]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge branch 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
85
86 #include <trace/events/sched.h>
87
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
90
91 /*
92 * Minimum number of threads to boot the kernel
93 */
94 #define MIN_THREADS 20
95
96 /*
97 * Maximum number of threads
98 */
99 #define MAX_THREADS FUTEX_TID_MASK
100
101 /*
102 * Protected counters by write_lock_irq(&tasklist_lock)
103 */
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
106
107 int max_threads; /* tunable limit on nr_threads */
108
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
110
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
112
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
115 {
116 return lockdep_is_held(&tasklist_lock);
117 }
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
120
121 int nr_processes(void)
122 {
123 int cpu;
124 int total = 0;
125
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
128
129 return total;
130 }
131
132 void __weak arch_release_task_struct(struct task_struct *tsk)
133 {
134 }
135
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
138
139 static inline struct task_struct *alloc_task_struct_node(int node)
140 {
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
142 }
143
144 static inline void free_task_struct(struct task_struct *tsk)
145 {
146 kmem_cache_free(task_struct_cachep, tsk);
147 }
148 #endif
149
150 void __weak arch_release_thread_info(struct thread_info *ti)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
155
156 /*
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
159 */
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
163 {
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
166
167 return page ? page_address(page) : NULL;
168 }
169
170 static inline void free_thread_info(struct thread_info *ti)
171 {
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
173 }
174 # else
175 static struct kmem_cache *thread_info_cache;
176
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
179 {
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
181 }
182
183 static void free_thread_info(struct thread_info *ti)
184 {
185 kmem_cache_free(thread_info_cache, ti);
186 }
187
188 void thread_info_cache_init(void)
189 {
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
193 }
194 # endif
195 #endif
196
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
199
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
202
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
205
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
208
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
211
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
214
215 static void account_kernel_stack(struct thread_info *ti, int account)
216 {
217 struct zone *zone = page_zone(virt_to_page(ti));
218
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
220 }
221
222 void free_task(struct task_struct *tsk)
223 {
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
232 }
233 EXPORT_SYMBOL(free_task);
234
235 static inline void free_signal_struct(struct signal_struct *sig)
236 {
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
240 }
241
242 static inline void put_signal_struct(struct signal_struct *sig)
243 {
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
246 }
247
248 void __put_task_struct(struct task_struct *tsk)
249 {
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
253
254 cgroup_free(tsk);
255 task_numa_free(tsk);
256 security_task_free(tsk);
257 exit_creds(tsk);
258 delayacct_tsk_free(tsk);
259 put_signal_struct(tsk->signal);
260
261 if (!profile_handoff_task(tsk))
262 free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265
266 void __init __weak arch_task_cache_init(void) { }
267
268 /*
269 * set_max_threads
270 */
271 static void set_max_threads(unsigned int max_threads_suggested)
272 {
273 u64 threads;
274
275 /*
276 * The number of threads shall be limited such that the thread
277 * structures may only consume a small part of the available memory.
278 */
279 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
280 threads = MAX_THREADS;
281 else
282 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
283 (u64) THREAD_SIZE * 8UL);
284
285 if (threads > max_threads_suggested)
286 threads = max_threads_suggested;
287
288 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
289 }
290
291 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
292 /* Initialized by the architecture: */
293 int arch_task_struct_size __read_mostly;
294 #endif
295
296 void __init fork_init(void)
297 {
298 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
299 #ifndef ARCH_MIN_TASKALIGN
300 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
301 #endif
302 /* create a slab on which task_structs can be allocated */
303 task_struct_cachep =
304 kmem_cache_create("task_struct", arch_task_struct_size,
305 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
306 #endif
307
308 /* do the arch specific task caches init */
309 arch_task_cache_init();
310
311 set_max_threads(MAX_THREADS);
312
313 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
314 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
315 init_task.signal->rlim[RLIMIT_SIGPENDING] =
316 init_task.signal->rlim[RLIMIT_NPROC];
317 }
318
319 int __weak arch_dup_task_struct(struct task_struct *dst,
320 struct task_struct *src)
321 {
322 *dst = *src;
323 return 0;
324 }
325
326 void set_task_stack_end_magic(struct task_struct *tsk)
327 {
328 unsigned long *stackend;
329
330 stackend = end_of_stack(tsk);
331 *stackend = STACK_END_MAGIC; /* for overflow detection */
332 }
333
334 static struct task_struct *dup_task_struct(struct task_struct *orig)
335 {
336 struct task_struct *tsk;
337 struct thread_info *ti;
338 int node = tsk_fork_get_node(orig);
339 int err;
340
341 tsk = alloc_task_struct_node(node);
342 if (!tsk)
343 return NULL;
344
345 ti = alloc_thread_info_node(tsk, node);
346 if (!ti)
347 goto free_tsk;
348
349 err = arch_dup_task_struct(tsk, orig);
350 if (err)
351 goto free_ti;
352
353 tsk->stack = ti;
354 #ifdef CONFIG_SECCOMP
355 /*
356 * We must handle setting up seccomp filters once we're under
357 * the sighand lock in case orig has changed between now and
358 * then. Until then, filter must be NULL to avoid messing up
359 * the usage counts on the error path calling free_task.
360 */
361 tsk->seccomp.filter = NULL;
362 #endif
363
364 setup_thread_stack(tsk, orig);
365 clear_user_return_notifier(tsk);
366 clear_tsk_need_resched(tsk);
367 set_task_stack_end_magic(tsk);
368
369 #ifdef CONFIG_CC_STACKPROTECTOR
370 tsk->stack_canary = get_random_int();
371 #endif
372
373 /*
374 * One for us, one for whoever does the "release_task()" (usually
375 * parent)
376 */
377 atomic_set(&tsk->usage, 2);
378 #ifdef CONFIG_BLK_DEV_IO_TRACE
379 tsk->btrace_seq = 0;
380 #endif
381 tsk->splice_pipe = NULL;
382 tsk->task_frag.page = NULL;
383
384 account_kernel_stack(ti, 1);
385
386 return tsk;
387
388 free_ti:
389 free_thread_info(ti);
390 free_tsk:
391 free_task_struct(tsk);
392 return NULL;
393 }
394
395 #ifdef CONFIG_MMU
396 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
397 {
398 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
399 struct rb_node **rb_link, *rb_parent;
400 int retval;
401 unsigned long charge;
402
403 uprobe_start_dup_mmap();
404 down_write(&oldmm->mmap_sem);
405 flush_cache_dup_mm(oldmm);
406 uprobe_dup_mmap(oldmm, mm);
407 /*
408 * Not linked in yet - no deadlock potential:
409 */
410 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
411
412 /* No ordering required: file already has been exposed. */
413 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
414
415 mm->total_vm = oldmm->total_vm;
416 mm->shared_vm = oldmm->shared_vm;
417 mm->exec_vm = oldmm->exec_vm;
418 mm->stack_vm = oldmm->stack_vm;
419
420 rb_link = &mm->mm_rb.rb_node;
421 rb_parent = NULL;
422 pprev = &mm->mmap;
423 retval = ksm_fork(mm, oldmm);
424 if (retval)
425 goto out;
426 retval = khugepaged_fork(mm, oldmm);
427 if (retval)
428 goto out;
429
430 prev = NULL;
431 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
432 struct file *file;
433
434 if (mpnt->vm_flags & VM_DONTCOPY) {
435 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
436 -vma_pages(mpnt));
437 continue;
438 }
439 charge = 0;
440 if (mpnt->vm_flags & VM_ACCOUNT) {
441 unsigned long len = vma_pages(mpnt);
442
443 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
444 goto fail_nomem;
445 charge = len;
446 }
447 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
448 if (!tmp)
449 goto fail_nomem;
450 *tmp = *mpnt;
451 INIT_LIST_HEAD(&tmp->anon_vma_chain);
452 retval = vma_dup_policy(mpnt, tmp);
453 if (retval)
454 goto fail_nomem_policy;
455 tmp->vm_mm = mm;
456 if (anon_vma_fork(tmp, mpnt))
457 goto fail_nomem_anon_vma_fork;
458 tmp->vm_flags &= ~(VM_LOCKED|VM_UFFD_MISSING|VM_UFFD_WP);
459 tmp->vm_next = tmp->vm_prev = NULL;
460 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
461 file = tmp->vm_file;
462 if (file) {
463 struct inode *inode = file_inode(file);
464 struct address_space *mapping = file->f_mapping;
465
466 get_file(file);
467 if (tmp->vm_flags & VM_DENYWRITE)
468 atomic_dec(&inode->i_writecount);
469 i_mmap_lock_write(mapping);
470 if (tmp->vm_flags & VM_SHARED)
471 atomic_inc(&mapping->i_mmap_writable);
472 flush_dcache_mmap_lock(mapping);
473 /* insert tmp into the share list, just after mpnt */
474 vma_interval_tree_insert_after(tmp, mpnt,
475 &mapping->i_mmap);
476 flush_dcache_mmap_unlock(mapping);
477 i_mmap_unlock_write(mapping);
478 }
479
480 /*
481 * Clear hugetlb-related page reserves for children. This only
482 * affects MAP_PRIVATE mappings. Faults generated by the child
483 * are not guaranteed to succeed, even if read-only
484 */
485 if (is_vm_hugetlb_page(tmp))
486 reset_vma_resv_huge_pages(tmp);
487
488 /*
489 * Link in the new vma and copy the page table entries.
490 */
491 *pprev = tmp;
492 pprev = &tmp->vm_next;
493 tmp->vm_prev = prev;
494 prev = tmp;
495
496 __vma_link_rb(mm, tmp, rb_link, rb_parent);
497 rb_link = &tmp->vm_rb.rb_right;
498 rb_parent = &tmp->vm_rb;
499
500 mm->map_count++;
501 retval = copy_page_range(mm, oldmm, mpnt);
502
503 if (tmp->vm_ops && tmp->vm_ops->open)
504 tmp->vm_ops->open(tmp);
505
506 if (retval)
507 goto out;
508 }
509 /* a new mm has just been created */
510 arch_dup_mmap(oldmm, mm);
511 retval = 0;
512 out:
513 up_write(&mm->mmap_sem);
514 flush_tlb_mm(oldmm);
515 up_write(&oldmm->mmap_sem);
516 uprobe_end_dup_mmap();
517 return retval;
518 fail_nomem_anon_vma_fork:
519 mpol_put(vma_policy(tmp));
520 fail_nomem_policy:
521 kmem_cache_free(vm_area_cachep, tmp);
522 fail_nomem:
523 retval = -ENOMEM;
524 vm_unacct_memory(charge);
525 goto out;
526 }
527
528 static inline int mm_alloc_pgd(struct mm_struct *mm)
529 {
530 mm->pgd = pgd_alloc(mm);
531 if (unlikely(!mm->pgd))
532 return -ENOMEM;
533 return 0;
534 }
535
536 static inline void mm_free_pgd(struct mm_struct *mm)
537 {
538 pgd_free(mm, mm->pgd);
539 }
540 #else
541 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
542 {
543 down_write(&oldmm->mmap_sem);
544 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
545 up_write(&oldmm->mmap_sem);
546 return 0;
547 }
548 #define mm_alloc_pgd(mm) (0)
549 #define mm_free_pgd(mm)
550 #endif /* CONFIG_MMU */
551
552 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
553
554 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
555 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
556
557 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
558
559 static int __init coredump_filter_setup(char *s)
560 {
561 default_dump_filter =
562 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
563 MMF_DUMP_FILTER_MASK;
564 return 1;
565 }
566
567 __setup("coredump_filter=", coredump_filter_setup);
568
569 #include <linux/init_task.h>
570
571 static void mm_init_aio(struct mm_struct *mm)
572 {
573 #ifdef CONFIG_AIO
574 spin_lock_init(&mm->ioctx_lock);
575 mm->ioctx_table = NULL;
576 #endif
577 }
578
579 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
580 {
581 #ifdef CONFIG_MEMCG
582 mm->owner = p;
583 #endif
584 }
585
586 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
587 {
588 mm->mmap = NULL;
589 mm->mm_rb = RB_ROOT;
590 mm->vmacache_seqnum = 0;
591 atomic_set(&mm->mm_users, 1);
592 atomic_set(&mm->mm_count, 1);
593 init_rwsem(&mm->mmap_sem);
594 INIT_LIST_HEAD(&mm->mmlist);
595 mm->core_state = NULL;
596 atomic_long_set(&mm->nr_ptes, 0);
597 mm_nr_pmds_init(mm);
598 mm->map_count = 0;
599 mm->locked_vm = 0;
600 mm->pinned_vm = 0;
601 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
602 spin_lock_init(&mm->page_table_lock);
603 mm_init_cpumask(mm);
604 mm_init_aio(mm);
605 mm_init_owner(mm, p);
606 mmu_notifier_mm_init(mm);
607 clear_tlb_flush_pending(mm);
608 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
609 mm->pmd_huge_pte = NULL;
610 #endif
611
612 if (current->mm) {
613 mm->flags = current->mm->flags & MMF_INIT_MASK;
614 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
615 } else {
616 mm->flags = default_dump_filter;
617 mm->def_flags = 0;
618 }
619
620 if (mm_alloc_pgd(mm))
621 goto fail_nopgd;
622
623 if (init_new_context(p, mm))
624 goto fail_nocontext;
625
626 return mm;
627
628 fail_nocontext:
629 mm_free_pgd(mm);
630 fail_nopgd:
631 free_mm(mm);
632 return NULL;
633 }
634
635 static void check_mm(struct mm_struct *mm)
636 {
637 int i;
638
639 for (i = 0; i < NR_MM_COUNTERS; i++) {
640 long x = atomic_long_read(&mm->rss_stat.count[i]);
641
642 if (unlikely(x))
643 printk(KERN_ALERT "BUG: Bad rss-counter state "
644 "mm:%p idx:%d val:%ld\n", mm, i, x);
645 }
646
647 if (atomic_long_read(&mm->nr_ptes))
648 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
649 atomic_long_read(&mm->nr_ptes));
650 if (mm_nr_pmds(mm))
651 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
652 mm_nr_pmds(mm));
653
654 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
655 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
656 #endif
657 }
658
659 /*
660 * Allocate and initialize an mm_struct.
661 */
662 struct mm_struct *mm_alloc(void)
663 {
664 struct mm_struct *mm;
665
666 mm = allocate_mm();
667 if (!mm)
668 return NULL;
669
670 memset(mm, 0, sizeof(*mm));
671 return mm_init(mm, current);
672 }
673
674 /*
675 * Called when the last reference to the mm
676 * is dropped: either by a lazy thread or by
677 * mmput. Free the page directory and the mm.
678 */
679 void __mmdrop(struct mm_struct *mm)
680 {
681 BUG_ON(mm == &init_mm);
682 mm_free_pgd(mm);
683 destroy_context(mm);
684 mmu_notifier_mm_destroy(mm);
685 check_mm(mm);
686 free_mm(mm);
687 }
688 EXPORT_SYMBOL_GPL(__mmdrop);
689
690 /*
691 * Decrement the use count and release all resources for an mm.
692 */
693 void mmput(struct mm_struct *mm)
694 {
695 might_sleep();
696
697 if (atomic_dec_and_test(&mm->mm_users)) {
698 uprobe_clear_state(mm);
699 exit_aio(mm);
700 ksm_exit(mm);
701 khugepaged_exit(mm); /* must run before exit_mmap */
702 exit_mmap(mm);
703 set_mm_exe_file(mm, NULL);
704 if (!list_empty(&mm->mmlist)) {
705 spin_lock(&mmlist_lock);
706 list_del(&mm->mmlist);
707 spin_unlock(&mmlist_lock);
708 }
709 if (mm->binfmt)
710 module_put(mm->binfmt->module);
711 mmdrop(mm);
712 }
713 }
714 EXPORT_SYMBOL_GPL(mmput);
715
716 /**
717 * set_mm_exe_file - change a reference to the mm's executable file
718 *
719 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
720 *
721 * Main users are mmput() and sys_execve(). Callers prevent concurrent
722 * invocations: in mmput() nobody alive left, in execve task is single
723 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
724 * mm->exe_file, but does so without using set_mm_exe_file() in order
725 * to do avoid the need for any locks.
726 */
727 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
728 {
729 struct file *old_exe_file;
730
731 /*
732 * It is safe to dereference the exe_file without RCU as
733 * this function is only called if nobody else can access
734 * this mm -- see comment above for justification.
735 */
736 old_exe_file = rcu_dereference_raw(mm->exe_file);
737
738 if (new_exe_file)
739 get_file(new_exe_file);
740 rcu_assign_pointer(mm->exe_file, new_exe_file);
741 if (old_exe_file)
742 fput(old_exe_file);
743 }
744
745 /**
746 * get_mm_exe_file - acquire a reference to the mm's executable file
747 *
748 * Returns %NULL if mm has no associated executable file.
749 * User must release file via fput().
750 */
751 struct file *get_mm_exe_file(struct mm_struct *mm)
752 {
753 struct file *exe_file;
754
755 rcu_read_lock();
756 exe_file = rcu_dereference(mm->exe_file);
757 if (exe_file && !get_file_rcu(exe_file))
758 exe_file = NULL;
759 rcu_read_unlock();
760 return exe_file;
761 }
762 EXPORT_SYMBOL(get_mm_exe_file);
763
764 /**
765 * get_task_mm - acquire a reference to the task's mm
766 *
767 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
768 * this kernel workthread has transiently adopted a user mm with use_mm,
769 * to do its AIO) is not set and if so returns a reference to it, after
770 * bumping up the use count. User must release the mm via mmput()
771 * after use. Typically used by /proc and ptrace.
772 */
773 struct mm_struct *get_task_mm(struct task_struct *task)
774 {
775 struct mm_struct *mm;
776
777 task_lock(task);
778 mm = task->mm;
779 if (mm) {
780 if (task->flags & PF_KTHREAD)
781 mm = NULL;
782 else
783 atomic_inc(&mm->mm_users);
784 }
785 task_unlock(task);
786 return mm;
787 }
788 EXPORT_SYMBOL_GPL(get_task_mm);
789
790 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
791 {
792 struct mm_struct *mm;
793 int err;
794
795 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
796 if (err)
797 return ERR_PTR(err);
798
799 mm = get_task_mm(task);
800 if (mm && mm != current->mm &&
801 !ptrace_may_access(task, mode)) {
802 mmput(mm);
803 mm = ERR_PTR(-EACCES);
804 }
805 mutex_unlock(&task->signal->cred_guard_mutex);
806
807 return mm;
808 }
809
810 static void complete_vfork_done(struct task_struct *tsk)
811 {
812 struct completion *vfork;
813
814 task_lock(tsk);
815 vfork = tsk->vfork_done;
816 if (likely(vfork)) {
817 tsk->vfork_done = NULL;
818 complete(vfork);
819 }
820 task_unlock(tsk);
821 }
822
823 static int wait_for_vfork_done(struct task_struct *child,
824 struct completion *vfork)
825 {
826 int killed;
827
828 freezer_do_not_count();
829 killed = wait_for_completion_killable(vfork);
830 freezer_count();
831
832 if (killed) {
833 task_lock(child);
834 child->vfork_done = NULL;
835 task_unlock(child);
836 }
837
838 put_task_struct(child);
839 return killed;
840 }
841
842 /* Please note the differences between mmput and mm_release.
843 * mmput is called whenever we stop holding onto a mm_struct,
844 * error success whatever.
845 *
846 * mm_release is called after a mm_struct has been removed
847 * from the current process.
848 *
849 * This difference is important for error handling, when we
850 * only half set up a mm_struct for a new process and need to restore
851 * the old one. Because we mmput the new mm_struct before
852 * restoring the old one. . .
853 * Eric Biederman 10 January 1998
854 */
855 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
856 {
857 /* Get rid of any futexes when releasing the mm */
858 #ifdef CONFIG_FUTEX
859 if (unlikely(tsk->robust_list)) {
860 exit_robust_list(tsk);
861 tsk->robust_list = NULL;
862 }
863 #ifdef CONFIG_COMPAT
864 if (unlikely(tsk->compat_robust_list)) {
865 compat_exit_robust_list(tsk);
866 tsk->compat_robust_list = NULL;
867 }
868 #endif
869 if (unlikely(!list_empty(&tsk->pi_state_list)))
870 exit_pi_state_list(tsk);
871 #endif
872
873 uprobe_free_utask(tsk);
874
875 /* Get rid of any cached register state */
876 deactivate_mm(tsk, mm);
877
878 /*
879 * If we're exiting normally, clear a user-space tid field if
880 * requested. We leave this alone when dying by signal, to leave
881 * the value intact in a core dump, and to save the unnecessary
882 * trouble, say, a killed vfork parent shouldn't touch this mm.
883 * Userland only wants this done for a sys_exit.
884 */
885 if (tsk->clear_child_tid) {
886 if (!(tsk->flags & PF_SIGNALED) &&
887 atomic_read(&mm->mm_users) > 1) {
888 /*
889 * We don't check the error code - if userspace has
890 * not set up a proper pointer then tough luck.
891 */
892 put_user(0, tsk->clear_child_tid);
893 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
894 1, NULL, NULL, 0);
895 }
896 tsk->clear_child_tid = NULL;
897 }
898
899 /*
900 * All done, finally we can wake up parent and return this mm to him.
901 * Also kthread_stop() uses this completion for synchronization.
902 */
903 if (tsk->vfork_done)
904 complete_vfork_done(tsk);
905 }
906
907 /*
908 * Allocate a new mm structure and copy contents from the
909 * mm structure of the passed in task structure.
910 */
911 static struct mm_struct *dup_mm(struct task_struct *tsk)
912 {
913 struct mm_struct *mm, *oldmm = current->mm;
914 int err;
915
916 mm = allocate_mm();
917 if (!mm)
918 goto fail_nomem;
919
920 memcpy(mm, oldmm, sizeof(*mm));
921
922 if (!mm_init(mm, tsk))
923 goto fail_nomem;
924
925 err = dup_mmap(mm, oldmm);
926 if (err)
927 goto free_pt;
928
929 mm->hiwater_rss = get_mm_rss(mm);
930 mm->hiwater_vm = mm->total_vm;
931
932 if (mm->binfmt && !try_module_get(mm->binfmt->module))
933 goto free_pt;
934
935 return mm;
936
937 free_pt:
938 /* don't put binfmt in mmput, we haven't got module yet */
939 mm->binfmt = NULL;
940 mmput(mm);
941
942 fail_nomem:
943 return NULL;
944 }
945
946 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
947 {
948 struct mm_struct *mm, *oldmm;
949 int retval;
950
951 tsk->min_flt = tsk->maj_flt = 0;
952 tsk->nvcsw = tsk->nivcsw = 0;
953 #ifdef CONFIG_DETECT_HUNG_TASK
954 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
955 #endif
956
957 tsk->mm = NULL;
958 tsk->active_mm = NULL;
959
960 /*
961 * Are we cloning a kernel thread?
962 *
963 * We need to steal a active VM for that..
964 */
965 oldmm = current->mm;
966 if (!oldmm)
967 return 0;
968
969 /* initialize the new vmacache entries */
970 vmacache_flush(tsk);
971
972 if (clone_flags & CLONE_VM) {
973 atomic_inc(&oldmm->mm_users);
974 mm = oldmm;
975 goto good_mm;
976 }
977
978 retval = -ENOMEM;
979 mm = dup_mm(tsk);
980 if (!mm)
981 goto fail_nomem;
982
983 good_mm:
984 tsk->mm = mm;
985 tsk->active_mm = mm;
986 return 0;
987
988 fail_nomem:
989 return retval;
990 }
991
992 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
993 {
994 struct fs_struct *fs = current->fs;
995 if (clone_flags & CLONE_FS) {
996 /* tsk->fs is already what we want */
997 spin_lock(&fs->lock);
998 if (fs->in_exec) {
999 spin_unlock(&fs->lock);
1000 return -EAGAIN;
1001 }
1002 fs->users++;
1003 spin_unlock(&fs->lock);
1004 return 0;
1005 }
1006 tsk->fs = copy_fs_struct(fs);
1007 if (!tsk->fs)
1008 return -ENOMEM;
1009 return 0;
1010 }
1011
1012 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1013 {
1014 struct files_struct *oldf, *newf;
1015 int error = 0;
1016
1017 /*
1018 * A background process may not have any files ...
1019 */
1020 oldf = current->files;
1021 if (!oldf)
1022 goto out;
1023
1024 if (clone_flags & CLONE_FILES) {
1025 atomic_inc(&oldf->count);
1026 goto out;
1027 }
1028
1029 newf = dup_fd(oldf, &error);
1030 if (!newf)
1031 goto out;
1032
1033 tsk->files = newf;
1034 error = 0;
1035 out:
1036 return error;
1037 }
1038
1039 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1040 {
1041 #ifdef CONFIG_BLOCK
1042 struct io_context *ioc = current->io_context;
1043 struct io_context *new_ioc;
1044
1045 if (!ioc)
1046 return 0;
1047 /*
1048 * Share io context with parent, if CLONE_IO is set
1049 */
1050 if (clone_flags & CLONE_IO) {
1051 ioc_task_link(ioc);
1052 tsk->io_context = ioc;
1053 } else if (ioprio_valid(ioc->ioprio)) {
1054 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1055 if (unlikely(!new_ioc))
1056 return -ENOMEM;
1057
1058 new_ioc->ioprio = ioc->ioprio;
1059 put_io_context(new_ioc);
1060 }
1061 #endif
1062 return 0;
1063 }
1064
1065 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1066 {
1067 struct sighand_struct *sig;
1068
1069 if (clone_flags & CLONE_SIGHAND) {
1070 atomic_inc(&current->sighand->count);
1071 return 0;
1072 }
1073 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1074 rcu_assign_pointer(tsk->sighand, sig);
1075 if (!sig)
1076 return -ENOMEM;
1077
1078 atomic_set(&sig->count, 1);
1079 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1080 return 0;
1081 }
1082
1083 void __cleanup_sighand(struct sighand_struct *sighand)
1084 {
1085 if (atomic_dec_and_test(&sighand->count)) {
1086 signalfd_cleanup(sighand);
1087 /*
1088 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1089 * without an RCU grace period, see __lock_task_sighand().
1090 */
1091 kmem_cache_free(sighand_cachep, sighand);
1092 }
1093 }
1094
1095 /*
1096 * Initialize POSIX timer handling for a thread group.
1097 */
1098 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1099 {
1100 unsigned long cpu_limit;
1101
1102 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1103 if (cpu_limit != RLIM_INFINITY) {
1104 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1105 sig->cputimer.running = true;
1106 }
1107
1108 /* The timer lists. */
1109 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1110 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1111 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1112 }
1113
1114 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1115 {
1116 struct signal_struct *sig;
1117
1118 if (clone_flags & CLONE_THREAD)
1119 return 0;
1120
1121 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1122 tsk->signal = sig;
1123 if (!sig)
1124 return -ENOMEM;
1125
1126 sig->nr_threads = 1;
1127 atomic_set(&sig->live, 1);
1128 atomic_set(&sig->sigcnt, 1);
1129
1130 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1131 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1132 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1133
1134 init_waitqueue_head(&sig->wait_chldexit);
1135 sig->curr_target = tsk;
1136 init_sigpending(&sig->shared_pending);
1137 INIT_LIST_HEAD(&sig->posix_timers);
1138 seqlock_init(&sig->stats_lock);
1139 prev_cputime_init(&sig->prev_cputime);
1140
1141 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1142 sig->real_timer.function = it_real_fn;
1143
1144 task_lock(current->group_leader);
1145 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1146 task_unlock(current->group_leader);
1147
1148 posix_cpu_timers_init_group(sig);
1149
1150 tty_audit_fork(sig);
1151 sched_autogroup_fork(sig);
1152
1153 sig->oom_score_adj = current->signal->oom_score_adj;
1154 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1155
1156 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1157 current->signal->is_child_subreaper;
1158
1159 mutex_init(&sig->cred_guard_mutex);
1160
1161 return 0;
1162 }
1163
1164 static void copy_seccomp(struct task_struct *p)
1165 {
1166 #ifdef CONFIG_SECCOMP
1167 /*
1168 * Must be called with sighand->lock held, which is common to
1169 * all threads in the group. Holding cred_guard_mutex is not
1170 * needed because this new task is not yet running and cannot
1171 * be racing exec.
1172 */
1173 assert_spin_locked(&current->sighand->siglock);
1174
1175 /* Ref-count the new filter user, and assign it. */
1176 get_seccomp_filter(current);
1177 p->seccomp = current->seccomp;
1178
1179 /*
1180 * Explicitly enable no_new_privs here in case it got set
1181 * between the task_struct being duplicated and holding the
1182 * sighand lock. The seccomp state and nnp must be in sync.
1183 */
1184 if (task_no_new_privs(current))
1185 task_set_no_new_privs(p);
1186
1187 /*
1188 * If the parent gained a seccomp mode after copying thread
1189 * flags and between before we held the sighand lock, we have
1190 * to manually enable the seccomp thread flag here.
1191 */
1192 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1193 set_tsk_thread_flag(p, TIF_SECCOMP);
1194 #endif
1195 }
1196
1197 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1198 {
1199 current->clear_child_tid = tidptr;
1200
1201 return task_pid_vnr(current);
1202 }
1203
1204 static void rt_mutex_init_task(struct task_struct *p)
1205 {
1206 raw_spin_lock_init(&p->pi_lock);
1207 #ifdef CONFIG_RT_MUTEXES
1208 p->pi_waiters = RB_ROOT;
1209 p->pi_waiters_leftmost = NULL;
1210 p->pi_blocked_on = NULL;
1211 #endif
1212 }
1213
1214 /*
1215 * Initialize POSIX timer handling for a single task.
1216 */
1217 static void posix_cpu_timers_init(struct task_struct *tsk)
1218 {
1219 tsk->cputime_expires.prof_exp = 0;
1220 tsk->cputime_expires.virt_exp = 0;
1221 tsk->cputime_expires.sched_exp = 0;
1222 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1223 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1224 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1225 }
1226
1227 static inline void
1228 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1229 {
1230 task->pids[type].pid = pid;
1231 }
1232
1233 /*
1234 * This creates a new process as a copy of the old one,
1235 * but does not actually start it yet.
1236 *
1237 * It copies the registers, and all the appropriate
1238 * parts of the process environment (as per the clone
1239 * flags). The actual kick-off is left to the caller.
1240 */
1241 static struct task_struct *copy_process(unsigned long clone_flags,
1242 unsigned long stack_start,
1243 unsigned long stack_size,
1244 int __user *child_tidptr,
1245 struct pid *pid,
1246 int trace,
1247 unsigned long tls)
1248 {
1249 int retval;
1250 struct task_struct *p;
1251 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1252
1253 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1254 return ERR_PTR(-EINVAL);
1255
1256 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1257 return ERR_PTR(-EINVAL);
1258
1259 /*
1260 * Thread groups must share signals as well, and detached threads
1261 * can only be started up within the thread group.
1262 */
1263 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1264 return ERR_PTR(-EINVAL);
1265
1266 /*
1267 * Shared signal handlers imply shared VM. By way of the above,
1268 * thread groups also imply shared VM. Blocking this case allows
1269 * for various simplifications in other code.
1270 */
1271 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1272 return ERR_PTR(-EINVAL);
1273
1274 /*
1275 * Siblings of global init remain as zombies on exit since they are
1276 * not reaped by their parent (swapper). To solve this and to avoid
1277 * multi-rooted process trees, prevent global and container-inits
1278 * from creating siblings.
1279 */
1280 if ((clone_flags & CLONE_PARENT) &&
1281 current->signal->flags & SIGNAL_UNKILLABLE)
1282 return ERR_PTR(-EINVAL);
1283
1284 /*
1285 * If the new process will be in a different pid or user namespace
1286 * do not allow it to share a thread group with the forking task.
1287 */
1288 if (clone_flags & CLONE_THREAD) {
1289 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1290 (task_active_pid_ns(current) !=
1291 current->nsproxy->pid_ns_for_children))
1292 return ERR_PTR(-EINVAL);
1293 }
1294
1295 retval = security_task_create(clone_flags);
1296 if (retval)
1297 goto fork_out;
1298
1299 retval = -ENOMEM;
1300 p = dup_task_struct(current);
1301 if (!p)
1302 goto fork_out;
1303
1304 ftrace_graph_init_task(p);
1305
1306 rt_mutex_init_task(p);
1307
1308 #ifdef CONFIG_PROVE_LOCKING
1309 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1310 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1311 #endif
1312 retval = -EAGAIN;
1313 if (atomic_read(&p->real_cred->user->processes) >=
1314 task_rlimit(p, RLIMIT_NPROC)) {
1315 if (p->real_cred->user != INIT_USER &&
1316 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1317 goto bad_fork_free;
1318 }
1319 current->flags &= ~PF_NPROC_EXCEEDED;
1320
1321 retval = copy_creds(p, clone_flags);
1322 if (retval < 0)
1323 goto bad_fork_free;
1324
1325 /*
1326 * If multiple threads are within copy_process(), then this check
1327 * triggers too late. This doesn't hurt, the check is only there
1328 * to stop root fork bombs.
1329 */
1330 retval = -EAGAIN;
1331 if (nr_threads >= max_threads)
1332 goto bad_fork_cleanup_count;
1333
1334 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1335 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1336 p->flags |= PF_FORKNOEXEC;
1337 INIT_LIST_HEAD(&p->children);
1338 INIT_LIST_HEAD(&p->sibling);
1339 rcu_copy_process(p);
1340 p->vfork_done = NULL;
1341 spin_lock_init(&p->alloc_lock);
1342
1343 init_sigpending(&p->pending);
1344
1345 p->utime = p->stime = p->gtime = 0;
1346 p->utimescaled = p->stimescaled = 0;
1347 prev_cputime_init(&p->prev_cputime);
1348
1349 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1350 seqlock_init(&p->vtime_seqlock);
1351 p->vtime_snap = 0;
1352 p->vtime_snap_whence = VTIME_SLEEPING;
1353 #endif
1354
1355 #if defined(SPLIT_RSS_COUNTING)
1356 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1357 #endif
1358
1359 p->default_timer_slack_ns = current->timer_slack_ns;
1360
1361 task_io_accounting_init(&p->ioac);
1362 acct_clear_integrals(p);
1363
1364 posix_cpu_timers_init(p);
1365
1366 p->start_time = ktime_get_ns();
1367 p->real_start_time = ktime_get_boot_ns();
1368 p->io_context = NULL;
1369 p->audit_context = NULL;
1370 if (clone_flags & CLONE_THREAD)
1371 threadgroup_change_begin(current);
1372 cgroup_fork(p);
1373 #ifdef CONFIG_NUMA
1374 p->mempolicy = mpol_dup(p->mempolicy);
1375 if (IS_ERR(p->mempolicy)) {
1376 retval = PTR_ERR(p->mempolicy);
1377 p->mempolicy = NULL;
1378 goto bad_fork_cleanup_threadgroup_lock;
1379 }
1380 #endif
1381 #ifdef CONFIG_CPUSETS
1382 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1383 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1384 seqcount_init(&p->mems_allowed_seq);
1385 #endif
1386 #ifdef CONFIG_TRACE_IRQFLAGS
1387 p->irq_events = 0;
1388 p->hardirqs_enabled = 0;
1389 p->hardirq_enable_ip = 0;
1390 p->hardirq_enable_event = 0;
1391 p->hardirq_disable_ip = _THIS_IP_;
1392 p->hardirq_disable_event = 0;
1393 p->softirqs_enabled = 1;
1394 p->softirq_enable_ip = _THIS_IP_;
1395 p->softirq_enable_event = 0;
1396 p->softirq_disable_ip = 0;
1397 p->softirq_disable_event = 0;
1398 p->hardirq_context = 0;
1399 p->softirq_context = 0;
1400 #endif
1401
1402 p->pagefault_disabled = 0;
1403
1404 #ifdef CONFIG_LOCKDEP
1405 p->lockdep_depth = 0; /* no locks held yet */
1406 p->curr_chain_key = 0;
1407 p->lockdep_recursion = 0;
1408 #endif
1409
1410 #ifdef CONFIG_DEBUG_MUTEXES
1411 p->blocked_on = NULL; /* not blocked yet */
1412 #endif
1413 #ifdef CONFIG_BCACHE
1414 p->sequential_io = 0;
1415 p->sequential_io_avg = 0;
1416 #endif
1417
1418 /* Perform scheduler related setup. Assign this task to a CPU. */
1419 retval = sched_fork(clone_flags, p);
1420 if (retval)
1421 goto bad_fork_cleanup_policy;
1422
1423 retval = perf_event_init_task(p);
1424 if (retval)
1425 goto bad_fork_cleanup_policy;
1426 retval = audit_alloc(p);
1427 if (retval)
1428 goto bad_fork_cleanup_perf;
1429 /* copy all the process information */
1430 shm_init_task(p);
1431 retval = copy_semundo(clone_flags, p);
1432 if (retval)
1433 goto bad_fork_cleanup_audit;
1434 retval = copy_files(clone_flags, p);
1435 if (retval)
1436 goto bad_fork_cleanup_semundo;
1437 retval = copy_fs(clone_flags, p);
1438 if (retval)
1439 goto bad_fork_cleanup_files;
1440 retval = copy_sighand(clone_flags, p);
1441 if (retval)
1442 goto bad_fork_cleanup_fs;
1443 retval = copy_signal(clone_flags, p);
1444 if (retval)
1445 goto bad_fork_cleanup_sighand;
1446 retval = copy_mm(clone_flags, p);
1447 if (retval)
1448 goto bad_fork_cleanup_signal;
1449 retval = copy_namespaces(clone_flags, p);
1450 if (retval)
1451 goto bad_fork_cleanup_mm;
1452 retval = copy_io(clone_flags, p);
1453 if (retval)
1454 goto bad_fork_cleanup_namespaces;
1455 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1456 if (retval)
1457 goto bad_fork_cleanup_io;
1458
1459 if (pid != &init_struct_pid) {
1460 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1461 if (IS_ERR(pid)) {
1462 retval = PTR_ERR(pid);
1463 goto bad_fork_cleanup_io;
1464 }
1465 }
1466
1467 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1468 /*
1469 * Clear TID on mm_release()?
1470 */
1471 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1472 #ifdef CONFIG_BLOCK
1473 p->plug = NULL;
1474 #endif
1475 #ifdef CONFIG_FUTEX
1476 p->robust_list = NULL;
1477 #ifdef CONFIG_COMPAT
1478 p->compat_robust_list = NULL;
1479 #endif
1480 INIT_LIST_HEAD(&p->pi_state_list);
1481 p->pi_state_cache = NULL;
1482 #endif
1483 /*
1484 * sigaltstack should be cleared when sharing the same VM
1485 */
1486 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1487 p->sas_ss_sp = p->sas_ss_size = 0;
1488
1489 /*
1490 * Syscall tracing and stepping should be turned off in the
1491 * child regardless of CLONE_PTRACE.
1492 */
1493 user_disable_single_step(p);
1494 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1495 #ifdef TIF_SYSCALL_EMU
1496 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1497 #endif
1498 clear_all_latency_tracing(p);
1499
1500 /* ok, now we should be set up.. */
1501 p->pid = pid_nr(pid);
1502 if (clone_flags & CLONE_THREAD) {
1503 p->exit_signal = -1;
1504 p->group_leader = current->group_leader;
1505 p->tgid = current->tgid;
1506 } else {
1507 if (clone_flags & CLONE_PARENT)
1508 p->exit_signal = current->group_leader->exit_signal;
1509 else
1510 p->exit_signal = (clone_flags & CSIGNAL);
1511 p->group_leader = p;
1512 p->tgid = p->pid;
1513 }
1514
1515 p->nr_dirtied = 0;
1516 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1517 p->dirty_paused_when = 0;
1518
1519 p->pdeath_signal = 0;
1520 INIT_LIST_HEAD(&p->thread_group);
1521 p->task_works = NULL;
1522
1523 /*
1524 * Ensure that the cgroup subsystem policies allow the new process to be
1525 * forked. It should be noted the the new process's css_set can be changed
1526 * between here and cgroup_post_fork() if an organisation operation is in
1527 * progress.
1528 */
1529 retval = cgroup_can_fork(p, cgrp_ss_priv);
1530 if (retval)
1531 goto bad_fork_free_pid;
1532
1533 /*
1534 * Make it visible to the rest of the system, but dont wake it up yet.
1535 * Need tasklist lock for parent etc handling!
1536 */
1537 write_lock_irq(&tasklist_lock);
1538
1539 /* CLONE_PARENT re-uses the old parent */
1540 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1541 p->real_parent = current->real_parent;
1542 p->parent_exec_id = current->parent_exec_id;
1543 } else {
1544 p->real_parent = current;
1545 p->parent_exec_id = current->self_exec_id;
1546 }
1547
1548 spin_lock(&current->sighand->siglock);
1549
1550 /*
1551 * Copy seccomp details explicitly here, in case they were changed
1552 * before holding sighand lock.
1553 */
1554 copy_seccomp(p);
1555
1556 /*
1557 * Process group and session signals need to be delivered to just the
1558 * parent before the fork or both the parent and the child after the
1559 * fork. Restart if a signal comes in before we add the new process to
1560 * it's process group.
1561 * A fatal signal pending means that current will exit, so the new
1562 * thread can't slip out of an OOM kill (or normal SIGKILL).
1563 */
1564 recalc_sigpending();
1565 if (signal_pending(current)) {
1566 spin_unlock(&current->sighand->siglock);
1567 write_unlock_irq(&tasklist_lock);
1568 retval = -ERESTARTNOINTR;
1569 goto bad_fork_cancel_cgroup;
1570 }
1571
1572 if (likely(p->pid)) {
1573 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1574
1575 init_task_pid(p, PIDTYPE_PID, pid);
1576 if (thread_group_leader(p)) {
1577 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1578 init_task_pid(p, PIDTYPE_SID, task_session(current));
1579
1580 if (is_child_reaper(pid)) {
1581 ns_of_pid(pid)->child_reaper = p;
1582 p->signal->flags |= SIGNAL_UNKILLABLE;
1583 }
1584
1585 p->signal->leader_pid = pid;
1586 p->signal->tty = tty_kref_get(current->signal->tty);
1587 list_add_tail(&p->sibling, &p->real_parent->children);
1588 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1589 attach_pid(p, PIDTYPE_PGID);
1590 attach_pid(p, PIDTYPE_SID);
1591 __this_cpu_inc(process_counts);
1592 } else {
1593 current->signal->nr_threads++;
1594 atomic_inc(&current->signal->live);
1595 atomic_inc(&current->signal->sigcnt);
1596 list_add_tail_rcu(&p->thread_group,
1597 &p->group_leader->thread_group);
1598 list_add_tail_rcu(&p->thread_node,
1599 &p->signal->thread_head);
1600 }
1601 attach_pid(p, PIDTYPE_PID);
1602 nr_threads++;
1603 }
1604
1605 total_forks++;
1606 spin_unlock(&current->sighand->siglock);
1607 syscall_tracepoint_update(p);
1608 write_unlock_irq(&tasklist_lock);
1609
1610 proc_fork_connector(p);
1611 cgroup_post_fork(p, cgrp_ss_priv);
1612 if (clone_flags & CLONE_THREAD)
1613 threadgroup_change_end(current);
1614 perf_event_fork(p);
1615
1616 trace_task_newtask(p, clone_flags);
1617 uprobe_copy_process(p, clone_flags);
1618
1619 return p;
1620
1621 bad_fork_cancel_cgroup:
1622 cgroup_cancel_fork(p, cgrp_ss_priv);
1623 bad_fork_free_pid:
1624 if (pid != &init_struct_pid)
1625 free_pid(pid);
1626 bad_fork_cleanup_io:
1627 if (p->io_context)
1628 exit_io_context(p);
1629 bad_fork_cleanup_namespaces:
1630 exit_task_namespaces(p);
1631 bad_fork_cleanup_mm:
1632 if (p->mm)
1633 mmput(p->mm);
1634 bad_fork_cleanup_signal:
1635 if (!(clone_flags & CLONE_THREAD))
1636 free_signal_struct(p->signal);
1637 bad_fork_cleanup_sighand:
1638 __cleanup_sighand(p->sighand);
1639 bad_fork_cleanup_fs:
1640 exit_fs(p); /* blocking */
1641 bad_fork_cleanup_files:
1642 exit_files(p); /* blocking */
1643 bad_fork_cleanup_semundo:
1644 exit_sem(p);
1645 bad_fork_cleanup_audit:
1646 audit_free(p);
1647 bad_fork_cleanup_perf:
1648 perf_event_free_task(p);
1649 bad_fork_cleanup_policy:
1650 #ifdef CONFIG_NUMA
1651 mpol_put(p->mempolicy);
1652 bad_fork_cleanup_threadgroup_lock:
1653 #endif
1654 if (clone_flags & CLONE_THREAD)
1655 threadgroup_change_end(current);
1656 delayacct_tsk_free(p);
1657 bad_fork_cleanup_count:
1658 atomic_dec(&p->cred->user->processes);
1659 exit_creds(p);
1660 bad_fork_free:
1661 free_task(p);
1662 fork_out:
1663 return ERR_PTR(retval);
1664 }
1665
1666 static inline void init_idle_pids(struct pid_link *links)
1667 {
1668 enum pid_type type;
1669
1670 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1671 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1672 links[type].pid = &init_struct_pid;
1673 }
1674 }
1675
1676 struct task_struct *fork_idle(int cpu)
1677 {
1678 struct task_struct *task;
1679 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0);
1680 if (!IS_ERR(task)) {
1681 init_idle_pids(task->pids);
1682 init_idle(task, cpu);
1683 }
1684
1685 return task;
1686 }
1687
1688 /*
1689 * Ok, this is the main fork-routine.
1690 *
1691 * It copies the process, and if successful kick-starts
1692 * it and waits for it to finish using the VM if required.
1693 */
1694 long _do_fork(unsigned long clone_flags,
1695 unsigned long stack_start,
1696 unsigned long stack_size,
1697 int __user *parent_tidptr,
1698 int __user *child_tidptr,
1699 unsigned long tls)
1700 {
1701 struct task_struct *p;
1702 int trace = 0;
1703 long nr;
1704
1705 /*
1706 * Determine whether and which event to report to ptracer. When
1707 * called from kernel_thread or CLONE_UNTRACED is explicitly
1708 * requested, no event is reported; otherwise, report if the event
1709 * for the type of forking is enabled.
1710 */
1711 if (!(clone_flags & CLONE_UNTRACED)) {
1712 if (clone_flags & CLONE_VFORK)
1713 trace = PTRACE_EVENT_VFORK;
1714 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1715 trace = PTRACE_EVENT_CLONE;
1716 else
1717 trace = PTRACE_EVENT_FORK;
1718
1719 if (likely(!ptrace_event_enabled(current, trace)))
1720 trace = 0;
1721 }
1722
1723 p = copy_process(clone_flags, stack_start, stack_size,
1724 child_tidptr, NULL, trace, tls);
1725 /*
1726 * Do this prior waking up the new thread - the thread pointer
1727 * might get invalid after that point, if the thread exits quickly.
1728 */
1729 if (!IS_ERR(p)) {
1730 struct completion vfork;
1731 struct pid *pid;
1732
1733 trace_sched_process_fork(current, p);
1734
1735 pid = get_task_pid(p, PIDTYPE_PID);
1736 nr = pid_vnr(pid);
1737
1738 if (clone_flags & CLONE_PARENT_SETTID)
1739 put_user(nr, parent_tidptr);
1740
1741 if (clone_flags & CLONE_VFORK) {
1742 p->vfork_done = &vfork;
1743 init_completion(&vfork);
1744 get_task_struct(p);
1745 }
1746
1747 wake_up_new_task(p);
1748
1749 /* forking complete and child started to run, tell ptracer */
1750 if (unlikely(trace))
1751 ptrace_event_pid(trace, pid);
1752
1753 if (clone_flags & CLONE_VFORK) {
1754 if (!wait_for_vfork_done(p, &vfork))
1755 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1756 }
1757
1758 put_pid(pid);
1759 } else {
1760 nr = PTR_ERR(p);
1761 }
1762 return nr;
1763 }
1764
1765 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1766 /* For compatibility with architectures that call do_fork directly rather than
1767 * using the syscall entry points below. */
1768 long do_fork(unsigned long clone_flags,
1769 unsigned long stack_start,
1770 unsigned long stack_size,
1771 int __user *parent_tidptr,
1772 int __user *child_tidptr)
1773 {
1774 return _do_fork(clone_flags, stack_start, stack_size,
1775 parent_tidptr, child_tidptr, 0);
1776 }
1777 #endif
1778
1779 /*
1780 * Create a kernel thread.
1781 */
1782 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1783 {
1784 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1785 (unsigned long)arg, NULL, NULL, 0);
1786 }
1787
1788 #ifdef __ARCH_WANT_SYS_FORK
1789 SYSCALL_DEFINE0(fork)
1790 {
1791 #ifdef CONFIG_MMU
1792 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1793 #else
1794 /* can not support in nommu mode */
1795 return -EINVAL;
1796 #endif
1797 }
1798 #endif
1799
1800 #ifdef __ARCH_WANT_SYS_VFORK
1801 SYSCALL_DEFINE0(vfork)
1802 {
1803 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1804 0, NULL, NULL, 0);
1805 }
1806 #endif
1807
1808 #ifdef __ARCH_WANT_SYS_CLONE
1809 #ifdef CONFIG_CLONE_BACKWARDS
1810 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1811 int __user *, parent_tidptr,
1812 unsigned long, tls,
1813 int __user *, child_tidptr)
1814 #elif defined(CONFIG_CLONE_BACKWARDS2)
1815 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1816 int __user *, parent_tidptr,
1817 int __user *, child_tidptr,
1818 unsigned long, tls)
1819 #elif defined(CONFIG_CLONE_BACKWARDS3)
1820 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1821 int, stack_size,
1822 int __user *, parent_tidptr,
1823 int __user *, child_tidptr,
1824 unsigned long, tls)
1825 #else
1826 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1827 int __user *, parent_tidptr,
1828 int __user *, child_tidptr,
1829 unsigned long, tls)
1830 #endif
1831 {
1832 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1833 }
1834 #endif
1835
1836 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1837 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1838 #endif
1839
1840 static void sighand_ctor(void *data)
1841 {
1842 struct sighand_struct *sighand = data;
1843
1844 spin_lock_init(&sighand->siglock);
1845 init_waitqueue_head(&sighand->signalfd_wqh);
1846 }
1847
1848 void __init proc_caches_init(void)
1849 {
1850 sighand_cachep = kmem_cache_create("sighand_cache",
1851 sizeof(struct sighand_struct), 0,
1852 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1853 SLAB_NOTRACK, sighand_ctor);
1854 signal_cachep = kmem_cache_create("signal_cache",
1855 sizeof(struct signal_struct), 0,
1856 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1857 files_cachep = kmem_cache_create("files_cache",
1858 sizeof(struct files_struct), 0,
1859 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1860 fs_cachep = kmem_cache_create("fs_cache",
1861 sizeof(struct fs_struct), 0,
1862 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1863 /*
1864 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1865 * whole struct cpumask for the OFFSTACK case. We could change
1866 * this to *only* allocate as much of it as required by the
1867 * maximum number of CPU's we can ever have. The cpumask_allocation
1868 * is at the end of the structure, exactly for that reason.
1869 */
1870 mm_cachep = kmem_cache_create("mm_struct",
1871 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1872 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1873 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1874 mmap_init();
1875 nsproxy_cache_init();
1876 }
1877
1878 /*
1879 * Check constraints on flags passed to the unshare system call.
1880 */
1881 static int check_unshare_flags(unsigned long unshare_flags)
1882 {
1883 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1884 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1885 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1886 CLONE_NEWUSER|CLONE_NEWPID))
1887 return -EINVAL;
1888 /*
1889 * Not implemented, but pretend it works if there is nothing
1890 * to unshare. Note that unsharing the address space or the
1891 * signal handlers also need to unshare the signal queues (aka
1892 * CLONE_THREAD).
1893 */
1894 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1895 if (!thread_group_empty(current))
1896 return -EINVAL;
1897 }
1898 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1899 if (atomic_read(&current->sighand->count) > 1)
1900 return -EINVAL;
1901 }
1902 if (unshare_flags & CLONE_VM) {
1903 if (!current_is_single_threaded())
1904 return -EINVAL;
1905 }
1906
1907 return 0;
1908 }
1909
1910 /*
1911 * Unshare the filesystem structure if it is being shared
1912 */
1913 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1914 {
1915 struct fs_struct *fs = current->fs;
1916
1917 if (!(unshare_flags & CLONE_FS) || !fs)
1918 return 0;
1919
1920 /* don't need lock here; in the worst case we'll do useless copy */
1921 if (fs->users == 1)
1922 return 0;
1923
1924 *new_fsp = copy_fs_struct(fs);
1925 if (!*new_fsp)
1926 return -ENOMEM;
1927
1928 return 0;
1929 }
1930
1931 /*
1932 * Unshare file descriptor table if it is being shared
1933 */
1934 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1935 {
1936 struct files_struct *fd = current->files;
1937 int error = 0;
1938
1939 if ((unshare_flags & CLONE_FILES) &&
1940 (fd && atomic_read(&fd->count) > 1)) {
1941 *new_fdp = dup_fd(fd, &error);
1942 if (!*new_fdp)
1943 return error;
1944 }
1945
1946 return 0;
1947 }
1948
1949 /*
1950 * unshare allows a process to 'unshare' part of the process
1951 * context which was originally shared using clone. copy_*
1952 * functions used by do_fork() cannot be used here directly
1953 * because they modify an inactive task_struct that is being
1954 * constructed. Here we are modifying the current, active,
1955 * task_struct.
1956 */
1957 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1958 {
1959 struct fs_struct *fs, *new_fs = NULL;
1960 struct files_struct *fd, *new_fd = NULL;
1961 struct cred *new_cred = NULL;
1962 struct nsproxy *new_nsproxy = NULL;
1963 int do_sysvsem = 0;
1964 int err;
1965
1966 /*
1967 * If unsharing a user namespace must also unshare the thread group
1968 * and unshare the filesystem root and working directories.
1969 */
1970 if (unshare_flags & CLONE_NEWUSER)
1971 unshare_flags |= CLONE_THREAD | CLONE_FS;
1972 /*
1973 * If unsharing vm, must also unshare signal handlers.
1974 */
1975 if (unshare_flags & CLONE_VM)
1976 unshare_flags |= CLONE_SIGHAND;
1977 /*
1978 * If unsharing a signal handlers, must also unshare the signal queues.
1979 */
1980 if (unshare_flags & CLONE_SIGHAND)
1981 unshare_flags |= CLONE_THREAD;
1982 /*
1983 * If unsharing namespace, must also unshare filesystem information.
1984 */
1985 if (unshare_flags & CLONE_NEWNS)
1986 unshare_flags |= CLONE_FS;
1987
1988 err = check_unshare_flags(unshare_flags);
1989 if (err)
1990 goto bad_unshare_out;
1991 /*
1992 * CLONE_NEWIPC must also detach from the undolist: after switching
1993 * to a new ipc namespace, the semaphore arrays from the old
1994 * namespace are unreachable.
1995 */
1996 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1997 do_sysvsem = 1;
1998 err = unshare_fs(unshare_flags, &new_fs);
1999 if (err)
2000 goto bad_unshare_out;
2001 err = unshare_fd(unshare_flags, &new_fd);
2002 if (err)
2003 goto bad_unshare_cleanup_fs;
2004 err = unshare_userns(unshare_flags, &new_cred);
2005 if (err)
2006 goto bad_unshare_cleanup_fd;
2007 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2008 new_cred, new_fs);
2009 if (err)
2010 goto bad_unshare_cleanup_cred;
2011
2012 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2013 if (do_sysvsem) {
2014 /*
2015 * CLONE_SYSVSEM is equivalent to sys_exit().
2016 */
2017 exit_sem(current);
2018 }
2019 if (unshare_flags & CLONE_NEWIPC) {
2020 /* Orphan segments in old ns (see sem above). */
2021 exit_shm(current);
2022 shm_init_task(current);
2023 }
2024
2025 if (new_nsproxy)
2026 switch_task_namespaces(current, new_nsproxy);
2027
2028 task_lock(current);
2029
2030 if (new_fs) {
2031 fs = current->fs;
2032 spin_lock(&fs->lock);
2033 current->fs = new_fs;
2034 if (--fs->users)
2035 new_fs = NULL;
2036 else
2037 new_fs = fs;
2038 spin_unlock(&fs->lock);
2039 }
2040
2041 if (new_fd) {
2042 fd = current->files;
2043 current->files = new_fd;
2044 new_fd = fd;
2045 }
2046
2047 task_unlock(current);
2048
2049 if (new_cred) {
2050 /* Install the new user namespace */
2051 commit_creds(new_cred);
2052 new_cred = NULL;
2053 }
2054 }
2055
2056 bad_unshare_cleanup_cred:
2057 if (new_cred)
2058 put_cred(new_cred);
2059 bad_unshare_cleanup_fd:
2060 if (new_fd)
2061 put_files_struct(new_fd);
2062
2063 bad_unshare_cleanup_fs:
2064 if (new_fs)
2065 free_fs_struct(new_fs);
2066
2067 bad_unshare_out:
2068 return err;
2069 }
2070
2071 /*
2072 * Helper to unshare the files of the current task.
2073 * We don't want to expose copy_files internals to
2074 * the exec layer of the kernel.
2075 */
2076
2077 int unshare_files(struct files_struct **displaced)
2078 {
2079 struct task_struct *task = current;
2080 struct files_struct *copy = NULL;
2081 int error;
2082
2083 error = unshare_fd(CLONE_FILES, &copy);
2084 if (error || !copy) {
2085 *displaced = NULL;
2086 return error;
2087 }
2088 *displaced = task->files;
2089 task_lock(task);
2090 task->files = copy;
2091 task_unlock(task);
2092 return 0;
2093 }
2094
2095 int sysctl_max_threads(struct ctl_table *table, int write,
2096 void __user *buffer, size_t *lenp, loff_t *ppos)
2097 {
2098 struct ctl_table t;
2099 int ret;
2100 int threads = max_threads;
2101 int min = MIN_THREADS;
2102 int max = MAX_THREADS;
2103
2104 t = *table;
2105 t.data = &threads;
2106 t.extra1 = &min;
2107 t.extra2 = &max;
2108
2109 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2110 if (ret || !write)
2111 return ret;
2112
2113 set_max_threads(threads);
2114
2115 return 0;
2116 }