]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/fork.c
SoC: rsnd: add interrupt support for SSI BUSIF buffer
[mirror_ubuntu-focal-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 #ifdef CONFIG_USER_NS
110 extern int unprivileged_userns_clone;
111 #else
112 #define unprivileged_userns_clone 0
113 #endif
114
115 /*
116 * Minimum number of threads to boot the kernel
117 */
118 #define MIN_THREADS 20
119
120 /*
121 * Maximum number of threads
122 */
123 #define MAX_THREADS FUTEX_TID_MASK
124
125 /*
126 * Protected counters by write_lock_irq(&tasklist_lock)
127 */
128 unsigned long total_forks; /* Handle normal Linux uptimes. */
129 int nr_threads; /* The idle threads do not count.. */
130
131 static int max_threads; /* tunable limit on nr_threads */
132
133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
134
135 static const char * const resident_page_types[] = {
136 NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
145
146 #ifdef CONFIG_PROVE_RCU
147 int lockdep_tasklist_lock_is_held(void)
148 {
149 return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153
154 int nr_processes(void)
155 {
156 int cpu;
157 int total = 0;
158
159 for_each_possible_cpu(cpu)
160 total += per_cpu(process_counts, cpu);
161
162 return total;
163 }
164
165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171
172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176
177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184
185 /*
186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187 * kmemcache based allocator.
188 */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190
191 #ifdef CONFIG_VMAP_STACK
192 /*
193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194 * flush. Try to minimize the number of calls by caching stacks.
195 */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198
199 static int free_vm_stack_cache(unsigned int cpu)
200 {
201 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
202 int i;
203
204 for (i = 0; i < NR_CACHED_STACKS; i++) {
205 struct vm_struct *vm_stack = cached_vm_stacks[i];
206
207 if (!vm_stack)
208 continue;
209
210 vfree(vm_stack->addr);
211 cached_vm_stacks[i] = NULL;
212 }
213
214 return 0;
215 }
216 #endif
217
218 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
219 {
220 #ifdef CONFIG_VMAP_STACK
221 void *stack;
222 int i;
223
224 for (i = 0; i < NR_CACHED_STACKS; i++) {
225 struct vm_struct *s;
226
227 s = this_cpu_xchg(cached_stacks[i], NULL);
228
229 if (!s)
230 continue;
231
232 /* Clear stale pointers from reused stack. */
233 memset(s->addr, 0, THREAD_SIZE);
234
235 tsk->stack_vm_area = s;
236 tsk->stack = s->addr;
237 return s->addr;
238 }
239
240 /*
241 * Allocated stacks are cached and later reused by new threads,
242 * so memcg accounting is performed manually on assigning/releasing
243 * stacks to tasks. Drop __GFP_ACCOUNT.
244 */
245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 VMALLOC_START, VMALLOC_END,
247 THREADINFO_GFP & ~__GFP_ACCOUNT,
248 PAGE_KERNEL,
249 0, node, __builtin_return_address(0));
250
251 /*
252 * We can't call find_vm_area() in interrupt context, and
253 * free_thread_stack() can be called in interrupt context,
254 * so cache the vm_struct.
255 */
256 if (stack) {
257 tsk->stack_vm_area = find_vm_area(stack);
258 tsk->stack = stack;
259 }
260 return stack;
261 #else
262 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 THREAD_SIZE_ORDER);
264
265 if (likely(page)) {
266 tsk->stack = page_address(page);
267 return tsk->stack;
268 }
269 return NULL;
270 #endif
271 }
272
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 struct vm_struct *vm = task_stack_vm_area(tsk);
277
278 if (vm) {
279 int i;
280
281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
282 mod_memcg_page_state(vm->pages[i],
283 MEMCG_KERNEL_STACK_KB,
284 -(int)(PAGE_SIZE / 1024));
285
286 memcg_kmem_uncharge(vm->pages[i], 0);
287 }
288
289 for (i = 0; i < NR_CACHED_STACKS; i++) {
290 if (this_cpu_cmpxchg(cached_stacks[i],
291 NULL, tsk->stack_vm_area) != NULL)
292 continue;
293
294 return;
295 }
296
297 vfree_atomic(tsk->stack);
298 return;
299 }
300 #endif
301
302 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306
307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 int node)
309 {
310 unsigned long *stack;
311 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 tsk->stack = stack;
313 return stack;
314 }
315
316 static void free_thread_stack(struct task_struct *tsk)
317 {
318 kmem_cache_free(thread_stack_cache, tsk->stack);
319 }
320
321 void thread_stack_cache_init(void)
322 {
323 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
324 THREAD_SIZE, THREAD_SIZE, 0, 0,
325 THREAD_SIZE, NULL);
326 BUG_ON(thread_stack_cache == NULL);
327 }
328 # endif
329 #endif
330
331 /* SLAB cache for signal_struct structures (tsk->signal) */
332 static struct kmem_cache *signal_cachep;
333
334 /* SLAB cache for sighand_struct structures (tsk->sighand) */
335 struct kmem_cache *sighand_cachep;
336
337 /* SLAB cache for files_struct structures (tsk->files) */
338 struct kmem_cache *files_cachep;
339
340 /* SLAB cache for fs_struct structures (tsk->fs) */
341 struct kmem_cache *fs_cachep;
342
343 /* SLAB cache for vm_area_struct structures */
344 static struct kmem_cache *vm_area_cachep;
345
346 /* SLAB cache for mm_struct structures (tsk->mm) */
347 static struct kmem_cache *mm_cachep;
348
349 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
350 {
351 struct vm_area_struct *vma;
352
353 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 if (vma)
355 vma_init(vma, mm);
356 return vma;
357 }
358
359 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
360 {
361 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362
363 if (new) {
364 *new = *orig;
365 INIT_LIST_HEAD(&new->anon_vma_chain);
366 }
367 return new;
368 }
369
370 void vm_area_free(struct vm_area_struct *vma)
371 {
372 kmem_cache_free(vm_area_cachep, vma);
373 }
374
375 static void account_kernel_stack(struct task_struct *tsk, int account)
376 {
377 void *stack = task_stack_page(tsk);
378 struct vm_struct *vm = task_stack_vm_area(tsk);
379
380 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
381
382 if (vm) {
383 int i;
384
385 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
386
387 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
388 mod_zone_page_state(page_zone(vm->pages[i]),
389 NR_KERNEL_STACK_KB,
390 PAGE_SIZE / 1024 * account);
391 }
392 } else {
393 /*
394 * All stack pages are in the same zone and belong to the
395 * same memcg.
396 */
397 struct page *first_page = virt_to_page(stack);
398
399 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
400 THREAD_SIZE / 1024 * account);
401
402 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
403 account * (THREAD_SIZE / 1024));
404 }
405 }
406
407 static int memcg_charge_kernel_stack(struct task_struct *tsk)
408 {
409 #ifdef CONFIG_VMAP_STACK
410 struct vm_struct *vm = task_stack_vm_area(tsk);
411 int ret;
412
413 if (vm) {
414 int i;
415
416 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
417 /*
418 * If memcg_kmem_charge() fails, page->mem_cgroup
419 * pointer is NULL, and both memcg_kmem_uncharge()
420 * and mod_memcg_page_state() in free_thread_stack()
421 * will ignore this page. So it's safe.
422 */
423 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
424 if (ret)
425 return ret;
426
427 mod_memcg_page_state(vm->pages[i],
428 MEMCG_KERNEL_STACK_KB,
429 PAGE_SIZE / 1024);
430 }
431 }
432 #endif
433 return 0;
434 }
435
436 static void release_task_stack(struct task_struct *tsk)
437 {
438 if (WARN_ON(tsk->state != TASK_DEAD))
439 return; /* Better to leak the stack than to free prematurely */
440
441 account_kernel_stack(tsk, -1);
442 free_thread_stack(tsk);
443 tsk->stack = NULL;
444 #ifdef CONFIG_VMAP_STACK
445 tsk->stack_vm_area = NULL;
446 #endif
447 }
448
449 #ifdef CONFIG_THREAD_INFO_IN_TASK
450 void put_task_stack(struct task_struct *tsk)
451 {
452 if (refcount_dec_and_test(&tsk->stack_refcount))
453 release_task_stack(tsk);
454 }
455 #endif
456
457 void free_task(struct task_struct *tsk)
458 {
459 #ifndef CONFIG_THREAD_INFO_IN_TASK
460 /*
461 * The task is finally done with both the stack and thread_info,
462 * so free both.
463 */
464 release_task_stack(tsk);
465 #else
466 /*
467 * If the task had a separate stack allocation, it should be gone
468 * by now.
469 */
470 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
471 #endif
472 rt_mutex_debug_task_free(tsk);
473 ftrace_graph_exit_task(tsk);
474 put_seccomp_filter(tsk);
475 arch_release_task_struct(tsk);
476 if (tsk->flags & PF_KTHREAD)
477 free_kthread_struct(tsk);
478 free_task_struct(tsk);
479 }
480 EXPORT_SYMBOL(free_task);
481
482 #ifdef CONFIG_MMU
483 static __latent_entropy int dup_mmap(struct mm_struct *mm,
484 struct mm_struct *oldmm)
485 {
486 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
487 struct rb_node **rb_link, *rb_parent;
488 int retval;
489 unsigned long charge;
490 LIST_HEAD(uf);
491
492 uprobe_start_dup_mmap();
493 if (down_write_killable(&oldmm->mmap_sem)) {
494 retval = -EINTR;
495 goto fail_uprobe_end;
496 }
497 flush_cache_dup_mm(oldmm);
498 uprobe_dup_mmap(oldmm, mm);
499 /*
500 * Not linked in yet - no deadlock potential:
501 */
502 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
503
504 /* No ordering required: file already has been exposed. */
505 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
506
507 mm->total_vm = oldmm->total_vm;
508 mm->data_vm = oldmm->data_vm;
509 mm->exec_vm = oldmm->exec_vm;
510 mm->stack_vm = oldmm->stack_vm;
511
512 rb_link = &mm->mm_rb.rb_node;
513 rb_parent = NULL;
514 pprev = &mm->mmap;
515 retval = ksm_fork(mm, oldmm);
516 if (retval)
517 goto out;
518 retval = khugepaged_fork(mm, oldmm);
519 if (retval)
520 goto out;
521
522 prev = NULL;
523 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
524 struct file *file;
525
526 if (mpnt->vm_flags & VM_DONTCOPY) {
527 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
528 continue;
529 }
530 charge = 0;
531 /*
532 * Don't duplicate many vmas if we've been oom-killed (for
533 * example)
534 */
535 if (fatal_signal_pending(current)) {
536 retval = -EINTR;
537 goto out;
538 }
539 if (mpnt->vm_flags & VM_ACCOUNT) {
540 unsigned long len = vma_pages(mpnt);
541
542 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
543 goto fail_nomem;
544 charge = len;
545 }
546 tmp = vm_area_dup(mpnt);
547 if (!tmp)
548 goto fail_nomem;
549 retval = vma_dup_policy(mpnt, tmp);
550 if (retval)
551 goto fail_nomem_policy;
552 tmp->vm_mm = mm;
553 retval = dup_userfaultfd(tmp, &uf);
554 if (retval)
555 goto fail_nomem_anon_vma_fork;
556 if (tmp->vm_flags & VM_WIPEONFORK) {
557 /* VM_WIPEONFORK gets a clean slate in the child. */
558 tmp->anon_vma = NULL;
559 if (anon_vma_prepare(tmp))
560 goto fail_nomem_anon_vma_fork;
561 } else if (anon_vma_fork(tmp, mpnt))
562 goto fail_nomem_anon_vma_fork;
563 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
564 tmp->vm_next = tmp->vm_prev = NULL;
565 file = tmp->vm_file;
566 if (file) {
567 struct inode *inode = file_inode(file);
568 struct address_space *mapping = file->f_mapping;
569
570 vma_get_file(tmp);
571 if (tmp->vm_flags & VM_DENYWRITE)
572 atomic_dec(&inode->i_writecount);
573 i_mmap_lock_write(mapping);
574 if (tmp->vm_flags & VM_SHARED)
575 atomic_inc(&mapping->i_mmap_writable);
576 flush_dcache_mmap_lock(mapping);
577 /* insert tmp into the share list, just after mpnt */
578 vma_interval_tree_insert_after(tmp, mpnt,
579 &mapping->i_mmap);
580 flush_dcache_mmap_unlock(mapping);
581 i_mmap_unlock_write(mapping);
582 }
583
584 /*
585 * Clear hugetlb-related page reserves for children. This only
586 * affects MAP_PRIVATE mappings. Faults generated by the child
587 * are not guaranteed to succeed, even if read-only
588 */
589 if (is_vm_hugetlb_page(tmp))
590 reset_vma_resv_huge_pages(tmp);
591
592 /*
593 * Link in the new vma and copy the page table entries.
594 */
595 *pprev = tmp;
596 pprev = &tmp->vm_next;
597 tmp->vm_prev = prev;
598 prev = tmp;
599
600 __vma_link_rb(mm, tmp, rb_link, rb_parent);
601 rb_link = &tmp->vm_rb.rb_right;
602 rb_parent = &tmp->vm_rb;
603
604 mm->map_count++;
605 if (!(tmp->vm_flags & VM_WIPEONFORK))
606 retval = copy_page_range(mm, oldmm, mpnt);
607
608 if (tmp->vm_ops && tmp->vm_ops->open)
609 tmp->vm_ops->open(tmp);
610
611 if (retval)
612 goto out;
613 }
614 /* a new mm has just been created */
615 retval = arch_dup_mmap(oldmm, mm);
616 out:
617 up_write(&mm->mmap_sem);
618 flush_tlb_mm(oldmm);
619 up_write(&oldmm->mmap_sem);
620 dup_userfaultfd_complete(&uf);
621 fail_uprobe_end:
622 uprobe_end_dup_mmap();
623 return retval;
624 fail_nomem_anon_vma_fork:
625 mpol_put(vma_policy(tmp));
626 fail_nomem_policy:
627 vm_area_free(tmp);
628 fail_nomem:
629 retval = -ENOMEM;
630 vm_unacct_memory(charge);
631 goto out;
632 }
633
634 static inline int mm_alloc_pgd(struct mm_struct *mm)
635 {
636 mm->pgd = pgd_alloc(mm);
637 if (unlikely(!mm->pgd))
638 return -ENOMEM;
639 return 0;
640 }
641
642 static inline void mm_free_pgd(struct mm_struct *mm)
643 {
644 pgd_free(mm, mm->pgd);
645 }
646 #else
647 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
648 {
649 down_write(&oldmm->mmap_sem);
650 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
651 up_write(&oldmm->mmap_sem);
652 return 0;
653 }
654 #define mm_alloc_pgd(mm) (0)
655 #define mm_free_pgd(mm)
656 #endif /* CONFIG_MMU */
657
658 static void check_mm(struct mm_struct *mm)
659 {
660 int i;
661
662 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
663 "Please make sure 'struct resident_page_types[]' is updated as well");
664
665 for (i = 0; i < NR_MM_COUNTERS; i++) {
666 long x = atomic_long_read(&mm->rss_stat.count[i]);
667
668 if (unlikely(x))
669 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
670 mm, resident_page_types[i], x);
671 }
672
673 if (mm_pgtables_bytes(mm))
674 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
675 mm_pgtables_bytes(mm));
676
677 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
678 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
679 #endif
680 }
681
682 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
683 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
684
685 /*
686 * Called when the last reference to the mm
687 * is dropped: either by a lazy thread or by
688 * mmput. Free the page directory and the mm.
689 */
690 void __mmdrop(struct mm_struct *mm)
691 {
692 BUG_ON(mm == &init_mm);
693 WARN_ON_ONCE(mm == current->mm);
694 WARN_ON_ONCE(mm == current->active_mm);
695 mm_free_pgd(mm);
696 destroy_context(mm);
697 mmu_notifier_mm_destroy(mm);
698 check_mm(mm);
699 put_user_ns(mm->user_ns);
700 free_mm(mm);
701 }
702 EXPORT_SYMBOL_GPL(__mmdrop);
703
704 static void mmdrop_async_fn(struct work_struct *work)
705 {
706 struct mm_struct *mm;
707
708 mm = container_of(work, struct mm_struct, async_put_work);
709 __mmdrop(mm);
710 }
711
712 static void mmdrop_async(struct mm_struct *mm)
713 {
714 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
715 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
716 schedule_work(&mm->async_put_work);
717 }
718 }
719
720 static inline void free_signal_struct(struct signal_struct *sig)
721 {
722 taskstats_tgid_free(sig);
723 sched_autogroup_exit(sig);
724 /*
725 * __mmdrop is not safe to call from softirq context on x86 due to
726 * pgd_dtor so postpone it to the async context
727 */
728 if (sig->oom_mm)
729 mmdrop_async(sig->oom_mm);
730 kmem_cache_free(signal_cachep, sig);
731 }
732
733 static inline void put_signal_struct(struct signal_struct *sig)
734 {
735 if (refcount_dec_and_test(&sig->sigcnt))
736 free_signal_struct(sig);
737 }
738
739 void __put_task_struct(struct task_struct *tsk)
740 {
741 WARN_ON(!tsk->exit_state);
742 WARN_ON(refcount_read(&tsk->usage));
743 WARN_ON(tsk == current);
744
745 cgroup_free(tsk);
746 task_numa_free(tsk, true);
747 security_task_free(tsk);
748 exit_creds(tsk);
749 delayacct_tsk_free(tsk);
750 put_signal_struct(tsk->signal);
751
752 if (!profile_handoff_task(tsk))
753 free_task(tsk);
754 }
755 EXPORT_SYMBOL_GPL(__put_task_struct);
756
757 void __init __weak arch_task_cache_init(void) { }
758
759 /*
760 * set_max_threads
761 */
762 static void set_max_threads(unsigned int max_threads_suggested)
763 {
764 u64 threads;
765 unsigned long nr_pages = totalram_pages();
766
767 /*
768 * The number of threads shall be limited such that the thread
769 * structures may only consume a small part of the available memory.
770 */
771 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
772 threads = MAX_THREADS;
773 else
774 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
775 (u64) THREAD_SIZE * 8UL);
776
777 if (threads > max_threads_suggested)
778 threads = max_threads_suggested;
779
780 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
781 }
782
783 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
784 /* Initialized by the architecture: */
785 int arch_task_struct_size __read_mostly;
786 #endif
787
788 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
789 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
790 {
791 /* Fetch thread_struct whitelist for the architecture. */
792 arch_thread_struct_whitelist(offset, size);
793
794 /*
795 * Handle zero-sized whitelist or empty thread_struct, otherwise
796 * adjust offset to position of thread_struct in task_struct.
797 */
798 if (unlikely(*size == 0))
799 *offset = 0;
800 else
801 *offset += offsetof(struct task_struct, thread);
802 }
803 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
804
805 void __init fork_init(void)
806 {
807 int i;
808 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
809 #ifndef ARCH_MIN_TASKALIGN
810 #define ARCH_MIN_TASKALIGN 0
811 #endif
812 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
813 unsigned long useroffset, usersize;
814
815 /* create a slab on which task_structs can be allocated */
816 task_struct_whitelist(&useroffset, &usersize);
817 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
818 arch_task_struct_size, align,
819 SLAB_PANIC|SLAB_ACCOUNT,
820 useroffset, usersize, NULL);
821 #endif
822
823 /* do the arch specific task caches init */
824 arch_task_cache_init();
825
826 set_max_threads(MAX_THREADS);
827
828 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
829 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
830 init_task.signal->rlim[RLIMIT_SIGPENDING] =
831 init_task.signal->rlim[RLIMIT_NPROC];
832
833 for (i = 0; i < UCOUNT_COUNTS; i++) {
834 init_user_ns.ucount_max[i] = max_threads/2;
835 }
836
837 #ifdef CONFIG_VMAP_STACK
838 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
839 NULL, free_vm_stack_cache);
840 #endif
841
842 lockdep_init_task(&init_task);
843 uprobes_init();
844 }
845
846 int __weak arch_dup_task_struct(struct task_struct *dst,
847 struct task_struct *src)
848 {
849 *dst = *src;
850 return 0;
851 }
852
853 void set_task_stack_end_magic(struct task_struct *tsk)
854 {
855 unsigned long *stackend;
856
857 stackend = end_of_stack(tsk);
858 *stackend = STACK_END_MAGIC; /* for overflow detection */
859 }
860
861 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
862 {
863 struct task_struct *tsk;
864 unsigned long *stack;
865 struct vm_struct *stack_vm_area __maybe_unused;
866 int err;
867
868 if (node == NUMA_NO_NODE)
869 node = tsk_fork_get_node(orig);
870 tsk = alloc_task_struct_node(node);
871 if (!tsk)
872 return NULL;
873
874 stack = alloc_thread_stack_node(tsk, node);
875 if (!stack)
876 goto free_tsk;
877
878 if (memcg_charge_kernel_stack(tsk))
879 goto free_stack;
880
881 stack_vm_area = task_stack_vm_area(tsk);
882
883 err = arch_dup_task_struct(tsk, orig);
884
885 /*
886 * arch_dup_task_struct() clobbers the stack-related fields. Make
887 * sure they're properly initialized before using any stack-related
888 * functions again.
889 */
890 tsk->stack = stack;
891 #ifdef CONFIG_VMAP_STACK
892 tsk->stack_vm_area = stack_vm_area;
893 #endif
894 #ifdef CONFIG_THREAD_INFO_IN_TASK
895 refcount_set(&tsk->stack_refcount, 1);
896 #endif
897
898 if (err)
899 goto free_stack;
900
901 #ifdef CONFIG_SECCOMP
902 /*
903 * We must handle setting up seccomp filters once we're under
904 * the sighand lock in case orig has changed between now and
905 * then. Until then, filter must be NULL to avoid messing up
906 * the usage counts on the error path calling free_task.
907 */
908 tsk->seccomp.filter = NULL;
909 #endif
910
911 setup_thread_stack(tsk, orig);
912 clear_user_return_notifier(tsk);
913 clear_tsk_need_resched(tsk);
914 set_task_stack_end_magic(tsk);
915
916 #ifdef CONFIG_STACKPROTECTOR
917 tsk->stack_canary = get_random_canary();
918 #endif
919 if (orig->cpus_ptr == &orig->cpus_mask)
920 tsk->cpus_ptr = &tsk->cpus_mask;
921
922 /*
923 * One for the user space visible state that goes away when reaped.
924 * One for the scheduler.
925 */
926 refcount_set(&tsk->rcu_users, 2);
927 /* One for the rcu users */
928 refcount_set(&tsk->usage, 1);
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
930 tsk->btrace_seq = 0;
931 #endif
932 tsk->splice_pipe = NULL;
933 tsk->task_frag.page = NULL;
934 tsk->wake_q.next = NULL;
935
936 account_kernel_stack(tsk, 1);
937
938 kcov_task_init(tsk);
939
940 #ifdef CONFIG_FAULT_INJECTION
941 tsk->fail_nth = 0;
942 #endif
943
944 #ifdef CONFIG_BLK_CGROUP
945 tsk->throttle_queue = NULL;
946 tsk->use_memdelay = 0;
947 #endif
948
949 #ifdef CONFIG_MEMCG
950 tsk->active_memcg = NULL;
951 #endif
952 return tsk;
953
954 free_stack:
955 free_thread_stack(tsk);
956 free_tsk:
957 free_task_struct(tsk);
958 return NULL;
959 }
960
961 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
962
963 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
964
965 static int __init coredump_filter_setup(char *s)
966 {
967 default_dump_filter =
968 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
969 MMF_DUMP_FILTER_MASK;
970 return 1;
971 }
972
973 __setup("coredump_filter=", coredump_filter_setup);
974
975 #include <linux/init_task.h>
976
977 static void mm_init_aio(struct mm_struct *mm)
978 {
979 #ifdef CONFIG_AIO
980 spin_lock_init(&mm->ioctx_lock);
981 mm->ioctx_table = NULL;
982 #endif
983 }
984
985 static __always_inline void mm_clear_owner(struct mm_struct *mm,
986 struct task_struct *p)
987 {
988 #ifdef CONFIG_MEMCG
989 if (mm->owner == p)
990 WRITE_ONCE(mm->owner, NULL);
991 #endif
992 }
993
994 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
995 {
996 #ifdef CONFIG_MEMCG
997 mm->owner = p;
998 #endif
999 }
1000
1001 static void mm_init_uprobes_state(struct mm_struct *mm)
1002 {
1003 #ifdef CONFIG_UPROBES
1004 mm->uprobes_state.xol_area = NULL;
1005 #endif
1006 }
1007
1008 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1009 struct user_namespace *user_ns)
1010 {
1011 mm->mmap = NULL;
1012 mm->mm_rb = RB_ROOT;
1013 mm->vmacache_seqnum = 0;
1014 atomic_set(&mm->mm_users, 1);
1015 atomic_set(&mm->mm_count, 1);
1016 init_rwsem(&mm->mmap_sem);
1017 INIT_LIST_HEAD(&mm->mmlist);
1018 mm->core_state = NULL;
1019 mm_pgtables_bytes_init(mm);
1020 mm->map_count = 0;
1021 mm->locked_vm = 0;
1022 atomic64_set(&mm->pinned_vm, 0);
1023 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1024 spin_lock_init(&mm->page_table_lock);
1025 spin_lock_init(&mm->arg_lock);
1026 mm_init_cpumask(mm);
1027 mm_init_aio(mm);
1028 mm_init_owner(mm, p);
1029 RCU_INIT_POINTER(mm->exe_file, NULL);
1030 mmu_notifier_mm_init(mm);
1031 init_tlb_flush_pending(mm);
1032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1033 mm->pmd_huge_pte = NULL;
1034 #endif
1035 mm_init_uprobes_state(mm);
1036
1037 if (current->mm) {
1038 mm->flags = current->mm->flags & MMF_INIT_MASK;
1039 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1040 } else {
1041 mm->flags = default_dump_filter;
1042 mm->def_flags = 0;
1043 }
1044
1045 if (mm_alloc_pgd(mm))
1046 goto fail_nopgd;
1047
1048 if (init_new_context(p, mm))
1049 goto fail_nocontext;
1050
1051 mm->user_ns = get_user_ns(user_ns);
1052 return mm;
1053
1054 fail_nocontext:
1055 mm_free_pgd(mm);
1056 fail_nopgd:
1057 free_mm(mm);
1058 return NULL;
1059 }
1060
1061 /*
1062 * Allocate and initialize an mm_struct.
1063 */
1064 struct mm_struct *mm_alloc(void)
1065 {
1066 struct mm_struct *mm;
1067
1068 mm = allocate_mm();
1069 if (!mm)
1070 return NULL;
1071
1072 memset(mm, 0, sizeof(*mm));
1073 return mm_init(mm, current, current_user_ns());
1074 }
1075
1076 static inline void __mmput(struct mm_struct *mm)
1077 {
1078 VM_BUG_ON(atomic_read(&mm->mm_users));
1079
1080 uprobe_clear_state(mm);
1081 exit_aio(mm);
1082 ksm_exit(mm);
1083 khugepaged_exit(mm); /* must run before exit_mmap */
1084 exit_mmap(mm);
1085 mm_put_huge_zero_page(mm);
1086 set_mm_exe_file(mm, NULL);
1087 if (!list_empty(&mm->mmlist)) {
1088 spin_lock(&mmlist_lock);
1089 list_del(&mm->mmlist);
1090 spin_unlock(&mmlist_lock);
1091 }
1092 if (mm->binfmt)
1093 module_put(mm->binfmt->module);
1094 mmdrop(mm);
1095 }
1096
1097 /*
1098 * Decrement the use count and release all resources for an mm.
1099 */
1100 void mmput(struct mm_struct *mm)
1101 {
1102 might_sleep();
1103
1104 if (atomic_dec_and_test(&mm->mm_users))
1105 __mmput(mm);
1106 }
1107 EXPORT_SYMBOL_GPL(mmput);
1108
1109 #ifdef CONFIG_MMU
1110 static void mmput_async_fn(struct work_struct *work)
1111 {
1112 struct mm_struct *mm = container_of(work, struct mm_struct,
1113 async_put_work);
1114
1115 __mmput(mm);
1116 }
1117
1118 void mmput_async(struct mm_struct *mm)
1119 {
1120 if (atomic_dec_and_test(&mm->mm_users)) {
1121 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1122 schedule_work(&mm->async_put_work);
1123 }
1124 }
1125 EXPORT_SYMBOL(mmput_async);
1126 #endif
1127
1128 /**
1129 * set_mm_exe_file - change a reference to the mm's executable file
1130 *
1131 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1132 *
1133 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1134 * invocations: in mmput() nobody alive left, in execve task is single
1135 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1136 * mm->exe_file, but does so without using set_mm_exe_file() in order
1137 * to do avoid the need for any locks.
1138 */
1139 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1140 {
1141 struct file *old_exe_file;
1142
1143 /*
1144 * It is safe to dereference the exe_file without RCU as
1145 * this function is only called if nobody else can access
1146 * this mm -- see comment above for justification.
1147 */
1148 old_exe_file = rcu_dereference_raw(mm->exe_file);
1149
1150 if (new_exe_file)
1151 get_file(new_exe_file);
1152 rcu_assign_pointer(mm->exe_file, new_exe_file);
1153 if (old_exe_file)
1154 fput(old_exe_file);
1155 }
1156
1157 /**
1158 * get_mm_exe_file - acquire a reference to the mm's executable file
1159 *
1160 * Returns %NULL if mm has no associated executable file.
1161 * User must release file via fput().
1162 */
1163 struct file *get_mm_exe_file(struct mm_struct *mm)
1164 {
1165 struct file *exe_file;
1166
1167 rcu_read_lock();
1168 exe_file = rcu_dereference(mm->exe_file);
1169 if (exe_file && !get_file_rcu(exe_file))
1170 exe_file = NULL;
1171 rcu_read_unlock();
1172 return exe_file;
1173 }
1174 EXPORT_SYMBOL(get_mm_exe_file);
1175
1176 /**
1177 * get_task_exe_file - acquire a reference to the task's executable file
1178 *
1179 * Returns %NULL if task's mm (if any) has no associated executable file or
1180 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1181 * User must release file via fput().
1182 */
1183 struct file *get_task_exe_file(struct task_struct *task)
1184 {
1185 struct file *exe_file = NULL;
1186 struct mm_struct *mm;
1187
1188 task_lock(task);
1189 mm = task->mm;
1190 if (mm) {
1191 if (!(task->flags & PF_KTHREAD))
1192 exe_file = get_mm_exe_file(mm);
1193 }
1194 task_unlock(task);
1195 return exe_file;
1196 }
1197 EXPORT_SYMBOL(get_task_exe_file);
1198
1199 /**
1200 * get_task_mm - acquire a reference to the task's mm
1201 *
1202 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1203 * this kernel workthread has transiently adopted a user mm with use_mm,
1204 * to do its AIO) is not set and if so returns a reference to it, after
1205 * bumping up the use count. User must release the mm via mmput()
1206 * after use. Typically used by /proc and ptrace.
1207 */
1208 struct mm_struct *get_task_mm(struct task_struct *task)
1209 {
1210 struct mm_struct *mm;
1211
1212 task_lock(task);
1213 mm = task->mm;
1214 if (mm) {
1215 if (task->flags & PF_KTHREAD)
1216 mm = NULL;
1217 else
1218 mmget(mm);
1219 }
1220 task_unlock(task);
1221 return mm;
1222 }
1223 EXPORT_SYMBOL_GPL(get_task_mm);
1224
1225 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1226 {
1227 struct mm_struct *mm;
1228 int err;
1229
1230 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1231 if (err)
1232 return ERR_PTR(err);
1233
1234 mm = get_task_mm(task);
1235 if (mm && mm != current->mm &&
1236 !ptrace_may_access(task, mode)) {
1237 mmput(mm);
1238 mm = ERR_PTR(-EACCES);
1239 }
1240 mutex_unlock(&task->signal->cred_guard_mutex);
1241
1242 return mm;
1243 }
1244
1245 static void complete_vfork_done(struct task_struct *tsk)
1246 {
1247 struct completion *vfork;
1248
1249 task_lock(tsk);
1250 vfork = tsk->vfork_done;
1251 if (likely(vfork)) {
1252 tsk->vfork_done = NULL;
1253 complete(vfork);
1254 }
1255 task_unlock(tsk);
1256 }
1257
1258 static int wait_for_vfork_done(struct task_struct *child,
1259 struct completion *vfork)
1260 {
1261 int killed;
1262
1263 freezer_do_not_count();
1264 cgroup_enter_frozen();
1265 killed = wait_for_completion_killable(vfork);
1266 cgroup_leave_frozen(false);
1267 freezer_count();
1268
1269 if (killed) {
1270 task_lock(child);
1271 child->vfork_done = NULL;
1272 task_unlock(child);
1273 }
1274
1275 put_task_struct(child);
1276 return killed;
1277 }
1278
1279 /* Please note the differences between mmput and mm_release.
1280 * mmput is called whenever we stop holding onto a mm_struct,
1281 * error success whatever.
1282 *
1283 * mm_release is called after a mm_struct has been removed
1284 * from the current process.
1285 *
1286 * This difference is important for error handling, when we
1287 * only half set up a mm_struct for a new process and need to restore
1288 * the old one. Because we mmput the new mm_struct before
1289 * restoring the old one. . .
1290 * Eric Biederman 10 January 1998
1291 */
1292 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1293 {
1294 uprobe_free_utask(tsk);
1295
1296 /* Get rid of any cached register state */
1297 deactivate_mm(tsk, mm);
1298
1299 /*
1300 * Signal userspace if we're not exiting with a core dump
1301 * because we want to leave the value intact for debugging
1302 * purposes.
1303 */
1304 if (tsk->clear_child_tid) {
1305 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1306 atomic_read(&mm->mm_users) > 1) {
1307 /*
1308 * We don't check the error code - if userspace has
1309 * not set up a proper pointer then tough luck.
1310 */
1311 put_user(0, tsk->clear_child_tid);
1312 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1313 1, NULL, NULL, 0, 0);
1314 }
1315 tsk->clear_child_tid = NULL;
1316 }
1317
1318 /*
1319 * All done, finally we can wake up parent and return this mm to him.
1320 * Also kthread_stop() uses this completion for synchronization.
1321 */
1322 if (tsk->vfork_done)
1323 complete_vfork_done(tsk);
1324 }
1325
1326 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328 futex_exit_release(tsk);
1329 mm_release(tsk, mm);
1330 }
1331
1332 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1333 {
1334 futex_exec_release(tsk);
1335 mm_release(tsk, mm);
1336 }
1337
1338 /**
1339 * dup_mm() - duplicates an existing mm structure
1340 * @tsk: the task_struct with which the new mm will be associated.
1341 * @oldmm: the mm to duplicate.
1342 *
1343 * Allocates a new mm structure and duplicates the provided @oldmm structure
1344 * content into it.
1345 *
1346 * Return: the duplicated mm or NULL on failure.
1347 */
1348 static struct mm_struct *dup_mm(struct task_struct *tsk,
1349 struct mm_struct *oldmm)
1350 {
1351 struct mm_struct *mm;
1352 int err;
1353
1354 mm = allocate_mm();
1355 if (!mm)
1356 goto fail_nomem;
1357
1358 memcpy(mm, oldmm, sizeof(*mm));
1359
1360 if (!mm_init(mm, tsk, mm->user_ns))
1361 goto fail_nomem;
1362
1363 err = dup_mmap(mm, oldmm);
1364 if (err)
1365 goto free_pt;
1366
1367 mm->hiwater_rss = get_mm_rss(mm);
1368 mm->hiwater_vm = mm->total_vm;
1369
1370 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1371 goto free_pt;
1372
1373 return mm;
1374
1375 free_pt:
1376 /* don't put binfmt in mmput, we haven't got module yet */
1377 mm->binfmt = NULL;
1378 mm_init_owner(mm, NULL);
1379 mmput(mm);
1380
1381 fail_nomem:
1382 return NULL;
1383 }
1384
1385 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1386 {
1387 struct mm_struct *mm, *oldmm;
1388 int retval;
1389
1390 tsk->min_flt = tsk->maj_flt = 0;
1391 tsk->nvcsw = tsk->nivcsw = 0;
1392 #ifdef CONFIG_DETECT_HUNG_TASK
1393 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1394 tsk->last_switch_time = 0;
1395 #endif
1396
1397 tsk->mm = NULL;
1398 tsk->active_mm = NULL;
1399
1400 /*
1401 * Are we cloning a kernel thread?
1402 *
1403 * We need to steal a active VM for that..
1404 */
1405 oldmm = current->mm;
1406 if (!oldmm)
1407 return 0;
1408
1409 /* initialize the new vmacache entries */
1410 vmacache_flush(tsk);
1411
1412 if (clone_flags & CLONE_VM) {
1413 mmget(oldmm);
1414 mm = oldmm;
1415 goto good_mm;
1416 }
1417
1418 retval = -ENOMEM;
1419 mm = dup_mm(tsk, current->mm);
1420 if (!mm)
1421 goto fail_nomem;
1422
1423 good_mm:
1424 tsk->mm = mm;
1425 tsk->active_mm = mm;
1426 return 0;
1427
1428 fail_nomem:
1429 return retval;
1430 }
1431
1432 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1433 {
1434 struct fs_struct *fs = current->fs;
1435 if (clone_flags & CLONE_FS) {
1436 /* tsk->fs is already what we want */
1437 spin_lock(&fs->lock);
1438 if (fs->in_exec) {
1439 spin_unlock(&fs->lock);
1440 return -EAGAIN;
1441 }
1442 fs->users++;
1443 spin_unlock(&fs->lock);
1444 return 0;
1445 }
1446 tsk->fs = copy_fs_struct(fs);
1447 if (!tsk->fs)
1448 return -ENOMEM;
1449 return 0;
1450 }
1451
1452 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1453 {
1454 struct files_struct *oldf, *newf;
1455 int error = 0;
1456
1457 /*
1458 * A background process may not have any files ...
1459 */
1460 oldf = current->files;
1461 if (!oldf)
1462 goto out;
1463
1464 if (clone_flags & CLONE_FILES) {
1465 atomic_inc(&oldf->count);
1466 goto out;
1467 }
1468
1469 newf = dup_fd(oldf, &error);
1470 if (!newf)
1471 goto out;
1472
1473 tsk->files = newf;
1474 error = 0;
1475 out:
1476 return error;
1477 }
1478
1479 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1480 {
1481 #ifdef CONFIG_BLOCK
1482 struct io_context *ioc = current->io_context;
1483 struct io_context *new_ioc;
1484
1485 if (!ioc)
1486 return 0;
1487 /*
1488 * Share io context with parent, if CLONE_IO is set
1489 */
1490 if (clone_flags & CLONE_IO) {
1491 ioc_task_link(ioc);
1492 tsk->io_context = ioc;
1493 } else if (ioprio_valid(ioc->ioprio)) {
1494 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1495 if (unlikely(!new_ioc))
1496 return -ENOMEM;
1497
1498 new_ioc->ioprio = ioc->ioprio;
1499 put_io_context(new_ioc);
1500 }
1501 #endif
1502 return 0;
1503 }
1504
1505 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1506 {
1507 struct sighand_struct *sig;
1508
1509 if (clone_flags & CLONE_SIGHAND) {
1510 refcount_inc(&current->sighand->count);
1511 return 0;
1512 }
1513 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1514 rcu_assign_pointer(tsk->sighand, sig);
1515 if (!sig)
1516 return -ENOMEM;
1517
1518 refcount_set(&sig->count, 1);
1519 spin_lock_irq(&current->sighand->siglock);
1520 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1521 spin_unlock_irq(&current->sighand->siglock);
1522 return 0;
1523 }
1524
1525 void __cleanup_sighand(struct sighand_struct *sighand)
1526 {
1527 if (refcount_dec_and_test(&sighand->count)) {
1528 signalfd_cleanup(sighand);
1529 /*
1530 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1531 * without an RCU grace period, see __lock_task_sighand().
1532 */
1533 kmem_cache_free(sighand_cachep, sighand);
1534 }
1535 }
1536
1537 /*
1538 * Initialize POSIX timer handling for a thread group.
1539 */
1540 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1541 {
1542 struct posix_cputimers *pct = &sig->posix_cputimers;
1543 unsigned long cpu_limit;
1544
1545 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1546 posix_cputimers_group_init(pct, cpu_limit);
1547 }
1548
1549 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1550 {
1551 struct signal_struct *sig;
1552
1553 if (clone_flags & CLONE_THREAD)
1554 return 0;
1555
1556 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1557 tsk->signal = sig;
1558 if (!sig)
1559 return -ENOMEM;
1560
1561 sig->nr_threads = 1;
1562 atomic_set(&sig->live, 1);
1563 refcount_set(&sig->sigcnt, 1);
1564
1565 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1566 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1567 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1568
1569 init_waitqueue_head(&sig->wait_chldexit);
1570 sig->curr_target = tsk;
1571 init_sigpending(&sig->shared_pending);
1572 INIT_HLIST_HEAD(&sig->multiprocess);
1573 seqlock_init(&sig->stats_lock);
1574 prev_cputime_init(&sig->prev_cputime);
1575
1576 #ifdef CONFIG_POSIX_TIMERS
1577 INIT_LIST_HEAD(&sig->posix_timers);
1578 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1579 sig->real_timer.function = it_real_fn;
1580 #endif
1581
1582 task_lock(current->group_leader);
1583 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1584 task_unlock(current->group_leader);
1585
1586 posix_cpu_timers_init_group(sig);
1587
1588 tty_audit_fork(sig);
1589 sched_autogroup_fork(sig);
1590
1591 sig->oom_score_adj = current->signal->oom_score_adj;
1592 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1593
1594 mutex_init(&sig->cred_guard_mutex);
1595
1596 return 0;
1597 }
1598
1599 static void copy_seccomp(struct task_struct *p)
1600 {
1601 #ifdef CONFIG_SECCOMP
1602 /*
1603 * Must be called with sighand->lock held, which is common to
1604 * all threads in the group. Holding cred_guard_mutex is not
1605 * needed because this new task is not yet running and cannot
1606 * be racing exec.
1607 */
1608 assert_spin_locked(&current->sighand->siglock);
1609
1610 /* Ref-count the new filter user, and assign it. */
1611 get_seccomp_filter(current);
1612 p->seccomp = current->seccomp;
1613
1614 /*
1615 * Explicitly enable no_new_privs here in case it got set
1616 * between the task_struct being duplicated and holding the
1617 * sighand lock. The seccomp state and nnp must be in sync.
1618 */
1619 if (task_no_new_privs(current))
1620 task_set_no_new_privs(p);
1621
1622 /*
1623 * If the parent gained a seccomp mode after copying thread
1624 * flags and between before we held the sighand lock, we have
1625 * to manually enable the seccomp thread flag here.
1626 */
1627 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1628 set_tsk_thread_flag(p, TIF_SECCOMP);
1629 #endif
1630 }
1631
1632 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1633 {
1634 current->clear_child_tid = tidptr;
1635
1636 return task_pid_vnr(current);
1637 }
1638
1639 static void rt_mutex_init_task(struct task_struct *p)
1640 {
1641 raw_spin_lock_init(&p->pi_lock);
1642 #ifdef CONFIG_RT_MUTEXES
1643 p->pi_waiters = RB_ROOT_CACHED;
1644 p->pi_top_task = NULL;
1645 p->pi_blocked_on = NULL;
1646 #endif
1647 }
1648
1649 static inline void init_task_pid_links(struct task_struct *task)
1650 {
1651 enum pid_type type;
1652
1653 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1654 INIT_HLIST_NODE(&task->pid_links[type]);
1655 }
1656 }
1657
1658 static inline void
1659 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1660 {
1661 if (type == PIDTYPE_PID)
1662 task->thread_pid = pid;
1663 else
1664 task->signal->pids[type] = pid;
1665 }
1666
1667 static inline void rcu_copy_process(struct task_struct *p)
1668 {
1669 #ifdef CONFIG_PREEMPT_RCU
1670 p->rcu_read_lock_nesting = 0;
1671 p->rcu_read_unlock_special.s = 0;
1672 p->rcu_blocked_node = NULL;
1673 INIT_LIST_HEAD(&p->rcu_node_entry);
1674 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1675 #ifdef CONFIG_TASKS_RCU
1676 p->rcu_tasks_holdout = false;
1677 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1678 p->rcu_tasks_idle_cpu = -1;
1679 #endif /* #ifdef CONFIG_TASKS_RCU */
1680 }
1681
1682 struct pid *pidfd_pid(const struct file *file)
1683 {
1684 if (file->f_op == &pidfd_fops)
1685 return file->private_data;
1686
1687 return ERR_PTR(-EBADF);
1688 }
1689
1690 static int pidfd_release(struct inode *inode, struct file *file)
1691 {
1692 struct pid *pid = file->private_data;
1693
1694 file->private_data = NULL;
1695 put_pid(pid);
1696 return 0;
1697 }
1698
1699 #ifdef CONFIG_PROC_FS
1700 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1701 {
1702 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1703 struct pid *pid = f->private_data;
1704
1705 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1706 seq_putc(m, '\n');
1707 }
1708 #endif
1709
1710 /*
1711 * Poll support for process exit notification.
1712 */
1713 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1714 {
1715 struct task_struct *task;
1716 struct pid *pid = file->private_data;
1717 __poll_t poll_flags = 0;
1718
1719 poll_wait(file, &pid->wait_pidfd, pts);
1720
1721 rcu_read_lock();
1722 task = pid_task(pid, PIDTYPE_PID);
1723 /*
1724 * Inform pollers only when the whole thread group exits.
1725 * If the thread group leader exits before all other threads in the
1726 * group, then poll(2) should block, similar to the wait(2) family.
1727 */
1728 if (!task || (task->exit_state && thread_group_empty(task)))
1729 poll_flags = EPOLLIN | EPOLLRDNORM;
1730 rcu_read_unlock();
1731
1732 return poll_flags;
1733 }
1734
1735 const struct file_operations pidfd_fops = {
1736 .release = pidfd_release,
1737 .poll = pidfd_poll,
1738 #ifdef CONFIG_PROC_FS
1739 .show_fdinfo = pidfd_show_fdinfo,
1740 #endif
1741 };
1742
1743 static void __delayed_free_task(struct rcu_head *rhp)
1744 {
1745 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1746
1747 free_task(tsk);
1748 }
1749
1750 static __always_inline void delayed_free_task(struct task_struct *tsk)
1751 {
1752 if (IS_ENABLED(CONFIG_MEMCG))
1753 call_rcu(&tsk->rcu, __delayed_free_task);
1754 else
1755 free_task(tsk);
1756 }
1757
1758 /*
1759 * This creates a new process as a copy of the old one,
1760 * but does not actually start it yet.
1761 *
1762 * It copies the registers, and all the appropriate
1763 * parts of the process environment (as per the clone
1764 * flags). The actual kick-off is left to the caller.
1765 */
1766 static __latent_entropy struct task_struct *copy_process(
1767 struct pid *pid,
1768 int trace,
1769 int node,
1770 struct kernel_clone_args *args)
1771 {
1772 int pidfd = -1, retval;
1773 struct task_struct *p;
1774 struct multiprocess_signals delayed;
1775 struct file *pidfile = NULL;
1776 u64 clone_flags = args->flags;
1777
1778 /*
1779 * Don't allow sharing the root directory with processes in a different
1780 * namespace
1781 */
1782 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1783 return ERR_PTR(-EINVAL);
1784
1785 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1786 return ERR_PTR(-EINVAL);
1787
1788 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1789 if (!capable(CAP_SYS_ADMIN))
1790 return ERR_PTR(-EPERM);
1791
1792 /*
1793 * Thread groups must share signals as well, and detached threads
1794 * can only be started up within the thread group.
1795 */
1796 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1797 return ERR_PTR(-EINVAL);
1798
1799 /*
1800 * Shared signal handlers imply shared VM. By way of the above,
1801 * thread groups also imply shared VM. Blocking this case allows
1802 * for various simplifications in other code.
1803 */
1804 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1805 return ERR_PTR(-EINVAL);
1806
1807 /*
1808 * Siblings of global init remain as zombies on exit since they are
1809 * not reaped by their parent (swapper). To solve this and to avoid
1810 * multi-rooted process trees, prevent global and container-inits
1811 * from creating siblings.
1812 */
1813 if ((clone_flags & CLONE_PARENT) &&
1814 current->signal->flags & SIGNAL_UNKILLABLE)
1815 return ERR_PTR(-EINVAL);
1816
1817 /*
1818 * If the new process will be in a different pid or user namespace
1819 * do not allow it to share a thread group with the forking task.
1820 */
1821 if (clone_flags & CLONE_THREAD) {
1822 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1823 (task_active_pid_ns(current) !=
1824 current->nsproxy->pid_ns_for_children))
1825 return ERR_PTR(-EINVAL);
1826 }
1827
1828 if (clone_flags & CLONE_PIDFD) {
1829 /*
1830 * - CLONE_DETACHED is blocked so that we can potentially
1831 * reuse it later for CLONE_PIDFD.
1832 * - CLONE_THREAD is blocked until someone really needs it.
1833 */
1834 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1835 return ERR_PTR(-EINVAL);
1836 }
1837
1838 /*
1839 * Force any signals received before this point to be delivered
1840 * before the fork happens. Collect up signals sent to multiple
1841 * processes that happen during the fork and delay them so that
1842 * they appear to happen after the fork.
1843 */
1844 sigemptyset(&delayed.signal);
1845 INIT_HLIST_NODE(&delayed.node);
1846
1847 spin_lock_irq(&current->sighand->siglock);
1848 if (!(clone_flags & CLONE_THREAD))
1849 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1850 recalc_sigpending();
1851 spin_unlock_irq(&current->sighand->siglock);
1852 retval = -ERESTARTNOINTR;
1853 if (signal_pending(current))
1854 goto fork_out;
1855
1856 retval = -ENOMEM;
1857 p = dup_task_struct(current, node);
1858 if (!p)
1859 goto fork_out;
1860
1861 /*
1862 * This _must_ happen before we call free_task(), i.e. before we jump
1863 * to any of the bad_fork_* labels. This is to avoid freeing
1864 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1865 * kernel threads (PF_KTHREAD).
1866 */
1867 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1868 /*
1869 * Clear TID on mm_release()?
1870 */
1871 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1872
1873 ftrace_graph_init_task(p);
1874
1875 rt_mutex_init_task(p);
1876
1877 #ifdef CONFIG_PROVE_LOCKING
1878 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1879 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1880 #endif
1881 retval = -EAGAIN;
1882 if (atomic_read(&p->real_cred->user->processes) >=
1883 task_rlimit(p, RLIMIT_NPROC)) {
1884 if (p->real_cred->user != INIT_USER &&
1885 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1886 goto bad_fork_free;
1887 }
1888 current->flags &= ~PF_NPROC_EXCEEDED;
1889
1890 retval = copy_creds(p, clone_flags);
1891 if (retval < 0)
1892 goto bad_fork_free;
1893
1894 /*
1895 * If multiple threads are within copy_process(), then this check
1896 * triggers too late. This doesn't hurt, the check is only there
1897 * to stop root fork bombs.
1898 */
1899 retval = -EAGAIN;
1900 if (nr_threads >= max_threads)
1901 goto bad_fork_cleanup_count;
1902
1903 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1904 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1905 p->flags |= PF_FORKNOEXEC;
1906 INIT_LIST_HEAD(&p->children);
1907 INIT_LIST_HEAD(&p->sibling);
1908 rcu_copy_process(p);
1909 p->vfork_done = NULL;
1910 spin_lock_init(&p->alloc_lock);
1911
1912 init_sigpending(&p->pending);
1913
1914 p->utime = p->stime = p->gtime = 0;
1915 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1916 p->utimescaled = p->stimescaled = 0;
1917 #endif
1918 prev_cputime_init(&p->prev_cputime);
1919
1920 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1921 seqcount_init(&p->vtime.seqcount);
1922 p->vtime.starttime = 0;
1923 p->vtime.state = VTIME_INACTIVE;
1924 #endif
1925
1926 #if defined(SPLIT_RSS_COUNTING)
1927 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1928 #endif
1929
1930 p->default_timer_slack_ns = current->timer_slack_ns;
1931
1932 #ifdef CONFIG_PSI
1933 p->psi_flags = 0;
1934 #endif
1935
1936 task_io_accounting_init(&p->ioac);
1937 acct_clear_integrals(p);
1938
1939 posix_cputimers_init(&p->posix_cputimers);
1940
1941 p->io_context = NULL;
1942 audit_set_context(p, NULL);
1943 cgroup_fork(p);
1944 #ifdef CONFIG_NUMA
1945 p->mempolicy = mpol_dup(p->mempolicy);
1946 if (IS_ERR(p->mempolicy)) {
1947 retval = PTR_ERR(p->mempolicy);
1948 p->mempolicy = NULL;
1949 goto bad_fork_cleanup_threadgroup_lock;
1950 }
1951 #endif
1952 #ifdef CONFIG_CPUSETS
1953 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1954 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1955 seqcount_init(&p->mems_allowed_seq);
1956 #endif
1957 #ifdef CONFIG_TRACE_IRQFLAGS
1958 p->irq_events = 0;
1959 p->hardirqs_enabled = 0;
1960 p->hardirq_enable_ip = 0;
1961 p->hardirq_enable_event = 0;
1962 p->hardirq_disable_ip = _THIS_IP_;
1963 p->hardirq_disable_event = 0;
1964 p->softirqs_enabled = 1;
1965 p->softirq_enable_ip = _THIS_IP_;
1966 p->softirq_enable_event = 0;
1967 p->softirq_disable_ip = 0;
1968 p->softirq_disable_event = 0;
1969 p->hardirq_context = 0;
1970 p->softirq_context = 0;
1971 #endif
1972
1973 p->pagefault_disabled = 0;
1974
1975 #ifdef CONFIG_LOCKDEP
1976 lockdep_init_task(p);
1977 #endif
1978
1979 #ifdef CONFIG_DEBUG_MUTEXES
1980 p->blocked_on = NULL; /* not blocked yet */
1981 #endif
1982 #ifdef CONFIG_BCACHE
1983 p->sequential_io = 0;
1984 p->sequential_io_avg = 0;
1985 #endif
1986
1987 /* Perform scheduler related setup. Assign this task to a CPU. */
1988 retval = sched_fork(clone_flags, p);
1989 if (retval)
1990 goto bad_fork_cleanup_policy;
1991
1992 retval = perf_event_init_task(p);
1993 if (retval)
1994 goto bad_fork_cleanup_policy;
1995 retval = audit_alloc(p);
1996 if (retval)
1997 goto bad_fork_cleanup_perf;
1998 /* copy all the process information */
1999 shm_init_task(p);
2000 retval = security_task_alloc(p, clone_flags);
2001 if (retval)
2002 goto bad_fork_cleanup_audit;
2003 retval = copy_semundo(clone_flags, p);
2004 if (retval)
2005 goto bad_fork_cleanup_security;
2006 retval = copy_files(clone_flags, p);
2007 if (retval)
2008 goto bad_fork_cleanup_semundo;
2009 retval = copy_fs(clone_flags, p);
2010 if (retval)
2011 goto bad_fork_cleanup_files;
2012 retval = copy_sighand(clone_flags, p);
2013 if (retval)
2014 goto bad_fork_cleanup_fs;
2015 retval = copy_signal(clone_flags, p);
2016 if (retval)
2017 goto bad_fork_cleanup_sighand;
2018 retval = copy_mm(clone_flags, p);
2019 if (retval)
2020 goto bad_fork_cleanup_signal;
2021 retval = copy_namespaces(clone_flags, p);
2022 if (retval)
2023 goto bad_fork_cleanup_mm;
2024 retval = copy_io(clone_flags, p);
2025 if (retval)
2026 goto bad_fork_cleanup_namespaces;
2027 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2028 args->tls);
2029 if (retval)
2030 goto bad_fork_cleanup_io;
2031
2032 stackleak_task_init(p);
2033
2034 if (pid != &init_struct_pid) {
2035 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2036 if (IS_ERR(pid)) {
2037 retval = PTR_ERR(pid);
2038 goto bad_fork_cleanup_thread;
2039 }
2040 }
2041
2042 /*
2043 * This has to happen after we've potentially unshared the file
2044 * descriptor table (so that the pidfd doesn't leak into the child
2045 * if the fd table isn't shared).
2046 */
2047 if (clone_flags & CLONE_PIDFD) {
2048 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2049 if (retval < 0)
2050 goto bad_fork_free_pid;
2051
2052 pidfd = retval;
2053
2054 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2055 O_RDWR | O_CLOEXEC);
2056 if (IS_ERR(pidfile)) {
2057 put_unused_fd(pidfd);
2058 retval = PTR_ERR(pidfile);
2059 goto bad_fork_free_pid;
2060 }
2061 get_pid(pid); /* held by pidfile now */
2062
2063 retval = put_user(pidfd, args->pidfd);
2064 if (retval)
2065 goto bad_fork_put_pidfd;
2066 }
2067
2068 #ifdef CONFIG_BLOCK
2069 p->plug = NULL;
2070 #endif
2071 futex_init_task(p);
2072
2073 /*
2074 * sigaltstack should be cleared when sharing the same VM
2075 */
2076 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2077 sas_ss_reset(p);
2078
2079 /*
2080 * Syscall tracing and stepping should be turned off in the
2081 * child regardless of CLONE_PTRACE.
2082 */
2083 user_disable_single_step(p);
2084 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2085 #ifdef TIF_SYSCALL_EMU
2086 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2087 #endif
2088 clear_tsk_latency_tracing(p);
2089
2090 /* ok, now we should be set up.. */
2091 p->pid = pid_nr(pid);
2092 if (clone_flags & CLONE_THREAD) {
2093 p->exit_signal = -1;
2094 p->group_leader = current->group_leader;
2095 p->tgid = current->tgid;
2096 } else {
2097 if (clone_flags & CLONE_PARENT)
2098 p->exit_signal = current->group_leader->exit_signal;
2099 else
2100 p->exit_signal = args->exit_signal;
2101 p->group_leader = p;
2102 p->tgid = p->pid;
2103 }
2104
2105 p->nr_dirtied = 0;
2106 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2107 p->dirty_paused_when = 0;
2108
2109 p->pdeath_signal = 0;
2110 INIT_LIST_HEAD(&p->thread_group);
2111 p->task_works = NULL;
2112
2113 cgroup_threadgroup_change_begin(current);
2114 /*
2115 * Ensure that the cgroup subsystem policies allow the new process to be
2116 * forked. It should be noted the the new process's css_set can be changed
2117 * between here and cgroup_post_fork() if an organisation operation is in
2118 * progress.
2119 */
2120 retval = cgroup_can_fork(p);
2121 if (retval)
2122 goto bad_fork_cgroup_threadgroup_change_end;
2123
2124 /*
2125 * From this point on we must avoid any synchronous user-space
2126 * communication until we take the tasklist-lock. In particular, we do
2127 * not want user-space to be able to predict the process start-time by
2128 * stalling fork(2) after we recorded the start_time but before it is
2129 * visible to the system.
2130 */
2131
2132 p->start_time = ktime_get_ns();
2133 p->real_start_time = ktime_get_boottime_ns();
2134
2135 /*
2136 * Make it visible to the rest of the system, but dont wake it up yet.
2137 * Need tasklist lock for parent etc handling!
2138 */
2139 write_lock_irq(&tasklist_lock);
2140
2141 /* CLONE_PARENT re-uses the old parent */
2142 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2143 p->real_parent = current->real_parent;
2144 p->parent_exec_id = current->parent_exec_id;
2145 } else {
2146 p->real_parent = current;
2147 p->parent_exec_id = current->self_exec_id;
2148 }
2149
2150 klp_copy_process(p);
2151
2152 spin_lock(&current->sighand->siglock);
2153
2154 /*
2155 * Copy seccomp details explicitly here, in case they were changed
2156 * before holding sighand lock.
2157 */
2158 copy_seccomp(p);
2159
2160 rseq_fork(p, clone_flags);
2161
2162 /* Don't start children in a dying pid namespace */
2163 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2164 retval = -ENOMEM;
2165 goto bad_fork_cancel_cgroup;
2166 }
2167
2168 /* Let kill terminate clone/fork in the middle */
2169 if (fatal_signal_pending(current)) {
2170 retval = -EINTR;
2171 goto bad_fork_cancel_cgroup;
2172 }
2173
2174 /* past the last point of failure */
2175 if (pidfile)
2176 fd_install(pidfd, pidfile);
2177
2178 init_task_pid_links(p);
2179 if (likely(p->pid)) {
2180 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2181
2182 init_task_pid(p, PIDTYPE_PID, pid);
2183 if (thread_group_leader(p)) {
2184 init_task_pid(p, PIDTYPE_TGID, pid);
2185 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2186 init_task_pid(p, PIDTYPE_SID, task_session(current));
2187
2188 if (is_child_reaper(pid)) {
2189 ns_of_pid(pid)->child_reaper = p;
2190 p->signal->flags |= SIGNAL_UNKILLABLE;
2191 }
2192 p->signal->shared_pending.signal = delayed.signal;
2193 p->signal->tty = tty_kref_get(current->signal->tty);
2194 /*
2195 * Inherit has_child_subreaper flag under the same
2196 * tasklist_lock with adding child to the process tree
2197 * for propagate_has_child_subreaper optimization.
2198 */
2199 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2200 p->real_parent->signal->is_child_subreaper;
2201 list_add_tail(&p->sibling, &p->real_parent->children);
2202 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2203 attach_pid(p, PIDTYPE_TGID);
2204 attach_pid(p, PIDTYPE_PGID);
2205 attach_pid(p, PIDTYPE_SID);
2206 __this_cpu_inc(process_counts);
2207 } else {
2208 current->signal->nr_threads++;
2209 atomic_inc(&current->signal->live);
2210 refcount_inc(&current->signal->sigcnt);
2211 task_join_group_stop(p);
2212 list_add_tail_rcu(&p->thread_group,
2213 &p->group_leader->thread_group);
2214 list_add_tail_rcu(&p->thread_node,
2215 &p->signal->thread_head);
2216 }
2217 attach_pid(p, PIDTYPE_PID);
2218 nr_threads++;
2219 }
2220 total_forks++;
2221 hlist_del_init(&delayed.node);
2222 spin_unlock(&current->sighand->siglock);
2223 syscall_tracepoint_update(p);
2224 write_unlock_irq(&tasklist_lock);
2225
2226 proc_fork_connector(p);
2227 cgroup_post_fork(p);
2228 cgroup_threadgroup_change_end(current);
2229 perf_event_fork(p);
2230
2231 trace_task_newtask(p, clone_flags);
2232 uprobe_copy_process(p, clone_flags);
2233
2234 return p;
2235
2236 bad_fork_cancel_cgroup:
2237 spin_unlock(&current->sighand->siglock);
2238 write_unlock_irq(&tasklist_lock);
2239 cgroup_cancel_fork(p);
2240 bad_fork_cgroup_threadgroup_change_end:
2241 cgroup_threadgroup_change_end(current);
2242 bad_fork_put_pidfd:
2243 if (clone_flags & CLONE_PIDFD) {
2244 fput(pidfile);
2245 put_unused_fd(pidfd);
2246 }
2247 bad_fork_free_pid:
2248 if (pid != &init_struct_pid)
2249 free_pid(pid);
2250 bad_fork_cleanup_thread:
2251 exit_thread(p);
2252 bad_fork_cleanup_io:
2253 if (p->io_context)
2254 exit_io_context(p);
2255 bad_fork_cleanup_namespaces:
2256 exit_task_namespaces(p);
2257 bad_fork_cleanup_mm:
2258 if (p->mm) {
2259 mm_clear_owner(p->mm, p);
2260 mmput(p->mm);
2261 }
2262 bad_fork_cleanup_signal:
2263 if (!(clone_flags & CLONE_THREAD))
2264 free_signal_struct(p->signal);
2265 bad_fork_cleanup_sighand:
2266 __cleanup_sighand(p->sighand);
2267 bad_fork_cleanup_fs:
2268 exit_fs(p); /* blocking */
2269 bad_fork_cleanup_files:
2270 exit_files(p); /* blocking */
2271 bad_fork_cleanup_semundo:
2272 exit_sem(p);
2273 bad_fork_cleanup_security:
2274 security_task_free(p);
2275 bad_fork_cleanup_audit:
2276 audit_free(p);
2277 bad_fork_cleanup_perf:
2278 perf_event_free_task(p);
2279 bad_fork_cleanup_policy:
2280 lockdep_free_task(p);
2281 #ifdef CONFIG_NUMA
2282 mpol_put(p->mempolicy);
2283 bad_fork_cleanup_threadgroup_lock:
2284 #endif
2285 delayacct_tsk_free(p);
2286 bad_fork_cleanup_count:
2287 atomic_dec(&p->cred->user->processes);
2288 exit_creds(p);
2289 bad_fork_free:
2290 p->state = TASK_DEAD;
2291 put_task_stack(p);
2292 delayed_free_task(p);
2293 fork_out:
2294 spin_lock_irq(&current->sighand->siglock);
2295 hlist_del_init(&delayed.node);
2296 spin_unlock_irq(&current->sighand->siglock);
2297 return ERR_PTR(retval);
2298 }
2299
2300 static inline void init_idle_pids(struct task_struct *idle)
2301 {
2302 enum pid_type type;
2303
2304 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2305 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2306 init_task_pid(idle, type, &init_struct_pid);
2307 }
2308 }
2309
2310 struct task_struct *fork_idle(int cpu)
2311 {
2312 struct task_struct *task;
2313 struct kernel_clone_args args = {
2314 .flags = CLONE_VM,
2315 };
2316
2317 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2318 if (!IS_ERR(task)) {
2319 init_idle_pids(task);
2320 init_idle(task, cpu);
2321 }
2322
2323 return task;
2324 }
2325
2326 struct mm_struct *copy_init_mm(void)
2327 {
2328 return dup_mm(NULL, &init_mm);
2329 }
2330
2331 /*
2332 * Ok, this is the main fork-routine.
2333 *
2334 * It copies the process, and if successful kick-starts
2335 * it and waits for it to finish using the VM if required.
2336 *
2337 * args->exit_signal is expected to be checked for sanity by the caller.
2338 */
2339 long _do_fork(struct kernel_clone_args *args)
2340 {
2341 u64 clone_flags = args->flags;
2342 struct completion vfork;
2343 struct pid *pid;
2344 struct task_struct *p;
2345 int trace = 0;
2346 long nr;
2347
2348 /*
2349 * Determine whether and which event to report to ptracer. When
2350 * called from kernel_thread or CLONE_UNTRACED is explicitly
2351 * requested, no event is reported; otherwise, report if the event
2352 * for the type of forking is enabled.
2353 */
2354 if (!(clone_flags & CLONE_UNTRACED)) {
2355 if (clone_flags & CLONE_VFORK)
2356 trace = PTRACE_EVENT_VFORK;
2357 else if (args->exit_signal != SIGCHLD)
2358 trace = PTRACE_EVENT_CLONE;
2359 else
2360 trace = PTRACE_EVENT_FORK;
2361
2362 if (likely(!ptrace_event_enabled(current, trace)))
2363 trace = 0;
2364 }
2365
2366 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2367 add_latent_entropy();
2368
2369 if (IS_ERR(p))
2370 return PTR_ERR(p);
2371
2372 /*
2373 * Do this prior waking up the new thread - the thread pointer
2374 * might get invalid after that point, if the thread exits quickly.
2375 */
2376 trace_sched_process_fork(current, p);
2377
2378 pid = get_task_pid(p, PIDTYPE_PID);
2379 nr = pid_vnr(pid);
2380
2381 if (clone_flags & CLONE_PARENT_SETTID)
2382 put_user(nr, args->parent_tid);
2383
2384 if (clone_flags & CLONE_VFORK) {
2385 p->vfork_done = &vfork;
2386 init_completion(&vfork);
2387 get_task_struct(p);
2388 }
2389
2390 wake_up_new_task(p);
2391
2392 /* forking complete and child started to run, tell ptracer */
2393 if (unlikely(trace))
2394 ptrace_event_pid(trace, pid);
2395
2396 if (clone_flags & CLONE_VFORK) {
2397 if (!wait_for_vfork_done(p, &vfork))
2398 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2399 }
2400
2401 put_pid(pid);
2402 return nr;
2403 }
2404
2405 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2406 {
2407 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2408 if ((kargs->flags & CLONE_PIDFD) &&
2409 (kargs->flags & CLONE_PARENT_SETTID))
2410 return false;
2411
2412 return true;
2413 }
2414
2415 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2416 /* For compatibility with architectures that call do_fork directly rather than
2417 * using the syscall entry points below. */
2418 long do_fork(unsigned long clone_flags,
2419 unsigned long stack_start,
2420 unsigned long stack_size,
2421 int __user *parent_tidptr,
2422 int __user *child_tidptr)
2423 {
2424 struct kernel_clone_args args = {
2425 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2426 .pidfd = parent_tidptr,
2427 .child_tid = child_tidptr,
2428 .parent_tid = parent_tidptr,
2429 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2430 .stack = stack_start,
2431 .stack_size = stack_size,
2432 };
2433
2434 if (!legacy_clone_args_valid(&args))
2435 return -EINVAL;
2436
2437 return _do_fork(&args);
2438 }
2439 #endif
2440
2441 /*
2442 * Create a kernel thread.
2443 */
2444 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2445 {
2446 struct kernel_clone_args args = {
2447 .flags = ((lower_32_bits(flags) | CLONE_VM |
2448 CLONE_UNTRACED) & ~CSIGNAL),
2449 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2450 .stack = (unsigned long)fn,
2451 .stack_size = (unsigned long)arg,
2452 };
2453
2454 return _do_fork(&args);
2455 }
2456
2457 #ifdef __ARCH_WANT_SYS_FORK
2458 SYSCALL_DEFINE0(fork)
2459 {
2460 #ifdef CONFIG_MMU
2461 struct kernel_clone_args args = {
2462 .exit_signal = SIGCHLD,
2463 };
2464
2465 return _do_fork(&args);
2466 #else
2467 /* can not support in nommu mode */
2468 return -EINVAL;
2469 #endif
2470 }
2471 #endif
2472
2473 #ifdef __ARCH_WANT_SYS_VFORK
2474 SYSCALL_DEFINE0(vfork)
2475 {
2476 struct kernel_clone_args args = {
2477 .flags = CLONE_VFORK | CLONE_VM,
2478 .exit_signal = SIGCHLD,
2479 };
2480
2481 return _do_fork(&args);
2482 }
2483 #endif
2484
2485 #ifdef __ARCH_WANT_SYS_CLONE
2486 #ifdef CONFIG_CLONE_BACKWARDS
2487 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2488 int __user *, parent_tidptr,
2489 unsigned long, tls,
2490 int __user *, child_tidptr)
2491 #elif defined(CONFIG_CLONE_BACKWARDS2)
2492 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2493 int __user *, parent_tidptr,
2494 int __user *, child_tidptr,
2495 unsigned long, tls)
2496 #elif defined(CONFIG_CLONE_BACKWARDS3)
2497 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2498 int, stack_size,
2499 int __user *, parent_tidptr,
2500 int __user *, child_tidptr,
2501 unsigned long, tls)
2502 #else
2503 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2504 int __user *, parent_tidptr,
2505 int __user *, child_tidptr,
2506 unsigned long, tls)
2507 #endif
2508 {
2509 struct kernel_clone_args args = {
2510 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2511 .pidfd = parent_tidptr,
2512 .child_tid = child_tidptr,
2513 .parent_tid = parent_tidptr,
2514 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2515 .stack = newsp,
2516 .tls = tls,
2517 };
2518
2519 if (!legacy_clone_args_valid(&args))
2520 return -EINVAL;
2521
2522 return _do_fork(&args);
2523 }
2524 #endif
2525
2526 #ifdef __ARCH_WANT_SYS_CLONE3
2527
2528 /*
2529 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2530 * the registers containing the syscall arguments for clone. This doesn't work
2531 * with clone3 since the TLS value is passed in clone_args instead.
2532 */
2533 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2534 #error clone3 requires copy_thread_tls support in arch
2535 #endif
2536
2537 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2538 struct clone_args __user *uargs,
2539 size_t usize)
2540 {
2541 int err;
2542 struct clone_args args;
2543
2544 if (unlikely(usize > PAGE_SIZE))
2545 return -E2BIG;
2546 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2547 return -EINVAL;
2548
2549 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2550 if (err)
2551 return err;
2552
2553 /*
2554 * Verify that higher 32bits of exit_signal are unset and that
2555 * it is a valid signal
2556 */
2557 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2558 !valid_signal(args.exit_signal)))
2559 return -EINVAL;
2560
2561 *kargs = (struct kernel_clone_args){
2562 .flags = args.flags,
2563 .pidfd = u64_to_user_ptr(args.pidfd),
2564 .child_tid = u64_to_user_ptr(args.child_tid),
2565 .parent_tid = u64_to_user_ptr(args.parent_tid),
2566 .exit_signal = args.exit_signal,
2567 .stack = args.stack,
2568 .stack_size = args.stack_size,
2569 .tls = args.tls,
2570 };
2571
2572 return 0;
2573 }
2574
2575 /**
2576 * clone3_stack_valid - check and prepare stack
2577 * @kargs: kernel clone args
2578 *
2579 * Verify that the stack arguments userspace gave us are sane.
2580 * In addition, set the stack direction for userspace since it's easy for us to
2581 * determine.
2582 */
2583 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2584 {
2585 if (kargs->stack == 0) {
2586 if (kargs->stack_size > 0)
2587 return false;
2588 } else {
2589 if (kargs->stack_size == 0)
2590 return false;
2591
2592 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2593 return false;
2594
2595 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2596 kargs->stack += kargs->stack_size;
2597 #endif
2598 }
2599
2600 return true;
2601 }
2602
2603 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2604 {
2605 /*
2606 * All lower bits of the flag word are taken.
2607 * Verify that no other unknown flags are passed along.
2608 */
2609 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2610 return false;
2611
2612 /*
2613 * - make the CLONE_DETACHED bit reuseable for clone3
2614 * - make the CSIGNAL bits reuseable for clone3
2615 */
2616 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2617 return false;
2618
2619 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2620 kargs->exit_signal)
2621 return false;
2622
2623 if (!clone3_stack_valid(kargs))
2624 return false;
2625
2626 return true;
2627 }
2628
2629 /**
2630 * clone3 - create a new process with specific properties
2631 * @uargs: argument structure
2632 * @size: size of @uargs
2633 *
2634 * clone3() is the extensible successor to clone()/clone2().
2635 * It takes a struct as argument that is versioned by its size.
2636 *
2637 * Return: On success, a positive PID for the child process.
2638 * On error, a negative errno number.
2639 */
2640 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2641 {
2642 int err;
2643
2644 struct kernel_clone_args kargs;
2645
2646 err = copy_clone_args_from_user(&kargs, uargs, size);
2647 if (err)
2648 return err;
2649
2650 if (!clone3_args_valid(&kargs))
2651 return -EINVAL;
2652
2653 return _do_fork(&kargs);
2654 }
2655 #endif
2656
2657 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2658 {
2659 struct task_struct *leader, *parent, *child;
2660 int res;
2661
2662 read_lock(&tasklist_lock);
2663 leader = top = top->group_leader;
2664 down:
2665 for_each_thread(leader, parent) {
2666 list_for_each_entry(child, &parent->children, sibling) {
2667 res = visitor(child, data);
2668 if (res) {
2669 if (res < 0)
2670 goto out;
2671 leader = child;
2672 goto down;
2673 }
2674 up:
2675 ;
2676 }
2677 }
2678
2679 if (leader != top) {
2680 child = leader;
2681 parent = child->real_parent;
2682 leader = parent->group_leader;
2683 goto up;
2684 }
2685 out:
2686 read_unlock(&tasklist_lock);
2687 }
2688
2689 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2690 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2691 #endif
2692
2693 static void sighand_ctor(void *data)
2694 {
2695 struct sighand_struct *sighand = data;
2696
2697 spin_lock_init(&sighand->siglock);
2698 init_waitqueue_head(&sighand->signalfd_wqh);
2699 }
2700
2701 void __init proc_caches_init(void)
2702 {
2703 unsigned int mm_size;
2704
2705 sighand_cachep = kmem_cache_create("sighand_cache",
2706 sizeof(struct sighand_struct), 0,
2707 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2708 SLAB_ACCOUNT, sighand_ctor);
2709 signal_cachep = kmem_cache_create("signal_cache",
2710 sizeof(struct signal_struct), 0,
2711 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2712 NULL);
2713 files_cachep = kmem_cache_create("files_cache",
2714 sizeof(struct files_struct), 0,
2715 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2716 NULL);
2717 fs_cachep = kmem_cache_create("fs_cache",
2718 sizeof(struct fs_struct), 0,
2719 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2720 NULL);
2721
2722 /*
2723 * The mm_cpumask is located at the end of mm_struct, and is
2724 * dynamically sized based on the maximum CPU number this system
2725 * can have, taking hotplug into account (nr_cpu_ids).
2726 */
2727 mm_size = sizeof(struct mm_struct) + cpumask_size();
2728
2729 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2730 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2731 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2732 offsetof(struct mm_struct, saved_auxv),
2733 sizeof_field(struct mm_struct, saved_auxv),
2734 NULL);
2735 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2736 mmap_init();
2737 nsproxy_cache_init();
2738 }
2739
2740 /*
2741 * Check constraints on flags passed to the unshare system call.
2742 */
2743 static int check_unshare_flags(unsigned long unshare_flags)
2744 {
2745 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2746 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2747 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2748 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2749 return -EINVAL;
2750 /*
2751 * Not implemented, but pretend it works if there is nothing
2752 * to unshare. Note that unsharing the address space or the
2753 * signal handlers also need to unshare the signal queues (aka
2754 * CLONE_THREAD).
2755 */
2756 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2757 if (!thread_group_empty(current))
2758 return -EINVAL;
2759 }
2760 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2761 if (refcount_read(&current->sighand->count) > 1)
2762 return -EINVAL;
2763 }
2764 if (unshare_flags & CLONE_VM) {
2765 if (!current_is_single_threaded())
2766 return -EINVAL;
2767 }
2768
2769 return 0;
2770 }
2771
2772 /*
2773 * Unshare the filesystem structure if it is being shared
2774 */
2775 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2776 {
2777 struct fs_struct *fs = current->fs;
2778
2779 if (!(unshare_flags & CLONE_FS) || !fs)
2780 return 0;
2781
2782 /* don't need lock here; in the worst case we'll do useless copy */
2783 if (fs->users == 1)
2784 return 0;
2785
2786 *new_fsp = copy_fs_struct(fs);
2787 if (!*new_fsp)
2788 return -ENOMEM;
2789
2790 return 0;
2791 }
2792
2793 /*
2794 * Unshare file descriptor table if it is being shared
2795 */
2796 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2797 {
2798 struct files_struct *fd = current->files;
2799 int error = 0;
2800
2801 if ((unshare_flags & CLONE_FILES) &&
2802 (fd && atomic_read(&fd->count) > 1)) {
2803 *new_fdp = dup_fd(fd, &error);
2804 if (!*new_fdp)
2805 return error;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /*
2812 * unshare allows a process to 'unshare' part of the process
2813 * context which was originally shared using clone. copy_*
2814 * functions used by do_fork() cannot be used here directly
2815 * because they modify an inactive task_struct that is being
2816 * constructed. Here we are modifying the current, active,
2817 * task_struct.
2818 */
2819 int ksys_unshare(unsigned long unshare_flags)
2820 {
2821 struct fs_struct *fs, *new_fs = NULL;
2822 struct files_struct *fd, *new_fd = NULL;
2823 struct cred *new_cred = NULL;
2824 struct nsproxy *new_nsproxy = NULL;
2825 int do_sysvsem = 0;
2826 int err;
2827
2828 /*
2829 * If unsharing a user namespace must also unshare the thread group
2830 * and unshare the filesystem root and working directories.
2831 */
2832 if (unshare_flags & CLONE_NEWUSER)
2833 unshare_flags |= CLONE_THREAD | CLONE_FS;
2834 /*
2835 * If unsharing vm, must also unshare signal handlers.
2836 */
2837 if (unshare_flags & CLONE_VM)
2838 unshare_flags |= CLONE_SIGHAND;
2839 /*
2840 * If unsharing a signal handlers, must also unshare the signal queues.
2841 */
2842 if (unshare_flags & CLONE_SIGHAND)
2843 unshare_flags |= CLONE_THREAD;
2844 /*
2845 * If unsharing namespace, must also unshare filesystem information.
2846 */
2847 if (unshare_flags & CLONE_NEWNS)
2848 unshare_flags |= CLONE_FS;
2849
2850 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2851 err = -EPERM;
2852 if (!capable(CAP_SYS_ADMIN))
2853 goto bad_unshare_out;
2854 }
2855
2856 err = check_unshare_flags(unshare_flags);
2857 if (err)
2858 goto bad_unshare_out;
2859 /*
2860 * CLONE_NEWIPC must also detach from the undolist: after switching
2861 * to a new ipc namespace, the semaphore arrays from the old
2862 * namespace are unreachable.
2863 */
2864 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2865 do_sysvsem = 1;
2866 err = unshare_fs(unshare_flags, &new_fs);
2867 if (err)
2868 goto bad_unshare_out;
2869 err = unshare_fd(unshare_flags, &new_fd);
2870 if (err)
2871 goto bad_unshare_cleanup_fs;
2872 err = unshare_userns(unshare_flags, &new_cred);
2873 if (err)
2874 goto bad_unshare_cleanup_fd;
2875 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2876 new_cred, new_fs);
2877 if (err)
2878 goto bad_unshare_cleanup_cred;
2879
2880 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2881 if (do_sysvsem) {
2882 /*
2883 * CLONE_SYSVSEM is equivalent to sys_exit().
2884 */
2885 exit_sem(current);
2886 }
2887 if (unshare_flags & CLONE_NEWIPC) {
2888 /* Orphan segments in old ns (see sem above). */
2889 exit_shm(current);
2890 shm_init_task(current);
2891 }
2892
2893 if (new_nsproxy)
2894 switch_task_namespaces(current, new_nsproxy);
2895
2896 task_lock(current);
2897
2898 if (new_fs) {
2899 fs = current->fs;
2900 spin_lock(&fs->lock);
2901 current->fs = new_fs;
2902 if (--fs->users)
2903 new_fs = NULL;
2904 else
2905 new_fs = fs;
2906 spin_unlock(&fs->lock);
2907 }
2908
2909 if (new_fd) {
2910 fd = current->files;
2911 current->files = new_fd;
2912 new_fd = fd;
2913 }
2914
2915 task_unlock(current);
2916
2917 if (new_cred) {
2918 /* Install the new user namespace */
2919 commit_creds(new_cred);
2920 new_cred = NULL;
2921 }
2922 }
2923
2924 perf_event_namespaces(current);
2925
2926 bad_unshare_cleanup_cred:
2927 if (new_cred)
2928 put_cred(new_cred);
2929 bad_unshare_cleanup_fd:
2930 if (new_fd)
2931 put_files_struct(new_fd);
2932
2933 bad_unshare_cleanup_fs:
2934 if (new_fs)
2935 free_fs_struct(new_fs);
2936
2937 bad_unshare_out:
2938 return err;
2939 }
2940
2941 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2942 {
2943 return ksys_unshare(unshare_flags);
2944 }
2945
2946 /*
2947 * Helper to unshare the files of the current task.
2948 * We don't want to expose copy_files internals to
2949 * the exec layer of the kernel.
2950 */
2951
2952 int unshare_files(struct files_struct **displaced)
2953 {
2954 struct task_struct *task = current;
2955 struct files_struct *copy = NULL;
2956 int error;
2957
2958 error = unshare_fd(CLONE_FILES, &copy);
2959 if (error || !copy) {
2960 *displaced = NULL;
2961 return error;
2962 }
2963 *displaced = task->files;
2964 task_lock(task);
2965 task->files = copy;
2966 task_unlock(task);
2967 return 0;
2968 }
2969
2970 int sysctl_max_threads(struct ctl_table *table, int write,
2971 void __user *buffer, size_t *lenp, loff_t *ppos)
2972 {
2973 struct ctl_table t;
2974 int ret;
2975 int threads = max_threads;
2976 int min = 1;
2977 int max = MAX_THREADS;
2978
2979 t = *table;
2980 t.data = &threads;
2981 t.extra1 = &min;
2982 t.extra2 = &max;
2983
2984 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2985 if (ret || !write)
2986 return ret;
2987
2988 max_threads = threads;
2989
2990 return 0;
2991 }