]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge branch 'tracing/hw-branch-tracing' into tracing/core
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65
66 #include <asm/pgtable.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/cacheflush.h>
71 #include <asm/tlbflush.h>
72
73 #include <trace/events/sched.h>
74
75 /*
76 * Protected counters by write_lock_irq(&tasklist_lock)
77 */
78 unsigned long total_forks; /* Handle normal Linux uptimes. */
79 int nr_threads; /* The idle threads do not count.. */
80
81 int max_threads; /* tunable limit on nr_threads */
82
83 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
84
85 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
86
87 int nr_processes(void)
88 {
89 int cpu;
90 int total = 0;
91
92 for_each_online_cpu(cpu)
93 total += per_cpu(process_counts, cpu);
94
95 return total;
96 }
97
98 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
99 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
100 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
101 static struct kmem_cache *task_struct_cachep;
102 #endif
103
104 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
105 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
106 {
107 #ifdef CONFIG_DEBUG_STACK_USAGE
108 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
109 #else
110 gfp_t mask = GFP_KERNEL;
111 #endif
112 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
113 }
114
115 static inline void free_thread_info(struct thread_info *ti)
116 {
117 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
118 }
119 #endif
120
121 /* SLAB cache for signal_struct structures (tsk->signal) */
122 static struct kmem_cache *signal_cachep;
123
124 /* SLAB cache for sighand_struct structures (tsk->sighand) */
125 struct kmem_cache *sighand_cachep;
126
127 /* SLAB cache for files_struct structures (tsk->files) */
128 struct kmem_cache *files_cachep;
129
130 /* SLAB cache for fs_struct structures (tsk->fs) */
131 struct kmem_cache *fs_cachep;
132
133 /* SLAB cache for vm_area_struct structures */
134 struct kmem_cache *vm_area_cachep;
135
136 /* SLAB cache for mm_struct structures (tsk->mm) */
137 static struct kmem_cache *mm_cachep;
138
139 void free_task(struct task_struct *tsk)
140 {
141 prop_local_destroy_single(&tsk->dirties);
142 free_thread_info(tsk->stack);
143 rt_mutex_debug_task_free(tsk);
144 ftrace_graph_exit_task(tsk);
145 free_task_struct(tsk);
146 }
147 EXPORT_SYMBOL(free_task);
148
149 void __put_task_struct(struct task_struct *tsk)
150 {
151 WARN_ON(!tsk->exit_state);
152 WARN_ON(atomic_read(&tsk->usage));
153 WARN_ON(tsk == current);
154
155 put_cred(tsk->real_cred);
156 put_cred(tsk->cred);
157 delayacct_tsk_free(tsk);
158
159 if (!profile_handoff_task(tsk))
160 free_task(tsk);
161 }
162
163 /*
164 * macro override instead of weak attribute alias, to workaround
165 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
166 */
167 #ifndef arch_task_cache_init
168 #define arch_task_cache_init()
169 #endif
170
171 void __init fork_init(unsigned long mempages)
172 {
173 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
174 #ifndef ARCH_MIN_TASKALIGN
175 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
176 #endif
177 /* create a slab on which task_structs can be allocated */
178 task_struct_cachep =
179 kmem_cache_create("task_struct", sizeof(struct task_struct),
180 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
181 #endif
182
183 /* do the arch specific task caches init */
184 arch_task_cache_init();
185
186 /*
187 * The default maximum number of threads is set to a safe
188 * value: the thread structures can take up at most half
189 * of memory.
190 */
191 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
192
193 /*
194 * we need to allow at least 20 threads to boot a system
195 */
196 if(max_threads < 20)
197 max_threads = 20;
198
199 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
200 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
201 init_task.signal->rlim[RLIMIT_SIGPENDING] =
202 init_task.signal->rlim[RLIMIT_NPROC];
203 }
204
205 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
206 struct task_struct *src)
207 {
208 *dst = *src;
209 return 0;
210 }
211
212 static struct task_struct *dup_task_struct(struct task_struct *orig)
213 {
214 struct task_struct *tsk;
215 struct thread_info *ti;
216 unsigned long *stackend;
217
218 int err;
219
220 prepare_to_copy(orig);
221
222 tsk = alloc_task_struct();
223 if (!tsk)
224 return NULL;
225
226 ti = alloc_thread_info(tsk);
227 if (!ti) {
228 free_task_struct(tsk);
229 return NULL;
230 }
231
232 err = arch_dup_task_struct(tsk, orig);
233 if (err)
234 goto out;
235
236 tsk->stack = ti;
237
238 err = prop_local_init_single(&tsk->dirties);
239 if (err)
240 goto out;
241
242 setup_thread_stack(tsk, orig);
243 stackend = end_of_stack(tsk);
244 *stackend = STACK_END_MAGIC; /* for overflow detection */
245
246 #ifdef CONFIG_CC_STACKPROTECTOR
247 tsk->stack_canary = get_random_int();
248 #endif
249
250 /* One for us, one for whoever does the "release_task()" (usually parent) */
251 atomic_set(&tsk->usage,2);
252 atomic_set(&tsk->fs_excl, 0);
253 #ifdef CONFIG_BLK_DEV_IO_TRACE
254 tsk->btrace_seq = 0;
255 #endif
256 tsk->splice_pipe = NULL;
257 return tsk;
258
259 out:
260 free_thread_info(ti);
261 free_task_struct(tsk);
262 return NULL;
263 }
264
265 #ifdef CONFIG_MMU
266 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
267 {
268 struct vm_area_struct *mpnt, *tmp, **pprev;
269 struct rb_node **rb_link, *rb_parent;
270 int retval;
271 unsigned long charge;
272 struct mempolicy *pol;
273
274 down_write(&oldmm->mmap_sem);
275 flush_cache_dup_mm(oldmm);
276 /*
277 * Not linked in yet - no deadlock potential:
278 */
279 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
280
281 mm->locked_vm = 0;
282 mm->mmap = NULL;
283 mm->mmap_cache = NULL;
284 mm->free_area_cache = oldmm->mmap_base;
285 mm->cached_hole_size = ~0UL;
286 mm->map_count = 0;
287 cpumask_clear(mm_cpumask(mm));
288 mm->mm_rb = RB_ROOT;
289 rb_link = &mm->mm_rb.rb_node;
290 rb_parent = NULL;
291 pprev = &mm->mmap;
292
293 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
294 struct file *file;
295
296 if (mpnt->vm_flags & VM_DONTCOPY) {
297 long pages = vma_pages(mpnt);
298 mm->total_vm -= pages;
299 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
300 -pages);
301 continue;
302 }
303 charge = 0;
304 if (mpnt->vm_flags & VM_ACCOUNT) {
305 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
306 if (security_vm_enough_memory(len))
307 goto fail_nomem;
308 charge = len;
309 }
310 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
311 if (!tmp)
312 goto fail_nomem;
313 *tmp = *mpnt;
314 pol = mpol_dup(vma_policy(mpnt));
315 retval = PTR_ERR(pol);
316 if (IS_ERR(pol))
317 goto fail_nomem_policy;
318 vma_set_policy(tmp, pol);
319 tmp->vm_flags &= ~VM_LOCKED;
320 tmp->vm_mm = mm;
321 tmp->vm_next = NULL;
322 anon_vma_link(tmp);
323 file = tmp->vm_file;
324 if (file) {
325 struct inode *inode = file->f_path.dentry->d_inode;
326 struct address_space *mapping = file->f_mapping;
327
328 get_file(file);
329 if (tmp->vm_flags & VM_DENYWRITE)
330 atomic_dec(&inode->i_writecount);
331 spin_lock(&mapping->i_mmap_lock);
332 if (tmp->vm_flags & VM_SHARED)
333 mapping->i_mmap_writable++;
334 tmp->vm_truncate_count = mpnt->vm_truncate_count;
335 flush_dcache_mmap_lock(mapping);
336 /* insert tmp into the share list, just after mpnt */
337 vma_prio_tree_add(tmp, mpnt);
338 flush_dcache_mmap_unlock(mapping);
339 spin_unlock(&mapping->i_mmap_lock);
340 }
341
342 /*
343 * Clear hugetlb-related page reserves for children. This only
344 * affects MAP_PRIVATE mappings. Faults generated by the child
345 * are not guaranteed to succeed, even if read-only
346 */
347 if (is_vm_hugetlb_page(tmp))
348 reset_vma_resv_huge_pages(tmp);
349
350 /*
351 * Link in the new vma and copy the page table entries.
352 */
353 *pprev = tmp;
354 pprev = &tmp->vm_next;
355
356 __vma_link_rb(mm, tmp, rb_link, rb_parent);
357 rb_link = &tmp->vm_rb.rb_right;
358 rb_parent = &tmp->vm_rb;
359
360 mm->map_count++;
361 retval = copy_page_range(mm, oldmm, mpnt);
362
363 if (tmp->vm_ops && tmp->vm_ops->open)
364 tmp->vm_ops->open(tmp);
365
366 if (retval)
367 goto out;
368 }
369 /* a new mm has just been created */
370 arch_dup_mmap(oldmm, mm);
371 retval = 0;
372 out:
373 up_write(&mm->mmap_sem);
374 flush_tlb_mm(oldmm);
375 up_write(&oldmm->mmap_sem);
376 return retval;
377 fail_nomem_policy:
378 kmem_cache_free(vm_area_cachep, tmp);
379 fail_nomem:
380 retval = -ENOMEM;
381 vm_unacct_memory(charge);
382 goto out;
383 }
384
385 static inline int mm_alloc_pgd(struct mm_struct * mm)
386 {
387 mm->pgd = pgd_alloc(mm);
388 if (unlikely(!mm->pgd))
389 return -ENOMEM;
390 return 0;
391 }
392
393 static inline void mm_free_pgd(struct mm_struct * mm)
394 {
395 pgd_free(mm, mm->pgd);
396 }
397 #else
398 #define dup_mmap(mm, oldmm) (0)
399 #define mm_alloc_pgd(mm) (0)
400 #define mm_free_pgd(mm)
401 #endif /* CONFIG_MMU */
402
403 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
404
405 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
406 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
407
408 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
409
410 static int __init coredump_filter_setup(char *s)
411 {
412 default_dump_filter =
413 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
414 MMF_DUMP_FILTER_MASK;
415 return 1;
416 }
417
418 __setup("coredump_filter=", coredump_filter_setup);
419
420 #include <linux/init_task.h>
421
422 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
423 {
424 atomic_set(&mm->mm_users, 1);
425 atomic_set(&mm->mm_count, 1);
426 init_rwsem(&mm->mmap_sem);
427 INIT_LIST_HEAD(&mm->mmlist);
428 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
429 mm->core_state = NULL;
430 mm->nr_ptes = 0;
431 set_mm_counter(mm, file_rss, 0);
432 set_mm_counter(mm, anon_rss, 0);
433 spin_lock_init(&mm->page_table_lock);
434 spin_lock_init(&mm->ioctx_lock);
435 INIT_HLIST_HEAD(&mm->ioctx_list);
436 mm->free_area_cache = TASK_UNMAPPED_BASE;
437 mm->cached_hole_size = ~0UL;
438 mm_init_owner(mm, p);
439
440 if (likely(!mm_alloc_pgd(mm))) {
441 mm->def_flags = 0;
442 mmu_notifier_mm_init(mm);
443 return mm;
444 }
445
446 free_mm(mm);
447 return NULL;
448 }
449
450 /*
451 * Allocate and initialize an mm_struct.
452 */
453 struct mm_struct * mm_alloc(void)
454 {
455 struct mm_struct * mm;
456
457 mm = allocate_mm();
458 if (mm) {
459 memset(mm, 0, sizeof(*mm));
460 mm = mm_init(mm, current);
461 }
462 return mm;
463 }
464
465 /*
466 * Called when the last reference to the mm
467 * is dropped: either by a lazy thread or by
468 * mmput. Free the page directory and the mm.
469 */
470 void __mmdrop(struct mm_struct *mm)
471 {
472 BUG_ON(mm == &init_mm);
473 mm_free_pgd(mm);
474 destroy_context(mm);
475 mmu_notifier_mm_destroy(mm);
476 free_mm(mm);
477 }
478 EXPORT_SYMBOL_GPL(__mmdrop);
479
480 /*
481 * Decrement the use count and release all resources for an mm.
482 */
483 void mmput(struct mm_struct *mm)
484 {
485 might_sleep();
486
487 if (atomic_dec_and_test(&mm->mm_users)) {
488 exit_aio(mm);
489 exit_mmap(mm);
490 set_mm_exe_file(mm, NULL);
491 if (!list_empty(&mm->mmlist)) {
492 spin_lock(&mmlist_lock);
493 list_del(&mm->mmlist);
494 spin_unlock(&mmlist_lock);
495 }
496 put_swap_token(mm);
497 mmdrop(mm);
498 }
499 }
500 EXPORT_SYMBOL_GPL(mmput);
501
502 /**
503 * get_task_mm - acquire a reference to the task's mm
504 *
505 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
506 * this kernel workthread has transiently adopted a user mm with use_mm,
507 * to do its AIO) is not set and if so returns a reference to it, after
508 * bumping up the use count. User must release the mm via mmput()
509 * after use. Typically used by /proc and ptrace.
510 */
511 struct mm_struct *get_task_mm(struct task_struct *task)
512 {
513 struct mm_struct *mm;
514
515 task_lock(task);
516 mm = task->mm;
517 if (mm) {
518 if (task->flags & PF_KTHREAD)
519 mm = NULL;
520 else
521 atomic_inc(&mm->mm_users);
522 }
523 task_unlock(task);
524 return mm;
525 }
526 EXPORT_SYMBOL_GPL(get_task_mm);
527
528 /* Please note the differences between mmput and mm_release.
529 * mmput is called whenever we stop holding onto a mm_struct,
530 * error success whatever.
531 *
532 * mm_release is called after a mm_struct has been removed
533 * from the current process.
534 *
535 * This difference is important for error handling, when we
536 * only half set up a mm_struct for a new process and need to restore
537 * the old one. Because we mmput the new mm_struct before
538 * restoring the old one. . .
539 * Eric Biederman 10 January 1998
540 */
541 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
542 {
543 struct completion *vfork_done = tsk->vfork_done;
544
545 /* Get rid of any futexes when releasing the mm */
546 #ifdef CONFIG_FUTEX
547 if (unlikely(tsk->robust_list))
548 exit_robust_list(tsk);
549 #ifdef CONFIG_COMPAT
550 if (unlikely(tsk->compat_robust_list))
551 compat_exit_robust_list(tsk);
552 #endif
553 #endif
554
555 /* Get rid of any cached register state */
556 deactivate_mm(tsk, mm);
557
558 /* notify parent sleeping on vfork() */
559 if (vfork_done) {
560 tsk->vfork_done = NULL;
561 complete(vfork_done);
562 }
563
564 /*
565 * If we're exiting normally, clear a user-space tid field if
566 * requested. We leave this alone when dying by signal, to leave
567 * the value intact in a core dump, and to save the unnecessary
568 * trouble otherwise. Userland only wants this done for a sys_exit.
569 */
570 if (tsk->clear_child_tid
571 && !(tsk->flags & PF_SIGNALED)
572 && atomic_read(&mm->mm_users) > 1) {
573 u32 __user * tidptr = tsk->clear_child_tid;
574 tsk->clear_child_tid = NULL;
575
576 /*
577 * We don't check the error code - if userspace has
578 * not set up a proper pointer then tough luck.
579 */
580 put_user(0, tidptr);
581 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
582 }
583 }
584
585 /*
586 * Allocate a new mm structure and copy contents from the
587 * mm structure of the passed in task structure.
588 */
589 struct mm_struct *dup_mm(struct task_struct *tsk)
590 {
591 struct mm_struct *mm, *oldmm = current->mm;
592 int err;
593
594 if (!oldmm)
595 return NULL;
596
597 mm = allocate_mm();
598 if (!mm)
599 goto fail_nomem;
600
601 memcpy(mm, oldmm, sizeof(*mm));
602
603 /* Initializing for Swap token stuff */
604 mm->token_priority = 0;
605 mm->last_interval = 0;
606
607 if (!mm_init(mm, tsk))
608 goto fail_nomem;
609
610 if (init_new_context(tsk, mm))
611 goto fail_nocontext;
612
613 dup_mm_exe_file(oldmm, mm);
614
615 err = dup_mmap(mm, oldmm);
616 if (err)
617 goto free_pt;
618
619 mm->hiwater_rss = get_mm_rss(mm);
620 mm->hiwater_vm = mm->total_vm;
621
622 return mm;
623
624 free_pt:
625 mmput(mm);
626
627 fail_nomem:
628 return NULL;
629
630 fail_nocontext:
631 /*
632 * If init_new_context() failed, we cannot use mmput() to free the mm
633 * because it calls destroy_context()
634 */
635 mm_free_pgd(mm);
636 free_mm(mm);
637 return NULL;
638 }
639
640 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
641 {
642 struct mm_struct * mm, *oldmm;
643 int retval;
644
645 tsk->min_flt = tsk->maj_flt = 0;
646 tsk->nvcsw = tsk->nivcsw = 0;
647 #ifdef CONFIG_DETECT_HUNG_TASK
648 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
649 #endif
650
651 tsk->mm = NULL;
652 tsk->active_mm = NULL;
653
654 /*
655 * Are we cloning a kernel thread?
656 *
657 * We need to steal a active VM for that..
658 */
659 oldmm = current->mm;
660 if (!oldmm)
661 return 0;
662
663 if (clone_flags & CLONE_VM) {
664 atomic_inc(&oldmm->mm_users);
665 mm = oldmm;
666 goto good_mm;
667 }
668
669 retval = -ENOMEM;
670 mm = dup_mm(tsk);
671 if (!mm)
672 goto fail_nomem;
673
674 good_mm:
675 /* Initializing for Swap token stuff */
676 mm->token_priority = 0;
677 mm->last_interval = 0;
678
679 tsk->mm = mm;
680 tsk->active_mm = mm;
681 return 0;
682
683 fail_nomem:
684 return retval;
685 }
686
687 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
688 {
689 struct fs_struct *fs = current->fs;
690 if (clone_flags & CLONE_FS) {
691 /* tsk->fs is already what we want */
692 write_lock(&fs->lock);
693 if (fs->in_exec) {
694 write_unlock(&fs->lock);
695 return -EAGAIN;
696 }
697 fs->users++;
698 write_unlock(&fs->lock);
699 return 0;
700 }
701 tsk->fs = copy_fs_struct(fs);
702 if (!tsk->fs)
703 return -ENOMEM;
704 return 0;
705 }
706
707 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
708 {
709 struct files_struct *oldf, *newf;
710 int error = 0;
711
712 /*
713 * A background process may not have any files ...
714 */
715 oldf = current->files;
716 if (!oldf)
717 goto out;
718
719 if (clone_flags & CLONE_FILES) {
720 atomic_inc(&oldf->count);
721 goto out;
722 }
723
724 newf = dup_fd(oldf, &error);
725 if (!newf)
726 goto out;
727
728 tsk->files = newf;
729 error = 0;
730 out:
731 return error;
732 }
733
734 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
735 {
736 #ifdef CONFIG_BLOCK
737 struct io_context *ioc = current->io_context;
738
739 if (!ioc)
740 return 0;
741 /*
742 * Share io context with parent, if CLONE_IO is set
743 */
744 if (clone_flags & CLONE_IO) {
745 tsk->io_context = ioc_task_link(ioc);
746 if (unlikely(!tsk->io_context))
747 return -ENOMEM;
748 } else if (ioprio_valid(ioc->ioprio)) {
749 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
750 if (unlikely(!tsk->io_context))
751 return -ENOMEM;
752
753 tsk->io_context->ioprio = ioc->ioprio;
754 }
755 #endif
756 return 0;
757 }
758
759 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
760 {
761 struct sighand_struct *sig;
762
763 if (clone_flags & CLONE_SIGHAND) {
764 atomic_inc(&current->sighand->count);
765 return 0;
766 }
767 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
768 rcu_assign_pointer(tsk->sighand, sig);
769 if (!sig)
770 return -ENOMEM;
771 atomic_set(&sig->count, 1);
772 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
773 return 0;
774 }
775
776 void __cleanup_sighand(struct sighand_struct *sighand)
777 {
778 if (atomic_dec_and_test(&sighand->count))
779 kmem_cache_free(sighand_cachep, sighand);
780 }
781
782
783 /*
784 * Initialize POSIX timer handling for a thread group.
785 */
786 static void posix_cpu_timers_init_group(struct signal_struct *sig)
787 {
788 /* Thread group counters. */
789 thread_group_cputime_init(sig);
790
791 /* Expiration times and increments. */
792 sig->it_virt_expires = cputime_zero;
793 sig->it_virt_incr = cputime_zero;
794 sig->it_prof_expires = cputime_zero;
795 sig->it_prof_incr = cputime_zero;
796
797 /* Cached expiration times. */
798 sig->cputime_expires.prof_exp = cputime_zero;
799 sig->cputime_expires.virt_exp = cputime_zero;
800 sig->cputime_expires.sched_exp = 0;
801
802 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
803 sig->cputime_expires.prof_exp =
804 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
805 sig->cputimer.running = 1;
806 }
807
808 /* The timer lists. */
809 INIT_LIST_HEAD(&sig->cpu_timers[0]);
810 INIT_LIST_HEAD(&sig->cpu_timers[1]);
811 INIT_LIST_HEAD(&sig->cpu_timers[2]);
812 }
813
814 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
815 {
816 struct signal_struct *sig;
817
818 if (clone_flags & CLONE_THREAD) {
819 atomic_inc(&current->signal->count);
820 atomic_inc(&current->signal->live);
821 return 0;
822 }
823
824 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
825 tsk->signal = sig;
826 if (!sig)
827 return -ENOMEM;
828
829 atomic_set(&sig->count, 1);
830 atomic_set(&sig->live, 1);
831 init_waitqueue_head(&sig->wait_chldexit);
832 sig->flags = 0;
833 if (clone_flags & CLONE_NEWPID)
834 sig->flags |= SIGNAL_UNKILLABLE;
835 sig->group_exit_code = 0;
836 sig->group_exit_task = NULL;
837 sig->group_stop_count = 0;
838 sig->curr_target = tsk;
839 init_sigpending(&sig->shared_pending);
840 INIT_LIST_HEAD(&sig->posix_timers);
841
842 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
843 sig->it_real_incr.tv64 = 0;
844 sig->real_timer.function = it_real_fn;
845
846 sig->leader = 0; /* session leadership doesn't inherit */
847 sig->tty_old_pgrp = NULL;
848 sig->tty = NULL;
849
850 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
851 sig->gtime = cputime_zero;
852 sig->cgtime = cputime_zero;
853 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
854 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
855 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
856 task_io_accounting_init(&sig->ioac);
857 sig->sum_sched_runtime = 0;
858 taskstats_tgid_init(sig);
859
860 task_lock(current->group_leader);
861 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
862 task_unlock(current->group_leader);
863
864 posix_cpu_timers_init_group(sig);
865
866 acct_init_pacct(&sig->pacct);
867
868 tty_audit_fork(sig);
869
870 return 0;
871 }
872
873 void __cleanup_signal(struct signal_struct *sig)
874 {
875 thread_group_cputime_free(sig);
876 tty_kref_put(sig->tty);
877 kmem_cache_free(signal_cachep, sig);
878 }
879
880 static void cleanup_signal(struct task_struct *tsk)
881 {
882 struct signal_struct *sig = tsk->signal;
883
884 atomic_dec(&sig->live);
885
886 if (atomic_dec_and_test(&sig->count))
887 __cleanup_signal(sig);
888 }
889
890 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
891 {
892 unsigned long new_flags = p->flags;
893
894 new_flags &= ~PF_SUPERPRIV;
895 new_flags |= PF_FORKNOEXEC;
896 new_flags |= PF_STARTING;
897 p->flags = new_flags;
898 clear_freeze_flag(p);
899 }
900
901 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
902 {
903 current->clear_child_tid = tidptr;
904
905 return task_pid_vnr(current);
906 }
907
908 static void rt_mutex_init_task(struct task_struct *p)
909 {
910 spin_lock_init(&p->pi_lock);
911 #ifdef CONFIG_RT_MUTEXES
912 plist_head_init(&p->pi_waiters, &p->pi_lock);
913 p->pi_blocked_on = NULL;
914 #endif
915 }
916
917 #ifdef CONFIG_MM_OWNER
918 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
919 {
920 mm->owner = p;
921 }
922 #endif /* CONFIG_MM_OWNER */
923
924 /*
925 * Initialize POSIX timer handling for a single task.
926 */
927 static void posix_cpu_timers_init(struct task_struct *tsk)
928 {
929 tsk->cputime_expires.prof_exp = cputime_zero;
930 tsk->cputime_expires.virt_exp = cputime_zero;
931 tsk->cputime_expires.sched_exp = 0;
932 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
933 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
934 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
935 }
936
937 /*
938 * This creates a new process as a copy of the old one,
939 * but does not actually start it yet.
940 *
941 * It copies the registers, and all the appropriate
942 * parts of the process environment (as per the clone
943 * flags). The actual kick-off is left to the caller.
944 */
945 static struct task_struct *copy_process(unsigned long clone_flags,
946 unsigned long stack_start,
947 struct pt_regs *regs,
948 unsigned long stack_size,
949 int __user *child_tidptr,
950 struct pid *pid,
951 int trace)
952 {
953 int retval;
954 struct task_struct *p;
955 int cgroup_callbacks_done = 0;
956
957 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
958 return ERR_PTR(-EINVAL);
959
960 /*
961 * Thread groups must share signals as well, and detached threads
962 * can only be started up within the thread group.
963 */
964 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
965 return ERR_PTR(-EINVAL);
966
967 /*
968 * Shared signal handlers imply shared VM. By way of the above,
969 * thread groups also imply shared VM. Blocking this case allows
970 * for various simplifications in other code.
971 */
972 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
973 return ERR_PTR(-EINVAL);
974
975 retval = security_task_create(clone_flags);
976 if (retval)
977 goto fork_out;
978
979 retval = -ENOMEM;
980 p = dup_task_struct(current);
981 if (!p)
982 goto fork_out;
983
984 rt_mutex_init_task(p);
985
986 #ifdef CONFIG_PROVE_LOCKING
987 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
988 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
989 #endif
990 retval = -EAGAIN;
991 if (atomic_read(&p->real_cred->user->processes) >=
992 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
993 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
994 p->real_cred->user != INIT_USER)
995 goto bad_fork_free;
996 }
997
998 retval = copy_creds(p, clone_flags);
999 if (retval < 0)
1000 goto bad_fork_free;
1001
1002 /*
1003 * If multiple threads are within copy_process(), then this check
1004 * triggers too late. This doesn't hurt, the check is only there
1005 * to stop root fork bombs.
1006 */
1007 retval = -EAGAIN;
1008 if (nr_threads >= max_threads)
1009 goto bad_fork_cleanup_count;
1010
1011 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1012 goto bad_fork_cleanup_count;
1013
1014 if (p->binfmt && !try_module_get(p->binfmt->module))
1015 goto bad_fork_cleanup_put_domain;
1016
1017 p->did_exec = 0;
1018 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1019 copy_flags(clone_flags, p);
1020 INIT_LIST_HEAD(&p->children);
1021 INIT_LIST_HEAD(&p->sibling);
1022 #ifdef CONFIG_PREEMPT_RCU
1023 p->rcu_read_lock_nesting = 0;
1024 p->rcu_flipctr_idx = 0;
1025 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1026 p->vfork_done = NULL;
1027 spin_lock_init(&p->alloc_lock);
1028
1029 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1030 init_sigpending(&p->pending);
1031
1032 p->utime = cputime_zero;
1033 p->stime = cputime_zero;
1034 p->gtime = cputime_zero;
1035 p->utimescaled = cputime_zero;
1036 p->stimescaled = cputime_zero;
1037 p->prev_utime = cputime_zero;
1038 p->prev_stime = cputime_zero;
1039
1040 p->default_timer_slack_ns = current->timer_slack_ns;
1041
1042 task_io_accounting_init(&p->ioac);
1043 acct_clear_integrals(p);
1044
1045 posix_cpu_timers_init(p);
1046
1047 p->lock_depth = -1; /* -1 = no lock */
1048 do_posix_clock_monotonic_gettime(&p->start_time);
1049 p->real_start_time = p->start_time;
1050 monotonic_to_bootbased(&p->real_start_time);
1051 p->io_context = NULL;
1052 p->audit_context = NULL;
1053 cgroup_fork(p);
1054 #ifdef CONFIG_NUMA
1055 p->mempolicy = mpol_dup(p->mempolicy);
1056 if (IS_ERR(p->mempolicy)) {
1057 retval = PTR_ERR(p->mempolicy);
1058 p->mempolicy = NULL;
1059 goto bad_fork_cleanup_cgroup;
1060 }
1061 mpol_fix_fork_child_flag(p);
1062 #endif
1063 #ifdef CONFIG_TRACE_IRQFLAGS
1064 p->irq_events = 0;
1065 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1066 p->hardirqs_enabled = 1;
1067 #else
1068 p->hardirqs_enabled = 0;
1069 #endif
1070 p->hardirq_enable_ip = 0;
1071 p->hardirq_enable_event = 0;
1072 p->hardirq_disable_ip = _THIS_IP_;
1073 p->hardirq_disable_event = 0;
1074 p->softirqs_enabled = 1;
1075 p->softirq_enable_ip = _THIS_IP_;
1076 p->softirq_enable_event = 0;
1077 p->softirq_disable_ip = 0;
1078 p->softirq_disable_event = 0;
1079 p->hardirq_context = 0;
1080 p->softirq_context = 0;
1081 #endif
1082 #ifdef CONFIG_LOCKDEP
1083 p->lockdep_depth = 0; /* no locks held yet */
1084 p->curr_chain_key = 0;
1085 p->lockdep_recursion = 0;
1086 #endif
1087
1088 #ifdef CONFIG_DEBUG_MUTEXES
1089 p->blocked_on = NULL; /* not blocked yet */
1090 #endif
1091
1092 p->bts = NULL;
1093
1094 /* Perform scheduler related setup. Assign this task to a CPU. */
1095 sched_fork(p, clone_flags);
1096
1097 if ((retval = audit_alloc(p)))
1098 goto bad_fork_cleanup_policy;
1099 /* copy all the process information */
1100 if ((retval = copy_semundo(clone_flags, p)))
1101 goto bad_fork_cleanup_audit;
1102 if ((retval = copy_files(clone_flags, p)))
1103 goto bad_fork_cleanup_semundo;
1104 if ((retval = copy_fs(clone_flags, p)))
1105 goto bad_fork_cleanup_files;
1106 if ((retval = copy_sighand(clone_flags, p)))
1107 goto bad_fork_cleanup_fs;
1108 if ((retval = copy_signal(clone_flags, p)))
1109 goto bad_fork_cleanup_sighand;
1110 if ((retval = copy_mm(clone_flags, p)))
1111 goto bad_fork_cleanup_signal;
1112 if ((retval = copy_namespaces(clone_flags, p)))
1113 goto bad_fork_cleanup_mm;
1114 if ((retval = copy_io(clone_flags, p)))
1115 goto bad_fork_cleanup_namespaces;
1116 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1117 if (retval)
1118 goto bad_fork_cleanup_io;
1119
1120 if (pid != &init_struct_pid) {
1121 retval = -ENOMEM;
1122 pid = alloc_pid(p->nsproxy->pid_ns);
1123 if (!pid)
1124 goto bad_fork_cleanup_io;
1125
1126 if (clone_flags & CLONE_NEWPID) {
1127 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1128 if (retval < 0)
1129 goto bad_fork_free_pid;
1130 }
1131 }
1132
1133 ftrace_graph_init_task(p);
1134
1135 p->pid = pid_nr(pid);
1136 p->tgid = p->pid;
1137 if (clone_flags & CLONE_THREAD)
1138 p->tgid = current->tgid;
1139
1140 if (current->nsproxy != p->nsproxy) {
1141 retval = ns_cgroup_clone(p, pid);
1142 if (retval)
1143 goto bad_fork_free_graph;
1144 }
1145
1146 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1147 /*
1148 * Clear TID on mm_release()?
1149 */
1150 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1151 #ifdef CONFIG_FUTEX
1152 p->robust_list = NULL;
1153 #ifdef CONFIG_COMPAT
1154 p->compat_robust_list = NULL;
1155 #endif
1156 INIT_LIST_HEAD(&p->pi_state_list);
1157 p->pi_state_cache = NULL;
1158 #endif
1159 /*
1160 * sigaltstack should be cleared when sharing the same VM
1161 */
1162 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1163 p->sas_ss_sp = p->sas_ss_size = 0;
1164
1165 /*
1166 * Syscall tracing should be turned off in the child regardless
1167 * of CLONE_PTRACE.
1168 */
1169 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1170 #ifdef TIF_SYSCALL_EMU
1171 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1172 #endif
1173 clear_all_latency_tracing(p);
1174
1175 /* ok, now we should be set up.. */
1176 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1177 p->pdeath_signal = 0;
1178 p->exit_state = 0;
1179
1180 /*
1181 * Ok, make it visible to the rest of the system.
1182 * We dont wake it up yet.
1183 */
1184 p->group_leader = p;
1185 INIT_LIST_HEAD(&p->thread_group);
1186
1187 /* Now that the task is set up, run cgroup callbacks if
1188 * necessary. We need to run them before the task is visible
1189 * on the tasklist. */
1190 cgroup_fork_callbacks(p);
1191 cgroup_callbacks_done = 1;
1192
1193 /* Need tasklist lock for parent etc handling! */
1194 write_lock_irq(&tasklist_lock);
1195
1196 /*
1197 * The task hasn't been attached yet, so its cpus_allowed mask will
1198 * not be changed, nor will its assigned CPU.
1199 *
1200 * The cpus_allowed mask of the parent may have changed after it was
1201 * copied first time - so re-copy it here, then check the child's CPU
1202 * to ensure it is on a valid CPU (and if not, just force it back to
1203 * parent's CPU). This avoids alot of nasty races.
1204 */
1205 p->cpus_allowed = current->cpus_allowed;
1206 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1207 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1208 !cpu_online(task_cpu(p))))
1209 set_task_cpu(p, smp_processor_id());
1210
1211 /* CLONE_PARENT re-uses the old parent */
1212 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1213 p->real_parent = current->real_parent;
1214 p->parent_exec_id = current->parent_exec_id;
1215 } else {
1216 p->real_parent = current;
1217 p->parent_exec_id = current->self_exec_id;
1218 }
1219
1220 spin_lock(&current->sighand->siglock);
1221
1222 /*
1223 * Process group and session signals need to be delivered to just the
1224 * parent before the fork or both the parent and the child after the
1225 * fork. Restart if a signal comes in before we add the new process to
1226 * it's process group.
1227 * A fatal signal pending means that current will exit, so the new
1228 * thread can't slip out of an OOM kill (or normal SIGKILL).
1229 */
1230 recalc_sigpending();
1231 if (signal_pending(current)) {
1232 spin_unlock(&current->sighand->siglock);
1233 write_unlock_irq(&tasklist_lock);
1234 retval = -ERESTARTNOINTR;
1235 goto bad_fork_free_graph;
1236 }
1237
1238 if (clone_flags & CLONE_THREAD) {
1239 p->group_leader = current->group_leader;
1240 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1241 }
1242
1243 if (likely(p->pid)) {
1244 list_add_tail(&p->sibling, &p->real_parent->children);
1245 tracehook_finish_clone(p, clone_flags, trace);
1246
1247 if (thread_group_leader(p)) {
1248 if (clone_flags & CLONE_NEWPID)
1249 p->nsproxy->pid_ns->child_reaper = p;
1250
1251 p->signal->leader_pid = pid;
1252 tty_kref_put(p->signal->tty);
1253 p->signal->tty = tty_kref_get(current->signal->tty);
1254 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1255 attach_pid(p, PIDTYPE_SID, task_session(current));
1256 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1257 __get_cpu_var(process_counts)++;
1258 }
1259 attach_pid(p, PIDTYPE_PID, pid);
1260 nr_threads++;
1261 }
1262
1263 total_forks++;
1264 spin_unlock(&current->sighand->siglock);
1265 write_unlock_irq(&tasklist_lock);
1266 proc_fork_connector(p);
1267 cgroup_post_fork(p);
1268 return p;
1269
1270 bad_fork_free_graph:
1271 ftrace_graph_exit_task(p);
1272 bad_fork_free_pid:
1273 if (pid != &init_struct_pid)
1274 free_pid(pid);
1275 bad_fork_cleanup_io:
1276 put_io_context(p->io_context);
1277 bad_fork_cleanup_namespaces:
1278 exit_task_namespaces(p);
1279 bad_fork_cleanup_mm:
1280 if (p->mm)
1281 mmput(p->mm);
1282 bad_fork_cleanup_signal:
1283 cleanup_signal(p);
1284 bad_fork_cleanup_sighand:
1285 __cleanup_sighand(p->sighand);
1286 bad_fork_cleanup_fs:
1287 exit_fs(p); /* blocking */
1288 bad_fork_cleanup_files:
1289 exit_files(p); /* blocking */
1290 bad_fork_cleanup_semundo:
1291 exit_sem(p);
1292 bad_fork_cleanup_audit:
1293 audit_free(p);
1294 bad_fork_cleanup_policy:
1295 #ifdef CONFIG_NUMA
1296 mpol_put(p->mempolicy);
1297 bad_fork_cleanup_cgroup:
1298 #endif
1299 cgroup_exit(p, cgroup_callbacks_done);
1300 delayacct_tsk_free(p);
1301 if (p->binfmt)
1302 module_put(p->binfmt->module);
1303 bad_fork_cleanup_put_domain:
1304 module_put(task_thread_info(p)->exec_domain->module);
1305 bad_fork_cleanup_count:
1306 atomic_dec(&p->cred->user->processes);
1307 put_cred(p->real_cred);
1308 put_cred(p->cred);
1309 bad_fork_free:
1310 free_task(p);
1311 fork_out:
1312 return ERR_PTR(retval);
1313 }
1314
1315 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1316 {
1317 memset(regs, 0, sizeof(struct pt_regs));
1318 return regs;
1319 }
1320
1321 struct task_struct * __cpuinit fork_idle(int cpu)
1322 {
1323 struct task_struct *task;
1324 struct pt_regs regs;
1325
1326 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1327 &init_struct_pid, 0);
1328 if (!IS_ERR(task))
1329 init_idle(task, cpu);
1330
1331 return task;
1332 }
1333
1334 /*
1335 * Ok, this is the main fork-routine.
1336 *
1337 * It copies the process, and if successful kick-starts
1338 * it and waits for it to finish using the VM if required.
1339 */
1340 long do_fork(unsigned long clone_flags,
1341 unsigned long stack_start,
1342 struct pt_regs *regs,
1343 unsigned long stack_size,
1344 int __user *parent_tidptr,
1345 int __user *child_tidptr)
1346 {
1347 struct task_struct *p;
1348 int trace = 0;
1349 long nr;
1350
1351 /*
1352 * Do some preliminary argument and permissions checking before we
1353 * actually start allocating stuff
1354 */
1355 if (clone_flags & CLONE_NEWUSER) {
1356 if (clone_flags & CLONE_THREAD)
1357 return -EINVAL;
1358 /* hopefully this check will go away when userns support is
1359 * complete
1360 */
1361 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1362 !capable(CAP_SETGID))
1363 return -EPERM;
1364 }
1365
1366 /*
1367 * We hope to recycle these flags after 2.6.26
1368 */
1369 if (unlikely(clone_flags & CLONE_STOPPED)) {
1370 static int __read_mostly count = 100;
1371
1372 if (count > 0 && printk_ratelimit()) {
1373 char comm[TASK_COMM_LEN];
1374
1375 count--;
1376 printk(KERN_INFO "fork(): process `%s' used deprecated "
1377 "clone flags 0x%lx\n",
1378 get_task_comm(comm, current),
1379 clone_flags & CLONE_STOPPED);
1380 }
1381 }
1382
1383 /*
1384 * When called from kernel_thread, don't do user tracing stuff.
1385 */
1386 if (likely(user_mode(regs)))
1387 trace = tracehook_prepare_clone(clone_flags);
1388
1389 p = copy_process(clone_flags, stack_start, regs, stack_size,
1390 child_tidptr, NULL, trace);
1391 /*
1392 * Do this prior waking up the new thread - the thread pointer
1393 * might get invalid after that point, if the thread exits quickly.
1394 */
1395 if (!IS_ERR(p)) {
1396 struct completion vfork;
1397
1398 trace_sched_process_fork(current, p);
1399
1400 nr = task_pid_vnr(p);
1401
1402 if (clone_flags & CLONE_PARENT_SETTID)
1403 put_user(nr, parent_tidptr);
1404
1405 if (clone_flags & CLONE_VFORK) {
1406 p->vfork_done = &vfork;
1407 init_completion(&vfork);
1408 }
1409
1410 audit_finish_fork(p);
1411 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1412
1413 /*
1414 * We set PF_STARTING at creation in case tracing wants to
1415 * use this to distinguish a fully live task from one that
1416 * hasn't gotten to tracehook_report_clone() yet. Now we
1417 * clear it and set the child going.
1418 */
1419 p->flags &= ~PF_STARTING;
1420
1421 if (unlikely(clone_flags & CLONE_STOPPED)) {
1422 /*
1423 * We'll start up with an immediate SIGSTOP.
1424 */
1425 sigaddset(&p->pending.signal, SIGSTOP);
1426 set_tsk_thread_flag(p, TIF_SIGPENDING);
1427 __set_task_state(p, TASK_STOPPED);
1428 } else {
1429 wake_up_new_task(p, clone_flags);
1430 }
1431
1432 tracehook_report_clone_complete(trace, regs,
1433 clone_flags, nr, p);
1434
1435 if (clone_flags & CLONE_VFORK) {
1436 freezer_do_not_count();
1437 wait_for_completion(&vfork);
1438 freezer_count();
1439 tracehook_report_vfork_done(p, nr);
1440 }
1441 } else {
1442 nr = PTR_ERR(p);
1443 }
1444 return nr;
1445 }
1446
1447 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1448 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1449 #endif
1450
1451 static void sighand_ctor(void *data)
1452 {
1453 struct sighand_struct *sighand = data;
1454
1455 spin_lock_init(&sighand->siglock);
1456 init_waitqueue_head(&sighand->signalfd_wqh);
1457 }
1458
1459 void __init proc_caches_init(void)
1460 {
1461 sighand_cachep = kmem_cache_create("sighand_cache",
1462 sizeof(struct sighand_struct), 0,
1463 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1464 sighand_ctor);
1465 signal_cachep = kmem_cache_create("signal_cache",
1466 sizeof(struct signal_struct), 0,
1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1468 files_cachep = kmem_cache_create("files_cache",
1469 sizeof(struct files_struct), 0,
1470 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1471 fs_cachep = kmem_cache_create("fs_cache",
1472 sizeof(struct fs_struct), 0,
1473 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1474 mm_cachep = kmem_cache_create("mm_struct",
1475 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1476 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1477 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1478 mmap_init();
1479 }
1480
1481 /*
1482 * Check constraints on flags passed to the unshare system call and
1483 * force unsharing of additional process context as appropriate.
1484 */
1485 static void check_unshare_flags(unsigned long *flags_ptr)
1486 {
1487 /*
1488 * If unsharing a thread from a thread group, must also
1489 * unshare vm.
1490 */
1491 if (*flags_ptr & CLONE_THREAD)
1492 *flags_ptr |= CLONE_VM;
1493
1494 /*
1495 * If unsharing vm, must also unshare signal handlers.
1496 */
1497 if (*flags_ptr & CLONE_VM)
1498 *flags_ptr |= CLONE_SIGHAND;
1499
1500 /*
1501 * If unsharing signal handlers and the task was created
1502 * using CLONE_THREAD, then must unshare the thread
1503 */
1504 if ((*flags_ptr & CLONE_SIGHAND) &&
1505 (atomic_read(&current->signal->count) > 1))
1506 *flags_ptr |= CLONE_THREAD;
1507
1508 /*
1509 * If unsharing namespace, must also unshare filesystem information.
1510 */
1511 if (*flags_ptr & CLONE_NEWNS)
1512 *flags_ptr |= CLONE_FS;
1513 }
1514
1515 /*
1516 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1517 */
1518 static int unshare_thread(unsigned long unshare_flags)
1519 {
1520 if (unshare_flags & CLONE_THREAD)
1521 return -EINVAL;
1522
1523 return 0;
1524 }
1525
1526 /*
1527 * Unshare the filesystem structure if it is being shared
1528 */
1529 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1530 {
1531 struct fs_struct *fs = current->fs;
1532
1533 if (!(unshare_flags & CLONE_FS) || !fs)
1534 return 0;
1535
1536 /* don't need lock here; in the worst case we'll do useless copy */
1537 if (fs->users == 1)
1538 return 0;
1539
1540 *new_fsp = copy_fs_struct(fs);
1541 if (!*new_fsp)
1542 return -ENOMEM;
1543
1544 return 0;
1545 }
1546
1547 /*
1548 * Unsharing of sighand is not supported yet
1549 */
1550 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1551 {
1552 struct sighand_struct *sigh = current->sighand;
1553
1554 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1555 return -EINVAL;
1556 else
1557 return 0;
1558 }
1559
1560 /*
1561 * Unshare vm if it is being shared
1562 */
1563 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1564 {
1565 struct mm_struct *mm = current->mm;
1566
1567 if ((unshare_flags & CLONE_VM) &&
1568 (mm && atomic_read(&mm->mm_users) > 1)) {
1569 return -EINVAL;
1570 }
1571
1572 return 0;
1573 }
1574
1575 /*
1576 * Unshare file descriptor table if it is being shared
1577 */
1578 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1579 {
1580 struct files_struct *fd = current->files;
1581 int error = 0;
1582
1583 if ((unshare_flags & CLONE_FILES) &&
1584 (fd && atomic_read(&fd->count) > 1)) {
1585 *new_fdp = dup_fd(fd, &error);
1586 if (!*new_fdp)
1587 return error;
1588 }
1589
1590 return 0;
1591 }
1592
1593 /*
1594 * unshare allows a process to 'unshare' part of the process
1595 * context which was originally shared using clone. copy_*
1596 * functions used by do_fork() cannot be used here directly
1597 * because they modify an inactive task_struct that is being
1598 * constructed. Here we are modifying the current, active,
1599 * task_struct.
1600 */
1601 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1602 {
1603 int err = 0;
1604 struct fs_struct *fs, *new_fs = NULL;
1605 struct sighand_struct *new_sigh = NULL;
1606 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1607 struct files_struct *fd, *new_fd = NULL;
1608 struct nsproxy *new_nsproxy = NULL;
1609 int do_sysvsem = 0;
1610
1611 check_unshare_flags(&unshare_flags);
1612
1613 /* Return -EINVAL for all unsupported flags */
1614 err = -EINVAL;
1615 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1616 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1617 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1618 goto bad_unshare_out;
1619
1620 /*
1621 * CLONE_NEWIPC must also detach from the undolist: after switching
1622 * to a new ipc namespace, the semaphore arrays from the old
1623 * namespace are unreachable.
1624 */
1625 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1626 do_sysvsem = 1;
1627 if ((err = unshare_thread(unshare_flags)))
1628 goto bad_unshare_out;
1629 if ((err = unshare_fs(unshare_flags, &new_fs)))
1630 goto bad_unshare_cleanup_thread;
1631 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1632 goto bad_unshare_cleanup_fs;
1633 if ((err = unshare_vm(unshare_flags, &new_mm)))
1634 goto bad_unshare_cleanup_sigh;
1635 if ((err = unshare_fd(unshare_flags, &new_fd)))
1636 goto bad_unshare_cleanup_vm;
1637 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1638 new_fs)))
1639 goto bad_unshare_cleanup_fd;
1640
1641 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1642 if (do_sysvsem) {
1643 /*
1644 * CLONE_SYSVSEM is equivalent to sys_exit().
1645 */
1646 exit_sem(current);
1647 }
1648
1649 if (new_nsproxy) {
1650 switch_task_namespaces(current, new_nsproxy);
1651 new_nsproxy = NULL;
1652 }
1653
1654 task_lock(current);
1655
1656 if (new_fs) {
1657 fs = current->fs;
1658 write_lock(&fs->lock);
1659 current->fs = new_fs;
1660 if (--fs->users)
1661 new_fs = NULL;
1662 else
1663 new_fs = fs;
1664 write_unlock(&fs->lock);
1665 }
1666
1667 if (new_mm) {
1668 mm = current->mm;
1669 active_mm = current->active_mm;
1670 current->mm = new_mm;
1671 current->active_mm = new_mm;
1672 activate_mm(active_mm, new_mm);
1673 new_mm = mm;
1674 }
1675
1676 if (new_fd) {
1677 fd = current->files;
1678 current->files = new_fd;
1679 new_fd = fd;
1680 }
1681
1682 task_unlock(current);
1683 }
1684
1685 if (new_nsproxy)
1686 put_nsproxy(new_nsproxy);
1687
1688 bad_unshare_cleanup_fd:
1689 if (new_fd)
1690 put_files_struct(new_fd);
1691
1692 bad_unshare_cleanup_vm:
1693 if (new_mm)
1694 mmput(new_mm);
1695
1696 bad_unshare_cleanup_sigh:
1697 if (new_sigh)
1698 if (atomic_dec_and_test(&new_sigh->count))
1699 kmem_cache_free(sighand_cachep, new_sigh);
1700
1701 bad_unshare_cleanup_fs:
1702 if (new_fs)
1703 free_fs_struct(new_fs);
1704
1705 bad_unshare_cleanup_thread:
1706 bad_unshare_out:
1707 return err;
1708 }
1709
1710 /*
1711 * Helper to unshare the files of the current task.
1712 * We don't want to expose copy_files internals to
1713 * the exec layer of the kernel.
1714 */
1715
1716 int unshare_files(struct files_struct **displaced)
1717 {
1718 struct task_struct *task = current;
1719 struct files_struct *copy = NULL;
1720 int error;
1721
1722 error = unshare_fd(CLONE_FILES, &copy);
1723 if (error || !copy) {
1724 *displaced = NULL;
1725 return error;
1726 }
1727 *displaced = task->files;
1728 task_lock(task);
1729 task->files = copy;
1730 task_unlock(task);
1731 return 0;
1732 }