]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/fork.c
rcu: Use wrapper function instead of exporting tasklist_lock
[mirror_ubuntu-zesty-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75
76 #include <trace/events/sched.h>
77
78 /*
79 * Protected counters by write_lock_irq(&tasklist_lock)
80 */
81 unsigned long total_forks; /* Handle normal Linux uptimes. */
82 int nr_threads; /* The idle threads do not count.. */
83
84 int max_threads; /* tunable limit on nr_threads */
85
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89
90 #ifdef CONFIG_PROVE_RCU
91 int lockdep_tasklist_lock_is_held(void)
92 {
93 return lockdep_is_held(&tasklist_lock);
94 }
95 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
96 #endif /* #ifdef CONFIG_PROVE_RCU */
97
98 int nr_processes(void)
99 {
100 int cpu;
101 int total = 0;
102
103 for_each_possible_cpu(cpu)
104 total += per_cpu(process_counts, cpu);
105
106 return total;
107 }
108
109 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
110 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
111 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
112 static struct kmem_cache *task_struct_cachep;
113 #endif
114
115 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
116 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
117 {
118 #ifdef CONFIG_DEBUG_STACK_USAGE
119 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
120 #else
121 gfp_t mask = GFP_KERNEL;
122 #endif
123 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
124 }
125
126 static inline void free_thread_info(struct thread_info *ti)
127 {
128 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
129 }
130 #endif
131
132 /* SLAB cache for signal_struct structures (tsk->signal) */
133 static struct kmem_cache *signal_cachep;
134
135 /* SLAB cache for sighand_struct structures (tsk->sighand) */
136 struct kmem_cache *sighand_cachep;
137
138 /* SLAB cache for files_struct structures (tsk->files) */
139 struct kmem_cache *files_cachep;
140
141 /* SLAB cache for fs_struct structures (tsk->fs) */
142 struct kmem_cache *fs_cachep;
143
144 /* SLAB cache for vm_area_struct structures */
145 struct kmem_cache *vm_area_cachep;
146
147 /* SLAB cache for mm_struct structures (tsk->mm) */
148 static struct kmem_cache *mm_cachep;
149
150 static void account_kernel_stack(struct thread_info *ti, int account)
151 {
152 struct zone *zone = page_zone(virt_to_page(ti));
153
154 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
155 }
156
157 void free_task(struct task_struct *tsk)
158 {
159 prop_local_destroy_single(&tsk->dirties);
160 account_kernel_stack(tsk->stack, -1);
161 free_thread_info(tsk->stack);
162 rt_mutex_debug_task_free(tsk);
163 ftrace_graph_exit_task(tsk);
164 free_task_struct(tsk);
165 }
166 EXPORT_SYMBOL(free_task);
167
168 void __put_task_struct(struct task_struct *tsk)
169 {
170 WARN_ON(!tsk->exit_state);
171 WARN_ON(atomic_read(&tsk->usage));
172 WARN_ON(tsk == current);
173
174 exit_creds(tsk);
175 delayacct_tsk_free(tsk);
176
177 if (!profile_handoff_task(tsk))
178 free_task(tsk);
179 }
180
181 /*
182 * macro override instead of weak attribute alias, to workaround
183 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
184 */
185 #ifndef arch_task_cache_init
186 #define arch_task_cache_init()
187 #endif
188
189 void __init fork_init(unsigned long mempages)
190 {
191 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
192 #ifndef ARCH_MIN_TASKALIGN
193 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
194 #endif
195 /* create a slab on which task_structs can be allocated */
196 task_struct_cachep =
197 kmem_cache_create("task_struct", sizeof(struct task_struct),
198 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
199 #endif
200
201 /* do the arch specific task caches init */
202 arch_task_cache_init();
203
204 /*
205 * The default maximum number of threads is set to a safe
206 * value: the thread structures can take up at most half
207 * of memory.
208 */
209 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
210
211 /*
212 * we need to allow at least 20 threads to boot a system
213 */
214 if(max_threads < 20)
215 max_threads = 20;
216
217 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
218 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
219 init_task.signal->rlim[RLIMIT_SIGPENDING] =
220 init_task.signal->rlim[RLIMIT_NPROC];
221 }
222
223 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
224 struct task_struct *src)
225 {
226 *dst = *src;
227 return 0;
228 }
229
230 static struct task_struct *dup_task_struct(struct task_struct *orig)
231 {
232 struct task_struct *tsk;
233 struct thread_info *ti;
234 unsigned long *stackend;
235
236 int err;
237
238 prepare_to_copy(orig);
239
240 tsk = alloc_task_struct();
241 if (!tsk)
242 return NULL;
243
244 ti = alloc_thread_info(tsk);
245 if (!ti) {
246 free_task_struct(tsk);
247 return NULL;
248 }
249
250 err = arch_dup_task_struct(tsk, orig);
251 if (err)
252 goto out;
253
254 tsk->stack = ti;
255
256 err = prop_local_init_single(&tsk->dirties);
257 if (err)
258 goto out;
259
260 setup_thread_stack(tsk, orig);
261 clear_user_return_notifier(tsk);
262 stackend = end_of_stack(tsk);
263 *stackend = STACK_END_MAGIC; /* for overflow detection */
264
265 #ifdef CONFIG_CC_STACKPROTECTOR
266 tsk->stack_canary = get_random_int();
267 #endif
268
269 /* One for us, one for whoever does the "release_task()" (usually parent) */
270 atomic_set(&tsk->usage,2);
271 atomic_set(&tsk->fs_excl, 0);
272 #ifdef CONFIG_BLK_DEV_IO_TRACE
273 tsk->btrace_seq = 0;
274 #endif
275 tsk->splice_pipe = NULL;
276
277 account_kernel_stack(ti, 1);
278
279 return tsk;
280
281 out:
282 free_thread_info(ti);
283 free_task_struct(tsk);
284 return NULL;
285 }
286
287 #ifdef CONFIG_MMU
288 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
289 {
290 struct vm_area_struct *mpnt, *tmp, **pprev;
291 struct rb_node **rb_link, *rb_parent;
292 int retval;
293 unsigned long charge;
294 struct mempolicy *pol;
295
296 down_write(&oldmm->mmap_sem);
297 flush_cache_dup_mm(oldmm);
298 /*
299 * Not linked in yet - no deadlock potential:
300 */
301 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
302
303 mm->locked_vm = 0;
304 mm->mmap = NULL;
305 mm->mmap_cache = NULL;
306 mm->free_area_cache = oldmm->mmap_base;
307 mm->cached_hole_size = ~0UL;
308 mm->map_count = 0;
309 cpumask_clear(mm_cpumask(mm));
310 mm->mm_rb = RB_ROOT;
311 rb_link = &mm->mm_rb.rb_node;
312 rb_parent = NULL;
313 pprev = &mm->mmap;
314 retval = ksm_fork(mm, oldmm);
315 if (retval)
316 goto out;
317
318 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
319 struct file *file;
320
321 if (mpnt->vm_flags & VM_DONTCOPY) {
322 long pages = vma_pages(mpnt);
323 mm->total_vm -= pages;
324 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
325 -pages);
326 continue;
327 }
328 charge = 0;
329 if (mpnt->vm_flags & VM_ACCOUNT) {
330 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
331 if (security_vm_enough_memory(len))
332 goto fail_nomem;
333 charge = len;
334 }
335 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
336 if (!tmp)
337 goto fail_nomem;
338 *tmp = *mpnt;
339 pol = mpol_dup(vma_policy(mpnt));
340 retval = PTR_ERR(pol);
341 if (IS_ERR(pol))
342 goto fail_nomem_policy;
343 vma_set_policy(tmp, pol);
344 tmp->vm_flags &= ~VM_LOCKED;
345 tmp->vm_mm = mm;
346 tmp->vm_next = NULL;
347 anon_vma_link(tmp);
348 file = tmp->vm_file;
349 if (file) {
350 struct inode *inode = file->f_path.dentry->d_inode;
351 struct address_space *mapping = file->f_mapping;
352
353 get_file(file);
354 if (tmp->vm_flags & VM_DENYWRITE)
355 atomic_dec(&inode->i_writecount);
356 spin_lock(&mapping->i_mmap_lock);
357 if (tmp->vm_flags & VM_SHARED)
358 mapping->i_mmap_writable++;
359 tmp->vm_truncate_count = mpnt->vm_truncate_count;
360 flush_dcache_mmap_lock(mapping);
361 /* insert tmp into the share list, just after mpnt */
362 vma_prio_tree_add(tmp, mpnt);
363 flush_dcache_mmap_unlock(mapping);
364 spin_unlock(&mapping->i_mmap_lock);
365 }
366
367 /*
368 * Clear hugetlb-related page reserves for children. This only
369 * affects MAP_PRIVATE mappings. Faults generated by the child
370 * are not guaranteed to succeed, even if read-only
371 */
372 if (is_vm_hugetlb_page(tmp))
373 reset_vma_resv_huge_pages(tmp);
374
375 /*
376 * Link in the new vma and copy the page table entries.
377 */
378 *pprev = tmp;
379 pprev = &tmp->vm_next;
380
381 __vma_link_rb(mm, tmp, rb_link, rb_parent);
382 rb_link = &tmp->vm_rb.rb_right;
383 rb_parent = &tmp->vm_rb;
384
385 mm->map_count++;
386 retval = copy_page_range(mm, oldmm, mpnt);
387
388 if (tmp->vm_ops && tmp->vm_ops->open)
389 tmp->vm_ops->open(tmp);
390
391 if (retval)
392 goto out;
393 }
394 /* a new mm has just been created */
395 arch_dup_mmap(oldmm, mm);
396 retval = 0;
397 out:
398 up_write(&mm->mmap_sem);
399 flush_tlb_mm(oldmm);
400 up_write(&oldmm->mmap_sem);
401 return retval;
402 fail_nomem_policy:
403 kmem_cache_free(vm_area_cachep, tmp);
404 fail_nomem:
405 retval = -ENOMEM;
406 vm_unacct_memory(charge);
407 goto out;
408 }
409
410 static inline int mm_alloc_pgd(struct mm_struct * mm)
411 {
412 mm->pgd = pgd_alloc(mm);
413 if (unlikely(!mm->pgd))
414 return -ENOMEM;
415 return 0;
416 }
417
418 static inline void mm_free_pgd(struct mm_struct * mm)
419 {
420 pgd_free(mm, mm->pgd);
421 }
422 #else
423 #define dup_mmap(mm, oldmm) (0)
424 #define mm_alloc_pgd(mm) (0)
425 #define mm_free_pgd(mm)
426 #endif /* CONFIG_MMU */
427
428 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
429
430 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
431 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
432
433 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
434
435 static int __init coredump_filter_setup(char *s)
436 {
437 default_dump_filter =
438 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
439 MMF_DUMP_FILTER_MASK;
440 return 1;
441 }
442
443 __setup("coredump_filter=", coredump_filter_setup);
444
445 #include <linux/init_task.h>
446
447 static void mm_init_aio(struct mm_struct *mm)
448 {
449 #ifdef CONFIG_AIO
450 spin_lock_init(&mm->ioctx_lock);
451 INIT_HLIST_HEAD(&mm->ioctx_list);
452 #endif
453 }
454
455 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
456 {
457 atomic_set(&mm->mm_users, 1);
458 atomic_set(&mm->mm_count, 1);
459 init_rwsem(&mm->mmap_sem);
460 INIT_LIST_HEAD(&mm->mmlist);
461 mm->flags = (current->mm) ?
462 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
463 mm->core_state = NULL;
464 mm->nr_ptes = 0;
465 set_mm_counter(mm, file_rss, 0);
466 set_mm_counter(mm, anon_rss, 0);
467 spin_lock_init(&mm->page_table_lock);
468 mm->free_area_cache = TASK_UNMAPPED_BASE;
469 mm->cached_hole_size = ~0UL;
470 mm_init_aio(mm);
471 mm_init_owner(mm, p);
472
473 if (likely(!mm_alloc_pgd(mm))) {
474 mm->def_flags = 0;
475 mmu_notifier_mm_init(mm);
476 return mm;
477 }
478
479 free_mm(mm);
480 return NULL;
481 }
482
483 /*
484 * Allocate and initialize an mm_struct.
485 */
486 struct mm_struct * mm_alloc(void)
487 {
488 struct mm_struct * mm;
489
490 mm = allocate_mm();
491 if (mm) {
492 memset(mm, 0, sizeof(*mm));
493 mm = mm_init(mm, current);
494 }
495 return mm;
496 }
497
498 /*
499 * Called when the last reference to the mm
500 * is dropped: either by a lazy thread or by
501 * mmput. Free the page directory and the mm.
502 */
503 void __mmdrop(struct mm_struct *mm)
504 {
505 BUG_ON(mm == &init_mm);
506 mm_free_pgd(mm);
507 destroy_context(mm);
508 mmu_notifier_mm_destroy(mm);
509 free_mm(mm);
510 }
511 EXPORT_SYMBOL_GPL(__mmdrop);
512
513 /*
514 * Decrement the use count and release all resources for an mm.
515 */
516 void mmput(struct mm_struct *mm)
517 {
518 might_sleep();
519
520 if (atomic_dec_and_test(&mm->mm_users)) {
521 exit_aio(mm);
522 ksm_exit(mm);
523 exit_mmap(mm);
524 set_mm_exe_file(mm, NULL);
525 if (!list_empty(&mm->mmlist)) {
526 spin_lock(&mmlist_lock);
527 list_del(&mm->mmlist);
528 spin_unlock(&mmlist_lock);
529 }
530 put_swap_token(mm);
531 if (mm->binfmt)
532 module_put(mm->binfmt->module);
533 mmdrop(mm);
534 }
535 }
536 EXPORT_SYMBOL_GPL(mmput);
537
538 /**
539 * get_task_mm - acquire a reference to the task's mm
540 *
541 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
542 * this kernel workthread has transiently adopted a user mm with use_mm,
543 * to do its AIO) is not set and if so returns a reference to it, after
544 * bumping up the use count. User must release the mm via mmput()
545 * after use. Typically used by /proc and ptrace.
546 */
547 struct mm_struct *get_task_mm(struct task_struct *task)
548 {
549 struct mm_struct *mm;
550
551 task_lock(task);
552 mm = task->mm;
553 if (mm) {
554 if (task->flags & PF_KTHREAD)
555 mm = NULL;
556 else
557 atomic_inc(&mm->mm_users);
558 }
559 task_unlock(task);
560 return mm;
561 }
562 EXPORT_SYMBOL_GPL(get_task_mm);
563
564 /* Please note the differences between mmput and mm_release.
565 * mmput is called whenever we stop holding onto a mm_struct,
566 * error success whatever.
567 *
568 * mm_release is called after a mm_struct has been removed
569 * from the current process.
570 *
571 * This difference is important for error handling, when we
572 * only half set up a mm_struct for a new process and need to restore
573 * the old one. Because we mmput the new mm_struct before
574 * restoring the old one. . .
575 * Eric Biederman 10 January 1998
576 */
577 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
578 {
579 struct completion *vfork_done = tsk->vfork_done;
580
581 /* Get rid of any futexes when releasing the mm */
582 #ifdef CONFIG_FUTEX
583 if (unlikely(tsk->robust_list)) {
584 exit_robust_list(tsk);
585 tsk->robust_list = NULL;
586 }
587 #ifdef CONFIG_COMPAT
588 if (unlikely(tsk->compat_robust_list)) {
589 compat_exit_robust_list(tsk);
590 tsk->compat_robust_list = NULL;
591 }
592 #endif
593 if (unlikely(!list_empty(&tsk->pi_state_list)))
594 exit_pi_state_list(tsk);
595 #endif
596
597 /* Get rid of any cached register state */
598 deactivate_mm(tsk, mm);
599
600 /* notify parent sleeping on vfork() */
601 if (vfork_done) {
602 tsk->vfork_done = NULL;
603 complete(vfork_done);
604 }
605
606 /*
607 * If we're exiting normally, clear a user-space tid field if
608 * requested. We leave this alone when dying by signal, to leave
609 * the value intact in a core dump, and to save the unnecessary
610 * trouble otherwise. Userland only wants this done for a sys_exit.
611 */
612 if (tsk->clear_child_tid) {
613 if (!(tsk->flags & PF_SIGNALED) &&
614 atomic_read(&mm->mm_users) > 1) {
615 /*
616 * We don't check the error code - if userspace has
617 * not set up a proper pointer then tough luck.
618 */
619 put_user(0, tsk->clear_child_tid);
620 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
621 1, NULL, NULL, 0);
622 }
623 tsk->clear_child_tid = NULL;
624 }
625 }
626
627 /*
628 * Allocate a new mm structure and copy contents from the
629 * mm structure of the passed in task structure.
630 */
631 struct mm_struct *dup_mm(struct task_struct *tsk)
632 {
633 struct mm_struct *mm, *oldmm = current->mm;
634 int err;
635
636 if (!oldmm)
637 return NULL;
638
639 mm = allocate_mm();
640 if (!mm)
641 goto fail_nomem;
642
643 memcpy(mm, oldmm, sizeof(*mm));
644
645 /* Initializing for Swap token stuff */
646 mm->token_priority = 0;
647 mm->last_interval = 0;
648
649 if (!mm_init(mm, tsk))
650 goto fail_nomem;
651
652 if (init_new_context(tsk, mm))
653 goto fail_nocontext;
654
655 dup_mm_exe_file(oldmm, mm);
656
657 err = dup_mmap(mm, oldmm);
658 if (err)
659 goto free_pt;
660
661 mm->hiwater_rss = get_mm_rss(mm);
662 mm->hiwater_vm = mm->total_vm;
663
664 if (mm->binfmt && !try_module_get(mm->binfmt->module))
665 goto free_pt;
666
667 return mm;
668
669 free_pt:
670 /* don't put binfmt in mmput, we haven't got module yet */
671 mm->binfmt = NULL;
672 mmput(mm);
673
674 fail_nomem:
675 return NULL;
676
677 fail_nocontext:
678 /*
679 * If init_new_context() failed, we cannot use mmput() to free the mm
680 * because it calls destroy_context()
681 */
682 mm_free_pgd(mm);
683 free_mm(mm);
684 return NULL;
685 }
686
687 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
688 {
689 struct mm_struct * mm, *oldmm;
690 int retval;
691
692 tsk->min_flt = tsk->maj_flt = 0;
693 tsk->nvcsw = tsk->nivcsw = 0;
694 #ifdef CONFIG_DETECT_HUNG_TASK
695 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
696 #endif
697
698 tsk->mm = NULL;
699 tsk->active_mm = NULL;
700
701 /*
702 * Are we cloning a kernel thread?
703 *
704 * We need to steal a active VM for that..
705 */
706 oldmm = current->mm;
707 if (!oldmm)
708 return 0;
709
710 if (clone_flags & CLONE_VM) {
711 atomic_inc(&oldmm->mm_users);
712 mm = oldmm;
713 goto good_mm;
714 }
715
716 retval = -ENOMEM;
717 mm = dup_mm(tsk);
718 if (!mm)
719 goto fail_nomem;
720
721 good_mm:
722 /* Initializing for Swap token stuff */
723 mm->token_priority = 0;
724 mm->last_interval = 0;
725
726 tsk->mm = mm;
727 tsk->active_mm = mm;
728 return 0;
729
730 fail_nomem:
731 return retval;
732 }
733
734 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
735 {
736 struct fs_struct *fs = current->fs;
737 if (clone_flags & CLONE_FS) {
738 /* tsk->fs is already what we want */
739 write_lock(&fs->lock);
740 if (fs->in_exec) {
741 write_unlock(&fs->lock);
742 return -EAGAIN;
743 }
744 fs->users++;
745 write_unlock(&fs->lock);
746 return 0;
747 }
748 tsk->fs = copy_fs_struct(fs);
749 if (!tsk->fs)
750 return -ENOMEM;
751 return 0;
752 }
753
754 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
755 {
756 struct files_struct *oldf, *newf;
757 int error = 0;
758
759 /*
760 * A background process may not have any files ...
761 */
762 oldf = current->files;
763 if (!oldf)
764 goto out;
765
766 if (clone_flags & CLONE_FILES) {
767 atomic_inc(&oldf->count);
768 goto out;
769 }
770
771 newf = dup_fd(oldf, &error);
772 if (!newf)
773 goto out;
774
775 tsk->files = newf;
776 error = 0;
777 out:
778 return error;
779 }
780
781 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
782 {
783 #ifdef CONFIG_BLOCK
784 struct io_context *ioc = current->io_context;
785
786 if (!ioc)
787 return 0;
788 /*
789 * Share io context with parent, if CLONE_IO is set
790 */
791 if (clone_flags & CLONE_IO) {
792 tsk->io_context = ioc_task_link(ioc);
793 if (unlikely(!tsk->io_context))
794 return -ENOMEM;
795 } else if (ioprio_valid(ioc->ioprio)) {
796 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
797 if (unlikely(!tsk->io_context))
798 return -ENOMEM;
799
800 tsk->io_context->ioprio = ioc->ioprio;
801 }
802 #endif
803 return 0;
804 }
805
806 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
807 {
808 struct sighand_struct *sig;
809
810 if (clone_flags & CLONE_SIGHAND) {
811 atomic_inc(&current->sighand->count);
812 return 0;
813 }
814 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
815 rcu_assign_pointer(tsk->sighand, sig);
816 if (!sig)
817 return -ENOMEM;
818 atomic_set(&sig->count, 1);
819 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
820 return 0;
821 }
822
823 void __cleanup_sighand(struct sighand_struct *sighand)
824 {
825 if (atomic_dec_and_test(&sighand->count))
826 kmem_cache_free(sighand_cachep, sighand);
827 }
828
829
830 /*
831 * Initialize POSIX timer handling for a thread group.
832 */
833 static void posix_cpu_timers_init_group(struct signal_struct *sig)
834 {
835 /* Thread group counters. */
836 thread_group_cputime_init(sig);
837
838 /* Expiration times and increments. */
839 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
840 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
841 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
842 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
843
844 /* Cached expiration times. */
845 sig->cputime_expires.prof_exp = cputime_zero;
846 sig->cputime_expires.virt_exp = cputime_zero;
847 sig->cputime_expires.sched_exp = 0;
848
849 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
850 sig->cputime_expires.prof_exp =
851 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
852 sig->cputimer.running = 1;
853 }
854
855 /* The timer lists. */
856 INIT_LIST_HEAD(&sig->cpu_timers[0]);
857 INIT_LIST_HEAD(&sig->cpu_timers[1]);
858 INIT_LIST_HEAD(&sig->cpu_timers[2]);
859 }
860
861 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
862 {
863 struct signal_struct *sig;
864
865 if (clone_flags & CLONE_THREAD)
866 return 0;
867
868 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
869 tsk->signal = sig;
870 if (!sig)
871 return -ENOMEM;
872
873 atomic_set(&sig->count, 1);
874 atomic_set(&sig->live, 1);
875 init_waitqueue_head(&sig->wait_chldexit);
876 sig->flags = 0;
877 if (clone_flags & CLONE_NEWPID)
878 sig->flags |= SIGNAL_UNKILLABLE;
879 sig->group_exit_code = 0;
880 sig->group_exit_task = NULL;
881 sig->group_stop_count = 0;
882 sig->curr_target = tsk;
883 init_sigpending(&sig->shared_pending);
884 INIT_LIST_HEAD(&sig->posix_timers);
885
886 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
887 sig->it_real_incr.tv64 = 0;
888 sig->real_timer.function = it_real_fn;
889
890 sig->leader = 0; /* session leadership doesn't inherit */
891 sig->tty_old_pgrp = NULL;
892 sig->tty = NULL;
893
894 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
895 sig->gtime = cputime_zero;
896 sig->cgtime = cputime_zero;
897 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
898 sig->prev_utime = sig->prev_stime = cputime_zero;
899 #endif
900 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
901 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
902 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
903 sig->maxrss = sig->cmaxrss = 0;
904 task_io_accounting_init(&sig->ioac);
905 sig->sum_sched_runtime = 0;
906 taskstats_tgid_init(sig);
907
908 task_lock(current->group_leader);
909 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
910 task_unlock(current->group_leader);
911
912 posix_cpu_timers_init_group(sig);
913
914 acct_init_pacct(&sig->pacct);
915
916 tty_audit_fork(sig);
917
918 sig->oom_adj = current->signal->oom_adj;
919
920 return 0;
921 }
922
923 void __cleanup_signal(struct signal_struct *sig)
924 {
925 thread_group_cputime_free(sig);
926 tty_kref_put(sig->tty);
927 kmem_cache_free(signal_cachep, sig);
928 }
929
930 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
931 {
932 unsigned long new_flags = p->flags;
933
934 new_flags &= ~PF_SUPERPRIV;
935 new_flags |= PF_FORKNOEXEC;
936 new_flags |= PF_STARTING;
937 p->flags = new_flags;
938 clear_freeze_flag(p);
939 }
940
941 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
942 {
943 current->clear_child_tid = tidptr;
944
945 return task_pid_vnr(current);
946 }
947
948 static void rt_mutex_init_task(struct task_struct *p)
949 {
950 raw_spin_lock_init(&p->pi_lock);
951 #ifdef CONFIG_RT_MUTEXES
952 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
953 p->pi_blocked_on = NULL;
954 #endif
955 }
956
957 #ifdef CONFIG_MM_OWNER
958 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
959 {
960 mm->owner = p;
961 }
962 #endif /* CONFIG_MM_OWNER */
963
964 /*
965 * Initialize POSIX timer handling for a single task.
966 */
967 static void posix_cpu_timers_init(struct task_struct *tsk)
968 {
969 tsk->cputime_expires.prof_exp = cputime_zero;
970 tsk->cputime_expires.virt_exp = cputime_zero;
971 tsk->cputime_expires.sched_exp = 0;
972 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
973 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
974 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
975 }
976
977 /*
978 * This creates a new process as a copy of the old one,
979 * but does not actually start it yet.
980 *
981 * It copies the registers, and all the appropriate
982 * parts of the process environment (as per the clone
983 * flags). The actual kick-off is left to the caller.
984 */
985 static struct task_struct *copy_process(unsigned long clone_flags,
986 unsigned long stack_start,
987 struct pt_regs *regs,
988 unsigned long stack_size,
989 int __user *child_tidptr,
990 struct pid *pid,
991 int trace)
992 {
993 int retval;
994 struct task_struct *p;
995 int cgroup_callbacks_done = 0;
996
997 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
998 return ERR_PTR(-EINVAL);
999
1000 /*
1001 * Thread groups must share signals as well, and detached threads
1002 * can only be started up within the thread group.
1003 */
1004 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1005 return ERR_PTR(-EINVAL);
1006
1007 /*
1008 * Shared signal handlers imply shared VM. By way of the above,
1009 * thread groups also imply shared VM. Blocking this case allows
1010 * for various simplifications in other code.
1011 */
1012 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1013 return ERR_PTR(-EINVAL);
1014
1015 /*
1016 * Siblings of global init remain as zombies on exit since they are
1017 * not reaped by their parent (swapper). To solve this and to avoid
1018 * multi-rooted process trees, prevent global and container-inits
1019 * from creating siblings.
1020 */
1021 if ((clone_flags & CLONE_PARENT) &&
1022 current->signal->flags & SIGNAL_UNKILLABLE)
1023 return ERR_PTR(-EINVAL);
1024
1025 retval = security_task_create(clone_flags);
1026 if (retval)
1027 goto fork_out;
1028
1029 retval = -ENOMEM;
1030 p = dup_task_struct(current);
1031 if (!p)
1032 goto fork_out;
1033
1034 ftrace_graph_init_task(p);
1035
1036 rt_mutex_init_task(p);
1037
1038 #ifdef CONFIG_PROVE_LOCKING
1039 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1040 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1041 #endif
1042 retval = -EAGAIN;
1043 if (atomic_read(&p->real_cred->user->processes) >=
1044 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1045 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1046 p->real_cred->user != INIT_USER)
1047 goto bad_fork_free;
1048 }
1049
1050 retval = copy_creds(p, clone_flags);
1051 if (retval < 0)
1052 goto bad_fork_free;
1053
1054 /*
1055 * If multiple threads are within copy_process(), then this check
1056 * triggers too late. This doesn't hurt, the check is only there
1057 * to stop root fork bombs.
1058 */
1059 retval = -EAGAIN;
1060 if (nr_threads >= max_threads)
1061 goto bad_fork_cleanup_count;
1062
1063 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1064 goto bad_fork_cleanup_count;
1065
1066 p->did_exec = 0;
1067 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1068 copy_flags(clone_flags, p);
1069 INIT_LIST_HEAD(&p->children);
1070 INIT_LIST_HEAD(&p->sibling);
1071 rcu_copy_process(p);
1072 p->vfork_done = NULL;
1073 spin_lock_init(&p->alloc_lock);
1074
1075 init_sigpending(&p->pending);
1076
1077 p->utime = cputime_zero;
1078 p->stime = cputime_zero;
1079 p->gtime = cputime_zero;
1080 p->utimescaled = cputime_zero;
1081 p->stimescaled = cputime_zero;
1082 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1083 p->prev_utime = cputime_zero;
1084 p->prev_stime = cputime_zero;
1085 #endif
1086
1087 p->default_timer_slack_ns = current->timer_slack_ns;
1088
1089 task_io_accounting_init(&p->ioac);
1090 acct_clear_integrals(p);
1091
1092 posix_cpu_timers_init(p);
1093
1094 p->lock_depth = -1; /* -1 = no lock */
1095 do_posix_clock_monotonic_gettime(&p->start_time);
1096 p->real_start_time = p->start_time;
1097 monotonic_to_bootbased(&p->real_start_time);
1098 p->io_context = NULL;
1099 p->audit_context = NULL;
1100 cgroup_fork(p);
1101 #ifdef CONFIG_NUMA
1102 p->mempolicy = mpol_dup(p->mempolicy);
1103 if (IS_ERR(p->mempolicy)) {
1104 retval = PTR_ERR(p->mempolicy);
1105 p->mempolicy = NULL;
1106 goto bad_fork_cleanup_cgroup;
1107 }
1108 mpol_fix_fork_child_flag(p);
1109 #endif
1110 #ifdef CONFIG_TRACE_IRQFLAGS
1111 p->irq_events = 0;
1112 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1113 p->hardirqs_enabled = 1;
1114 #else
1115 p->hardirqs_enabled = 0;
1116 #endif
1117 p->hardirq_enable_ip = 0;
1118 p->hardirq_enable_event = 0;
1119 p->hardirq_disable_ip = _THIS_IP_;
1120 p->hardirq_disable_event = 0;
1121 p->softirqs_enabled = 1;
1122 p->softirq_enable_ip = _THIS_IP_;
1123 p->softirq_enable_event = 0;
1124 p->softirq_disable_ip = 0;
1125 p->softirq_disable_event = 0;
1126 p->hardirq_context = 0;
1127 p->softirq_context = 0;
1128 #endif
1129 #ifdef CONFIG_LOCKDEP
1130 p->lockdep_depth = 0; /* no locks held yet */
1131 p->curr_chain_key = 0;
1132 p->lockdep_recursion = 0;
1133 #endif
1134
1135 #ifdef CONFIG_DEBUG_MUTEXES
1136 p->blocked_on = NULL; /* not blocked yet */
1137 #endif
1138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1139 p->memcg_batch.do_batch = 0;
1140 p->memcg_batch.memcg = NULL;
1141 #endif
1142
1143 p->bts = NULL;
1144
1145 p->stack_start = stack_start;
1146
1147 /* Perform scheduler related setup. Assign this task to a CPU. */
1148 sched_fork(p, clone_flags);
1149
1150 retval = perf_event_init_task(p);
1151 if (retval)
1152 goto bad_fork_cleanup_policy;
1153
1154 if ((retval = audit_alloc(p)))
1155 goto bad_fork_cleanup_policy;
1156 /* copy all the process information */
1157 if ((retval = copy_semundo(clone_flags, p)))
1158 goto bad_fork_cleanup_audit;
1159 if ((retval = copy_files(clone_flags, p)))
1160 goto bad_fork_cleanup_semundo;
1161 if ((retval = copy_fs(clone_flags, p)))
1162 goto bad_fork_cleanup_files;
1163 if ((retval = copy_sighand(clone_flags, p)))
1164 goto bad_fork_cleanup_fs;
1165 if ((retval = copy_signal(clone_flags, p)))
1166 goto bad_fork_cleanup_sighand;
1167 if ((retval = copy_mm(clone_flags, p)))
1168 goto bad_fork_cleanup_signal;
1169 if ((retval = copy_namespaces(clone_flags, p)))
1170 goto bad_fork_cleanup_mm;
1171 if ((retval = copy_io(clone_flags, p)))
1172 goto bad_fork_cleanup_namespaces;
1173 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1174 if (retval)
1175 goto bad_fork_cleanup_io;
1176
1177 if (pid != &init_struct_pid) {
1178 retval = -ENOMEM;
1179 pid = alloc_pid(p->nsproxy->pid_ns);
1180 if (!pid)
1181 goto bad_fork_cleanup_io;
1182
1183 if (clone_flags & CLONE_NEWPID) {
1184 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1185 if (retval < 0)
1186 goto bad_fork_free_pid;
1187 }
1188 }
1189
1190 p->pid = pid_nr(pid);
1191 p->tgid = p->pid;
1192 if (clone_flags & CLONE_THREAD)
1193 p->tgid = current->tgid;
1194
1195 if (current->nsproxy != p->nsproxy) {
1196 retval = ns_cgroup_clone(p, pid);
1197 if (retval)
1198 goto bad_fork_free_pid;
1199 }
1200
1201 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1202 /*
1203 * Clear TID on mm_release()?
1204 */
1205 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1206 #ifdef CONFIG_FUTEX
1207 p->robust_list = NULL;
1208 #ifdef CONFIG_COMPAT
1209 p->compat_robust_list = NULL;
1210 #endif
1211 INIT_LIST_HEAD(&p->pi_state_list);
1212 p->pi_state_cache = NULL;
1213 #endif
1214 /*
1215 * sigaltstack should be cleared when sharing the same VM
1216 */
1217 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1218 p->sas_ss_sp = p->sas_ss_size = 0;
1219
1220 /*
1221 * Syscall tracing and stepping should be turned off in the
1222 * child regardless of CLONE_PTRACE.
1223 */
1224 user_disable_single_step(p);
1225 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1226 #ifdef TIF_SYSCALL_EMU
1227 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1228 #endif
1229 clear_all_latency_tracing(p);
1230
1231 /* ok, now we should be set up.. */
1232 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1233 p->pdeath_signal = 0;
1234 p->exit_state = 0;
1235
1236 /*
1237 * Ok, make it visible to the rest of the system.
1238 * We dont wake it up yet.
1239 */
1240 p->group_leader = p;
1241 INIT_LIST_HEAD(&p->thread_group);
1242
1243 /* Now that the task is set up, run cgroup callbacks if
1244 * necessary. We need to run them before the task is visible
1245 * on the tasklist. */
1246 cgroup_fork_callbacks(p);
1247 cgroup_callbacks_done = 1;
1248
1249 /* Need tasklist lock for parent etc handling! */
1250 write_lock_irq(&tasklist_lock);
1251
1252 /* CLONE_PARENT re-uses the old parent */
1253 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1254 p->real_parent = current->real_parent;
1255 p->parent_exec_id = current->parent_exec_id;
1256 } else {
1257 p->real_parent = current;
1258 p->parent_exec_id = current->self_exec_id;
1259 }
1260
1261 spin_lock(&current->sighand->siglock);
1262
1263 /*
1264 * Process group and session signals need to be delivered to just the
1265 * parent before the fork or both the parent and the child after the
1266 * fork. Restart if a signal comes in before we add the new process to
1267 * it's process group.
1268 * A fatal signal pending means that current will exit, so the new
1269 * thread can't slip out of an OOM kill (or normal SIGKILL).
1270 */
1271 recalc_sigpending();
1272 if (signal_pending(current)) {
1273 spin_unlock(&current->sighand->siglock);
1274 write_unlock_irq(&tasklist_lock);
1275 retval = -ERESTARTNOINTR;
1276 goto bad_fork_free_pid;
1277 }
1278
1279 if (clone_flags & CLONE_THREAD) {
1280 atomic_inc(&current->signal->count);
1281 atomic_inc(&current->signal->live);
1282 p->group_leader = current->group_leader;
1283 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1284 }
1285
1286 if (likely(p->pid)) {
1287 tracehook_finish_clone(p, clone_flags, trace);
1288
1289 if (thread_group_leader(p)) {
1290 if (clone_flags & CLONE_NEWPID)
1291 p->nsproxy->pid_ns->child_reaper = p;
1292
1293 p->signal->leader_pid = pid;
1294 tty_kref_put(p->signal->tty);
1295 p->signal->tty = tty_kref_get(current->signal->tty);
1296 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1297 attach_pid(p, PIDTYPE_SID, task_session(current));
1298 list_add_tail(&p->sibling, &p->real_parent->children);
1299 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1300 __get_cpu_var(process_counts)++;
1301 }
1302 attach_pid(p, PIDTYPE_PID, pid);
1303 nr_threads++;
1304 }
1305
1306 total_forks++;
1307 spin_unlock(&current->sighand->siglock);
1308 write_unlock_irq(&tasklist_lock);
1309 proc_fork_connector(p);
1310 cgroup_post_fork(p);
1311 perf_event_fork(p);
1312 return p;
1313
1314 bad_fork_free_pid:
1315 if (pid != &init_struct_pid)
1316 free_pid(pid);
1317 bad_fork_cleanup_io:
1318 if (p->io_context)
1319 exit_io_context(p);
1320 bad_fork_cleanup_namespaces:
1321 exit_task_namespaces(p);
1322 bad_fork_cleanup_mm:
1323 if (p->mm)
1324 mmput(p->mm);
1325 bad_fork_cleanup_signal:
1326 if (!(clone_flags & CLONE_THREAD))
1327 __cleanup_signal(p->signal);
1328 bad_fork_cleanup_sighand:
1329 __cleanup_sighand(p->sighand);
1330 bad_fork_cleanup_fs:
1331 exit_fs(p); /* blocking */
1332 bad_fork_cleanup_files:
1333 exit_files(p); /* blocking */
1334 bad_fork_cleanup_semundo:
1335 exit_sem(p);
1336 bad_fork_cleanup_audit:
1337 audit_free(p);
1338 bad_fork_cleanup_policy:
1339 perf_event_free_task(p);
1340 #ifdef CONFIG_NUMA
1341 mpol_put(p->mempolicy);
1342 bad_fork_cleanup_cgroup:
1343 #endif
1344 cgroup_exit(p, cgroup_callbacks_done);
1345 delayacct_tsk_free(p);
1346 module_put(task_thread_info(p)->exec_domain->module);
1347 bad_fork_cleanup_count:
1348 atomic_dec(&p->cred->user->processes);
1349 exit_creds(p);
1350 bad_fork_free:
1351 free_task(p);
1352 fork_out:
1353 return ERR_PTR(retval);
1354 }
1355
1356 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1357 {
1358 memset(regs, 0, sizeof(struct pt_regs));
1359 return regs;
1360 }
1361
1362 struct task_struct * __cpuinit fork_idle(int cpu)
1363 {
1364 struct task_struct *task;
1365 struct pt_regs regs;
1366
1367 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1368 &init_struct_pid, 0);
1369 if (!IS_ERR(task))
1370 init_idle(task, cpu);
1371
1372 return task;
1373 }
1374
1375 /*
1376 * Ok, this is the main fork-routine.
1377 *
1378 * It copies the process, and if successful kick-starts
1379 * it and waits for it to finish using the VM if required.
1380 */
1381 long do_fork(unsigned long clone_flags,
1382 unsigned long stack_start,
1383 struct pt_regs *regs,
1384 unsigned long stack_size,
1385 int __user *parent_tidptr,
1386 int __user *child_tidptr)
1387 {
1388 struct task_struct *p;
1389 int trace = 0;
1390 long nr;
1391
1392 /*
1393 * Do some preliminary argument and permissions checking before we
1394 * actually start allocating stuff
1395 */
1396 if (clone_flags & CLONE_NEWUSER) {
1397 if (clone_flags & CLONE_THREAD)
1398 return -EINVAL;
1399 /* hopefully this check will go away when userns support is
1400 * complete
1401 */
1402 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1403 !capable(CAP_SETGID))
1404 return -EPERM;
1405 }
1406
1407 /*
1408 * We hope to recycle these flags after 2.6.26
1409 */
1410 if (unlikely(clone_flags & CLONE_STOPPED)) {
1411 static int __read_mostly count = 100;
1412
1413 if (count > 0 && printk_ratelimit()) {
1414 char comm[TASK_COMM_LEN];
1415
1416 count--;
1417 printk(KERN_INFO "fork(): process `%s' used deprecated "
1418 "clone flags 0x%lx\n",
1419 get_task_comm(comm, current),
1420 clone_flags & CLONE_STOPPED);
1421 }
1422 }
1423
1424 /*
1425 * When called from kernel_thread, don't do user tracing stuff.
1426 */
1427 if (likely(user_mode(regs)))
1428 trace = tracehook_prepare_clone(clone_flags);
1429
1430 p = copy_process(clone_flags, stack_start, regs, stack_size,
1431 child_tidptr, NULL, trace);
1432 /*
1433 * Do this prior waking up the new thread - the thread pointer
1434 * might get invalid after that point, if the thread exits quickly.
1435 */
1436 if (!IS_ERR(p)) {
1437 struct completion vfork;
1438
1439 trace_sched_process_fork(current, p);
1440
1441 nr = task_pid_vnr(p);
1442
1443 if (clone_flags & CLONE_PARENT_SETTID)
1444 put_user(nr, parent_tidptr);
1445
1446 if (clone_flags & CLONE_VFORK) {
1447 p->vfork_done = &vfork;
1448 init_completion(&vfork);
1449 }
1450
1451 audit_finish_fork(p);
1452 tracehook_report_clone(regs, clone_flags, nr, p);
1453
1454 /*
1455 * We set PF_STARTING at creation in case tracing wants to
1456 * use this to distinguish a fully live task from one that
1457 * hasn't gotten to tracehook_report_clone() yet. Now we
1458 * clear it and set the child going.
1459 */
1460 p->flags &= ~PF_STARTING;
1461
1462 if (unlikely(clone_flags & CLONE_STOPPED)) {
1463 /*
1464 * We'll start up with an immediate SIGSTOP.
1465 */
1466 sigaddset(&p->pending.signal, SIGSTOP);
1467 set_tsk_thread_flag(p, TIF_SIGPENDING);
1468 __set_task_state(p, TASK_STOPPED);
1469 } else {
1470 wake_up_new_task(p, clone_flags);
1471 }
1472
1473 tracehook_report_clone_complete(trace, regs,
1474 clone_flags, nr, p);
1475
1476 if (clone_flags & CLONE_VFORK) {
1477 freezer_do_not_count();
1478 wait_for_completion(&vfork);
1479 freezer_count();
1480 tracehook_report_vfork_done(p, nr);
1481 }
1482 } else {
1483 nr = PTR_ERR(p);
1484 }
1485 return nr;
1486 }
1487
1488 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1489 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1490 #endif
1491
1492 static void sighand_ctor(void *data)
1493 {
1494 struct sighand_struct *sighand = data;
1495
1496 spin_lock_init(&sighand->siglock);
1497 init_waitqueue_head(&sighand->signalfd_wqh);
1498 }
1499
1500 void __init proc_caches_init(void)
1501 {
1502 sighand_cachep = kmem_cache_create("sighand_cache",
1503 sizeof(struct sighand_struct), 0,
1504 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1505 SLAB_NOTRACK, sighand_ctor);
1506 signal_cachep = kmem_cache_create("signal_cache",
1507 sizeof(struct signal_struct), 0,
1508 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1509 files_cachep = kmem_cache_create("files_cache",
1510 sizeof(struct files_struct), 0,
1511 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1512 fs_cachep = kmem_cache_create("fs_cache",
1513 sizeof(struct fs_struct), 0,
1514 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1515 mm_cachep = kmem_cache_create("mm_struct",
1516 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1517 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1518 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1519 mmap_init();
1520 }
1521
1522 /*
1523 * Check constraints on flags passed to the unshare system call and
1524 * force unsharing of additional process context as appropriate.
1525 */
1526 static void check_unshare_flags(unsigned long *flags_ptr)
1527 {
1528 /*
1529 * If unsharing a thread from a thread group, must also
1530 * unshare vm.
1531 */
1532 if (*flags_ptr & CLONE_THREAD)
1533 *flags_ptr |= CLONE_VM;
1534
1535 /*
1536 * If unsharing vm, must also unshare signal handlers.
1537 */
1538 if (*flags_ptr & CLONE_VM)
1539 *flags_ptr |= CLONE_SIGHAND;
1540
1541 /*
1542 * If unsharing signal handlers and the task was created
1543 * using CLONE_THREAD, then must unshare the thread
1544 */
1545 if ((*flags_ptr & CLONE_SIGHAND) &&
1546 (atomic_read(&current->signal->count) > 1))
1547 *flags_ptr |= CLONE_THREAD;
1548
1549 /*
1550 * If unsharing namespace, must also unshare filesystem information.
1551 */
1552 if (*flags_ptr & CLONE_NEWNS)
1553 *flags_ptr |= CLONE_FS;
1554 }
1555
1556 /*
1557 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1558 */
1559 static int unshare_thread(unsigned long unshare_flags)
1560 {
1561 if (unshare_flags & CLONE_THREAD)
1562 return -EINVAL;
1563
1564 return 0;
1565 }
1566
1567 /*
1568 * Unshare the filesystem structure if it is being shared
1569 */
1570 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1571 {
1572 struct fs_struct *fs = current->fs;
1573
1574 if (!(unshare_flags & CLONE_FS) || !fs)
1575 return 0;
1576
1577 /* don't need lock here; in the worst case we'll do useless copy */
1578 if (fs->users == 1)
1579 return 0;
1580
1581 *new_fsp = copy_fs_struct(fs);
1582 if (!*new_fsp)
1583 return -ENOMEM;
1584
1585 return 0;
1586 }
1587
1588 /*
1589 * Unsharing of sighand is not supported yet
1590 */
1591 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1592 {
1593 struct sighand_struct *sigh = current->sighand;
1594
1595 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1596 return -EINVAL;
1597 else
1598 return 0;
1599 }
1600
1601 /*
1602 * Unshare vm if it is being shared
1603 */
1604 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1605 {
1606 struct mm_struct *mm = current->mm;
1607
1608 if ((unshare_flags & CLONE_VM) &&
1609 (mm && atomic_read(&mm->mm_users) > 1)) {
1610 return -EINVAL;
1611 }
1612
1613 return 0;
1614 }
1615
1616 /*
1617 * Unshare file descriptor table if it is being shared
1618 */
1619 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1620 {
1621 struct files_struct *fd = current->files;
1622 int error = 0;
1623
1624 if ((unshare_flags & CLONE_FILES) &&
1625 (fd && atomic_read(&fd->count) > 1)) {
1626 *new_fdp = dup_fd(fd, &error);
1627 if (!*new_fdp)
1628 return error;
1629 }
1630
1631 return 0;
1632 }
1633
1634 /*
1635 * unshare allows a process to 'unshare' part of the process
1636 * context which was originally shared using clone. copy_*
1637 * functions used by do_fork() cannot be used here directly
1638 * because they modify an inactive task_struct that is being
1639 * constructed. Here we are modifying the current, active,
1640 * task_struct.
1641 */
1642 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1643 {
1644 int err = 0;
1645 struct fs_struct *fs, *new_fs = NULL;
1646 struct sighand_struct *new_sigh = NULL;
1647 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1648 struct files_struct *fd, *new_fd = NULL;
1649 struct nsproxy *new_nsproxy = NULL;
1650 int do_sysvsem = 0;
1651
1652 check_unshare_flags(&unshare_flags);
1653
1654 /* Return -EINVAL for all unsupported flags */
1655 err = -EINVAL;
1656 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1657 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1658 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1659 goto bad_unshare_out;
1660
1661 /*
1662 * CLONE_NEWIPC must also detach from the undolist: after switching
1663 * to a new ipc namespace, the semaphore arrays from the old
1664 * namespace are unreachable.
1665 */
1666 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1667 do_sysvsem = 1;
1668 if ((err = unshare_thread(unshare_flags)))
1669 goto bad_unshare_out;
1670 if ((err = unshare_fs(unshare_flags, &new_fs)))
1671 goto bad_unshare_cleanup_thread;
1672 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1673 goto bad_unshare_cleanup_fs;
1674 if ((err = unshare_vm(unshare_flags, &new_mm)))
1675 goto bad_unshare_cleanup_sigh;
1676 if ((err = unshare_fd(unshare_flags, &new_fd)))
1677 goto bad_unshare_cleanup_vm;
1678 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1679 new_fs)))
1680 goto bad_unshare_cleanup_fd;
1681
1682 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1683 if (do_sysvsem) {
1684 /*
1685 * CLONE_SYSVSEM is equivalent to sys_exit().
1686 */
1687 exit_sem(current);
1688 }
1689
1690 if (new_nsproxy) {
1691 switch_task_namespaces(current, new_nsproxy);
1692 new_nsproxy = NULL;
1693 }
1694
1695 task_lock(current);
1696
1697 if (new_fs) {
1698 fs = current->fs;
1699 write_lock(&fs->lock);
1700 current->fs = new_fs;
1701 if (--fs->users)
1702 new_fs = NULL;
1703 else
1704 new_fs = fs;
1705 write_unlock(&fs->lock);
1706 }
1707
1708 if (new_mm) {
1709 mm = current->mm;
1710 active_mm = current->active_mm;
1711 current->mm = new_mm;
1712 current->active_mm = new_mm;
1713 activate_mm(active_mm, new_mm);
1714 new_mm = mm;
1715 }
1716
1717 if (new_fd) {
1718 fd = current->files;
1719 current->files = new_fd;
1720 new_fd = fd;
1721 }
1722
1723 task_unlock(current);
1724 }
1725
1726 if (new_nsproxy)
1727 put_nsproxy(new_nsproxy);
1728
1729 bad_unshare_cleanup_fd:
1730 if (new_fd)
1731 put_files_struct(new_fd);
1732
1733 bad_unshare_cleanup_vm:
1734 if (new_mm)
1735 mmput(new_mm);
1736
1737 bad_unshare_cleanup_sigh:
1738 if (new_sigh)
1739 if (atomic_dec_and_test(&new_sigh->count))
1740 kmem_cache_free(sighand_cachep, new_sigh);
1741
1742 bad_unshare_cleanup_fs:
1743 if (new_fs)
1744 free_fs_struct(new_fs);
1745
1746 bad_unshare_cleanup_thread:
1747 bad_unshare_out:
1748 return err;
1749 }
1750
1751 /*
1752 * Helper to unshare the files of the current task.
1753 * We don't want to expose copy_files internals to
1754 * the exec layer of the kernel.
1755 */
1756
1757 int unshare_files(struct files_struct **displaced)
1758 {
1759 struct task_struct *task = current;
1760 struct files_struct *copy = NULL;
1761 int error;
1762
1763 error = unshare_fd(CLONE_FILES, &copy);
1764 if (error || !copy) {
1765 *displaced = NULL;
1766 return error;
1767 }
1768 *displaced = task->files;
1769 task_lock(task);
1770 task->files = copy;
1771 task_unlock(task);
1772 return 0;
1773 }