735 #endif
1736
1737 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1738 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1739 #endif
1740
1741 static void sighand_ctor(void *data)
1742 {
1743 struct sighand_struct *sighand = data;
1744
1745 spin_lock_init(&sighand->siglock);
1746 init_waitqueue_head(&sighand->signalfd_wqh);
1747 }
1748
1749 void __init proc_caches_init(void)
1750 {
1751 sighand_cachep = kmem_cache_create("sighand_cache",
1752 sizeof(struct sighand_struct), 0,
1753 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1754 SLAB_NOTRACK, sighand_ctor);
1755 signal_cachep = kmem_cache_create("signal_cache",
1756 sizeof(struct signal_struct), 0,
1757 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1758 files_cachep = kmem_cache_create("files_cache",
1759 sizeof(struct files_struct), 0,
1760 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1761 fs_cachep = kmem_cache_create("fs_cache",
1762 sizeof(struct fs_struct), 0,
1763 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1764 /*
1765 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1766 * whole struct cpumask for the OFFSTACK case. We could change
1767 * this to *only* allocate as much of it as required by the
1768 * maximum number of CPU's we can ever have. The cpumask_allocation
1769 * is at the end of the structure, exactly for that reason.
1770 */
1771 mm_cachep = kmem_cache_create("mm_struct",
1772 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1773 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1774 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1775 mmap_init();
1776 nsproxy_cache_init();
1777 }
1778
1779 /*
1780 * Check constraints on flags passed to the unshare system call.
1781 */
1782 static int check_unshare_flags(unsigned long unshare_flags)
1783 {
1784 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1785 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1786 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1787 CLONE_NEWUSER|CLONE_NEWPID))
1788 return -EINVAL;
1789 /*
1790 * Not implemented, but pretend it works if there is nothing to
1791 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1792 * needs to unshare vm.
1793 */
1794 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1795 /* FIXME: get_task_mm() increments ->mm_users */
1796 if (atomic_read(&current->mm->mm_users) > 1)
1797 return -EINVAL;
1798 }
1799
1800 return 0;
1801 }
1802
1803 /*
1804 * Unshare the filesystem structure if it is being shared
1805 */
1806 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1807 {
1808 struct fs_struct *fs = current->fs;
1809
1810 if (!(unshare_flags & CLONE_FS) || !fs)
1811 return 0;
1812
1813 /* don't need lock here; in the worst case we'll do useless copy */
1814 if (fs->users == 1)
1815 return 0;
1816
1817 *new_fsp = copy_fs_struct(fs);
1818 if (!*new_fsp)
1819 return -ENOMEM;
1820
1821 return 0;
1822 }
1823
1824 /*
1825 * Unshare file descriptor table if it is being shared
1826 */
1827 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1828 {
1829 struct files_struct *fd = current->files;
1830 int error = 0;
1831
1832 if ((unshare_flags & CLONE_FILES) &&
1833 (fd && atomic_read(&fd->count) > 1)) {
1834 *new_fdp = dup_fd(fd, &error);
1835 if (!*new_fdp)
1836 return error;
1837 }
1838
1839 return 0;
1840 }
1841
1842 /*
1843 * unshare allows a process to 'unshare' part of the process
1844 * context which was originally shared using clone. copy_*
1845 * functions used by do_fork() cannot be used here directly
1846 * because they modify an inactive task_struct that is being
1847 * constructed. Here we are modifying the current, active,
1848 * task_struct.
1849 */
1850 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1851 {
1852 struct fs_struct *fs, *new_fs = NULL;
1853 struct files_struct *fd, *new_fd = NULL;
1854 struct cred *new_cred = NULL;
1855 struct nsproxy *new_nsproxy = NULL;
1856 int do_sysvsem = 0;
1857 int err;
1858
1859 /*
1860 * If unsharing a user namespace must also unshare the thread.
1861 */
1862 if (unshare_flags & CLONE_NEWUSER)
1863 unshare_flags |= CLONE_THREAD | CLONE_FS;
1864 /*
1865 * If unsharing a thread from a thread group, must also unshare vm.
1866 */
1867 if (unshare_flags & CLONE_THREAD)
1868 unshare_flags |= CLONE_VM;
1869 /*
1870 * If unsharing vm, must also unshare signal handlers.
1871 */
1872 if (unshare_flags & CLONE_VM)
1873 unshare_flags |= CLONE_SIGHAND;
1874 /*
1875 * If unsharing namespace, must also unshare filesystem information.
1876 */
1877 if (unshare_flags & CLONE_NEWNS)
1878 unshare_flags |= CLONE_FS;
1879
1880 err = check_unshare_flags(unshare_flags);
1881 if (err)
1882 goto bad_unshare_out;
1883 /*
1884 * CLONE_NEWIPC must also detach from the undolist: after switching
1885 * to a new ipc namespace, the semaphore arrays from the old
1886 * namespace are unreachable.
1887 */
1888 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1889 do_sysvsem = 1;
1890 err = unshare_fs(unshare_flags, &new_fs);
1891 if (err)
1892 goto bad_unshare_out;
1893 err = unshare_fd(unshare_flags, &new_fd);
1894 if (err)
1895 goto bad_unshare_cleanup_fs;
1896 err = unshare_userns(unshare_flags, &new_cred);
1897 if (err)
1898 goto bad_unshare_cleanup_fd;
1899 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1900 new_cred, new_fs);
1901 if (err)
1902 goto bad_unshare_cleanup_cred;
1903
1904 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1905 if (do_sysvsem) {
1906 /*
1907 * CLONE_SYSVSEM is equivalent to sys_exit().
1908 */
1909 exit_sem(current);
1910 }
1911
1912 if (new_nsproxy)
1913 switch_task_namespaces(current, new_nsproxy);
1914
1915 task_lock(current);
1916
1917 if (new_fs) {
1918 fs = current->fs;
1919 spin_lock(&fs->lock);
1920 current->fs = new_fs;
1921 if (--fs->users)
1922 new_fs = NULL;
1923 else
1924 new_fs = fs;
1925 spin_unlock(&fs->lock);
1926 }
1927
1928 if (new_fd) {
1929 fd = current->files;
1930 current->files = new_fd;
1931 new_fd = fd;
1932 }
1933
1934 task_unlock(current);
1935
1936 if (new_cred) {
1937 /* Install the new user namespace */
1938 commit_creds(new_cred);
1939 new_cred = NULL;
1940 }
1941 }
1942
1943 bad_unshare_cleanup_cred:
1944 if (new_cred)
1945 put_cred(new_cred);
1946 bad_unshare_cleanup_fd:
1947 if (new_fd)
1948 put_files_struct(new_fd);
1949
1950 bad_unshare_cleanup_fs:
1951 if (new_fs)
1952 free_fs_struct(new_fs);
1953
1954 bad_unshare_out:
1955 return err;
1956 }
1957
1958 /*
1959 * Helper to unshare the files of the current task.
1960 * We don't want to expose copy_files internals to
1961 * the exec layer of the kernel.
1962 */
1963
1964 int unshare_files(struct files_struct **displaced)
1965 {
1966 struct task_struct *task = current;
1967 struct files_struct *copy = NULL;
1968 int error;
1969
1970 error = unshare_fd(CLONE_FILES, &copy);
1971 if (error || !copy) {
1972 *displaced = NULL;
1973 return error;
1974 }
1975 *displaced = task->files;
1976 task_lock(task);
1977 task->files = copy;
1978 task_unlock(task);
1979 return 0;
1980 }