]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
[PATCH] pi-futex: futex_lock_pi/futex_unlock_pi support
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54
55 /*
56 * Protected counters by write_lock_irq(&tasklist_lock)
57 */
58 unsigned long total_forks; /* Handle normal Linux uptimes. */
59 int nr_threads; /* The idle threads do not count.. */
60
61 int max_threads; /* tunable limit on nr_threads */
62
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
66
67 EXPORT_SYMBOL(tasklist_lock);
68
69 int nr_processes(void)
70 {
71 int cpu;
72 int total = 0;
73
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
76
77 return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106 free_thread_info(tsk->thread_info);
107 rt_mutex_debug_task_free(tsk);
108 free_task_struct(tsk);
109 }
110 EXPORT_SYMBOL(free_task);
111
112 void __put_task_struct(struct task_struct *tsk)
113 {
114 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
115 WARN_ON(atomic_read(&tsk->usage));
116 WARN_ON(tsk == current);
117
118 security_task_free(tsk);
119 free_uid(tsk->user);
120 put_group_info(tsk->group_info);
121
122 if (!profile_handoff_task(tsk))
123 free_task(tsk);
124 }
125
126 void __init fork_init(unsigned long mempages)
127 {
128 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
129 #ifndef ARCH_MIN_TASKALIGN
130 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131 #endif
132 /* create a slab on which task_structs can be allocated */
133 task_struct_cachep =
134 kmem_cache_create("task_struct", sizeof(struct task_struct),
135 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
136 #endif
137
138 /*
139 * The default maximum number of threads is set to a safe
140 * value: the thread structures can take up at most half
141 * of memory.
142 */
143 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
144
145 /*
146 * we need to allow at least 20 threads to boot a system
147 */
148 if(max_threads < 20)
149 max_threads = 20;
150
151 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
153 init_task.signal->rlim[RLIMIT_SIGPENDING] =
154 init_task.signal->rlim[RLIMIT_NPROC];
155 }
156
157 static struct task_struct *dup_task_struct(struct task_struct *orig)
158 {
159 struct task_struct *tsk;
160 struct thread_info *ti;
161
162 prepare_to_copy(orig);
163
164 tsk = alloc_task_struct();
165 if (!tsk)
166 return NULL;
167
168 ti = alloc_thread_info(tsk);
169 if (!ti) {
170 free_task_struct(tsk);
171 return NULL;
172 }
173
174 *tsk = *orig;
175 tsk->thread_info = ti;
176 setup_thread_stack(tsk, orig);
177
178 /* One for us, one for whoever does the "release_task()" (usually parent) */
179 atomic_set(&tsk->usage,2);
180 atomic_set(&tsk->fs_excl, 0);
181 tsk->btrace_seq = 0;
182 tsk->splice_pipe = NULL;
183 return tsk;
184 }
185
186 #ifdef CONFIG_MMU
187 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
188 {
189 struct vm_area_struct *mpnt, *tmp, **pprev;
190 struct rb_node **rb_link, *rb_parent;
191 int retval;
192 unsigned long charge;
193 struct mempolicy *pol;
194
195 down_write(&oldmm->mmap_sem);
196 flush_cache_mm(oldmm);
197 down_write(&mm->mmap_sem);
198
199 mm->locked_vm = 0;
200 mm->mmap = NULL;
201 mm->mmap_cache = NULL;
202 mm->free_area_cache = oldmm->mmap_base;
203 mm->cached_hole_size = ~0UL;
204 mm->map_count = 0;
205 cpus_clear(mm->cpu_vm_mask);
206 mm->mm_rb = RB_ROOT;
207 rb_link = &mm->mm_rb.rb_node;
208 rb_parent = NULL;
209 pprev = &mm->mmap;
210
211 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
212 struct file *file;
213
214 if (mpnt->vm_flags & VM_DONTCOPY) {
215 long pages = vma_pages(mpnt);
216 mm->total_vm -= pages;
217 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
218 -pages);
219 continue;
220 }
221 charge = 0;
222 if (mpnt->vm_flags & VM_ACCOUNT) {
223 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
224 if (security_vm_enough_memory(len))
225 goto fail_nomem;
226 charge = len;
227 }
228 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
229 if (!tmp)
230 goto fail_nomem;
231 *tmp = *mpnt;
232 pol = mpol_copy(vma_policy(mpnt));
233 retval = PTR_ERR(pol);
234 if (IS_ERR(pol))
235 goto fail_nomem_policy;
236 vma_set_policy(tmp, pol);
237 tmp->vm_flags &= ~VM_LOCKED;
238 tmp->vm_mm = mm;
239 tmp->vm_next = NULL;
240 anon_vma_link(tmp);
241 file = tmp->vm_file;
242 if (file) {
243 struct inode *inode = file->f_dentry->d_inode;
244 get_file(file);
245 if (tmp->vm_flags & VM_DENYWRITE)
246 atomic_dec(&inode->i_writecount);
247
248 /* insert tmp into the share list, just after mpnt */
249 spin_lock(&file->f_mapping->i_mmap_lock);
250 tmp->vm_truncate_count = mpnt->vm_truncate_count;
251 flush_dcache_mmap_lock(file->f_mapping);
252 vma_prio_tree_add(tmp, mpnt);
253 flush_dcache_mmap_unlock(file->f_mapping);
254 spin_unlock(&file->f_mapping->i_mmap_lock);
255 }
256
257 /*
258 * Link in the new vma and copy the page table entries.
259 */
260 *pprev = tmp;
261 pprev = &tmp->vm_next;
262
263 __vma_link_rb(mm, tmp, rb_link, rb_parent);
264 rb_link = &tmp->vm_rb.rb_right;
265 rb_parent = &tmp->vm_rb;
266
267 mm->map_count++;
268 retval = copy_page_range(mm, oldmm, mpnt);
269
270 if (tmp->vm_ops && tmp->vm_ops->open)
271 tmp->vm_ops->open(tmp);
272
273 if (retval)
274 goto out;
275 }
276 retval = 0;
277 out:
278 up_write(&mm->mmap_sem);
279 flush_tlb_mm(oldmm);
280 up_write(&oldmm->mmap_sem);
281 return retval;
282 fail_nomem_policy:
283 kmem_cache_free(vm_area_cachep, tmp);
284 fail_nomem:
285 retval = -ENOMEM;
286 vm_unacct_memory(charge);
287 goto out;
288 }
289
290 static inline int mm_alloc_pgd(struct mm_struct * mm)
291 {
292 mm->pgd = pgd_alloc(mm);
293 if (unlikely(!mm->pgd))
294 return -ENOMEM;
295 return 0;
296 }
297
298 static inline void mm_free_pgd(struct mm_struct * mm)
299 {
300 pgd_free(mm->pgd);
301 }
302 #else
303 #define dup_mmap(mm, oldmm) (0)
304 #define mm_alloc_pgd(mm) (0)
305 #define mm_free_pgd(mm)
306 #endif /* CONFIG_MMU */
307
308 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
309
310 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
311 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
312
313 #include <linux/init_task.h>
314
315 static struct mm_struct * mm_init(struct mm_struct * mm)
316 {
317 atomic_set(&mm->mm_users, 1);
318 atomic_set(&mm->mm_count, 1);
319 init_rwsem(&mm->mmap_sem);
320 INIT_LIST_HEAD(&mm->mmlist);
321 mm->core_waiters = 0;
322 mm->nr_ptes = 0;
323 set_mm_counter(mm, file_rss, 0);
324 set_mm_counter(mm, anon_rss, 0);
325 spin_lock_init(&mm->page_table_lock);
326 rwlock_init(&mm->ioctx_list_lock);
327 mm->ioctx_list = NULL;
328 mm->free_area_cache = TASK_UNMAPPED_BASE;
329 mm->cached_hole_size = ~0UL;
330
331 if (likely(!mm_alloc_pgd(mm))) {
332 mm->def_flags = 0;
333 return mm;
334 }
335 free_mm(mm);
336 return NULL;
337 }
338
339 /*
340 * Allocate and initialize an mm_struct.
341 */
342 struct mm_struct * mm_alloc(void)
343 {
344 struct mm_struct * mm;
345
346 mm = allocate_mm();
347 if (mm) {
348 memset(mm, 0, sizeof(*mm));
349 mm = mm_init(mm);
350 }
351 return mm;
352 }
353
354 /*
355 * Called when the last reference to the mm
356 * is dropped: either by a lazy thread or by
357 * mmput. Free the page directory and the mm.
358 */
359 void fastcall __mmdrop(struct mm_struct *mm)
360 {
361 BUG_ON(mm == &init_mm);
362 mm_free_pgd(mm);
363 destroy_context(mm);
364 free_mm(mm);
365 }
366
367 /*
368 * Decrement the use count and release all resources for an mm.
369 */
370 void mmput(struct mm_struct *mm)
371 {
372 might_sleep();
373
374 if (atomic_dec_and_test(&mm->mm_users)) {
375 exit_aio(mm);
376 exit_mmap(mm);
377 if (!list_empty(&mm->mmlist)) {
378 spin_lock(&mmlist_lock);
379 list_del(&mm->mmlist);
380 spin_unlock(&mmlist_lock);
381 }
382 put_swap_token(mm);
383 mmdrop(mm);
384 }
385 }
386 EXPORT_SYMBOL_GPL(mmput);
387
388 /**
389 * get_task_mm - acquire a reference to the task's mm
390 *
391 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
392 * this kernel workthread has transiently adopted a user mm with use_mm,
393 * to do its AIO) is not set and if so returns a reference to it, after
394 * bumping up the use count. User must release the mm via mmput()
395 * after use. Typically used by /proc and ptrace.
396 */
397 struct mm_struct *get_task_mm(struct task_struct *task)
398 {
399 struct mm_struct *mm;
400
401 task_lock(task);
402 mm = task->mm;
403 if (mm) {
404 if (task->flags & PF_BORROWED_MM)
405 mm = NULL;
406 else
407 atomic_inc(&mm->mm_users);
408 }
409 task_unlock(task);
410 return mm;
411 }
412 EXPORT_SYMBOL_GPL(get_task_mm);
413
414 /* Please note the differences between mmput and mm_release.
415 * mmput is called whenever we stop holding onto a mm_struct,
416 * error success whatever.
417 *
418 * mm_release is called after a mm_struct has been removed
419 * from the current process.
420 *
421 * This difference is important for error handling, when we
422 * only half set up a mm_struct for a new process and need to restore
423 * the old one. Because we mmput the new mm_struct before
424 * restoring the old one. . .
425 * Eric Biederman 10 January 1998
426 */
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 {
429 struct completion *vfork_done = tsk->vfork_done;
430
431 /* Get rid of any cached register state */
432 deactivate_mm(tsk, mm);
433
434 /* notify parent sleeping on vfork() */
435 if (vfork_done) {
436 tsk->vfork_done = NULL;
437 complete(vfork_done);
438 }
439 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440 u32 __user * tidptr = tsk->clear_child_tid;
441 tsk->clear_child_tid = NULL;
442
443 /*
444 * We don't check the error code - if userspace has
445 * not set up a proper pointer then tough luck.
446 */
447 put_user(0, tidptr);
448 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449 }
450 }
451
452 /*
453 * Allocate a new mm structure and copy contents from the
454 * mm structure of the passed in task structure.
455 */
456 static struct mm_struct *dup_mm(struct task_struct *tsk)
457 {
458 struct mm_struct *mm, *oldmm = current->mm;
459 int err;
460
461 if (!oldmm)
462 return NULL;
463
464 mm = allocate_mm();
465 if (!mm)
466 goto fail_nomem;
467
468 memcpy(mm, oldmm, sizeof(*mm));
469
470 if (!mm_init(mm))
471 goto fail_nomem;
472
473 if (init_new_context(tsk, mm))
474 goto fail_nocontext;
475
476 err = dup_mmap(mm, oldmm);
477 if (err)
478 goto free_pt;
479
480 mm->hiwater_rss = get_mm_rss(mm);
481 mm->hiwater_vm = mm->total_vm;
482
483 return mm;
484
485 free_pt:
486 mmput(mm);
487
488 fail_nomem:
489 return NULL;
490
491 fail_nocontext:
492 /*
493 * If init_new_context() failed, we cannot use mmput() to free the mm
494 * because it calls destroy_context()
495 */
496 mm_free_pgd(mm);
497 free_mm(mm);
498 return NULL;
499 }
500
501 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
502 {
503 struct mm_struct * mm, *oldmm;
504 int retval;
505
506 tsk->min_flt = tsk->maj_flt = 0;
507 tsk->nvcsw = tsk->nivcsw = 0;
508
509 tsk->mm = NULL;
510 tsk->active_mm = NULL;
511
512 /*
513 * Are we cloning a kernel thread?
514 *
515 * We need to steal a active VM for that..
516 */
517 oldmm = current->mm;
518 if (!oldmm)
519 return 0;
520
521 if (clone_flags & CLONE_VM) {
522 atomic_inc(&oldmm->mm_users);
523 mm = oldmm;
524 goto good_mm;
525 }
526
527 retval = -ENOMEM;
528 mm = dup_mm(tsk);
529 if (!mm)
530 goto fail_nomem;
531
532 good_mm:
533 tsk->mm = mm;
534 tsk->active_mm = mm;
535 return 0;
536
537 fail_nomem:
538 return retval;
539 }
540
541 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
542 {
543 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
544 /* We don't need to lock fs - think why ;-) */
545 if (fs) {
546 atomic_set(&fs->count, 1);
547 rwlock_init(&fs->lock);
548 fs->umask = old->umask;
549 read_lock(&old->lock);
550 fs->rootmnt = mntget(old->rootmnt);
551 fs->root = dget(old->root);
552 fs->pwdmnt = mntget(old->pwdmnt);
553 fs->pwd = dget(old->pwd);
554 if (old->altroot) {
555 fs->altrootmnt = mntget(old->altrootmnt);
556 fs->altroot = dget(old->altroot);
557 } else {
558 fs->altrootmnt = NULL;
559 fs->altroot = NULL;
560 }
561 read_unlock(&old->lock);
562 }
563 return fs;
564 }
565
566 struct fs_struct *copy_fs_struct(struct fs_struct *old)
567 {
568 return __copy_fs_struct(old);
569 }
570
571 EXPORT_SYMBOL_GPL(copy_fs_struct);
572
573 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
574 {
575 if (clone_flags & CLONE_FS) {
576 atomic_inc(&current->fs->count);
577 return 0;
578 }
579 tsk->fs = __copy_fs_struct(current->fs);
580 if (!tsk->fs)
581 return -ENOMEM;
582 return 0;
583 }
584
585 static int count_open_files(struct fdtable *fdt)
586 {
587 int size = fdt->max_fdset;
588 int i;
589
590 /* Find the last open fd */
591 for (i = size/(8*sizeof(long)); i > 0; ) {
592 if (fdt->open_fds->fds_bits[--i])
593 break;
594 }
595 i = (i+1) * 8 * sizeof(long);
596 return i;
597 }
598
599 static struct files_struct *alloc_files(void)
600 {
601 struct files_struct *newf;
602 struct fdtable *fdt;
603
604 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
605 if (!newf)
606 goto out;
607
608 atomic_set(&newf->count, 1);
609
610 spin_lock_init(&newf->file_lock);
611 newf->next_fd = 0;
612 fdt = &newf->fdtab;
613 fdt->max_fds = NR_OPEN_DEFAULT;
614 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
615 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
616 fdt->open_fds = (fd_set *)&newf->open_fds_init;
617 fdt->fd = &newf->fd_array[0];
618 INIT_RCU_HEAD(&fdt->rcu);
619 fdt->free_files = NULL;
620 fdt->next = NULL;
621 rcu_assign_pointer(newf->fdt, fdt);
622 out:
623 return newf;
624 }
625
626 /*
627 * Allocate a new files structure and copy contents from the
628 * passed in files structure.
629 * errorp will be valid only when the returned files_struct is NULL.
630 */
631 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
632 {
633 struct files_struct *newf;
634 struct file **old_fds, **new_fds;
635 int open_files, size, i, expand;
636 struct fdtable *old_fdt, *new_fdt;
637
638 *errorp = -ENOMEM;
639 newf = alloc_files();
640 if (!newf)
641 goto out;
642
643 spin_lock(&oldf->file_lock);
644 old_fdt = files_fdtable(oldf);
645 new_fdt = files_fdtable(newf);
646 size = old_fdt->max_fdset;
647 open_files = count_open_files(old_fdt);
648 expand = 0;
649
650 /*
651 * Check whether we need to allocate a larger fd array or fd set.
652 * Note: we're not a clone task, so the open count won't change.
653 */
654 if (open_files > new_fdt->max_fdset) {
655 new_fdt->max_fdset = 0;
656 expand = 1;
657 }
658 if (open_files > new_fdt->max_fds) {
659 new_fdt->max_fds = 0;
660 expand = 1;
661 }
662
663 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
664 if (expand) {
665 spin_unlock(&oldf->file_lock);
666 spin_lock(&newf->file_lock);
667 *errorp = expand_files(newf, open_files-1);
668 spin_unlock(&newf->file_lock);
669 if (*errorp < 0)
670 goto out_release;
671 new_fdt = files_fdtable(newf);
672 /*
673 * Reacquire the oldf lock and a pointer to its fd table
674 * who knows it may have a new bigger fd table. We need
675 * the latest pointer.
676 */
677 spin_lock(&oldf->file_lock);
678 old_fdt = files_fdtable(oldf);
679 }
680
681 old_fds = old_fdt->fd;
682 new_fds = new_fdt->fd;
683
684 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
685 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
686
687 for (i = open_files; i != 0; i--) {
688 struct file *f = *old_fds++;
689 if (f) {
690 get_file(f);
691 } else {
692 /*
693 * The fd may be claimed in the fd bitmap but not yet
694 * instantiated in the files array if a sibling thread
695 * is partway through open(). So make sure that this
696 * fd is available to the new process.
697 */
698 FD_CLR(open_files - i, new_fdt->open_fds);
699 }
700 rcu_assign_pointer(*new_fds++, f);
701 }
702 spin_unlock(&oldf->file_lock);
703
704 /* compute the remainder to be cleared */
705 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
706
707 /* This is long word aligned thus could use a optimized version */
708 memset(new_fds, 0, size);
709
710 if (new_fdt->max_fdset > open_files) {
711 int left = (new_fdt->max_fdset-open_files)/8;
712 int start = open_files / (8 * sizeof(unsigned long));
713
714 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
715 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
716 }
717
718 out:
719 return newf;
720
721 out_release:
722 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
723 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
724 free_fd_array(new_fdt->fd, new_fdt->max_fds);
725 kmem_cache_free(files_cachep, newf);
726 return NULL;
727 }
728
729 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
730 {
731 struct files_struct *oldf, *newf;
732 int error = 0;
733
734 /*
735 * A background process may not have any files ...
736 */
737 oldf = current->files;
738 if (!oldf)
739 goto out;
740
741 if (clone_flags & CLONE_FILES) {
742 atomic_inc(&oldf->count);
743 goto out;
744 }
745
746 /*
747 * Note: we may be using current for both targets (See exec.c)
748 * This works because we cache current->files (old) as oldf. Don't
749 * break this.
750 */
751 tsk->files = NULL;
752 newf = dup_fd(oldf, &error);
753 if (!newf)
754 goto out;
755
756 tsk->files = newf;
757 error = 0;
758 out:
759 return error;
760 }
761
762 /*
763 * Helper to unshare the files of the current task.
764 * We don't want to expose copy_files internals to
765 * the exec layer of the kernel.
766 */
767
768 int unshare_files(void)
769 {
770 struct files_struct *files = current->files;
771 int rc;
772
773 BUG_ON(!files);
774
775 /* This can race but the race causes us to copy when we don't
776 need to and drop the copy */
777 if(atomic_read(&files->count) == 1)
778 {
779 atomic_inc(&files->count);
780 return 0;
781 }
782 rc = copy_files(0, current);
783 if(rc)
784 current->files = files;
785 return rc;
786 }
787
788 EXPORT_SYMBOL(unshare_files);
789
790 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
791 {
792 struct sighand_struct *sig;
793
794 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
795 atomic_inc(&current->sighand->count);
796 return 0;
797 }
798 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
799 rcu_assign_pointer(tsk->sighand, sig);
800 if (!sig)
801 return -ENOMEM;
802 atomic_set(&sig->count, 1);
803 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
804 return 0;
805 }
806
807 void __cleanup_sighand(struct sighand_struct *sighand)
808 {
809 if (atomic_dec_and_test(&sighand->count))
810 kmem_cache_free(sighand_cachep, sighand);
811 }
812
813 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
814 {
815 struct signal_struct *sig;
816 int ret;
817
818 if (clone_flags & CLONE_THREAD) {
819 atomic_inc(&current->signal->count);
820 atomic_inc(&current->signal->live);
821 return 0;
822 }
823 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
824 tsk->signal = sig;
825 if (!sig)
826 return -ENOMEM;
827
828 ret = copy_thread_group_keys(tsk);
829 if (ret < 0) {
830 kmem_cache_free(signal_cachep, sig);
831 return ret;
832 }
833
834 atomic_set(&sig->count, 1);
835 atomic_set(&sig->live, 1);
836 init_waitqueue_head(&sig->wait_chldexit);
837 sig->flags = 0;
838 sig->group_exit_code = 0;
839 sig->group_exit_task = NULL;
840 sig->group_stop_count = 0;
841 sig->curr_target = NULL;
842 init_sigpending(&sig->shared_pending);
843 INIT_LIST_HEAD(&sig->posix_timers);
844
845 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
846 sig->it_real_incr.tv64 = 0;
847 sig->real_timer.function = it_real_fn;
848 sig->tsk = tsk;
849
850 sig->it_virt_expires = cputime_zero;
851 sig->it_virt_incr = cputime_zero;
852 sig->it_prof_expires = cputime_zero;
853 sig->it_prof_incr = cputime_zero;
854
855 sig->leader = 0; /* session leadership doesn't inherit */
856 sig->tty_old_pgrp = 0;
857
858 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
859 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
860 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
861 sig->sched_time = 0;
862 INIT_LIST_HEAD(&sig->cpu_timers[0]);
863 INIT_LIST_HEAD(&sig->cpu_timers[1]);
864 INIT_LIST_HEAD(&sig->cpu_timers[2]);
865
866 task_lock(current->group_leader);
867 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
868 task_unlock(current->group_leader);
869
870 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
871 /*
872 * New sole thread in the process gets an expiry time
873 * of the whole CPU time limit.
874 */
875 tsk->it_prof_expires =
876 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
877 }
878 acct_init_pacct(&sig->pacct);
879
880 return 0;
881 }
882
883 void __cleanup_signal(struct signal_struct *sig)
884 {
885 exit_thread_group_keys(sig);
886 kmem_cache_free(signal_cachep, sig);
887 }
888
889 static inline void cleanup_signal(struct task_struct *tsk)
890 {
891 struct signal_struct *sig = tsk->signal;
892
893 atomic_dec(&sig->live);
894
895 if (atomic_dec_and_test(&sig->count))
896 __cleanup_signal(sig);
897 }
898
899 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
900 {
901 unsigned long new_flags = p->flags;
902
903 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
904 new_flags |= PF_FORKNOEXEC;
905 if (!(clone_flags & CLONE_PTRACE))
906 p->ptrace = 0;
907 p->flags = new_flags;
908 }
909
910 asmlinkage long sys_set_tid_address(int __user *tidptr)
911 {
912 current->clear_child_tid = tidptr;
913
914 return current->pid;
915 }
916
917 static inline void rt_mutex_init_task(struct task_struct *p)
918 {
919 #ifdef CONFIG_RT_MUTEXES
920 spin_lock_init(&p->pi_lock);
921 plist_head_init(&p->pi_waiters, &p->pi_lock);
922 p->pi_blocked_on = NULL;
923 # ifdef CONFIG_DEBUG_RT_MUTEXES
924 spin_lock_init(&p->held_list_lock);
925 INIT_LIST_HEAD(&p->held_list_head);
926 # endif
927 #endif
928 }
929
930 /*
931 * This creates a new process as a copy of the old one,
932 * but does not actually start it yet.
933 *
934 * It copies the registers, and all the appropriate
935 * parts of the process environment (as per the clone
936 * flags). The actual kick-off is left to the caller.
937 */
938 static task_t *copy_process(unsigned long clone_flags,
939 unsigned long stack_start,
940 struct pt_regs *regs,
941 unsigned long stack_size,
942 int __user *parent_tidptr,
943 int __user *child_tidptr,
944 int pid)
945 {
946 int retval;
947 struct task_struct *p = NULL;
948
949 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
950 return ERR_PTR(-EINVAL);
951
952 /*
953 * Thread groups must share signals as well, and detached threads
954 * can only be started up within the thread group.
955 */
956 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
957 return ERR_PTR(-EINVAL);
958
959 /*
960 * Shared signal handlers imply shared VM. By way of the above,
961 * thread groups also imply shared VM. Blocking this case allows
962 * for various simplifications in other code.
963 */
964 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
965 return ERR_PTR(-EINVAL);
966
967 retval = security_task_create(clone_flags);
968 if (retval)
969 goto fork_out;
970
971 retval = -ENOMEM;
972 p = dup_task_struct(current);
973 if (!p)
974 goto fork_out;
975
976 retval = -EAGAIN;
977 if (atomic_read(&p->user->processes) >=
978 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
979 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
980 p->user != &root_user)
981 goto bad_fork_free;
982 }
983
984 atomic_inc(&p->user->__count);
985 atomic_inc(&p->user->processes);
986 get_group_info(p->group_info);
987
988 /*
989 * If multiple threads are within copy_process(), then this check
990 * triggers too late. This doesn't hurt, the check is only there
991 * to stop root fork bombs.
992 */
993 if (nr_threads >= max_threads)
994 goto bad_fork_cleanup_count;
995
996 if (!try_module_get(task_thread_info(p)->exec_domain->module))
997 goto bad_fork_cleanup_count;
998
999 if (p->binfmt && !try_module_get(p->binfmt->module))
1000 goto bad_fork_cleanup_put_domain;
1001
1002 p->did_exec = 0;
1003 copy_flags(clone_flags, p);
1004 p->pid = pid;
1005 retval = -EFAULT;
1006 if (clone_flags & CLONE_PARENT_SETTID)
1007 if (put_user(p->pid, parent_tidptr))
1008 goto bad_fork_cleanup;
1009
1010 INIT_LIST_HEAD(&p->children);
1011 INIT_LIST_HEAD(&p->sibling);
1012 p->vfork_done = NULL;
1013 spin_lock_init(&p->alloc_lock);
1014
1015 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1016 init_sigpending(&p->pending);
1017
1018 p->utime = cputime_zero;
1019 p->stime = cputime_zero;
1020 p->sched_time = 0;
1021 p->rchar = 0; /* I/O counter: bytes read */
1022 p->wchar = 0; /* I/O counter: bytes written */
1023 p->syscr = 0; /* I/O counter: read syscalls */
1024 p->syscw = 0; /* I/O counter: write syscalls */
1025 acct_clear_integrals(p);
1026
1027 p->it_virt_expires = cputime_zero;
1028 p->it_prof_expires = cputime_zero;
1029 p->it_sched_expires = 0;
1030 INIT_LIST_HEAD(&p->cpu_timers[0]);
1031 INIT_LIST_HEAD(&p->cpu_timers[1]);
1032 INIT_LIST_HEAD(&p->cpu_timers[2]);
1033
1034 p->lock_depth = -1; /* -1 = no lock */
1035 do_posix_clock_monotonic_gettime(&p->start_time);
1036 p->security = NULL;
1037 p->io_context = NULL;
1038 p->io_wait = NULL;
1039 p->audit_context = NULL;
1040 cpuset_fork(p);
1041 #ifdef CONFIG_NUMA
1042 p->mempolicy = mpol_copy(p->mempolicy);
1043 if (IS_ERR(p->mempolicy)) {
1044 retval = PTR_ERR(p->mempolicy);
1045 p->mempolicy = NULL;
1046 goto bad_fork_cleanup_cpuset;
1047 }
1048 mpol_fix_fork_child_flag(p);
1049 #endif
1050
1051 rt_mutex_init_task(p);
1052
1053 #ifdef CONFIG_DEBUG_MUTEXES
1054 p->blocked_on = NULL; /* not blocked yet */
1055 #endif
1056
1057 p->tgid = p->pid;
1058 if (clone_flags & CLONE_THREAD)
1059 p->tgid = current->tgid;
1060
1061 if ((retval = security_task_alloc(p)))
1062 goto bad_fork_cleanup_policy;
1063 if ((retval = audit_alloc(p)))
1064 goto bad_fork_cleanup_security;
1065 /* copy all the process information */
1066 if ((retval = copy_semundo(clone_flags, p)))
1067 goto bad_fork_cleanup_audit;
1068 if ((retval = copy_files(clone_flags, p)))
1069 goto bad_fork_cleanup_semundo;
1070 if ((retval = copy_fs(clone_flags, p)))
1071 goto bad_fork_cleanup_files;
1072 if ((retval = copy_sighand(clone_flags, p)))
1073 goto bad_fork_cleanup_fs;
1074 if ((retval = copy_signal(clone_flags, p)))
1075 goto bad_fork_cleanup_sighand;
1076 if ((retval = copy_mm(clone_flags, p)))
1077 goto bad_fork_cleanup_signal;
1078 if ((retval = copy_keys(clone_flags, p)))
1079 goto bad_fork_cleanup_mm;
1080 if ((retval = copy_namespace(clone_flags, p)))
1081 goto bad_fork_cleanup_keys;
1082 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1083 if (retval)
1084 goto bad_fork_cleanup_namespace;
1085
1086 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1087 /*
1088 * Clear TID on mm_release()?
1089 */
1090 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1091 p->robust_list = NULL;
1092 #ifdef CONFIG_COMPAT
1093 p->compat_robust_list = NULL;
1094 #endif
1095 INIT_LIST_HEAD(&p->pi_state_list);
1096 p->pi_state_cache = NULL;
1097
1098 /*
1099 * sigaltstack should be cleared when sharing the same VM
1100 */
1101 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1102 p->sas_ss_sp = p->sas_ss_size = 0;
1103
1104 /*
1105 * Syscall tracing should be turned off in the child regardless
1106 * of CLONE_PTRACE.
1107 */
1108 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1109 #ifdef TIF_SYSCALL_EMU
1110 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1111 #endif
1112
1113 /* Our parent execution domain becomes current domain
1114 These must match for thread signalling to apply */
1115
1116 p->parent_exec_id = p->self_exec_id;
1117
1118 /* ok, now we should be set up.. */
1119 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1120 p->pdeath_signal = 0;
1121 p->exit_state = 0;
1122
1123 /*
1124 * Ok, make it visible to the rest of the system.
1125 * We dont wake it up yet.
1126 */
1127 p->group_leader = p;
1128 INIT_LIST_HEAD(&p->thread_group);
1129 INIT_LIST_HEAD(&p->ptrace_children);
1130 INIT_LIST_HEAD(&p->ptrace_list);
1131
1132 /* Perform scheduler related setup. Assign this task to a CPU. */
1133 sched_fork(p, clone_flags);
1134
1135 /* Need tasklist lock for parent etc handling! */
1136 write_lock_irq(&tasklist_lock);
1137
1138 /*
1139 * The task hasn't been attached yet, so its cpus_allowed mask will
1140 * not be changed, nor will its assigned CPU.
1141 *
1142 * The cpus_allowed mask of the parent may have changed after it was
1143 * copied first time - so re-copy it here, then check the child's CPU
1144 * to ensure it is on a valid CPU (and if not, just force it back to
1145 * parent's CPU). This avoids alot of nasty races.
1146 */
1147 p->cpus_allowed = current->cpus_allowed;
1148 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1149 !cpu_online(task_cpu(p))))
1150 set_task_cpu(p, smp_processor_id());
1151
1152 /* CLONE_PARENT re-uses the old parent */
1153 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1154 p->real_parent = current->real_parent;
1155 else
1156 p->real_parent = current;
1157 p->parent = p->real_parent;
1158
1159 spin_lock(&current->sighand->siglock);
1160
1161 /*
1162 * Process group and session signals need to be delivered to just the
1163 * parent before the fork or both the parent and the child after the
1164 * fork. Restart if a signal comes in before we add the new process to
1165 * it's process group.
1166 * A fatal signal pending means that current will exit, so the new
1167 * thread can't slip out of an OOM kill (or normal SIGKILL).
1168 */
1169 recalc_sigpending();
1170 if (signal_pending(current)) {
1171 spin_unlock(&current->sighand->siglock);
1172 write_unlock_irq(&tasklist_lock);
1173 retval = -ERESTARTNOINTR;
1174 goto bad_fork_cleanup_namespace;
1175 }
1176
1177 if (clone_flags & CLONE_THREAD) {
1178 p->group_leader = current->group_leader;
1179 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1180
1181 if (!cputime_eq(current->signal->it_virt_expires,
1182 cputime_zero) ||
1183 !cputime_eq(current->signal->it_prof_expires,
1184 cputime_zero) ||
1185 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1186 !list_empty(&current->signal->cpu_timers[0]) ||
1187 !list_empty(&current->signal->cpu_timers[1]) ||
1188 !list_empty(&current->signal->cpu_timers[2])) {
1189 /*
1190 * Have child wake up on its first tick to check
1191 * for process CPU timers.
1192 */
1193 p->it_prof_expires = jiffies_to_cputime(1);
1194 }
1195 }
1196
1197 /*
1198 * inherit ioprio
1199 */
1200 p->ioprio = current->ioprio;
1201
1202 if (likely(p->pid)) {
1203 add_parent(p);
1204 if (unlikely(p->ptrace & PT_PTRACED))
1205 __ptrace_link(p, current->parent);
1206
1207 if (thread_group_leader(p)) {
1208 p->signal->tty = current->signal->tty;
1209 p->signal->pgrp = process_group(current);
1210 p->signal->session = current->signal->session;
1211 attach_pid(p, PIDTYPE_PGID, process_group(p));
1212 attach_pid(p, PIDTYPE_SID, p->signal->session);
1213
1214 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1215 __get_cpu_var(process_counts)++;
1216 }
1217 attach_pid(p, PIDTYPE_PID, p->pid);
1218 nr_threads++;
1219 }
1220
1221 total_forks++;
1222 spin_unlock(&current->sighand->siglock);
1223 write_unlock_irq(&tasklist_lock);
1224 proc_fork_connector(p);
1225 return p;
1226
1227 bad_fork_cleanup_namespace:
1228 exit_namespace(p);
1229 bad_fork_cleanup_keys:
1230 exit_keys(p);
1231 bad_fork_cleanup_mm:
1232 if (p->mm)
1233 mmput(p->mm);
1234 bad_fork_cleanup_signal:
1235 cleanup_signal(p);
1236 bad_fork_cleanup_sighand:
1237 __cleanup_sighand(p->sighand);
1238 bad_fork_cleanup_fs:
1239 exit_fs(p); /* blocking */
1240 bad_fork_cleanup_files:
1241 exit_files(p); /* blocking */
1242 bad_fork_cleanup_semundo:
1243 exit_sem(p);
1244 bad_fork_cleanup_audit:
1245 audit_free(p);
1246 bad_fork_cleanup_security:
1247 security_task_free(p);
1248 bad_fork_cleanup_policy:
1249 #ifdef CONFIG_NUMA
1250 mpol_free(p->mempolicy);
1251 bad_fork_cleanup_cpuset:
1252 #endif
1253 cpuset_exit(p);
1254 bad_fork_cleanup:
1255 if (p->binfmt)
1256 module_put(p->binfmt->module);
1257 bad_fork_cleanup_put_domain:
1258 module_put(task_thread_info(p)->exec_domain->module);
1259 bad_fork_cleanup_count:
1260 put_group_info(p->group_info);
1261 atomic_dec(&p->user->processes);
1262 free_uid(p->user);
1263 bad_fork_free:
1264 free_task(p);
1265 fork_out:
1266 return ERR_PTR(retval);
1267 }
1268
1269 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1270 {
1271 memset(regs, 0, sizeof(struct pt_regs));
1272 return regs;
1273 }
1274
1275 task_t * __devinit fork_idle(int cpu)
1276 {
1277 task_t *task;
1278 struct pt_regs regs;
1279
1280 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1281 if (!task)
1282 return ERR_PTR(-ENOMEM);
1283 init_idle(task, cpu);
1284
1285 return task;
1286 }
1287
1288 static inline int fork_traceflag (unsigned clone_flags)
1289 {
1290 if (clone_flags & CLONE_UNTRACED)
1291 return 0;
1292 else if (clone_flags & CLONE_VFORK) {
1293 if (current->ptrace & PT_TRACE_VFORK)
1294 return PTRACE_EVENT_VFORK;
1295 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1296 if (current->ptrace & PT_TRACE_CLONE)
1297 return PTRACE_EVENT_CLONE;
1298 } else if (current->ptrace & PT_TRACE_FORK)
1299 return PTRACE_EVENT_FORK;
1300
1301 return 0;
1302 }
1303
1304 /*
1305 * Ok, this is the main fork-routine.
1306 *
1307 * It copies the process, and if successful kick-starts
1308 * it and waits for it to finish using the VM if required.
1309 */
1310 long do_fork(unsigned long clone_flags,
1311 unsigned long stack_start,
1312 struct pt_regs *regs,
1313 unsigned long stack_size,
1314 int __user *parent_tidptr,
1315 int __user *child_tidptr)
1316 {
1317 struct task_struct *p;
1318 int trace = 0;
1319 struct pid *pid = alloc_pid();
1320 long nr;
1321
1322 if (!pid)
1323 return -EAGAIN;
1324 nr = pid->nr;
1325 if (unlikely(current->ptrace)) {
1326 trace = fork_traceflag (clone_flags);
1327 if (trace)
1328 clone_flags |= CLONE_PTRACE;
1329 }
1330
1331 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1332 /*
1333 * Do this prior waking up the new thread - the thread pointer
1334 * might get invalid after that point, if the thread exits quickly.
1335 */
1336 if (!IS_ERR(p)) {
1337 struct completion vfork;
1338
1339 if (clone_flags & CLONE_VFORK) {
1340 p->vfork_done = &vfork;
1341 init_completion(&vfork);
1342 }
1343
1344 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1345 /*
1346 * We'll start up with an immediate SIGSTOP.
1347 */
1348 sigaddset(&p->pending.signal, SIGSTOP);
1349 set_tsk_thread_flag(p, TIF_SIGPENDING);
1350 }
1351
1352 if (!(clone_flags & CLONE_STOPPED))
1353 wake_up_new_task(p, clone_flags);
1354 else
1355 p->state = TASK_STOPPED;
1356
1357 if (unlikely (trace)) {
1358 current->ptrace_message = nr;
1359 ptrace_notify ((trace << 8) | SIGTRAP);
1360 }
1361
1362 if (clone_flags & CLONE_VFORK) {
1363 wait_for_completion(&vfork);
1364 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1365 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1366 }
1367 } else {
1368 free_pid(pid);
1369 nr = PTR_ERR(p);
1370 }
1371 return nr;
1372 }
1373
1374 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1375 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1376 #endif
1377
1378 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1379 {
1380 struct sighand_struct *sighand = data;
1381
1382 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1383 SLAB_CTOR_CONSTRUCTOR)
1384 spin_lock_init(&sighand->siglock);
1385 }
1386
1387 void __init proc_caches_init(void)
1388 {
1389 sighand_cachep = kmem_cache_create("sighand_cache",
1390 sizeof(struct sighand_struct), 0,
1391 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1392 sighand_ctor, NULL);
1393 signal_cachep = kmem_cache_create("signal_cache",
1394 sizeof(struct signal_struct), 0,
1395 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1396 files_cachep = kmem_cache_create("files_cache",
1397 sizeof(struct files_struct), 0,
1398 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1399 fs_cachep = kmem_cache_create("fs_cache",
1400 sizeof(struct fs_struct), 0,
1401 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1402 vm_area_cachep = kmem_cache_create("vm_area_struct",
1403 sizeof(struct vm_area_struct), 0,
1404 SLAB_PANIC, NULL, NULL);
1405 mm_cachep = kmem_cache_create("mm_struct",
1406 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1407 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1408 }
1409
1410
1411 /*
1412 * Check constraints on flags passed to the unshare system call and
1413 * force unsharing of additional process context as appropriate.
1414 */
1415 static inline void check_unshare_flags(unsigned long *flags_ptr)
1416 {
1417 /*
1418 * If unsharing a thread from a thread group, must also
1419 * unshare vm.
1420 */
1421 if (*flags_ptr & CLONE_THREAD)
1422 *flags_ptr |= CLONE_VM;
1423
1424 /*
1425 * If unsharing vm, must also unshare signal handlers.
1426 */
1427 if (*flags_ptr & CLONE_VM)
1428 *flags_ptr |= CLONE_SIGHAND;
1429
1430 /*
1431 * If unsharing signal handlers and the task was created
1432 * using CLONE_THREAD, then must unshare the thread
1433 */
1434 if ((*flags_ptr & CLONE_SIGHAND) &&
1435 (atomic_read(&current->signal->count) > 1))
1436 *flags_ptr |= CLONE_THREAD;
1437
1438 /*
1439 * If unsharing namespace, must also unshare filesystem information.
1440 */
1441 if (*flags_ptr & CLONE_NEWNS)
1442 *flags_ptr |= CLONE_FS;
1443 }
1444
1445 /*
1446 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1447 */
1448 static int unshare_thread(unsigned long unshare_flags)
1449 {
1450 if (unshare_flags & CLONE_THREAD)
1451 return -EINVAL;
1452
1453 return 0;
1454 }
1455
1456 /*
1457 * Unshare the filesystem structure if it is being shared
1458 */
1459 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1460 {
1461 struct fs_struct *fs = current->fs;
1462
1463 if ((unshare_flags & CLONE_FS) &&
1464 (fs && atomic_read(&fs->count) > 1)) {
1465 *new_fsp = __copy_fs_struct(current->fs);
1466 if (!*new_fsp)
1467 return -ENOMEM;
1468 }
1469
1470 return 0;
1471 }
1472
1473 /*
1474 * Unshare the namespace structure if it is being shared
1475 */
1476 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1477 {
1478 struct namespace *ns = current->namespace;
1479
1480 if ((unshare_flags & CLONE_NEWNS) &&
1481 (ns && atomic_read(&ns->count) > 1)) {
1482 if (!capable(CAP_SYS_ADMIN))
1483 return -EPERM;
1484
1485 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1486 if (!*new_nsp)
1487 return -ENOMEM;
1488 }
1489
1490 return 0;
1491 }
1492
1493 /*
1494 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1495 * supported yet
1496 */
1497 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1498 {
1499 struct sighand_struct *sigh = current->sighand;
1500
1501 if ((unshare_flags & CLONE_SIGHAND) &&
1502 (sigh && atomic_read(&sigh->count) > 1))
1503 return -EINVAL;
1504 else
1505 return 0;
1506 }
1507
1508 /*
1509 * Unshare vm if it is being shared
1510 */
1511 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1512 {
1513 struct mm_struct *mm = current->mm;
1514
1515 if ((unshare_flags & CLONE_VM) &&
1516 (mm && atomic_read(&mm->mm_users) > 1)) {
1517 return -EINVAL;
1518 }
1519
1520 return 0;
1521 }
1522
1523 /*
1524 * Unshare file descriptor table if it is being shared
1525 */
1526 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1527 {
1528 struct files_struct *fd = current->files;
1529 int error = 0;
1530
1531 if ((unshare_flags & CLONE_FILES) &&
1532 (fd && atomic_read(&fd->count) > 1)) {
1533 *new_fdp = dup_fd(fd, &error);
1534 if (!*new_fdp)
1535 return error;
1536 }
1537
1538 return 0;
1539 }
1540
1541 /*
1542 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1543 * supported yet
1544 */
1545 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1546 {
1547 if (unshare_flags & CLONE_SYSVSEM)
1548 return -EINVAL;
1549
1550 return 0;
1551 }
1552
1553 /*
1554 * unshare allows a process to 'unshare' part of the process
1555 * context which was originally shared using clone. copy_*
1556 * functions used by do_fork() cannot be used here directly
1557 * because they modify an inactive task_struct that is being
1558 * constructed. Here we are modifying the current, active,
1559 * task_struct.
1560 */
1561 asmlinkage long sys_unshare(unsigned long unshare_flags)
1562 {
1563 int err = 0;
1564 struct fs_struct *fs, *new_fs = NULL;
1565 struct namespace *ns, *new_ns = NULL;
1566 struct sighand_struct *sigh, *new_sigh = NULL;
1567 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1568 struct files_struct *fd, *new_fd = NULL;
1569 struct sem_undo_list *new_ulist = NULL;
1570
1571 check_unshare_flags(&unshare_flags);
1572
1573 /* Return -EINVAL for all unsupported flags */
1574 err = -EINVAL;
1575 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1576 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1577 goto bad_unshare_out;
1578
1579 if ((err = unshare_thread(unshare_flags)))
1580 goto bad_unshare_out;
1581 if ((err = unshare_fs(unshare_flags, &new_fs)))
1582 goto bad_unshare_cleanup_thread;
1583 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1584 goto bad_unshare_cleanup_fs;
1585 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1586 goto bad_unshare_cleanup_ns;
1587 if ((err = unshare_vm(unshare_flags, &new_mm)))
1588 goto bad_unshare_cleanup_sigh;
1589 if ((err = unshare_fd(unshare_flags, &new_fd)))
1590 goto bad_unshare_cleanup_vm;
1591 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1592 goto bad_unshare_cleanup_fd;
1593
1594 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1595
1596 task_lock(current);
1597
1598 if (new_fs) {
1599 fs = current->fs;
1600 current->fs = new_fs;
1601 new_fs = fs;
1602 }
1603
1604 if (new_ns) {
1605 ns = current->namespace;
1606 current->namespace = new_ns;
1607 new_ns = ns;
1608 }
1609
1610 if (new_sigh) {
1611 sigh = current->sighand;
1612 rcu_assign_pointer(current->sighand, new_sigh);
1613 new_sigh = sigh;
1614 }
1615
1616 if (new_mm) {
1617 mm = current->mm;
1618 active_mm = current->active_mm;
1619 current->mm = new_mm;
1620 current->active_mm = new_mm;
1621 activate_mm(active_mm, new_mm);
1622 new_mm = mm;
1623 }
1624
1625 if (new_fd) {
1626 fd = current->files;
1627 current->files = new_fd;
1628 new_fd = fd;
1629 }
1630
1631 task_unlock(current);
1632 }
1633
1634 bad_unshare_cleanup_fd:
1635 if (new_fd)
1636 put_files_struct(new_fd);
1637
1638 bad_unshare_cleanup_vm:
1639 if (new_mm)
1640 mmput(new_mm);
1641
1642 bad_unshare_cleanup_sigh:
1643 if (new_sigh)
1644 if (atomic_dec_and_test(&new_sigh->count))
1645 kmem_cache_free(sighand_cachep, new_sigh);
1646
1647 bad_unshare_cleanup_ns:
1648 if (new_ns)
1649 put_namespace(new_ns);
1650
1651 bad_unshare_cleanup_fs:
1652 if (new_fs)
1653 put_fs_struct(new_fs);
1654
1655 bad_unshare_cleanup_thread:
1656 bad_unshare_out:
1657 return err;
1658 }