]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
netfilter: ingress: translate 0 nf_hook_slow retval to -1
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162
163 #ifdef CONFIG_VMAP_STACK
164 /*
165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166 * flush. Try to minimize the number of calls by caching stacks.
167 */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 void *stack;
176 int i;
177
178 local_irq_disable();
179 for (i = 0; i < NR_CACHED_STACKS; i++) {
180 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181
182 if (!s)
183 continue;
184 this_cpu_write(cached_stacks[i], NULL);
185
186 tsk->stack_vm_area = s;
187 local_irq_enable();
188 return s->addr;
189 }
190 local_irq_enable();
191
192 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 VMALLOC_START, VMALLOC_END,
194 THREADINFO_GFP | __GFP_HIGHMEM,
195 PAGE_KERNEL,
196 0, node, __builtin_return_address(0));
197
198 /*
199 * We can't call find_vm_area() in interrupt context, and
200 * free_thread_stack() can be called in interrupt context,
201 * so cache the vm_struct.
202 */
203 if (stack)
204 tsk->stack_vm_area = find_vm_area(stack);
205 return stack;
206 #else
207 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 THREAD_SIZE_ORDER);
209
210 return page ? page_address(page) : NULL;
211 #endif
212 }
213
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 if (task_stack_vm_area(tsk)) {
218 unsigned long flags;
219 int i;
220
221 local_irq_save(flags);
222 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 if (this_cpu_read(cached_stacks[i]))
224 continue;
225
226 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 local_irq_restore(flags);
228 return;
229 }
230 local_irq_restore(flags);
231
232 vfree(tsk->stack);
233 return;
234 }
235 #endif
236
237 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 int node)
244 {
245 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252
253 void thread_stack_cache_init(void)
254 {
255 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 THREAD_SIZE, 0, NULL);
257 BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 void *stack = task_stack_page(tsk);
283 struct vm_struct *vm = task_stack_vm_area(tsk);
284
285 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286
287 if (vm) {
288 int i;
289
290 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291
292 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 mod_zone_page_state(page_zone(vm->pages[i]),
294 NR_KERNEL_STACK_KB,
295 PAGE_SIZE / 1024 * account);
296 }
297
298 /* All stack pages belong to the same memcg. */
299 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 account * (THREAD_SIZE / 1024));
301 } else {
302 /*
303 * All stack pages are in the same zone and belong to the
304 * same memcg.
305 */
306 struct page *first_page = virt_to_page(stack);
307
308 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 THREAD_SIZE / 1024 * account);
310
311 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 account * (THREAD_SIZE / 1024));
313 }
314 }
315
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 if (WARN_ON(tsk->state != TASK_DEAD))
319 return; /* Better to leak the stack than to free prematurely */
320
321 account_kernel_stack(tsk, -1);
322 arch_release_thread_stack(tsk->stack);
323 free_thread_stack(tsk);
324 tsk->stack = NULL;
325 #ifdef CONFIG_VMAP_STACK
326 tsk->stack_vm_area = NULL;
327 #endif
328 }
329
330 #ifdef CONFIG_THREAD_INFO_IN_TASK
331 void put_task_stack(struct task_struct *tsk)
332 {
333 if (atomic_dec_and_test(&tsk->stack_refcount))
334 release_task_stack(tsk);
335 }
336 #endif
337
338 void free_task(struct task_struct *tsk)
339 {
340 #ifndef CONFIG_THREAD_INFO_IN_TASK
341 /*
342 * The task is finally done with both the stack and thread_info,
343 * so free both.
344 */
345 release_task_stack(tsk);
346 #else
347 /*
348 * If the task had a separate stack allocation, it should be gone
349 * by now.
350 */
351 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
352 #endif
353 rt_mutex_debug_task_free(tsk);
354 ftrace_graph_exit_task(tsk);
355 put_seccomp_filter(tsk);
356 arch_release_task_struct(tsk);
357 free_task_struct(tsk);
358 }
359 EXPORT_SYMBOL(free_task);
360
361 static inline void free_signal_struct(struct signal_struct *sig)
362 {
363 taskstats_tgid_free(sig);
364 sched_autogroup_exit(sig);
365 /*
366 * __mmdrop is not safe to call from softirq context on x86 due to
367 * pgd_dtor so postpone it to the async context
368 */
369 if (sig->oom_mm)
370 mmdrop_async(sig->oom_mm);
371 kmem_cache_free(signal_cachep, sig);
372 }
373
374 static inline void put_signal_struct(struct signal_struct *sig)
375 {
376 if (atomic_dec_and_test(&sig->sigcnt))
377 free_signal_struct(sig);
378 }
379
380 void __put_task_struct(struct task_struct *tsk)
381 {
382 WARN_ON(!tsk->exit_state);
383 WARN_ON(atomic_read(&tsk->usage));
384 WARN_ON(tsk == current);
385
386 cgroup_free(tsk);
387 task_numa_free(tsk);
388 security_task_free(tsk);
389 exit_creds(tsk);
390 delayacct_tsk_free(tsk);
391 put_signal_struct(tsk->signal);
392
393 if (!profile_handoff_task(tsk))
394 free_task(tsk);
395 }
396 EXPORT_SYMBOL_GPL(__put_task_struct);
397
398 void __init __weak arch_task_cache_init(void) { }
399
400 /*
401 * set_max_threads
402 */
403 static void set_max_threads(unsigned int max_threads_suggested)
404 {
405 u64 threads;
406
407 /*
408 * The number of threads shall be limited such that the thread
409 * structures may only consume a small part of the available memory.
410 */
411 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
412 threads = MAX_THREADS;
413 else
414 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
415 (u64) THREAD_SIZE * 8UL);
416
417 if (threads > max_threads_suggested)
418 threads = max_threads_suggested;
419
420 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
421 }
422
423 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
424 /* Initialized by the architecture: */
425 int arch_task_struct_size __read_mostly;
426 #endif
427
428 void __init fork_init(void)
429 {
430 int i;
431 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
432 #ifndef ARCH_MIN_TASKALIGN
433 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
434 #endif
435 /* create a slab on which task_structs can be allocated */
436 task_struct_cachep = kmem_cache_create("task_struct",
437 arch_task_struct_size, ARCH_MIN_TASKALIGN,
438 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
439 #endif
440
441 /* do the arch specific task caches init */
442 arch_task_cache_init();
443
444 set_max_threads(MAX_THREADS);
445
446 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
447 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
448 init_task.signal->rlim[RLIMIT_SIGPENDING] =
449 init_task.signal->rlim[RLIMIT_NPROC];
450
451 for (i = 0; i < UCOUNT_COUNTS; i++) {
452 init_user_ns.ucount_max[i] = max_threads/2;
453 }
454 }
455
456 int __weak arch_dup_task_struct(struct task_struct *dst,
457 struct task_struct *src)
458 {
459 *dst = *src;
460 return 0;
461 }
462
463 void set_task_stack_end_magic(struct task_struct *tsk)
464 {
465 unsigned long *stackend;
466
467 stackend = end_of_stack(tsk);
468 *stackend = STACK_END_MAGIC; /* for overflow detection */
469 }
470
471 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
472 {
473 struct task_struct *tsk;
474 unsigned long *stack;
475 struct vm_struct *stack_vm_area;
476 int err;
477
478 if (node == NUMA_NO_NODE)
479 node = tsk_fork_get_node(orig);
480 tsk = alloc_task_struct_node(node);
481 if (!tsk)
482 return NULL;
483
484 stack = alloc_thread_stack_node(tsk, node);
485 if (!stack)
486 goto free_tsk;
487
488 stack_vm_area = task_stack_vm_area(tsk);
489
490 err = arch_dup_task_struct(tsk, orig);
491
492 /*
493 * arch_dup_task_struct() clobbers the stack-related fields. Make
494 * sure they're properly initialized before using any stack-related
495 * functions again.
496 */
497 tsk->stack = stack;
498 #ifdef CONFIG_VMAP_STACK
499 tsk->stack_vm_area = stack_vm_area;
500 #endif
501 #ifdef CONFIG_THREAD_INFO_IN_TASK
502 atomic_set(&tsk->stack_refcount, 1);
503 #endif
504
505 if (err)
506 goto free_stack;
507
508 #ifdef CONFIG_SECCOMP
509 /*
510 * We must handle setting up seccomp filters once we're under
511 * the sighand lock in case orig has changed between now and
512 * then. Until then, filter must be NULL to avoid messing up
513 * the usage counts on the error path calling free_task.
514 */
515 tsk->seccomp.filter = NULL;
516 #endif
517
518 setup_thread_stack(tsk, orig);
519 clear_user_return_notifier(tsk);
520 clear_tsk_need_resched(tsk);
521 set_task_stack_end_magic(tsk);
522
523 #ifdef CONFIG_CC_STACKPROTECTOR
524 tsk->stack_canary = get_random_int();
525 #endif
526
527 /*
528 * One for us, one for whoever does the "release_task()" (usually
529 * parent)
530 */
531 atomic_set(&tsk->usage, 2);
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 tsk->btrace_seq = 0;
534 #endif
535 tsk->splice_pipe = NULL;
536 tsk->task_frag.page = NULL;
537 tsk->wake_q.next = NULL;
538
539 account_kernel_stack(tsk, 1);
540
541 kcov_task_init(tsk);
542
543 return tsk;
544
545 free_stack:
546 free_thread_stack(tsk);
547 free_tsk:
548 free_task_struct(tsk);
549 return NULL;
550 }
551
552 #ifdef CONFIG_MMU
553 static __latent_entropy int dup_mmap(struct mm_struct *mm,
554 struct mm_struct *oldmm)
555 {
556 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
557 struct rb_node **rb_link, *rb_parent;
558 int retval;
559 unsigned long charge;
560
561 uprobe_start_dup_mmap();
562 if (down_write_killable(&oldmm->mmap_sem)) {
563 retval = -EINTR;
564 goto fail_uprobe_end;
565 }
566 flush_cache_dup_mm(oldmm);
567 uprobe_dup_mmap(oldmm, mm);
568 /*
569 * Not linked in yet - no deadlock potential:
570 */
571 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
572
573 /* No ordering required: file already has been exposed. */
574 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
575
576 mm->total_vm = oldmm->total_vm;
577 mm->data_vm = oldmm->data_vm;
578 mm->exec_vm = oldmm->exec_vm;
579 mm->stack_vm = oldmm->stack_vm;
580
581 rb_link = &mm->mm_rb.rb_node;
582 rb_parent = NULL;
583 pprev = &mm->mmap;
584 retval = ksm_fork(mm, oldmm);
585 if (retval)
586 goto out;
587 retval = khugepaged_fork(mm, oldmm);
588 if (retval)
589 goto out;
590
591 prev = NULL;
592 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
593 struct file *file;
594
595 if (mpnt->vm_flags & VM_DONTCOPY) {
596 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
597 continue;
598 }
599 charge = 0;
600 if (mpnt->vm_flags & VM_ACCOUNT) {
601 unsigned long len = vma_pages(mpnt);
602
603 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
604 goto fail_nomem;
605 charge = len;
606 }
607 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
608 if (!tmp)
609 goto fail_nomem;
610 *tmp = *mpnt;
611 INIT_LIST_HEAD(&tmp->anon_vma_chain);
612 retval = vma_dup_policy(mpnt, tmp);
613 if (retval)
614 goto fail_nomem_policy;
615 tmp->vm_mm = mm;
616 if (anon_vma_fork(tmp, mpnt))
617 goto fail_nomem_anon_vma_fork;
618 tmp->vm_flags &=
619 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
620 tmp->vm_next = tmp->vm_prev = NULL;
621 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
622 file = tmp->vm_file;
623 if (file) {
624 struct inode *inode = file_inode(file);
625 struct address_space *mapping = file->f_mapping;
626
627 get_file(file);
628 if (tmp->vm_flags & VM_DENYWRITE)
629 atomic_dec(&inode->i_writecount);
630 i_mmap_lock_write(mapping);
631 if (tmp->vm_flags & VM_SHARED)
632 atomic_inc(&mapping->i_mmap_writable);
633 flush_dcache_mmap_lock(mapping);
634 /* insert tmp into the share list, just after mpnt */
635 vma_interval_tree_insert_after(tmp, mpnt,
636 &mapping->i_mmap);
637 flush_dcache_mmap_unlock(mapping);
638 i_mmap_unlock_write(mapping);
639 }
640
641 /*
642 * Clear hugetlb-related page reserves for children. This only
643 * affects MAP_PRIVATE mappings. Faults generated by the child
644 * are not guaranteed to succeed, even if read-only
645 */
646 if (is_vm_hugetlb_page(tmp))
647 reset_vma_resv_huge_pages(tmp);
648
649 /*
650 * Link in the new vma and copy the page table entries.
651 */
652 *pprev = tmp;
653 pprev = &tmp->vm_next;
654 tmp->vm_prev = prev;
655 prev = tmp;
656
657 __vma_link_rb(mm, tmp, rb_link, rb_parent);
658 rb_link = &tmp->vm_rb.rb_right;
659 rb_parent = &tmp->vm_rb;
660
661 mm->map_count++;
662 retval = copy_page_range(mm, oldmm, mpnt);
663
664 if (tmp->vm_ops && tmp->vm_ops->open)
665 tmp->vm_ops->open(tmp);
666
667 if (retval)
668 goto out;
669 }
670 /* a new mm has just been created */
671 arch_dup_mmap(oldmm, mm);
672 retval = 0;
673 out:
674 up_write(&mm->mmap_sem);
675 flush_tlb_mm(oldmm);
676 up_write(&oldmm->mmap_sem);
677 fail_uprobe_end:
678 uprobe_end_dup_mmap();
679 return retval;
680 fail_nomem_anon_vma_fork:
681 mpol_put(vma_policy(tmp));
682 fail_nomem_policy:
683 kmem_cache_free(vm_area_cachep, tmp);
684 fail_nomem:
685 retval = -ENOMEM;
686 vm_unacct_memory(charge);
687 goto out;
688 }
689
690 static inline int mm_alloc_pgd(struct mm_struct *mm)
691 {
692 mm->pgd = pgd_alloc(mm);
693 if (unlikely(!mm->pgd))
694 return -ENOMEM;
695 return 0;
696 }
697
698 static inline void mm_free_pgd(struct mm_struct *mm)
699 {
700 pgd_free(mm, mm->pgd);
701 }
702 #else
703 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
704 {
705 down_write(&oldmm->mmap_sem);
706 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
707 up_write(&oldmm->mmap_sem);
708 return 0;
709 }
710 #define mm_alloc_pgd(mm) (0)
711 #define mm_free_pgd(mm)
712 #endif /* CONFIG_MMU */
713
714 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
715
716 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
717 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
718
719 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
720
721 static int __init coredump_filter_setup(char *s)
722 {
723 default_dump_filter =
724 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
725 MMF_DUMP_FILTER_MASK;
726 return 1;
727 }
728
729 __setup("coredump_filter=", coredump_filter_setup);
730
731 #include <linux/init_task.h>
732
733 static void mm_init_aio(struct mm_struct *mm)
734 {
735 #ifdef CONFIG_AIO
736 spin_lock_init(&mm->ioctx_lock);
737 mm->ioctx_table = NULL;
738 #endif
739 }
740
741 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
742 {
743 #ifdef CONFIG_MEMCG
744 mm->owner = p;
745 #endif
746 }
747
748 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
749 {
750 mm->mmap = NULL;
751 mm->mm_rb = RB_ROOT;
752 mm->vmacache_seqnum = 0;
753 atomic_set(&mm->mm_users, 1);
754 atomic_set(&mm->mm_count, 1);
755 init_rwsem(&mm->mmap_sem);
756 INIT_LIST_HEAD(&mm->mmlist);
757 mm->core_state = NULL;
758 atomic_long_set(&mm->nr_ptes, 0);
759 mm_nr_pmds_init(mm);
760 mm->map_count = 0;
761 mm->locked_vm = 0;
762 mm->pinned_vm = 0;
763 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
764 spin_lock_init(&mm->page_table_lock);
765 mm_init_cpumask(mm);
766 mm_init_aio(mm);
767 mm_init_owner(mm, p);
768 mmu_notifier_mm_init(mm);
769 clear_tlb_flush_pending(mm);
770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 mm->pmd_huge_pte = NULL;
772 #endif
773
774 if (current->mm) {
775 mm->flags = current->mm->flags & MMF_INIT_MASK;
776 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
777 } else {
778 mm->flags = default_dump_filter;
779 mm->def_flags = 0;
780 }
781
782 if (mm_alloc_pgd(mm))
783 goto fail_nopgd;
784
785 if (init_new_context(p, mm))
786 goto fail_nocontext;
787
788 return mm;
789
790 fail_nocontext:
791 mm_free_pgd(mm);
792 fail_nopgd:
793 free_mm(mm);
794 return NULL;
795 }
796
797 static void check_mm(struct mm_struct *mm)
798 {
799 int i;
800
801 for (i = 0; i < NR_MM_COUNTERS; i++) {
802 long x = atomic_long_read(&mm->rss_stat.count[i]);
803
804 if (unlikely(x))
805 printk(KERN_ALERT "BUG: Bad rss-counter state "
806 "mm:%p idx:%d val:%ld\n", mm, i, x);
807 }
808
809 if (atomic_long_read(&mm->nr_ptes))
810 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
811 atomic_long_read(&mm->nr_ptes));
812 if (mm_nr_pmds(mm))
813 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
814 mm_nr_pmds(mm));
815
816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
817 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
818 #endif
819 }
820
821 /*
822 * Allocate and initialize an mm_struct.
823 */
824 struct mm_struct *mm_alloc(void)
825 {
826 struct mm_struct *mm;
827
828 mm = allocate_mm();
829 if (!mm)
830 return NULL;
831
832 memset(mm, 0, sizeof(*mm));
833 return mm_init(mm, current);
834 }
835
836 /*
837 * Called when the last reference to the mm
838 * is dropped: either by a lazy thread or by
839 * mmput. Free the page directory and the mm.
840 */
841 void __mmdrop(struct mm_struct *mm)
842 {
843 BUG_ON(mm == &init_mm);
844 mm_free_pgd(mm);
845 destroy_context(mm);
846 mmu_notifier_mm_destroy(mm);
847 check_mm(mm);
848 free_mm(mm);
849 }
850 EXPORT_SYMBOL_GPL(__mmdrop);
851
852 static inline void __mmput(struct mm_struct *mm)
853 {
854 VM_BUG_ON(atomic_read(&mm->mm_users));
855
856 uprobe_clear_state(mm);
857 exit_aio(mm);
858 ksm_exit(mm);
859 khugepaged_exit(mm); /* must run before exit_mmap */
860 exit_mmap(mm);
861 mm_put_huge_zero_page(mm);
862 set_mm_exe_file(mm, NULL);
863 if (!list_empty(&mm->mmlist)) {
864 spin_lock(&mmlist_lock);
865 list_del(&mm->mmlist);
866 spin_unlock(&mmlist_lock);
867 }
868 if (mm->binfmt)
869 module_put(mm->binfmt->module);
870 set_bit(MMF_OOM_SKIP, &mm->flags);
871 mmdrop(mm);
872 }
873
874 /*
875 * Decrement the use count and release all resources for an mm.
876 */
877 void mmput(struct mm_struct *mm)
878 {
879 might_sleep();
880
881 if (atomic_dec_and_test(&mm->mm_users))
882 __mmput(mm);
883 }
884 EXPORT_SYMBOL_GPL(mmput);
885
886 #ifdef CONFIG_MMU
887 static void mmput_async_fn(struct work_struct *work)
888 {
889 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
890 __mmput(mm);
891 }
892
893 void mmput_async(struct mm_struct *mm)
894 {
895 if (atomic_dec_and_test(&mm->mm_users)) {
896 INIT_WORK(&mm->async_put_work, mmput_async_fn);
897 schedule_work(&mm->async_put_work);
898 }
899 }
900 #endif
901
902 /**
903 * set_mm_exe_file - change a reference to the mm's executable file
904 *
905 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
906 *
907 * Main users are mmput() and sys_execve(). Callers prevent concurrent
908 * invocations: in mmput() nobody alive left, in execve task is single
909 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
910 * mm->exe_file, but does so without using set_mm_exe_file() in order
911 * to do avoid the need for any locks.
912 */
913 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
914 {
915 struct file *old_exe_file;
916
917 /*
918 * It is safe to dereference the exe_file without RCU as
919 * this function is only called if nobody else can access
920 * this mm -- see comment above for justification.
921 */
922 old_exe_file = rcu_dereference_raw(mm->exe_file);
923
924 if (new_exe_file)
925 get_file(new_exe_file);
926 rcu_assign_pointer(mm->exe_file, new_exe_file);
927 if (old_exe_file)
928 fput(old_exe_file);
929 }
930
931 /**
932 * get_mm_exe_file - acquire a reference to the mm's executable file
933 *
934 * Returns %NULL if mm has no associated executable file.
935 * User must release file via fput().
936 */
937 struct file *get_mm_exe_file(struct mm_struct *mm)
938 {
939 struct file *exe_file;
940
941 rcu_read_lock();
942 exe_file = rcu_dereference(mm->exe_file);
943 if (exe_file && !get_file_rcu(exe_file))
944 exe_file = NULL;
945 rcu_read_unlock();
946 return exe_file;
947 }
948 EXPORT_SYMBOL(get_mm_exe_file);
949
950 /**
951 * get_task_exe_file - acquire a reference to the task's executable file
952 *
953 * Returns %NULL if task's mm (if any) has no associated executable file or
954 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
955 * User must release file via fput().
956 */
957 struct file *get_task_exe_file(struct task_struct *task)
958 {
959 struct file *exe_file = NULL;
960 struct mm_struct *mm;
961
962 task_lock(task);
963 mm = task->mm;
964 if (mm) {
965 if (!(task->flags & PF_KTHREAD))
966 exe_file = get_mm_exe_file(mm);
967 }
968 task_unlock(task);
969 return exe_file;
970 }
971 EXPORT_SYMBOL(get_task_exe_file);
972
973 /**
974 * get_task_mm - acquire a reference to the task's mm
975 *
976 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
977 * this kernel workthread has transiently adopted a user mm with use_mm,
978 * to do its AIO) is not set and if so returns a reference to it, after
979 * bumping up the use count. User must release the mm via mmput()
980 * after use. Typically used by /proc and ptrace.
981 */
982 struct mm_struct *get_task_mm(struct task_struct *task)
983 {
984 struct mm_struct *mm;
985
986 task_lock(task);
987 mm = task->mm;
988 if (mm) {
989 if (task->flags & PF_KTHREAD)
990 mm = NULL;
991 else
992 atomic_inc(&mm->mm_users);
993 }
994 task_unlock(task);
995 return mm;
996 }
997 EXPORT_SYMBOL_GPL(get_task_mm);
998
999 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1000 {
1001 struct mm_struct *mm;
1002 int err;
1003
1004 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1005 if (err)
1006 return ERR_PTR(err);
1007
1008 mm = get_task_mm(task);
1009 if (mm && mm != current->mm &&
1010 !ptrace_may_access(task, mode)) {
1011 mmput(mm);
1012 mm = ERR_PTR(-EACCES);
1013 }
1014 mutex_unlock(&task->signal->cred_guard_mutex);
1015
1016 return mm;
1017 }
1018
1019 static void complete_vfork_done(struct task_struct *tsk)
1020 {
1021 struct completion *vfork;
1022
1023 task_lock(tsk);
1024 vfork = tsk->vfork_done;
1025 if (likely(vfork)) {
1026 tsk->vfork_done = NULL;
1027 complete(vfork);
1028 }
1029 task_unlock(tsk);
1030 }
1031
1032 static int wait_for_vfork_done(struct task_struct *child,
1033 struct completion *vfork)
1034 {
1035 int killed;
1036
1037 freezer_do_not_count();
1038 killed = wait_for_completion_killable(vfork);
1039 freezer_count();
1040
1041 if (killed) {
1042 task_lock(child);
1043 child->vfork_done = NULL;
1044 task_unlock(child);
1045 }
1046
1047 put_task_struct(child);
1048 return killed;
1049 }
1050
1051 /* Please note the differences between mmput and mm_release.
1052 * mmput is called whenever we stop holding onto a mm_struct,
1053 * error success whatever.
1054 *
1055 * mm_release is called after a mm_struct has been removed
1056 * from the current process.
1057 *
1058 * This difference is important for error handling, when we
1059 * only half set up a mm_struct for a new process and need to restore
1060 * the old one. Because we mmput the new mm_struct before
1061 * restoring the old one. . .
1062 * Eric Biederman 10 January 1998
1063 */
1064 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1065 {
1066 /* Get rid of any futexes when releasing the mm */
1067 #ifdef CONFIG_FUTEX
1068 if (unlikely(tsk->robust_list)) {
1069 exit_robust_list(tsk);
1070 tsk->robust_list = NULL;
1071 }
1072 #ifdef CONFIG_COMPAT
1073 if (unlikely(tsk->compat_robust_list)) {
1074 compat_exit_robust_list(tsk);
1075 tsk->compat_robust_list = NULL;
1076 }
1077 #endif
1078 if (unlikely(!list_empty(&tsk->pi_state_list)))
1079 exit_pi_state_list(tsk);
1080 #endif
1081
1082 uprobe_free_utask(tsk);
1083
1084 /* Get rid of any cached register state */
1085 deactivate_mm(tsk, mm);
1086
1087 /*
1088 * Signal userspace if we're not exiting with a core dump
1089 * because we want to leave the value intact for debugging
1090 * purposes.
1091 */
1092 if (tsk->clear_child_tid) {
1093 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1094 atomic_read(&mm->mm_users) > 1) {
1095 /*
1096 * We don't check the error code - if userspace has
1097 * not set up a proper pointer then tough luck.
1098 */
1099 put_user(0, tsk->clear_child_tid);
1100 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1101 1, NULL, NULL, 0);
1102 }
1103 tsk->clear_child_tid = NULL;
1104 }
1105
1106 /*
1107 * All done, finally we can wake up parent and return this mm to him.
1108 * Also kthread_stop() uses this completion for synchronization.
1109 */
1110 if (tsk->vfork_done)
1111 complete_vfork_done(tsk);
1112 }
1113
1114 /*
1115 * Allocate a new mm structure and copy contents from the
1116 * mm structure of the passed in task structure.
1117 */
1118 static struct mm_struct *dup_mm(struct task_struct *tsk)
1119 {
1120 struct mm_struct *mm, *oldmm = current->mm;
1121 int err;
1122
1123 mm = allocate_mm();
1124 if (!mm)
1125 goto fail_nomem;
1126
1127 memcpy(mm, oldmm, sizeof(*mm));
1128
1129 if (!mm_init(mm, tsk))
1130 goto fail_nomem;
1131
1132 err = dup_mmap(mm, oldmm);
1133 if (err)
1134 goto free_pt;
1135
1136 mm->hiwater_rss = get_mm_rss(mm);
1137 mm->hiwater_vm = mm->total_vm;
1138
1139 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1140 goto free_pt;
1141
1142 return mm;
1143
1144 free_pt:
1145 /* don't put binfmt in mmput, we haven't got module yet */
1146 mm->binfmt = NULL;
1147 mmput(mm);
1148
1149 fail_nomem:
1150 return NULL;
1151 }
1152
1153 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1154 {
1155 struct mm_struct *mm, *oldmm;
1156 int retval;
1157
1158 tsk->min_flt = tsk->maj_flt = 0;
1159 tsk->nvcsw = tsk->nivcsw = 0;
1160 #ifdef CONFIG_DETECT_HUNG_TASK
1161 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1162 #endif
1163
1164 tsk->mm = NULL;
1165 tsk->active_mm = NULL;
1166
1167 /*
1168 * Are we cloning a kernel thread?
1169 *
1170 * We need to steal a active VM for that..
1171 */
1172 oldmm = current->mm;
1173 if (!oldmm)
1174 return 0;
1175
1176 /* initialize the new vmacache entries */
1177 vmacache_flush(tsk);
1178
1179 if (clone_flags & CLONE_VM) {
1180 atomic_inc(&oldmm->mm_users);
1181 mm = oldmm;
1182 goto good_mm;
1183 }
1184
1185 retval = -ENOMEM;
1186 mm = dup_mm(tsk);
1187 if (!mm)
1188 goto fail_nomem;
1189
1190 good_mm:
1191 tsk->mm = mm;
1192 tsk->active_mm = mm;
1193 return 0;
1194
1195 fail_nomem:
1196 return retval;
1197 }
1198
1199 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1200 {
1201 struct fs_struct *fs = current->fs;
1202 if (clone_flags & CLONE_FS) {
1203 /* tsk->fs is already what we want */
1204 spin_lock(&fs->lock);
1205 if (fs->in_exec) {
1206 spin_unlock(&fs->lock);
1207 return -EAGAIN;
1208 }
1209 fs->users++;
1210 spin_unlock(&fs->lock);
1211 return 0;
1212 }
1213 tsk->fs = copy_fs_struct(fs);
1214 if (!tsk->fs)
1215 return -ENOMEM;
1216 return 0;
1217 }
1218
1219 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1220 {
1221 struct files_struct *oldf, *newf;
1222 int error = 0;
1223
1224 /*
1225 * A background process may not have any files ...
1226 */
1227 oldf = current->files;
1228 if (!oldf)
1229 goto out;
1230
1231 if (clone_flags & CLONE_FILES) {
1232 atomic_inc(&oldf->count);
1233 goto out;
1234 }
1235
1236 newf = dup_fd(oldf, &error);
1237 if (!newf)
1238 goto out;
1239
1240 tsk->files = newf;
1241 error = 0;
1242 out:
1243 return error;
1244 }
1245
1246 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1247 {
1248 #ifdef CONFIG_BLOCK
1249 struct io_context *ioc = current->io_context;
1250 struct io_context *new_ioc;
1251
1252 if (!ioc)
1253 return 0;
1254 /*
1255 * Share io context with parent, if CLONE_IO is set
1256 */
1257 if (clone_flags & CLONE_IO) {
1258 ioc_task_link(ioc);
1259 tsk->io_context = ioc;
1260 } else if (ioprio_valid(ioc->ioprio)) {
1261 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1262 if (unlikely(!new_ioc))
1263 return -ENOMEM;
1264
1265 new_ioc->ioprio = ioc->ioprio;
1266 put_io_context(new_ioc);
1267 }
1268 #endif
1269 return 0;
1270 }
1271
1272 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1273 {
1274 struct sighand_struct *sig;
1275
1276 if (clone_flags & CLONE_SIGHAND) {
1277 atomic_inc(&current->sighand->count);
1278 return 0;
1279 }
1280 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1281 rcu_assign_pointer(tsk->sighand, sig);
1282 if (!sig)
1283 return -ENOMEM;
1284
1285 atomic_set(&sig->count, 1);
1286 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1287 return 0;
1288 }
1289
1290 void __cleanup_sighand(struct sighand_struct *sighand)
1291 {
1292 if (atomic_dec_and_test(&sighand->count)) {
1293 signalfd_cleanup(sighand);
1294 /*
1295 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1296 * without an RCU grace period, see __lock_task_sighand().
1297 */
1298 kmem_cache_free(sighand_cachep, sighand);
1299 }
1300 }
1301
1302 /*
1303 * Initialize POSIX timer handling for a thread group.
1304 */
1305 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1306 {
1307 unsigned long cpu_limit;
1308
1309 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1310 if (cpu_limit != RLIM_INFINITY) {
1311 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1312 sig->cputimer.running = true;
1313 }
1314
1315 /* The timer lists. */
1316 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1317 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1318 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1319 }
1320
1321 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1322 {
1323 struct signal_struct *sig;
1324
1325 if (clone_flags & CLONE_THREAD)
1326 return 0;
1327
1328 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1329 tsk->signal = sig;
1330 if (!sig)
1331 return -ENOMEM;
1332
1333 sig->nr_threads = 1;
1334 atomic_set(&sig->live, 1);
1335 atomic_set(&sig->sigcnt, 1);
1336
1337 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1338 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1339 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1340
1341 init_waitqueue_head(&sig->wait_chldexit);
1342 sig->curr_target = tsk;
1343 init_sigpending(&sig->shared_pending);
1344 INIT_LIST_HEAD(&sig->posix_timers);
1345 seqlock_init(&sig->stats_lock);
1346 prev_cputime_init(&sig->prev_cputime);
1347
1348 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1349 sig->real_timer.function = it_real_fn;
1350
1351 task_lock(current->group_leader);
1352 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1353 task_unlock(current->group_leader);
1354
1355 posix_cpu_timers_init_group(sig);
1356
1357 tty_audit_fork(sig);
1358 sched_autogroup_fork(sig);
1359
1360 sig->oom_score_adj = current->signal->oom_score_adj;
1361 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1362
1363 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1364 current->signal->is_child_subreaper;
1365
1366 mutex_init(&sig->cred_guard_mutex);
1367
1368 return 0;
1369 }
1370
1371 static void copy_seccomp(struct task_struct *p)
1372 {
1373 #ifdef CONFIG_SECCOMP
1374 /*
1375 * Must be called with sighand->lock held, which is common to
1376 * all threads in the group. Holding cred_guard_mutex is not
1377 * needed because this new task is not yet running and cannot
1378 * be racing exec.
1379 */
1380 assert_spin_locked(&current->sighand->siglock);
1381
1382 /* Ref-count the new filter user, and assign it. */
1383 get_seccomp_filter(current);
1384 p->seccomp = current->seccomp;
1385
1386 /*
1387 * Explicitly enable no_new_privs here in case it got set
1388 * between the task_struct being duplicated and holding the
1389 * sighand lock. The seccomp state and nnp must be in sync.
1390 */
1391 if (task_no_new_privs(current))
1392 task_set_no_new_privs(p);
1393
1394 /*
1395 * If the parent gained a seccomp mode after copying thread
1396 * flags and between before we held the sighand lock, we have
1397 * to manually enable the seccomp thread flag here.
1398 */
1399 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1400 set_tsk_thread_flag(p, TIF_SECCOMP);
1401 #endif
1402 }
1403
1404 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1405 {
1406 current->clear_child_tid = tidptr;
1407
1408 return task_pid_vnr(current);
1409 }
1410
1411 static void rt_mutex_init_task(struct task_struct *p)
1412 {
1413 raw_spin_lock_init(&p->pi_lock);
1414 #ifdef CONFIG_RT_MUTEXES
1415 p->pi_waiters = RB_ROOT;
1416 p->pi_waiters_leftmost = NULL;
1417 p->pi_blocked_on = NULL;
1418 #endif
1419 }
1420
1421 /*
1422 * Initialize POSIX timer handling for a single task.
1423 */
1424 static void posix_cpu_timers_init(struct task_struct *tsk)
1425 {
1426 tsk->cputime_expires.prof_exp = 0;
1427 tsk->cputime_expires.virt_exp = 0;
1428 tsk->cputime_expires.sched_exp = 0;
1429 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1430 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1431 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1432 }
1433
1434 static inline void
1435 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1436 {
1437 task->pids[type].pid = pid;
1438 }
1439
1440 /*
1441 * This creates a new process as a copy of the old one,
1442 * but does not actually start it yet.
1443 *
1444 * It copies the registers, and all the appropriate
1445 * parts of the process environment (as per the clone
1446 * flags). The actual kick-off is left to the caller.
1447 */
1448 static __latent_entropy struct task_struct *copy_process(
1449 unsigned long clone_flags,
1450 unsigned long stack_start,
1451 unsigned long stack_size,
1452 int __user *child_tidptr,
1453 struct pid *pid,
1454 int trace,
1455 unsigned long tls,
1456 int node)
1457 {
1458 int retval;
1459 struct task_struct *p;
1460
1461 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1462 return ERR_PTR(-EINVAL);
1463
1464 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1465 return ERR_PTR(-EINVAL);
1466
1467 /*
1468 * Thread groups must share signals as well, and detached threads
1469 * can only be started up within the thread group.
1470 */
1471 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1472 return ERR_PTR(-EINVAL);
1473
1474 /*
1475 * Shared signal handlers imply shared VM. By way of the above,
1476 * thread groups also imply shared VM. Blocking this case allows
1477 * for various simplifications in other code.
1478 */
1479 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1480 return ERR_PTR(-EINVAL);
1481
1482 /*
1483 * Siblings of global init remain as zombies on exit since they are
1484 * not reaped by their parent (swapper). To solve this and to avoid
1485 * multi-rooted process trees, prevent global and container-inits
1486 * from creating siblings.
1487 */
1488 if ((clone_flags & CLONE_PARENT) &&
1489 current->signal->flags & SIGNAL_UNKILLABLE)
1490 return ERR_PTR(-EINVAL);
1491
1492 /*
1493 * If the new process will be in a different pid or user namespace
1494 * do not allow it to share a thread group with the forking task.
1495 */
1496 if (clone_flags & CLONE_THREAD) {
1497 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1498 (task_active_pid_ns(current) !=
1499 current->nsproxy->pid_ns_for_children))
1500 return ERR_PTR(-EINVAL);
1501 }
1502
1503 retval = security_task_create(clone_flags);
1504 if (retval)
1505 goto fork_out;
1506
1507 retval = -ENOMEM;
1508 p = dup_task_struct(current, node);
1509 if (!p)
1510 goto fork_out;
1511
1512 ftrace_graph_init_task(p);
1513
1514 rt_mutex_init_task(p);
1515
1516 #ifdef CONFIG_PROVE_LOCKING
1517 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1518 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1519 #endif
1520 retval = -EAGAIN;
1521 if (atomic_read(&p->real_cred->user->processes) >=
1522 task_rlimit(p, RLIMIT_NPROC)) {
1523 if (p->real_cred->user != INIT_USER &&
1524 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1525 goto bad_fork_free;
1526 }
1527 current->flags &= ~PF_NPROC_EXCEEDED;
1528
1529 retval = copy_creds(p, clone_flags);
1530 if (retval < 0)
1531 goto bad_fork_free;
1532
1533 /*
1534 * If multiple threads are within copy_process(), then this check
1535 * triggers too late. This doesn't hurt, the check is only there
1536 * to stop root fork bombs.
1537 */
1538 retval = -EAGAIN;
1539 if (nr_threads >= max_threads)
1540 goto bad_fork_cleanup_count;
1541
1542 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1543 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1544 p->flags |= PF_FORKNOEXEC;
1545 INIT_LIST_HEAD(&p->children);
1546 INIT_LIST_HEAD(&p->sibling);
1547 rcu_copy_process(p);
1548 p->vfork_done = NULL;
1549 spin_lock_init(&p->alloc_lock);
1550
1551 init_sigpending(&p->pending);
1552
1553 p->utime = p->stime = p->gtime = 0;
1554 p->utimescaled = p->stimescaled = 0;
1555 prev_cputime_init(&p->prev_cputime);
1556
1557 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1558 seqcount_init(&p->vtime_seqcount);
1559 p->vtime_snap = 0;
1560 p->vtime_snap_whence = VTIME_INACTIVE;
1561 #endif
1562
1563 #if defined(SPLIT_RSS_COUNTING)
1564 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1565 #endif
1566
1567 p->default_timer_slack_ns = current->timer_slack_ns;
1568
1569 task_io_accounting_init(&p->ioac);
1570 acct_clear_integrals(p);
1571
1572 posix_cpu_timers_init(p);
1573
1574 p->start_time = ktime_get_ns();
1575 p->real_start_time = ktime_get_boot_ns();
1576 p->io_context = NULL;
1577 p->audit_context = NULL;
1578 cgroup_fork(p);
1579 #ifdef CONFIG_NUMA
1580 p->mempolicy = mpol_dup(p->mempolicy);
1581 if (IS_ERR(p->mempolicy)) {
1582 retval = PTR_ERR(p->mempolicy);
1583 p->mempolicy = NULL;
1584 goto bad_fork_cleanup_threadgroup_lock;
1585 }
1586 #endif
1587 #ifdef CONFIG_CPUSETS
1588 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1589 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1590 seqcount_init(&p->mems_allowed_seq);
1591 #endif
1592 #ifdef CONFIG_TRACE_IRQFLAGS
1593 p->irq_events = 0;
1594 p->hardirqs_enabled = 0;
1595 p->hardirq_enable_ip = 0;
1596 p->hardirq_enable_event = 0;
1597 p->hardirq_disable_ip = _THIS_IP_;
1598 p->hardirq_disable_event = 0;
1599 p->softirqs_enabled = 1;
1600 p->softirq_enable_ip = _THIS_IP_;
1601 p->softirq_enable_event = 0;
1602 p->softirq_disable_ip = 0;
1603 p->softirq_disable_event = 0;
1604 p->hardirq_context = 0;
1605 p->softirq_context = 0;
1606 #endif
1607
1608 p->pagefault_disabled = 0;
1609
1610 #ifdef CONFIG_LOCKDEP
1611 p->lockdep_depth = 0; /* no locks held yet */
1612 p->curr_chain_key = 0;
1613 p->lockdep_recursion = 0;
1614 #endif
1615
1616 #ifdef CONFIG_DEBUG_MUTEXES
1617 p->blocked_on = NULL; /* not blocked yet */
1618 #endif
1619 #ifdef CONFIG_BCACHE
1620 p->sequential_io = 0;
1621 p->sequential_io_avg = 0;
1622 #endif
1623
1624 /* Perform scheduler related setup. Assign this task to a CPU. */
1625 retval = sched_fork(clone_flags, p);
1626 if (retval)
1627 goto bad_fork_cleanup_policy;
1628
1629 retval = perf_event_init_task(p);
1630 if (retval)
1631 goto bad_fork_cleanup_policy;
1632 retval = audit_alloc(p);
1633 if (retval)
1634 goto bad_fork_cleanup_perf;
1635 /* copy all the process information */
1636 shm_init_task(p);
1637 retval = copy_semundo(clone_flags, p);
1638 if (retval)
1639 goto bad_fork_cleanup_audit;
1640 retval = copy_files(clone_flags, p);
1641 if (retval)
1642 goto bad_fork_cleanup_semundo;
1643 retval = copy_fs(clone_flags, p);
1644 if (retval)
1645 goto bad_fork_cleanup_files;
1646 retval = copy_sighand(clone_flags, p);
1647 if (retval)
1648 goto bad_fork_cleanup_fs;
1649 retval = copy_signal(clone_flags, p);
1650 if (retval)
1651 goto bad_fork_cleanup_sighand;
1652 retval = copy_mm(clone_flags, p);
1653 if (retval)
1654 goto bad_fork_cleanup_signal;
1655 retval = copy_namespaces(clone_flags, p);
1656 if (retval)
1657 goto bad_fork_cleanup_mm;
1658 retval = copy_io(clone_flags, p);
1659 if (retval)
1660 goto bad_fork_cleanup_namespaces;
1661 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1662 if (retval)
1663 goto bad_fork_cleanup_io;
1664
1665 if (pid != &init_struct_pid) {
1666 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1667 if (IS_ERR(pid)) {
1668 retval = PTR_ERR(pid);
1669 goto bad_fork_cleanup_thread;
1670 }
1671 }
1672
1673 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1674 /*
1675 * Clear TID on mm_release()?
1676 */
1677 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1678 #ifdef CONFIG_BLOCK
1679 p->plug = NULL;
1680 #endif
1681 #ifdef CONFIG_FUTEX
1682 p->robust_list = NULL;
1683 #ifdef CONFIG_COMPAT
1684 p->compat_robust_list = NULL;
1685 #endif
1686 INIT_LIST_HEAD(&p->pi_state_list);
1687 p->pi_state_cache = NULL;
1688 #endif
1689 /*
1690 * sigaltstack should be cleared when sharing the same VM
1691 */
1692 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1693 sas_ss_reset(p);
1694
1695 /*
1696 * Syscall tracing and stepping should be turned off in the
1697 * child regardless of CLONE_PTRACE.
1698 */
1699 user_disable_single_step(p);
1700 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1701 #ifdef TIF_SYSCALL_EMU
1702 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1703 #endif
1704 clear_all_latency_tracing(p);
1705
1706 /* ok, now we should be set up.. */
1707 p->pid = pid_nr(pid);
1708 if (clone_flags & CLONE_THREAD) {
1709 p->exit_signal = -1;
1710 p->group_leader = current->group_leader;
1711 p->tgid = current->tgid;
1712 } else {
1713 if (clone_flags & CLONE_PARENT)
1714 p->exit_signal = current->group_leader->exit_signal;
1715 else
1716 p->exit_signal = (clone_flags & CSIGNAL);
1717 p->group_leader = p;
1718 p->tgid = p->pid;
1719 }
1720
1721 p->nr_dirtied = 0;
1722 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1723 p->dirty_paused_when = 0;
1724
1725 p->pdeath_signal = 0;
1726 INIT_LIST_HEAD(&p->thread_group);
1727 p->task_works = NULL;
1728
1729 threadgroup_change_begin(current);
1730 /*
1731 * Ensure that the cgroup subsystem policies allow the new process to be
1732 * forked. It should be noted the the new process's css_set can be changed
1733 * between here and cgroup_post_fork() if an organisation operation is in
1734 * progress.
1735 */
1736 retval = cgroup_can_fork(p);
1737 if (retval)
1738 goto bad_fork_free_pid;
1739
1740 /*
1741 * Make it visible to the rest of the system, but dont wake it up yet.
1742 * Need tasklist lock for parent etc handling!
1743 */
1744 write_lock_irq(&tasklist_lock);
1745
1746 /* CLONE_PARENT re-uses the old parent */
1747 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1748 p->real_parent = current->real_parent;
1749 p->parent_exec_id = current->parent_exec_id;
1750 } else {
1751 p->real_parent = current;
1752 p->parent_exec_id = current->self_exec_id;
1753 }
1754
1755 spin_lock(&current->sighand->siglock);
1756
1757 /*
1758 * Copy seccomp details explicitly here, in case they were changed
1759 * before holding sighand lock.
1760 */
1761 copy_seccomp(p);
1762
1763 /*
1764 * Process group and session signals need to be delivered to just the
1765 * parent before the fork or both the parent and the child after the
1766 * fork. Restart if a signal comes in before we add the new process to
1767 * it's process group.
1768 * A fatal signal pending means that current will exit, so the new
1769 * thread can't slip out of an OOM kill (or normal SIGKILL).
1770 */
1771 recalc_sigpending();
1772 if (signal_pending(current)) {
1773 spin_unlock(&current->sighand->siglock);
1774 write_unlock_irq(&tasklist_lock);
1775 retval = -ERESTARTNOINTR;
1776 goto bad_fork_cancel_cgroup;
1777 }
1778
1779 if (likely(p->pid)) {
1780 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1781
1782 init_task_pid(p, PIDTYPE_PID, pid);
1783 if (thread_group_leader(p)) {
1784 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1785 init_task_pid(p, PIDTYPE_SID, task_session(current));
1786
1787 if (is_child_reaper(pid)) {
1788 ns_of_pid(pid)->child_reaper = p;
1789 p->signal->flags |= SIGNAL_UNKILLABLE;
1790 }
1791
1792 p->signal->leader_pid = pid;
1793 p->signal->tty = tty_kref_get(current->signal->tty);
1794 list_add_tail(&p->sibling, &p->real_parent->children);
1795 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1796 attach_pid(p, PIDTYPE_PGID);
1797 attach_pid(p, PIDTYPE_SID);
1798 __this_cpu_inc(process_counts);
1799 } else {
1800 current->signal->nr_threads++;
1801 atomic_inc(&current->signal->live);
1802 atomic_inc(&current->signal->sigcnt);
1803 list_add_tail_rcu(&p->thread_group,
1804 &p->group_leader->thread_group);
1805 list_add_tail_rcu(&p->thread_node,
1806 &p->signal->thread_head);
1807 }
1808 attach_pid(p, PIDTYPE_PID);
1809 nr_threads++;
1810 }
1811
1812 total_forks++;
1813 spin_unlock(&current->sighand->siglock);
1814 syscall_tracepoint_update(p);
1815 write_unlock_irq(&tasklist_lock);
1816
1817 proc_fork_connector(p);
1818 cgroup_post_fork(p);
1819 threadgroup_change_end(current);
1820 perf_event_fork(p);
1821
1822 trace_task_newtask(p, clone_flags);
1823 uprobe_copy_process(p, clone_flags);
1824
1825 return p;
1826
1827 bad_fork_cancel_cgroup:
1828 cgroup_cancel_fork(p);
1829 bad_fork_free_pid:
1830 threadgroup_change_end(current);
1831 if (pid != &init_struct_pid)
1832 free_pid(pid);
1833 bad_fork_cleanup_thread:
1834 exit_thread(p);
1835 bad_fork_cleanup_io:
1836 if (p->io_context)
1837 exit_io_context(p);
1838 bad_fork_cleanup_namespaces:
1839 exit_task_namespaces(p);
1840 bad_fork_cleanup_mm:
1841 if (p->mm)
1842 mmput(p->mm);
1843 bad_fork_cleanup_signal:
1844 if (!(clone_flags & CLONE_THREAD))
1845 free_signal_struct(p->signal);
1846 bad_fork_cleanup_sighand:
1847 __cleanup_sighand(p->sighand);
1848 bad_fork_cleanup_fs:
1849 exit_fs(p); /* blocking */
1850 bad_fork_cleanup_files:
1851 exit_files(p); /* blocking */
1852 bad_fork_cleanup_semundo:
1853 exit_sem(p);
1854 bad_fork_cleanup_audit:
1855 audit_free(p);
1856 bad_fork_cleanup_perf:
1857 perf_event_free_task(p);
1858 bad_fork_cleanup_policy:
1859 #ifdef CONFIG_NUMA
1860 mpol_put(p->mempolicy);
1861 bad_fork_cleanup_threadgroup_lock:
1862 #endif
1863 delayacct_tsk_free(p);
1864 bad_fork_cleanup_count:
1865 atomic_dec(&p->cred->user->processes);
1866 exit_creds(p);
1867 bad_fork_free:
1868 p->state = TASK_DEAD;
1869 put_task_stack(p);
1870 free_task(p);
1871 fork_out:
1872 return ERR_PTR(retval);
1873 }
1874
1875 static inline void init_idle_pids(struct pid_link *links)
1876 {
1877 enum pid_type type;
1878
1879 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1880 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1881 links[type].pid = &init_struct_pid;
1882 }
1883 }
1884
1885 struct task_struct *fork_idle(int cpu)
1886 {
1887 struct task_struct *task;
1888 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1889 cpu_to_node(cpu));
1890 if (!IS_ERR(task)) {
1891 init_idle_pids(task->pids);
1892 init_idle(task, cpu);
1893 }
1894
1895 return task;
1896 }
1897
1898 /*
1899 * Ok, this is the main fork-routine.
1900 *
1901 * It copies the process, and if successful kick-starts
1902 * it and waits for it to finish using the VM if required.
1903 */
1904 long _do_fork(unsigned long clone_flags,
1905 unsigned long stack_start,
1906 unsigned long stack_size,
1907 int __user *parent_tidptr,
1908 int __user *child_tidptr,
1909 unsigned long tls)
1910 {
1911 struct task_struct *p;
1912 int trace = 0;
1913 long nr;
1914
1915 /*
1916 * Determine whether and which event to report to ptracer. When
1917 * called from kernel_thread or CLONE_UNTRACED is explicitly
1918 * requested, no event is reported; otherwise, report if the event
1919 * for the type of forking is enabled.
1920 */
1921 if (!(clone_flags & CLONE_UNTRACED)) {
1922 if (clone_flags & CLONE_VFORK)
1923 trace = PTRACE_EVENT_VFORK;
1924 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1925 trace = PTRACE_EVENT_CLONE;
1926 else
1927 trace = PTRACE_EVENT_FORK;
1928
1929 if (likely(!ptrace_event_enabled(current, trace)))
1930 trace = 0;
1931 }
1932
1933 p = copy_process(clone_flags, stack_start, stack_size,
1934 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1935 add_latent_entropy();
1936 /*
1937 * Do this prior waking up the new thread - the thread pointer
1938 * might get invalid after that point, if the thread exits quickly.
1939 */
1940 if (!IS_ERR(p)) {
1941 struct completion vfork;
1942 struct pid *pid;
1943
1944 trace_sched_process_fork(current, p);
1945
1946 pid = get_task_pid(p, PIDTYPE_PID);
1947 nr = pid_vnr(pid);
1948
1949 if (clone_flags & CLONE_PARENT_SETTID)
1950 put_user(nr, parent_tidptr);
1951
1952 if (clone_flags & CLONE_VFORK) {
1953 p->vfork_done = &vfork;
1954 init_completion(&vfork);
1955 get_task_struct(p);
1956 }
1957
1958 wake_up_new_task(p);
1959
1960 /* forking complete and child started to run, tell ptracer */
1961 if (unlikely(trace))
1962 ptrace_event_pid(trace, pid);
1963
1964 if (clone_flags & CLONE_VFORK) {
1965 if (!wait_for_vfork_done(p, &vfork))
1966 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1967 }
1968
1969 put_pid(pid);
1970 } else {
1971 nr = PTR_ERR(p);
1972 }
1973 return nr;
1974 }
1975
1976 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1977 /* For compatibility with architectures that call do_fork directly rather than
1978 * using the syscall entry points below. */
1979 long do_fork(unsigned long clone_flags,
1980 unsigned long stack_start,
1981 unsigned long stack_size,
1982 int __user *parent_tidptr,
1983 int __user *child_tidptr)
1984 {
1985 return _do_fork(clone_flags, stack_start, stack_size,
1986 parent_tidptr, child_tidptr, 0);
1987 }
1988 #endif
1989
1990 /*
1991 * Create a kernel thread.
1992 */
1993 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1994 {
1995 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1996 (unsigned long)arg, NULL, NULL, 0);
1997 }
1998
1999 #ifdef __ARCH_WANT_SYS_FORK
2000 SYSCALL_DEFINE0(fork)
2001 {
2002 #ifdef CONFIG_MMU
2003 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2004 #else
2005 /* can not support in nommu mode */
2006 return -EINVAL;
2007 #endif
2008 }
2009 #endif
2010
2011 #ifdef __ARCH_WANT_SYS_VFORK
2012 SYSCALL_DEFINE0(vfork)
2013 {
2014 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2015 0, NULL, NULL, 0);
2016 }
2017 #endif
2018
2019 #ifdef __ARCH_WANT_SYS_CLONE
2020 #ifdef CONFIG_CLONE_BACKWARDS
2021 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2022 int __user *, parent_tidptr,
2023 unsigned long, tls,
2024 int __user *, child_tidptr)
2025 #elif defined(CONFIG_CLONE_BACKWARDS2)
2026 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2027 int __user *, parent_tidptr,
2028 int __user *, child_tidptr,
2029 unsigned long, tls)
2030 #elif defined(CONFIG_CLONE_BACKWARDS3)
2031 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2032 int, stack_size,
2033 int __user *, parent_tidptr,
2034 int __user *, child_tidptr,
2035 unsigned long, tls)
2036 #else
2037 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2038 int __user *, parent_tidptr,
2039 int __user *, child_tidptr,
2040 unsigned long, tls)
2041 #endif
2042 {
2043 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2044 }
2045 #endif
2046
2047 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2048 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2049 #endif
2050
2051 static void sighand_ctor(void *data)
2052 {
2053 struct sighand_struct *sighand = data;
2054
2055 spin_lock_init(&sighand->siglock);
2056 init_waitqueue_head(&sighand->signalfd_wqh);
2057 }
2058
2059 void __init proc_caches_init(void)
2060 {
2061 sighand_cachep = kmem_cache_create("sighand_cache",
2062 sizeof(struct sighand_struct), 0,
2063 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2064 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2065 signal_cachep = kmem_cache_create("signal_cache",
2066 sizeof(struct signal_struct), 0,
2067 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2068 NULL);
2069 files_cachep = kmem_cache_create("files_cache",
2070 sizeof(struct files_struct), 0,
2071 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2072 NULL);
2073 fs_cachep = kmem_cache_create("fs_cache",
2074 sizeof(struct fs_struct), 0,
2075 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2076 NULL);
2077 /*
2078 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2079 * whole struct cpumask for the OFFSTACK case. We could change
2080 * this to *only* allocate as much of it as required by the
2081 * maximum number of CPU's we can ever have. The cpumask_allocation
2082 * is at the end of the structure, exactly for that reason.
2083 */
2084 mm_cachep = kmem_cache_create("mm_struct",
2085 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2086 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2087 NULL);
2088 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2089 mmap_init();
2090 nsproxy_cache_init();
2091 }
2092
2093 /*
2094 * Check constraints on flags passed to the unshare system call.
2095 */
2096 static int check_unshare_flags(unsigned long unshare_flags)
2097 {
2098 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2099 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2100 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2101 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2102 return -EINVAL;
2103 /*
2104 * Not implemented, but pretend it works if there is nothing
2105 * to unshare. Note that unsharing the address space or the
2106 * signal handlers also need to unshare the signal queues (aka
2107 * CLONE_THREAD).
2108 */
2109 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2110 if (!thread_group_empty(current))
2111 return -EINVAL;
2112 }
2113 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2114 if (atomic_read(&current->sighand->count) > 1)
2115 return -EINVAL;
2116 }
2117 if (unshare_flags & CLONE_VM) {
2118 if (!current_is_single_threaded())
2119 return -EINVAL;
2120 }
2121
2122 return 0;
2123 }
2124
2125 /*
2126 * Unshare the filesystem structure if it is being shared
2127 */
2128 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2129 {
2130 struct fs_struct *fs = current->fs;
2131
2132 if (!(unshare_flags & CLONE_FS) || !fs)
2133 return 0;
2134
2135 /* don't need lock here; in the worst case we'll do useless copy */
2136 if (fs->users == 1)
2137 return 0;
2138
2139 *new_fsp = copy_fs_struct(fs);
2140 if (!*new_fsp)
2141 return -ENOMEM;
2142
2143 return 0;
2144 }
2145
2146 /*
2147 * Unshare file descriptor table if it is being shared
2148 */
2149 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2150 {
2151 struct files_struct *fd = current->files;
2152 int error = 0;
2153
2154 if ((unshare_flags & CLONE_FILES) &&
2155 (fd && atomic_read(&fd->count) > 1)) {
2156 *new_fdp = dup_fd(fd, &error);
2157 if (!*new_fdp)
2158 return error;
2159 }
2160
2161 return 0;
2162 }
2163
2164 /*
2165 * unshare allows a process to 'unshare' part of the process
2166 * context which was originally shared using clone. copy_*
2167 * functions used by do_fork() cannot be used here directly
2168 * because they modify an inactive task_struct that is being
2169 * constructed. Here we are modifying the current, active,
2170 * task_struct.
2171 */
2172 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2173 {
2174 struct fs_struct *fs, *new_fs = NULL;
2175 struct files_struct *fd, *new_fd = NULL;
2176 struct cred *new_cred = NULL;
2177 struct nsproxy *new_nsproxy = NULL;
2178 int do_sysvsem = 0;
2179 int err;
2180
2181 /*
2182 * If unsharing a user namespace must also unshare the thread group
2183 * and unshare the filesystem root and working directories.
2184 */
2185 if (unshare_flags & CLONE_NEWUSER)
2186 unshare_flags |= CLONE_THREAD | CLONE_FS;
2187 /*
2188 * If unsharing vm, must also unshare signal handlers.
2189 */
2190 if (unshare_flags & CLONE_VM)
2191 unshare_flags |= CLONE_SIGHAND;
2192 /*
2193 * If unsharing a signal handlers, must also unshare the signal queues.
2194 */
2195 if (unshare_flags & CLONE_SIGHAND)
2196 unshare_flags |= CLONE_THREAD;
2197 /*
2198 * If unsharing namespace, must also unshare filesystem information.
2199 */
2200 if (unshare_flags & CLONE_NEWNS)
2201 unshare_flags |= CLONE_FS;
2202
2203 err = check_unshare_flags(unshare_flags);
2204 if (err)
2205 goto bad_unshare_out;
2206 /*
2207 * CLONE_NEWIPC must also detach from the undolist: after switching
2208 * to a new ipc namespace, the semaphore arrays from the old
2209 * namespace are unreachable.
2210 */
2211 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2212 do_sysvsem = 1;
2213 err = unshare_fs(unshare_flags, &new_fs);
2214 if (err)
2215 goto bad_unshare_out;
2216 err = unshare_fd(unshare_flags, &new_fd);
2217 if (err)
2218 goto bad_unshare_cleanup_fs;
2219 err = unshare_userns(unshare_flags, &new_cred);
2220 if (err)
2221 goto bad_unshare_cleanup_fd;
2222 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2223 new_cred, new_fs);
2224 if (err)
2225 goto bad_unshare_cleanup_cred;
2226
2227 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2228 if (do_sysvsem) {
2229 /*
2230 * CLONE_SYSVSEM is equivalent to sys_exit().
2231 */
2232 exit_sem(current);
2233 }
2234 if (unshare_flags & CLONE_NEWIPC) {
2235 /* Orphan segments in old ns (see sem above). */
2236 exit_shm(current);
2237 shm_init_task(current);
2238 }
2239
2240 if (new_nsproxy)
2241 switch_task_namespaces(current, new_nsproxy);
2242
2243 task_lock(current);
2244
2245 if (new_fs) {
2246 fs = current->fs;
2247 spin_lock(&fs->lock);
2248 current->fs = new_fs;
2249 if (--fs->users)
2250 new_fs = NULL;
2251 else
2252 new_fs = fs;
2253 spin_unlock(&fs->lock);
2254 }
2255
2256 if (new_fd) {
2257 fd = current->files;
2258 current->files = new_fd;
2259 new_fd = fd;
2260 }
2261
2262 task_unlock(current);
2263
2264 if (new_cred) {
2265 /* Install the new user namespace */
2266 commit_creds(new_cred);
2267 new_cred = NULL;
2268 }
2269 }
2270
2271 bad_unshare_cleanup_cred:
2272 if (new_cred)
2273 put_cred(new_cred);
2274 bad_unshare_cleanup_fd:
2275 if (new_fd)
2276 put_files_struct(new_fd);
2277
2278 bad_unshare_cleanup_fs:
2279 if (new_fs)
2280 free_fs_struct(new_fs);
2281
2282 bad_unshare_out:
2283 return err;
2284 }
2285
2286 /*
2287 * Helper to unshare the files of the current task.
2288 * We don't want to expose copy_files internals to
2289 * the exec layer of the kernel.
2290 */
2291
2292 int unshare_files(struct files_struct **displaced)
2293 {
2294 struct task_struct *task = current;
2295 struct files_struct *copy = NULL;
2296 int error;
2297
2298 error = unshare_fd(CLONE_FILES, &copy);
2299 if (error || !copy) {
2300 *displaced = NULL;
2301 return error;
2302 }
2303 *displaced = task->files;
2304 task_lock(task);
2305 task->files = copy;
2306 task_unlock(task);
2307 return 0;
2308 }
2309
2310 int sysctl_max_threads(struct ctl_table *table, int write,
2311 void __user *buffer, size_t *lenp, loff_t *ppos)
2312 {
2313 struct ctl_table t;
2314 int ret;
2315 int threads = max_threads;
2316 int min = MIN_THREADS;
2317 int max = MAX_THREADS;
2318
2319 t = *table;
2320 t.data = &threads;
2321 t.extra1 = &min;
2322 t.extra2 = &max;
2323
2324 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2325 if (ret || !write)
2326 return ret;
2327
2328 set_max_threads(threads);
2329
2330 return 0;
2331 }