]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/fork.c
mm: make vm_area_alloc() initialize core fields
[mirror_ubuntu-focal-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108 * Minimum number of threads to boot the kernel
109 */
110 #define MIN_THREADS 20
111
112 /*
113 * Maximum number of threads
114 */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118 * Protected counters by write_lock_irq(&tasklist_lock)
119 */
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
122
123 int max_threads; /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
137 int nr_processes(void)
138 {
139 int cpu;
140 int total = 0;
141
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
144
145 return total;
146 }
147
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171
172 /*
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
175 */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177
178 #ifdef CONFIG_VMAP_STACK
179 /*
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
182 */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
190
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194 if (!vm_stack)
195 continue;
196
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
199 }
200
201 return 0;
202 }
203 #endif
204
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 void *stack;
209 int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *s;
213
214 s = this_cpu_xchg(cached_stacks[i], NULL);
215
216 if (!s)
217 continue;
218
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
221
222 tsk->stack_vm_area = s;
223 return s->addr;
224 }
225
226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 VMALLOC_START, VMALLOC_END,
228 THREADINFO_GFP,
229 PAGE_KERNEL,
230 0, node, __builtin_return_address(0));
231
232 /*
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
236 */
237 if (stack)
238 tsk->stack_vm_area = find_vm_area(stack);
239 return stack;
240 #else
241 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 THREAD_SIZE_ORDER);
243
244 return page ? page_address(page) : NULL;
245 #endif
246 }
247
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk)) {
252 int i;
253
254 for (i = 0; i < NR_CACHED_STACKS; i++) {
255 if (this_cpu_cmpxchg(cached_stacks[i],
256 NULL, tsk->stack_vm_area) != NULL)
257 continue;
258
259 return;
260 }
261
262 vfree_atomic(tsk->stack);
263 return;
264 }
265 #endif
266
267 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 int node)
274 {
275 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282
283 void thread_stack_cache_init(void)
284 {
285 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 THREAD_SIZE, THREAD_SIZE, 0, 0,
287 THREAD_SIZE, NULL);
288 BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310
311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313 struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
314
315 if (vma) {
316 vma->vm_mm = mm;
317 INIT_LIST_HEAD(&vma->anon_vma_chain);
318 }
319 return vma;
320 }
321
322 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
323 {
324 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
325
326 if (new) {
327 *new = *orig;
328 INIT_LIST_HEAD(&new->anon_vma_chain);
329 }
330 return new;
331 }
332
333 void vm_area_free(struct vm_area_struct *vma)
334 {
335 kmem_cache_free(vm_area_cachep, vma);
336 }
337
338 static void account_kernel_stack(struct task_struct *tsk, int account)
339 {
340 void *stack = task_stack_page(tsk);
341 struct vm_struct *vm = task_stack_vm_area(tsk);
342
343 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
344
345 if (vm) {
346 int i;
347
348 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
349
350 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
351 mod_zone_page_state(page_zone(vm->pages[i]),
352 NR_KERNEL_STACK_KB,
353 PAGE_SIZE / 1024 * account);
354 }
355
356 /* All stack pages belong to the same memcg. */
357 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
358 account * (THREAD_SIZE / 1024));
359 } else {
360 /*
361 * All stack pages are in the same zone and belong to the
362 * same memcg.
363 */
364 struct page *first_page = virt_to_page(stack);
365
366 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
367 THREAD_SIZE / 1024 * account);
368
369 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
370 account * (THREAD_SIZE / 1024));
371 }
372 }
373
374 static void release_task_stack(struct task_struct *tsk)
375 {
376 if (WARN_ON(tsk->state != TASK_DEAD))
377 return; /* Better to leak the stack than to free prematurely */
378
379 account_kernel_stack(tsk, -1);
380 arch_release_thread_stack(tsk->stack);
381 free_thread_stack(tsk);
382 tsk->stack = NULL;
383 #ifdef CONFIG_VMAP_STACK
384 tsk->stack_vm_area = NULL;
385 #endif
386 }
387
388 #ifdef CONFIG_THREAD_INFO_IN_TASK
389 void put_task_stack(struct task_struct *tsk)
390 {
391 if (atomic_dec_and_test(&tsk->stack_refcount))
392 release_task_stack(tsk);
393 }
394 #endif
395
396 void free_task(struct task_struct *tsk)
397 {
398 #ifndef CONFIG_THREAD_INFO_IN_TASK
399 /*
400 * The task is finally done with both the stack and thread_info,
401 * so free both.
402 */
403 release_task_stack(tsk);
404 #else
405 /*
406 * If the task had a separate stack allocation, it should be gone
407 * by now.
408 */
409 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
410 #endif
411 rt_mutex_debug_task_free(tsk);
412 ftrace_graph_exit_task(tsk);
413 put_seccomp_filter(tsk);
414 arch_release_task_struct(tsk);
415 if (tsk->flags & PF_KTHREAD)
416 free_kthread_struct(tsk);
417 free_task_struct(tsk);
418 }
419 EXPORT_SYMBOL(free_task);
420
421 #ifdef CONFIG_MMU
422 static __latent_entropy int dup_mmap(struct mm_struct *mm,
423 struct mm_struct *oldmm)
424 {
425 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
426 struct rb_node **rb_link, *rb_parent;
427 int retval;
428 unsigned long charge;
429 LIST_HEAD(uf);
430
431 uprobe_start_dup_mmap();
432 if (down_write_killable(&oldmm->mmap_sem)) {
433 retval = -EINTR;
434 goto fail_uprobe_end;
435 }
436 flush_cache_dup_mm(oldmm);
437 uprobe_dup_mmap(oldmm, mm);
438 /*
439 * Not linked in yet - no deadlock potential:
440 */
441 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
442
443 /* No ordering required: file already has been exposed. */
444 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
445
446 mm->total_vm = oldmm->total_vm;
447 mm->data_vm = oldmm->data_vm;
448 mm->exec_vm = oldmm->exec_vm;
449 mm->stack_vm = oldmm->stack_vm;
450
451 rb_link = &mm->mm_rb.rb_node;
452 rb_parent = NULL;
453 pprev = &mm->mmap;
454 retval = ksm_fork(mm, oldmm);
455 if (retval)
456 goto out;
457 retval = khugepaged_fork(mm, oldmm);
458 if (retval)
459 goto out;
460
461 prev = NULL;
462 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
463 struct file *file;
464
465 if (mpnt->vm_flags & VM_DONTCOPY) {
466 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
467 continue;
468 }
469 charge = 0;
470 /*
471 * Don't duplicate many vmas if we've been oom-killed (for
472 * example)
473 */
474 if (fatal_signal_pending(current)) {
475 retval = -EINTR;
476 goto out;
477 }
478 if (mpnt->vm_flags & VM_ACCOUNT) {
479 unsigned long len = vma_pages(mpnt);
480
481 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
482 goto fail_nomem;
483 charge = len;
484 }
485 tmp = vm_area_dup(mpnt);
486 if (!tmp)
487 goto fail_nomem;
488 retval = vma_dup_policy(mpnt, tmp);
489 if (retval)
490 goto fail_nomem_policy;
491 tmp->vm_mm = mm;
492 retval = dup_userfaultfd(tmp, &uf);
493 if (retval)
494 goto fail_nomem_anon_vma_fork;
495 if (tmp->vm_flags & VM_WIPEONFORK) {
496 /* VM_WIPEONFORK gets a clean slate in the child. */
497 tmp->anon_vma = NULL;
498 if (anon_vma_prepare(tmp))
499 goto fail_nomem_anon_vma_fork;
500 } else if (anon_vma_fork(tmp, mpnt))
501 goto fail_nomem_anon_vma_fork;
502 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
503 tmp->vm_next = tmp->vm_prev = NULL;
504 file = tmp->vm_file;
505 if (file) {
506 struct inode *inode = file_inode(file);
507 struct address_space *mapping = file->f_mapping;
508
509 get_file(file);
510 if (tmp->vm_flags & VM_DENYWRITE)
511 atomic_dec(&inode->i_writecount);
512 i_mmap_lock_write(mapping);
513 if (tmp->vm_flags & VM_SHARED)
514 atomic_inc(&mapping->i_mmap_writable);
515 flush_dcache_mmap_lock(mapping);
516 /* insert tmp into the share list, just after mpnt */
517 vma_interval_tree_insert_after(tmp, mpnt,
518 &mapping->i_mmap);
519 flush_dcache_mmap_unlock(mapping);
520 i_mmap_unlock_write(mapping);
521 }
522
523 /*
524 * Clear hugetlb-related page reserves for children. This only
525 * affects MAP_PRIVATE mappings. Faults generated by the child
526 * are not guaranteed to succeed, even if read-only
527 */
528 if (is_vm_hugetlb_page(tmp))
529 reset_vma_resv_huge_pages(tmp);
530
531 /*
532 * Link in the new vma and copy the page table entries.
533 */
534 *pprev = tmp;
535 pprev = &tmp->vm_next;
536 tmp->vm_prev = prev;
537 prev = tmp;
538
539 __vma_link_rb(mm, tmp, rb_link, rb_parent);
540 rb_link = &tmp->vm_rb.rb_right;
541 rb_parent = &tmp->vm_rb;
542
543 mm->map_count++;
544 if (!(tmp->vm_flags & VM_WIPEONFORK))
545 retval = copy_page_range(mm, oldmm, mpnt);
546
547 if (tmp->vm_ops && tmp->vm_ops->open)
548 tmp->vm_ops->open(tmp);
549
550 if (retval)
551 goto out;
552 }
553 /* a new mm has just been created */
554 arch_dup_mmap(oldmm, mm);
555 retval = 0;
556 out:
557 up_write(&mm->mmap_sem);
558 flush_tlb_mm(oldmm);
559 up_write(&oldmm->mmap_sem);
560 dup_userfaultfd_complete(&uf);
561 fail_uprobe_end:
562 uprobe_end_dup_mmap();
563 return retval;
564 fail_nomem_anon_vma_fork:
565 mpol_put(vma_policy(tmp));
566 fail_nomem_policy:
567 vm_area_free(tmp);
568 fail_nomem:
569 retval = -ENOMEM;
570 vm_unacct_memory(charge);
571 goto out;
572 }
573
574 static inline int mm_alloc_pgd(struct mm_struct *mm)
575 {
576 mm->pgd = pgd_alloc(mm);
577 if (unlikely(!mm->pgd))
578 return -ENOMEM;
579 return 0;
580 }
581
582 static inline void mm_free_pgd(struct mm_struct *mm)
583 {
584 pgd_free(mm, mm->pgd);
585 }
586 #else
587 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
588 {
589 down_write(&oldmm->mmap_sem);
590 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
591 up_write(&oldmm->mmap_sem);
592 return 0;
593 }
594 #define mm_alloc_pgd(mm) (0)
595 #define mm_free_pgd(mm)
596 #endif /* CONFIG_MMU */
597
598 static void check_mm(struct mm_struct *mm)
599 {
600 int i;
601
602 for (i = 0; i < NR_MM_COUNTERS; i++) {
603 long x = atomic_long_read(&mm->rss_stat.count[i]);
604
605 if (unlikely(x))
606 printk(KERN_ALERT "BUG: Bad rss-counter state "
607 "mm:%p idx:%d val:%ld\n", mm, i, x);
608 }
609
610 if (mm_pgtables_bytes(mm))
611 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
612 mm_pgtables_bytes(mm));
613
614 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
615 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
616 #endif
617 }
618
619 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
620 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
621
622 /*
623 * Called when the last reference to the mm
624 * is dropped: either by a lazy thread or by
625 * mmput. Free the page directory and the mm.
626 */
627 void __mmdrop(struct mm_struct *mm)
628 {
629 BUG_ON(mm == &init_mm);
630 WARN_ON_ONCE(mm == current->mm);
631 WARN_ON_ONCE(mm == current->active_mm);
632 mm_free_pgd(mm);
633 destroy_context(mm);
634 hmm_mm_destroy(mm);
635 mmu_notifier_mm_destroy(mm);
636 check_mm(mm);
637 put_user_ns(mm->user_ns);
638 free_mm(mm);
639 }
640 EXPORT_SYMBOL_GPL(__mmdrop);
641
642 static void mmdrop_async_fn(struct work_struct *work)
643 {
644 struct mm_struct *mm;
645
646 mm = container_of(work, struct mm_struct, async_put_work);
647 __mmdrop(mm);
648 }
649
650 static void mmdrop_async(struct mm_struct *mm)
651 {
652 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
653 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
654 schedule_work(&mm->async_put_work);
655 }
656 }
657
658 static inline void free_signal_struct(struct signal_struct *sig)
659 {
660 taskstats_tgid_free(sig);
661 sched_autogroup_exit(sig);
662 /*
663 * __mmdrop is not safe to call from softirq context on x86 due to
664 * pgd_dtor so postpone it to the async context
665 */
666 if (sig->oom_mm)
667 mmdrop_async(sig->oom_mm);
668 kmem_cache_free(signal_cachep, sig);
669 }
670
671 static inline void put_signal_struct(struct signal_struct *sig)
672 {
673 if (atomic_dec_and_test(&sig->sigcnt))
674 free_signal_struct(sig);
675 }
676
677 void __put_task_struct(struct task_struct *tsk)
678 {
679 WARN_ON(!tsk->exit_state);
680 WARN_ON(atomic_read(&tsk->usage));
681 WARN_ON(tsk == current);
682
683 cgroup_free(tsk);
684 task_numa_free(tsk);
685 security_task_free(tsk);
686 exit_creds(tsk);
687 delayacct_tsk_free(tsk);
688 put_signal_struct(tsk->signal);
689
690 if (!profile_handoff_task(tsk))
691 free_task(tsk);
692 }
693 EXPORT_SYMBOL_GPL(__put_task_struct);
694
695 void __init __weak arch_task_cache_init(void) { }
696
697 /*
698 * set_max_threads
699 */
700 static void set_max_threads(unsigned int max_threads_suggested)
701 {
702 u64 threads;
703
704 /*
705 * The number of threads shall be limited such that the thread
706 * structures may only consume a small part of the available memory.
707 */
708 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
709 threads = MAX_THREADS;
710 else
711 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
712 (u64) THREAD_SIZE * 8UL);
713
714 if (threads > max_threads_suggested)
715 threads = max_threads_suggested;
716
717 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
718 }
719
720 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
721 /* Initialized by the architecture: */
722 int arch_task_struct_size __read_mostly;
723 #endif
724
725 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
726 {
727 /* Fetch thread_struct whitelist for the architecture. */
728 arch_thread_struct_whitelist(offset, size);
729
730 /*
731 * Handle zero-sized whitelist or empty thread_struct, otherwise
732 * adjust offset to position of thread_struct in task_struct.
733 */
734 if (unlikely(*size == 0))
735 *offset = 0;
736 else
737 *offset += offsetof(struct task_struct, thread);
738 }
739
740 void __init fork_init(void)
741 {
742 int i;
743 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
744 #ifndef ARCH_MIN_TASKALIGN
745 #define ARCH_MIN_TASKALIGN 0
746 #endif
747 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
748 unsigned long useroffset, usersize;
749
750 /* create a slab on which task_structs can be allocated */
751 task_struct_whitelist(&useroffset, &usersize);
752 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
753 arch_task_struct_size, align,
754 SLAB_PANIC|SLAB_ACCOUNT,
755 useroffset, usersize, NULL);
756 #endif
757
758 /* do the arch specific task caches init */
759 arch_task_cache_init();
760
761 set_max_threads(MAX_THREADS);
762
763 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
764 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
765 init_task.signal->rlim[RLIMIT_SIGPENDING] =
766 init_task.signal->rlim[RLIMIT_NPROC];
767
768 for (i = 0; i < UCOUNT_COUNTS; i++) {
769 init_user_ns.ucount_max[i] = max_threads/2;
770 }
771
772 #ifdef CONFIG_VMAP_STACK
773 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
774 NULL, free_vm_stack_cache);
775 #endif
776
777 lockdep_init_task(&init_task);
778 }
779
780 int __weak arch_dup_task_struct(struct task_struct *dst,
781 struct task_struct *src)
782 {
783 *dst = *src;
784 return 0;
785 }
786
787 void set_task_stack_end_magic(struct task_struct *tsk)
788 {
789 unsigned long *stackend;
790
791 stackend = end_of_stack(tsk);
792 *stackend = STACK_END_MAGIC; /* for overflow detection */
793 }
794
795 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
796 {
797 struct task_struct *tsk;
798 unsigned long *stack;
799 struct vm_struct *stack_vm_area;
800 int err;
801
802 if (node == NUMA_NO_NODE)
803 node = tsk_fork_get_node(orig);
804 tsk = alloc_task_struct_node(node);
805 if (!tsk)
806 return NULL;
807
808 stack = alloc_thread_stack_node(tsk, node);
809 if (!stack)
810 goto free_tsk;
811
812 stack_vm_area = task_stack_vm_area(tsk);
813
814 err = arch_dup_task_struct(tsk, orig);
815
816 /*
817 * arch_dup_task_struct() clobbers the stack-related fields. Make
818 * sure they're properly initialized before using any stack-related
819 * functions again.
820 */
821 tsk->stack = stack;
822 #ifdef CONFIG_VMAP_STACK
823 tsk->stack_vm_area = stack_vm_area;
824 #endif
825 #ifdef CONFIG_THREAD_INFO_IN_TASK
826 atomic_set(&tsk->stack_refcount, 1);
827 #endif
828
829 if (err)
830 goto free_stack;
831
832 #ifdef CONFIG_SECCOMP
833 /*
834 * We must handle setting up seccomp filters once we're under
835 * the sighand lock in case orig has changed between now and
836 * then. Until then, filter must be NULL to avoid messing up
837 * the usage counts on the error path calling free_task.
838 */
839 tsk->seccomp.filter = NULL;
840 #endif
841
842 setup_thread_stack(tsk, orig);
843 clear_user_return_notifier(tsk);
844 clear_tsk_need_resched(tsk);
845 set_task_stack_end_magic(tsk);
846
847 #ifdef CONFIG_STACKPROTECTOR
848 tsk->stack_canary = get_random_canary();
849 #endif
850
851 /*
852 * One for us, one for whoever does the "release_task()" (usually
853 * parent)
854 */
855 atomic_set(&tsk->usage, 2);
856 #ifdef CONFIG_BLK_DEV_IO_TRACE
857 tsk->btrace_seq = 0;
858 #endif
859 tsk->splice_pipe = NULL;
860 tsk->task_frag.page = NULL;
861 tsk->wake_q.next = NULL;
862
863 account_kernel_stack(tsk, 1);
864
865 kcov_task_init(tsk);
866
867 #ifdef CONFIG_FAULT_INJECTION
868 tsk->fail_nth = 0;
869 #endif
870
871 return tsk;
872
873 free_stack:
874 free_thread_stack(tsk);
875 free_tsk:
876 free_task_struct(tsk);
877 return NULL;
878 }
879
880 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
881
882 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
883
884 static int __init coredump_filter_setup(char *s)
885 {
886 default_dump_filter =
887 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
888 MMF_DUMP_FILTER_MASK;
889 return 1;
890 }
891
892 __setup("coredump_filter=", coredump_filter_setup);
893
894 #include <linux/init_task.h>
895
896 static void mm_init_aio(struct mm_struct *mm)
897 {
898 #ifdef CONFIG_AIO
899 spin_lock_init(&mm->ioctx_lock);
900 mm->ioctx_table = NULL;
901 #endif
902 }
903
904 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
905 {
906 #ifdef CONFIG_MEMCG
907 mm->owner = p;
908 #endif
909 }
910
911 static void mm_init_uprobes_state(struct mm_struct *mm)
912 {
913 #ifdef CONFIG_UPROBES
914 mm->uprobes_state.xol_area = NULL;
915 #endif
916 }
917
918 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
919 struct user_namespace *user_ns)
920 {
921 mm->mmap = NULL;
922 mm->mm_rb = RB_ROOT;
923 mm->vmacache_seqnum = 0;
924 atomic_set(&mm->mm_users, 1);
925 atomic_set(&mm->mm_count, 1);
926 init_rwsem(&mm->mmap_sem);
927 INIT_LIST_HEAD(&mm->mmlist);
928 mm->core_state = NULL;
929 mm_pgtables_bytes_init(mm);
930 mm->map_count = 0;
931 mm->locked_vm = 0;
932 mm->pinned_vm = 0;
933 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
934 spin_lock_init(&mm->page_table_lock);
935 spin_lock_init(&mm->arg_lock);
936 mm_init_cpumask(mm);
937 mm_init_aio(mm);
938 mm_init_owner(mm, p);
939 RCU_INIT_POINTER(mm->exe_file, NULL);
940 mmu_notifier_mm_init(mm);
941 hmm_mm_init(mm);
942 init_tlb_flush_pending(mm);
943 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
944 mm->pmd_huge_pte = NULL;
945 #endif
946 mm_init_uprobes_state(mm);
947
948 if (current->mm) {
949 mm->flags = current->mm->flags & MMF_INIT_MASK;
950 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
951 } else {
952 mm->flags = default_dump_filter;
953 mm->def_flags = 0;
954 }
955
956 if (mm_alloc_pgd(mm))
957 goto fail_nopgd;
958
959 if (init_new_context(p, mm))
960 goto fail_nocontext;
961
962 mm->user_ns = get_user_ns(user_ns);
963 return mm;
964
965 fail_nocontext:
966 mm_free_pgd(mm);
967 fail_nopgd:
968 free_mm(mm);
969 return NULL;
970 }
971
972 /*
973 * Allocate and initialize an mm_struct.
974 */
975 struct mm_struct *mm_alloc(void)
976 {
977 struct mm_struct *mm;
978
979 mm = allocate_mm();
980 if (!mm)
981 return NULL;
982
983 memset(mm, 0, sizeof(*mm));
984 return mm_init(mm, current, current_user_ns());
985 }
986
987 static inline void __mmput(struct mm_struct *mm)
988 {
989 VM_BUG_ON(atomic_read(&mm->mm_users));
990
991 uprobe_clear_state(mm);
992 exit_aio(mm);
993 ksm_exit(mm);
994 khugepaged_exit(mm); /* must run before exit_mmap */
995 exit_mmap(mm);
996 mm_put_huge_zero_page(mm);
997 set_mm_exe_file(mm, NULL);
998 if (!list_empty(&mm->mmlist)) {
999 spin_lock(&mmlist_lock);
1000 list_del(&mm->mmlist);
1001 spin_unlock(&mmlist_lock);
1002 }
1003 if (mm->binfmt)
1004 module_put(mm->binfmt->module);
1005 mmdrop(mm);
1006 }
1007
1008 /*
1009 * Decrement the use count and release all resources for an mm.
1010 */
1011 void mmput(struct mm_struct *mm)
1012 {
1013 might_sleep();
1014
1015 if (atomic_dec_and_test(&mm->mm_users))
1016 __mmput(mm);
1017 }
1018 EXPORT_SYMBOL_GPL(mmput);
1019
1020 #ifdef CONFIG_MMU
1021 static void mmput_async_fn(struct work_struct *work)
1022 {
1023 struct mm_struct *mm = container_of(work, struct mm_struct,
1024 async_put_work);
1025
1026 __mmput(mm);
1027 }
1028
1029 void mmput_async(struct mm_struct *mm)
1030 {
1031 if (atomic_dec_and_test(&mm->mm_users)) {
1032 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1033 schedule_work(&mm->async_put_work);
1034 }
1035 }
1036 #endif
1037
1038 /**
1039 * set_mm_exe_file - change a reference to the mm's executable file
1040 *
1041 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1042 *
1043 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1044 * invocations: in mmput() nobody alive left, in execve task is single
1045 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1046 * mm->exe_file, but does so without using set_mm_exe_file() in order
1047 * to do avoid the need for any locks.
1048 */
1049 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1050 {
1051 struct file *old_exe_file;
1052
1053 /*
1054 * It is safe to dereference the exe_file without RCU as
1055 * this function is only called if nobody else can access
1056 * this mm -- see comment above for justification.
1057 */
1058 old_exe_file = rcu_dereference_raw(mm->exe_file);
1059
1060 if (new_exe_file)
1061 get_file(new_exe_file);
1062 rcu_assign_pointer(mm->exe_file, new_exe_file);
1063 if (old_exe_file)
1064 fput(old_exe_file);
1065 }
1066
1067 /**
1068 * get_mm_exe_file - acquire a reference to the mm's executable file
1069 *
1070 * Returns %NULL if mm has no associated executable file.
1071 * User must release file via fput().
1072 */
1073 struct file *get_mm_exe_file(struct mm_struct *mm)
1074 {
1075 struct file *exe_file;
1076
1077 rcu_read_lock();
1078 exe_file = rcu_dereference(mm->exe_file);
1079 if (exe_file && !get_file_rcu(exe_file))
1080 exe_file = NULL;
1081 rcu_read_unlock();
1082 return exe_file;
1083 }
1084 EXPORT_SYMBOL(get_mm_exe_file);
1085
1086 /**
1087 * get_task_exe_file - acquire a reference to the task's executable file
1088 *
1089 * Returns %NULL if task's mm (if any) has no associated executable file or
1090 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1091 * User must release file via fput().
1092 */
1093 struct file *get_task_exe_file(struct task_struct *task)
1094 {
1095 struct file *exe_file = NULL;
1096 struct mm_struct *mm;
1097
1098 task_lock(task);
1099 mm = task->mm;
1100 if (mm) {
1101 if (!(task->flags & PF_KTHREAD))
1102 exe_file = get_mm_exe_file(mm);
1103 }
1104 task_unlock(task);
1105 return exe_file;
1106 }
1107 EXPORT_SYMBOL(get_task_exe_file);
1108
1109 /**
1110 * get_task_mm - acquire a reference to the task's mm
1111 *
1112 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1113 * this kernel workthread has transiently adopted a user mm with use_mm,
1114 * to do its AIO) is not set and if so returns a reference to it, after
1115 * bumping up the use count. User must release the mm via mmput()
1116 * after use. Typically used by /proc and ptrace.
1117 */
1118 struct mm_struct *get_task_mm(struct task_struct *task)
1119 {
1120 struct mm_struct *mm;
1121
1122 task_lock(task);
1123 mm = task->mm;
1124 if (mm) {
1125 if (task->flags & PF_KTHREAD)
1126 mm = NULL;
1127 else
1128 mmget(mm);
1129 }
1130 task_unlock(task);
1131 return mm;
1132 }
1133 EXPORT_SYMBOL_GPL(get_task_mm);
1134
1135 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1136 {
1137 struct mm_struct *mm;
1138 int err;
1139
1140 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1141 if (err)
1142 return ERR_PTR(err);
1143
1144 mm = get_task_mm(task);
1145 if (mm && mm != current->mm &&
1146 !ptrace_may_access(task, mode)) {
1147 mmput(mm);
1148 mm = ERR_PTR(-EACCES);
1149 }
1150 mutex_unlock(&task->signal->cred_guard_mutex);
1151
1152 return mm;
1153 }
1154
1155 static void complete_vfork_done(struct task_struct *tsk)
1156 {
1157 struct completion *vfork;
1158
1159 task_lock(tsk);
1160 vfork = tsk->vfork_done;
1161 if (likely(vfork)) {
1162 tsk->vfork_done = NULL;
1163 complete(vfork);
1164 }
1165 task_unlock(tsk);
1166 }
1167
1168 static int wait_for_vfork_done(struct task_struct *child,
1169 struct completion *vfork)
1170 {
1171 int killed;
1172
1173 freezer_do_not_count();
1174 killed = wait_for_completion_killable(vfork);
1175 freezer_count();
1176
1177 if (killed) {
1178 task_lock(child);
1179 child->vfork_done = NULL;
1180 task_unlock(child);
1181 }
1182
1183 put_task_struct(child);
1184 return killed;
1185 }
1186
1187 /* Please note the differences between mmput and mm_release.
1188 * mmput is called whenever we stop holding onto a mm_struct,
1189 * error success whatever.
1190 *
1191 * mm_release is called after a mm_struct has been removed
1192 * from the current process.
1193 *
1194 * This difference is important for error handling, when we
1195 * only half set up a mm_struct for a new process and need to restore
1196 * the old one. Because we mmput the new mm_struct before
1197 * restoring the old one. . .
1198 * Eric Biederman 10 January 1998
1199 */
1200 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1201 {
1202 /* Get rid of any futexes when releasing the mm */
1203 #ifdef CONFIG_FUTEX
1204 if (unlikely(tsk->robust_list)) {
1205 exit_robust_list(tsk);
1206 tsk->robust_list = NULL;
1207 }
1208 #ifdef CONFIG_COMPAT
1209 if (unlikely(tsk->compat_robust_list)) {
1210 compat_exit_robust_list(tsk);
1211 tsk->compat_robust_list = NULL;
1212 }
1213 #endif
1214 if (unlikely(!list_empty(&tsk->pi_state_list)))
1215 exit_pi_state_list(tsk);
1216 #endif
1217
1218 uprobe_free_utask(tsk);
1219
1220 /* Get rid of any cached register state */
1221 deactivate_mm(tsk, mm);
1222
1223 /*
1224 * Signal userspace if we're not exiting with a core dump
1225 * because we want to leave the value intact for debugging
1226 * purposes.
1227 */
1228 if (tsk->clear_child_tid) {
1229 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1230 atomic_read(&mm->mm_users) > 1) {
1231 /*
1232 * We don't check the error code - if userspace has
1233 * not set up a proper pointer then tough luck.
1234 */
1235 put_user(0, tsk->clear_child_tid);
1236 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1237 1, NULL, NULL, 0, 0);
1238 }
1239 tsk->clear_child_tid = NULL;
1240 }
1241
1242 /*
1243 * All done, finally we can wake up parent and return this mm to him.
1244 * Also kthread_stop() uses this completion for synchronization.
1245 */
1246 if (tsk->vfork_done)
1247 complete_vfork_done(tsk);
1248 }
1249
1250 /*
1251 * Allocate a new mm structure and copy contents from the
1252 * mm structure of the passed in task structure.
1253 */
1254 static struct mm_struct *dup_mm(struct task_struct *tsk)
1255 {
1256 struct mm_struct *mm, *oldmm = current->mm;
1257 int err;
1258
1259 mm = allocate_mm();
1260 if (!mm)
1261 goto fail_nomem;
1262
1263 memcpy(mm, oldmm, sizeof(*mm));
1264
1265 if (!mm_init(mm, tsk, mm->user_ns))
1266 goto fail_nomem;
1267
1268 err = dup_mmap(mm, oldmm);
1269 if (err)
1270 goto free_pt;
1271
1272 mm->hiwater_rss = get_mm_rss(mm);
1273 mm->hiwater_vm = mm->total_vm;
1274
1275 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1276 goto free_pt;
1277
1278 return mm;
1279
1280 free_pt:
1281 /* don't put binfmt in mmput, we haven't got module yet */
1282 mm->binfmt = NULL;
1283 mmput(mm);
1284
1285 fail_nomem:
1286 return NULL;
1287 }
1288
1289 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1290 {
1291 struct mm_struct *mm, *oldmm;
1292 int retval;
1293
1294 tsk->min_flt = tsk->maj_flt = 0;
1295 tsk->nvcsw = tsk->nivcsw = 0;
1296 #ifdef CONFIG_DETECT_HUNG_TASK
1297 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1298 #endif
1299
1300 tsk->mm = NULL;
1301 tsk->active_mm = NULL;
1302
1303 /*
1304 * Are we cloning a kernel thread?
1305 *
1306 * We need to steal a active VM for that..
1307 */
1308 oldmm = current->mm;
1309 if (!oldmm)
1310 return 0;
1311
1312 /* initialize the new vmacache entries */
1313 vmacache_flush(tsk);
1314
1315 if (clone_flags & CLONE_VM) {
1316 mmget(oldmm);
1317 mm = oldmm;
1318 goto good_mm;
1319 }
1320
1321 retval = -ENOMEM;
1322 mm = dup_mm(tsk);
1323 if (!mm)
1324 goto fail_nomem;
1325
1326 good_mm:
1327 tsk->mm = mm;
1328 tsk->active_mm = mm;
1329 return 0;
1330
1331 fail_nomem:
1332 return retval;
1333 }
1334
1335 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1336 {
1337 struct fs_struct *fs = current->fs;
1338 if (clone_flags & CLONE_FS) {
1339 /* tsk->fs is already what we want */
1340 spin_lock(&fs->lock);
1341 if (fs->in_exec) {
1342 spin_unlock(&fs->lock);
1343 return -EAGAIN;
1344 }
1345 fs->users++;
1346 spin_unlock(&fs->lock);
1347 return 0;
1348 }
1349 tsk->fs = copy_fs_struct(fs);
1350 if (!tsk->fs)
1351 return -ENOMEM;
1352 return 0;
1353 }
1354
1355 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1356 {
1357 struct files_struct *oldf, *newf;
1358 int error = 0;
1359
1360 /*
1361 * A background process may not have any files ...
1362 */
1363 oldf = current->files;
1364 if (!oldf)
1365 goto out;
1366
1367 if (clone_flags & CLONE_FILES) {
1368 atomic_inc(&oldf->count);
1369 goto out;
1370 }
1371
1372 newf = dup_fd(oldf, &error);
1373 if (!newf)
1374 goto out;
1375
1376 tsk->files = newf;
1377 error = 0;
1378 out:
1379 return error;
1380 }
1381
1382 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1383 {
1384 #ifdef CONFIG_BLOCK
1385 struct io_context *ioc = current->io_context;
1386 struct io_context *new_ioc;
1387
1388 if (!ioc)
1389 return 0;
1390 /*
1391 * Share io context with parent, if CLONE_IO is set
1392 */
1393 if (clone_flags & CLONE_IO) {
1394 ioc_task_link(ioc);
1395 tsk->io_context = ioc;
1396 } else if (ioprio_valid(ioc->ioprio)) {
1397 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1398 if (unlikely(!new_ioc))
1399 return -ENOMEM;
1400
1401 new_ioc->ioprio = ioc->ioprio;
1402 put_io_context(new_ioc);
1403 }
1404 #endif
1405 return 0;
1406 }
1407
1408 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1409 {
1410 struct sighand_struct *sig;
1411
1412 if (clone_flags & CLONE_SIGHAND) {
1413 atomic_inc(&current->sighand->count);
1414 return 0;
1415 }
1416 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1417 rcu_assign_pointer(tsk->sighand, sig);
1418 if (!sig)
1419 return -ENOMEM;
1420
1421 atomic_set(&sig->count, 1);
1422 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1423 return 0;
1424 }
1425
1426 void __cleanup_sighand(struct sighand_struct *sighand)
1427 {
1428 if (atomic_dec_and_test(&sighand->count)) {
1429 signalfd_cleanup(sighand);
1430 /*
1431 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1432 * without an RCU grace period, see __lock_task_sighand().
1433 */
1434 kmem_cache_free(sighand_cachep, sighand);
1435 }
1436 }
1437
1438 #ifdef CONFIG_POSIX_TIMERS
1439 /*
1440 * Initialize POSIX timer handling for a thread group.
1441 */
1442 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1443 {
1444 unsigned long cpu_limit;
1445
1446 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1447 if (cpu_limit != RLIM_INFINITY) {
1448 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1449 sig->cputimer.running = true;
1450 }
1451
1452 /* The timer lists. */
1453 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1454 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1455 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1456 }
1457 #else
1458 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1459 #endif
1460
1461 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1462 {
1463 struct signal_struct *sig;
1464
1465 if (clone_flags & CLONE_THREAD)
1466 return 0;
1467
1468 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1469 tsk->signal = sig;
1470 if (!sig)
1471 return -ENOMEM;
1472
1473 sig->nr_threads = 1;
1474 atomic_set(&sig->live, 1);
1475 atomic_set(&sig->sigcnt, 1);
1476
1477 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1478 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1479 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1480
1481 init_waitqueue_head(&sig->wait_chldexit);
1482 sig->curr_target = tsk;
1483 init_sigpending(&sig->shared_pending);
1484 seqlock_init(&sig->stats_lock);
1485 prev_cputime_init(&sig->prev_cputime);
1486
1487 #ifdef CONFIG_POSIX_TIMERS
1488 INIT_LIST_HEAD(&sig->posix_timers);
1489 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1490 sig->real_timer.function = it_real_fn;
1491 #endif
1492
1493 task_lock(current->group_leader);
1494 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1495 task_unlock(current->group_leader);
1496
1497 posix_cpu_timers_init_group(sig);
1498
1499 tty_audit_fork(sig);
1500 sched_autogroup_fork(sig);
1501
1502 sig->oom_score_adj = current->signal->oom_score_adj;
1503 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1504
1505 mutex_init(&sig->cred_guard_mutex);
1506
1507 return 0;
1508 }
1509
1510 static void copy_seccomp(struct task_struct *p)
1511 {
1512 #ifdef CONFIG_SECCOMP
1513 /*
1514 * Must be called with sighand->lock held, which is common to
1515 * all threads in the group. Holding cred_guard_mutex is not
1516 * needed because this new task is not yet running and cannot
1517 * be racing exec.
1518 */
1519 assert_spin_locked(&current->sighand->siglock);
1520
1521 /* Ref-count the new filter user, and assign it. */
1522 get_seccomp_filter(current);
1523 p->seccomp = current->seccomp;
1524
1525 /*
1526 * Explicitly enable no_new_privs here in case it got set
1527 * between the task_struct being duplicated and holding the
1528 * sighand lock. The seccomp state and nnp must be in sync.
1529 */
1530 if (task_no_new_privs(current))
1531 task_set_no_new_privs(p);
1532
1533 /*
1534 * If the parent gained a seccomp mode after copying thread
1535 * flags and between before we held the sighand lock, we have
1536 * to manually enable the seccomp thread flag here.
1537 */
1538 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1539 set_tsk_thread_flag(p, TIF_SECCOMP);
1540 #endif
1541 }
1542
1543 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1544 {
1545 current->clear_child_tid = tidptr;
1546
1547 return task_pid_vnr(current);
1548 }
1549
1550 static void rt_mutex_init_task(struct task_struct *p)
1551 {
1552 raw_spin_lock_init(&p->pi_lock);
1553 #ifdef CONFIG_RT_MUTEXES
1554 p->pi_waiters = RB_ROOT_CACHED;
1555 p->pi_top_task = NULL;
1556 p->pi_blocked_on = NULL;
1557 #endif
1558 }
1559
1560 #ifdef CONFIG_POSIX_TIMERS
1561 /*
1562 * Initialize POSIX timer handling for a single task.
1563 */
1564 static void posix_cpu_timers_init(struct task_struct *tsk)
1565 {
1566 tsk->cputime_expires.prof_exp = 0;
1567 tsk->cputime_expires.virt_exp = 0;
1568 tsk->cputime_expires.sched_exp = 0;
1569 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1570 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1571 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1572 }
1573 #else
1574 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1575 #endif
1576
1577 static inline void
1578 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1579 {
1580 task->pids[type].pid = pid;
1581 }
1582
1583 static inline void rcu_copy_process(struct task_struct *p)
1584 {
1585 #ifdef CONFIG_PREEMPT_RCU
1586 p->rcu_read_lock_nesting = 0;
1587 p->rcu_read_unlock_special.s = 0;
1588 p->rcu_blocked_node = NULL;
1589 INIT_LIST_HEAD(&p->rcu_node_entry);
1590 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1591 #ifdef CONFIG_TASKS_RCU
1592 p->rcu_tasks_holdout = false;
1593 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1594 p->rcu_tasks_idle_cpu = -1;
1595 #endif /* #ifdef CONFIG_TASKS_RCU */
1596 }
1597
1598 /*
1599 * This creates a new process as a copy of the old one,
1600 * but does not actually start it yet.
1601 *
1602 * It copies the registers, and all the appropriate
1603 * parts of the process environment (as per the clone
1604 * flags). The actual kick-off is left to the caller.
1605 */
1606 static __latent_entropy struct task_struct *copy_process(
1607 unsigned long clone_flags,
1608 unsigned long stack_start,
1609 unsigned long stack_size,
1610 int __user *child_tidptr,
1611 struct pid *pid,
1612 int trace,
1613 unsigned long tls,
1614 int node)
1615 {
1616 int retval;
1617 struct task_struct *p;
1618
1619 /*
1620 * Don't allow sharing the root directory with processes in a different
1621 * namespace
1622 */
1623 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1624 return ERR_PTR(-EINVAL);
1625
1626 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1627 return ERR_PTR(-EINVAL);
1628
1629 /*
1630 * Thread groups must share signals as well, and detached threads
1631 * can only be started up within the thread group.
1632 */
1633 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1634 return ERR_PTR(-EINVAL);
1635
1636 /*
1637 * Shared signal handlers imply shared VM. By way of the above,
1638 * thread groups also imply shared VM. Blocking this case allows
1639 * for various simplifications in other code.
1640 */
1641 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1642 return ERR_PTR(-EINVAL);
1643
1644 /*
1645 * Siblings of global init remain as zombies on exit since they are
1646 * not reaped by their parent (swapper). To solve this and to avoid
1647 * multi-rooted process trees, prevent global and container-inits
1648 * from creating siblings.
1649 */
1650 if ((clone_flags & CLONE_PARENT) &&
1651 current->signal->flags & SIGNAL_UNKILLABLE)
1652 return ERR_PTR(-EINVAL);
1653
1654 /*
1655 * If the new process will be in a different pid or user namespace
1656 * do not allow it to share a thread group with the forking task.
1657 */
1658 if (clone_flags & CLONE_THREAD) {
1659 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1660 (task_active_pid_ns(current) !=
1661 current->nsproxy->pid_ns_for_children))
1662 return ERR_PTR(-EINVAL);
1663 }
1664
1665 retval = -ENOMEM;
1666 p = dup_task_struct(current, node);
1667 if (!p)
1668 goto fork_out;
1669
1670 /*
1671 * This _must_ happen before we call free_task(), i.e. before we jump
1672 * to any of the bad_fork_* labels. This is to avoid freeing
1673 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1674 * kernel threads (PF_KTHREAD).
1675 */
1676 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1677 /*
1678 * Clear TID on mm_release()?
1679 */
1680 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1681
1682 ftrace_graph_init_task(p);
1683
1684 rt_mutex_init_task(p);
1685
1686 #ifdef CONFIG_PROVE_LOCKING
1687 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1688 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1689 #endif
1690 retval = -EAGAIN;
1691 if (atomic_read(&p->real_cred->user->processes) >=
1692 task_rlimit(p, RLIMIT_NPROC)) {
1693 if (p->real_cred->user != INIT_USER &&
1694 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1695 goto bad_fork_free;
1696 }
1697 current->flags &= ~PF_NPROC_EXCEEDED;
1698
1699 retval = copy_creds(p, clone_flags);
1700 if (retval < 0)
1701 goto bad_fork_free;
1702
1703 /*
1704 * If multiple threads are within copy_process(), then this check
1705 * triggers too late. This doesn't hurt, the check is only there
1706 * to stop root fork bombs.
1707 */
1708 retval = -EAGAIN;
1709 if (nr_threads >= max_threads)
1710 goto bad_fork_cleanup_count;
1711
1712 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1713 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1714 p->flags |= PF_FORKNOEXEC;
1715 INIT_LIST_HEAD(&p->children);
1716 INIT_LIST_HEAD(&p->sibling);
1717 rcu_copy_process(p);
1718 p->vfork_done = NULL;
1719 spin_lock_init(&p->alloc_lock);
1720
1721 init_sigpending(&p->pending);
1722
1723 p->utime = p->stime = p->gtime = 0;
1724 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1725 p->utimescaled = p->stimescaled = 0;
1726 #endif
1727 prev_cputime_init(&p->prev_cputime);
1728
1729 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1730 seqcount_init(&p->vtime.seqcount);
1731 p->vtime.starttime = 0;
1732 p->vtime.state = VTIME_INACTIVE;
1733 #endif
1734
1735 #if defined(SPLIT_RSS_COUNTING)
1736 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1737 #endif
1738
1739 p->default_timer_slack_ns = current->timer_slack_ns;
1740
1741 task_io_accounting_init(&p->ioac);
1742 acct_clear_integrals(p);
1743
1744 posix_cpu_timers_init(p);
1745
1746 p->start_time = ktime_get_ns();
1747 p->real_start_time = ktime_get_boot_ns();
1748 p->io_context = NULL;
1749 audit_set_context(p, NULL);
1750 cgroup_fork(p);
1751 #ifdef CONFIG_NUMA
1752 p->mempolicy = mpol_dup(p->mempolicy);
1753 if (IS_ERR(p->mempolicy)) {
1754 retval = PTR_ERR(p->mempolicy);
1755 p->mempolicy = NULL;
1756 goto bad_fork_cleanup_threadgroup_lock;
1757 }
1758 #endif
1759 #ifdef CONFIG_CPUSETS
1760 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1761 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1762 seqcount_init(&p->mems_allowed_seq);
1763 #endif
1764 #ifdef CONFIG_TRACE_IRQFLAGS
1765 p->irq_events = 0;
1766 p->hardirqs_enabled = 0;
1767 p->hardirq_enable_ip = 0;
1768 p->hardirq_enable_event = 0;
1769 p->hardirq_disable_ip = _THIS_IP_;
1770 p->hardirq_disable_event = 0;
1771 p->softirqs_enabled = 1;
1772 p->softirq_enable_ip = _THIS_IP_;
1773 p->softirq_enable_event = 0;
1774 p->softirq_disable_ip = 0;
1775 p->softirq_disable_event = 0;
1776 p->hardirq_context = 0;
1777 p->softirq_context = 0;
1778 #endif
1779
1780 p->pagefault_disabled = 0;
1781
1782 #ifdef CONFIG_LOCKDEP
1783 p->lockdep_depth = 0; /* no locks held yet */
1784 p->curr_chain_key = 0;
1785 p->lockdep_recursion = 0;
1786 lockdep_init_task(p);
1787 #endif
1788
1789 #ifdef CONFIG_DEBUG_MUTEXES
1790 p->blocked_on = NULL; /* not blocked yet */
1791 #endif
1792 #ifdef CONFIG_BCACHE
1793 p->sequential_io = 0;
1794 p->sequential_io_avg = 0;
1795 #endif
1796
1797 /* Perform scheduler related setup. Assign this task to a CPU. */
1798 retval = sched_fork(clone_flags, p);
1799 if (retval)
1800 goto bad_fork_cleanup_policy;
1801
1802 retval = perf_event_init_task(p);
1803 if (retval)
1804 goto bad_fork_cleanup_policy;
1805 retval = audit_alloc(p);
1806 if (retval)
1807 goto bad_fork_cleanup_perf;
1808 /* copy all the process information */
1809 shm_init_task(p);
1810 retval = security_task_alloc(p, clone_flags);
1811 if (retval)
1812 goto bad_fork_cleanup_audit;
1813 retval = copy_semundo(clone_flags, p);
1814 if (retval)
1815 goto bad_fork_cleanup_security;
1816 retval = copy_files(clone_flags, p);
1817 if (retval)
1818 goto bad_fork_cleanup_semundo;
1819 retval = copy_fs(clone_flags, p);
1820 if (retval)
1821 goto bad_fork_cleanup_files;
1822 retval = copy_sighand(clone_flags, p);
1823 if (retval)
1824 goto bad_fork_cleanup_fs;
1825 retval = copy_signal(clone_flags, p);
1826 if (retval)
1827 goto bad_fork_cleanup_sighand;
1828 retval = copy_mm(clone_flags, p);
1829 if (retval)
1830 goto bad_fork_cleanup_signal;
1831 retval = copy_namespaces(clone_flags, p);
1832 if (retval)
1833 goto bad_fork_cleanup_mm;
1834 retval = copy_io(clone_flags, p);
1835 if (retval)
1836 goto bad_fork_cleanup_namespaces;
1837 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1838 if (retval)
1839 goto bad_fork_cleanup_io;
1840
1841 if (pid != &init_struct_pid) {
1842 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1843 if (IS_ERR(pid)) {
1844 retval = PTR_ERR(pid);
1845 goto bad_fork_cleanup_thread;
1846 }
1847 }
1848
1849 #ifdef CONFIG_BLOCK
1850 p->plug = NULL;
1851 #endif
1852 #ifdef CONFIG_FUTEX
1853 p->robust_list = NULL;
1854 #ifdef CONFIG_COMPAT
1855 p->compat_robust_list = NULL;
1856 #endif
1857 INIT_LIST_HEAD(&p->pi_state_list);
1858 p->pi_state_cache = NULL;
1859 #endif
1860 /*
1861 * sigaltstack should be cleared when sharing the same VM
1862 */
1863 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1864 sas_ss_reset(p);
1865
1866 /*
1867 * Syscall tracing and stepping should be turned off in the
1868 * child regardless of CLONE_PTRACE.
1869 */
1870 user_disable_single_step(p);
1871 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1872 #ifdef TIF_SYSCALL_EMU
1873 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1874 #endif
1875 clear_all_latency_tracing(p);
1876
1877 /* ok, now we should be set up.. */
1878 p->pid = pid_nr(pid);
1879 if (clone_flags & CLONE_THREAD) {
1880 p->exit_signal = -1;
1881 p->group_leader = current->group_leader;
1882 p->tgid = current->tgid;
1883 } else {
1884 if (clone_flags & CLONE_PARENT)
1885 p->exit_signal = current->group_leader->exit_signal;
1886 else
1887 p->exit_signal = (clone_flags & CSIGNAL);
1888 p->group_leader = p;
1889 p->tgid = p->pid;
1890 }
1891
1892 p->nr_dirtied = 0;
1893 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1894 p->dirty_paused_when = 0;
1895
1896 p->pdeath_signal = 0;
1897 INIT_LIST_HEAD(&p->thread_group);
1898 p->task_works = NULL;
1899
1900 cgroup_threadgroup_change_begin(current);
1901 /*
1902 * Ensure that the cgroup subsystem policies allow the new process to be
1903 * forked. It should be noted the the new process's css_set can be changed
1904 * between here and cgroup_post_fork() if an organisation operation is in
1905 * progress.
1906 */
1907 retval = cgroup_can_fork(p);
1908 if (retval)
1909 goto bad_fork_free_pid;
1910
1911 /*
1912 * Make it visible to the rest of the system, but dont wake it up yet.
1913 * Need tasklist lock for parent etc handling!
1914 */
1915 write_lock_irq(&tasklist_lock);
1916
1917 /* CLONE_PARENT re-uses the old parent */
1918 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1919 p->real_parent = current->real_parent;
1920 p->parent_exec_id = current->parent_exec_id;
1921 } else {
1922 p->real_parent = current;
1923 p->parent_exec_id = current->self_exec_id;
1924 }
1925
1926 klp_copy_process(p);
1927
1928 spin_lock(&current->sighand->siglock);
1929
1930 /*
1931 * Copy seccomp details explicitly here, in case they were changed
1932 * before holding sighand lock.
1933 */
1934 copy_seccomp(p);
1935
1936 rseq_fork(p, clone_flags);
1937
1938 /*
1939 * Process group and session signals need to be delivered to just the
1940 * parent before the fork or both the parent and the child after the
1941 * fork. Restart if a signal comes in before we add the new process to
1942 * it's process group.
1943 * A fatal signal pending means that current will exit, so the new
1944 * thread can't slip out of an OOM kill (or normal SIGKILL).
1945 */
1946 recalc_sigpending();
1947 if (signal_pending(current)) {
1948 retval = -ERESTARTNOINTR;
1949 goto bad_fork_cancel_cgroup;
1950 }
1951 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1952 retval = -ENOMEM;
1953 goto bad_fork_cancel_cgroup;
1954 }
1955
1956 if (likely(p->pid)) {
1957 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1958
1959 init_task_pid(p, PIDTYPE_PID, pid);
1960 if (thread_group_leader(p)) {
1961 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1962 init_task_pid(p, PIDTYPE_SID, task_session(current));
1963
1964 if (is_child_reaper(pid)) {
1965 ns_of_pid(pid)->child_reaper = p;
1966 p->signal->flags |= SIGNAL_UNKILLABLE;
1967 }
1968
1969 p->signal->leader_pid = pid;
1970 p->signal->tty = tty_kref_get(current->signal->tty);
1971 /*
1972 * Inherit has_child_subreaper flag under the same
1973 * tasklist_lock with adding child to the process tree
1974 * for propagate_has_child_subreaper optimization.
1975 */
1976 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1977 p->real_parent->signal->is_child_subreaper;
1978 list_add_tail(&p->sibling, &p->real_parent->children);
1979 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1980 attach_pid(p, PIDTYPE_PGID);
1981 attach_pid(p, PIDTYPE_SID);
1982 __this_cpu_inc(process_counts);
1983 } else {
1984 current->signal->nr_threads++;
1985 atomic_inc(&current->signal->live);
1986 atomic_inc(&current->signal->sigcnt);
1987 list_add_tail_rcu(&p->thread_group,
1988 &p->group_leader->thread_group);
1989 list_add_tail_rcu(&p->thread_node,
1990 &p->signal->thread_head);
1991 }
1992 attach_pid(p, PIDTYPE_PID);
1993 nr_threads++;
1994 }
1995
1996 total_forks++;
1997 spin_unlock(&current->sighand->siglock);
1998 syscall_tracepoint_update(p);
1999 write_unlock_irq(&tasklist_lock);
2000
2001 proc_fork_connector(p);
2002 cgroup_post_fork(p);
2003 cgroup_threadgroup_change_end(current);
2004 perf_event_fork(p);
2005
2006 trace_task_newtask(p, clone_flags);
2007 uprobe_copy_process(p, clone_flags);
2008
2009 return p;
2010
2011 bad_fork_cancel_cgroup:
2012 spin_unlock(&current->sighand->siglock);
2013 write_unlock_irq(&tasklist_lock);
2014 cgroup_cancel_fork(p);
2015 bad_fork_free_pid:
2016 cgroup_threadgroup_change_end(current);
2017 if (pid != &init_struct_pid)
2018 free_pid(pid);
2019 bad_fork_cleanup_thread:
2020 exit_thread(p);
2021 bad_fork_cleanup_io:
2022 if (p->io_context)
2023 exit_io_context(p);
2024 bad_fork_cleanup_namespaces:
2025 exit_task_namespaces(p);
2026 bad_fork_cleanup_mm:
2027 if (p->mm)
2028 mmput(p->mm);
2029 bad_fork_cleanup_signal:
2030 if (!(clone_flags & CLONE_THREAD))
2031 free_signal_struct(p->signal);
2032 bad_fork_cleanup_sighand:
2033 __cleanup_sighand(p->sighand);
2034 bad_fork_cleanup_fs:
2035 exit_fs(p); /* blocking */
2036 bad_fork_cleanup_files:
2037 exit_files(p); /* blocking */
2038 bad_fork_cleanup_semundo:
2039 exit_sem(p);
2040 bad_fork_cleanup_security:
2041 security_task_free(p);
2042 bad_fork_cleanup_audit:
2043 audit_free(p);
2044 bad_fork_cleanup_perf:
2045 perf_event_free_task(p);
2046 bad_fork_cleanup_policy:
2047 lockdep_free_task(p);
2048 #ifdef CONFIG_NUMA
2049 mpol_put(p->mempolicy);
2050 bad_fork_cleanup_threadgroup_lock:
2051 #endif
2052 delayacct_tsk_free(p);
2053 bad_fork_cleanup_count:
2054 atomic_dec(&p->cred->user->processes);
2055 exit_creds(p);
2056 bad_fork_free:
2057 p->state = TASK_DEAD;
2058 put_task_stack(p);
2059 free_task(p);
2060 fork_out:
2061 return ERR_PTR(retval);
2062 }
2063
2064 static inline void init_idle_pids(struct pid_link *links)
2065 {
2066 enum pid_type type;
2067
2068 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2069 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2070 links[type].pid = &init_struct_pid;
2071 }
2072 }
2073
2074 struct task_struct *fork_idle(int cpu)
2075 {
2076 struct task_struct *task;
2077 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2078 cpu_to_node(cpu));
2079 if (!IS_ERR(task)) {
2080 init_idle_pids(task->pids);
2081 init_idle(task, cpu);
2082 }
2083
2084 return task;
2085 }
2086
2087 /*
2088 * Ok, this is the main fork-routine.
2089 *
2090 * It copies the process, and if successful kick-starts
2091 * it and waits for it to finish using the VM if required.
2092 */
2093 long _do_fork(unsigned long clone_flags,
2094 unsigned long stack_start,
2095 unsigned long stack_size,
2096 int __user *parent_tidptr,
2097 int __user *child_tidptr,
2098 unsigned long tls)
2099 {
2100 struct completion vfork;
2101 struct pid *pid;
2102 struct task_struct *p;
2103 int trace = 0;
2104 long nr;
2105
2106 /*
2107 * Determine whether and which event to report to ptracer. When
2108 * called from kernel_thread or CLONE_UNTRACED is explicitly
2109 * requested, no event is reported; otherwise, report if the event
2110 * for the type of forking is enabled.
2111 */
2112 if (!(clone_flags & CLONE_UNTRACED)) {
2113 if (clone_flags & CLONE_VFORK)
2114 trace = PTRACE_EVENT_VFORK;
2115 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2116 trace = PTRACE_EVENT_CLONE;
2117 else
2118 trace = PTRACE_EVENT_FORK;
2119
2120 if (likely(!ptrace_event_enabled(current, trace)))
2121 trace = 0;
2122 }
2123
2124 p = copy_process(clone_flags, stack_start, stack_size,
2125 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2126 add_latent_entropy();
2127
2128 if (IS_ERR(p))
2129 return PTR_ERR(p);
2130
2131 /*
2132 * Do this prior waking up the new thread - the thread pointer
2133 * might get invalid after that point, if the thread exits quickly.
2134 */
2135 trace_sched_process_fork(current, p);
2136
2137 pid = get_task_pid(p, PIDTYPE_PID);
2138 nr = pid_vnr(pid);
2139
2140 if (clone_flags & CLONE_PARENT_SETTID)
2141 put_user(nr, parent_tidptr);
2142
2143 if (clone_flags & CLONE_VFORK) {
2144 p->vfork_done = &vfork;
2145 init_completion(&vfork);
2146 get_task_struct(p);
2147 }
2148
2149 wake_up_new_task(p);
2150
2151 /* forking complete and child started to run, tell ptracer */
2152 if (unlikely(trace))
2153 ptrace_event_pid(trace, pid);
2154
2155 if (clone_flags & CLONE_VFORK) {
2156 if (!wait_for_vfork_done(p, &vfork))
2157 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2158 }
2159
2160 put_pid(pid);
2161 return nr;
2162 }
2163
2164 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2165 /* For compatibility with architectures that call do_fork directly rather than
2166 * using the syscall entry points below. */
2167 long do_fork(unsigned long clone_flags,
2168 unsigned long stack_start,
2169 unsigned long stack_size,
2170 int __user *parent_tidptr,
2171 int __user *child_tidptr)
2172 {
2173 return _do_fork(clone_flags, stack_start, stack_size,
2174 parent_tidptr, child_tidptr, 0);
2175 }
2176 #endif
2177
2178 /*
2179 * Create a kernel thread.
2180 */
2181 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2182 {
2183 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2184 (unsigned long)arg, NULL, NULL, 0);
2185 }
2186
2187 #ifdef __ARCH_WANT_SYS_FORK
2188 SYSCALL_DEFINE0(fork)
2189 {
2190 #ifdef CONFIG_MMU
2191 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2192 #else
2193 /* can not support in nommu mode */
2194 return -EINVAL;
2195 #endif
2196 }
2197 #endif
2198
2199 #ifdef __ARCH_WANT_SYS_VFORK
2200 SYSCALL_DEFINE0(vfork)
2201 {
2202 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2203 0, NULL, NULL, 0);
2204 }
2205 #endif
2206
2207 #ifdef __ARCH_WANT_SYS_CLONE
2208 #ifdef CONFIG_CLONE_BACKWARDS
2209 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2210 int __user *, parent_tidptr,
2211 unsigned long, tls,
2212 int __user *, child_tidptr)
2213 #elif defined(CONFIG_CLONE_BACKWARDS2)
2214 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2215 int __user *, parent_tidptr,
2216 int __user *, child_tidptr,
2217 unsigned long, tls)
2218 #elif defined(CONFIG_CLONE_BACKWARDS3)
2219 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2220 int, stack_size,
2221 int __user *, parent_tidptr,
2222 int __user *, child_tidptr,
2223 unsigned long, tls)
2224 #else
2225 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2226 int __user *, parent_tidptr,
2227 int __user *, child_tidptr,
2228 unsigned long, tls)
2229 #endif
2230 {
2231 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2232 }
2233 #endif
2234
2235 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2236 {
2237 struct task_struct *leader, *parent, *child;
2238 int res;
2239
2240 read_lock(&tasklist_lock);
2241 leader = top = top->group_leader;
2242 down:
2243 for_each_thread(leader, parent) {
2244 list_for_each_entry(child, &parent->children, sibling) {
2245 res = visitor(child, data);
2246 if (res) {
2247 if (res < 0)
2248 goto out;
2249 leader = child;
2250 goto down;
2251 }
2252 up:
2253 ;
2254 }
2255 }
2256
2257 if (leader != top) {
2258 child = leader;
2259 parent = child->real_parent;
2260 leader = parent->group_leader;
2261 goto up;
2262 }
2263 out:
2264 read_unlock(&tasklist_lock);
2265 }
2266
2267 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2268 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2269 #endif
2270
2271 static void sighand_ctor(void *data)
2272 {
2273 struct sighand_struct *sighand = data;
2274
2275 spin_lock_init(&sighand->siglock);
2276 init_waitqueue_head(&sighand->signalfd_wqh);
2277 }
2278
2279 void __init proc_caches_init(void)
2280 {
2281 sighand_cachep = kmem_cache_create("sighand_cache",
2282 sizeof(struct sighand_struct), 0,
2283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2284 SLAB_ACCOUNT, sighand_ctor);
2285 signal_cachep = kmem_cache_create("signal_cache",
2286 sizeof(struct signal_struct), 0,
2287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2288 NULL);
2289 files_cachep = kmem_cache_create("files_cache",
2290 sizeof(struct files_struct), 0,
2291 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2292 NULL);
2293 fs_cachep = kmem_cache_create("fs_cache",
2294 sizeof(struct fs_struct), 0,
2295 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2296 NULL);
2297 /*
2298 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2299 * whole struct cpumask for the OFFSTACK case. We could change
2300 * this to *only* allocate as much of it as required by the
2301 * maximum number of CPU's we can ever have. The cpumask_allocation
2302 * is at the end of the structure, exactly for that reason.
2303 */
2304 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2305 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2306 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2307 offsetof(struct mm_struct, saved_auxv),
2308 sizeof_field(struct mm_struct, saved_auxv),
2309 NULL);
2310 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2311 mmap_init();
2312 nsproxy_cache_init();
2313 }
2314
2315 /*
2316 * Check constraints on flags passed to the unshare system call.
2317 */
2318 static int check_unshare_flags(unsigned long unshare_flags)
2319 {
2320 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2321 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2322 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2323 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2324 return -EINVAL;
2325 /*
2326 * Not implemented, but pretend it works if there is nothing
2327 * to unshare. Note that unsharing the address space or the
2328 * signal handlers also need to unshare the signal queues (aka
2329 * CLONE_THREAD).
2330 */
2331 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2332 if (!thread_group_empty(current))
2333 return -EINVAL;
2334 }
2335 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2336 if (atomic_read(&current->sighand->count) > 1)
2337 return -EINVAL;
2338 }
2339 if (unshare_flags & CLONE_VM) {
2340 if (!current_is_single_threaded())
2341 return -EINVAL;
2342 }
2343
2344 return 0;
2345 }
2346
2347 /*
2348 * Unshare the filesystem structure if it is being shared
2349 */
2350 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2351 {
2352 struct fs_struct *fs = current->fs;
2353
2354 if (!(unshare_flags & CLONE_FS) || !fs)
2355 return 0;
2356
2357 /* don't need lock here; in the worst case we'll do useless copy */
2358 if (fs->users == 1)
2359 return 0;
2360
2361 *new_fsp = copy_fs_struct(fs);
2362 if (!*new_fsp)
2363 return -ENOMEM;
2364
2365 return 0;
2366 }
2367
2368 /*
2369 * Unshare file descriptor table if it is being shared
2370 */
2371 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2372 {
2373 struct files_struct *fd = current->files;
2374 int error = 0;
2375
2376 if ((unshare_flags & CLONE_FILES) &&
2377 (fd && atomic_read(&fd->count) > 1)) {
2378 *new_fdp = dup_fd(fd, &error);
2379 if (!*new_fdp)
2380 return error;
2381 }
2382
2383 return 0;
2384 }
2385
2386 /*
2387 * unshare allows a process to 'unshare' part of the process
2388 * context which was originally shared using clone. copy_*
2389 * functions used by do_fork() cannot be used here directly
2390 * because they modify an inactive task_struct that is being
2391 * constructed. Here we are modifying the current, active,
2392 * task_struct.
2393 */
2394 int ksys_unshare(unsigned long unshare_flags)
2395 {
2396 struct fs_struct *fs, *new_fs = NULL;
2397 struct files_struct *fd, *new_fd = NULL;
2398 struct cred *new_cred = NULL;
2399 struct nsproxy *new_nsproxy = NULL;
2400 int do_sysvsem = 0;
2401 int err;
2402
2403 /*
2404 * If unsharing a user namespace must also unshare the thread group
2405 * and unshare the filesystem root and working directories.
2406 */
2407 if (unshare_flags & CLONE_NEWUSER)
2408 unshare_flags |= CLONE_THREAD | CLONE_FS;
2409 /*
2410 * If unsharing vm, must also unshare signal handlers.
2411 */
2412 if (unshare_flags & CLONE_VM)
2413 unshare_flags |= CLONE_SIGHAND;
2414 /*
2415 * If unsharing a signal handlers, must also unshare the signal queues.
2416 */
2417 if (unshare_flags & CLONE_SIGHAND)
2418 unshare_flags |= CLONE_THREAD;
2419 /*
2420 * If unsharing namespace, must also unshare filesystem information.
2421 */
2422 if (unshare_flags & CLONE_NEWNS)
2423 unshare_flags |= CLONE_FS;
2424
2425 err = check_unshare_flags(unshare_flags);
2426 if (err)
2427 goto bad_unshare_out;
2428 /*
2429 * CLONE_NEWIPC must also detach from the undolist: after switching
2430 * to a new ipc namespace, the semaphore arrays from the old
2431 * namespace are unreachable.
2432 */
2433 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2434 do_sysvsem = 1;
2435 err = unshare_fs(unshare_flags, &new_fs);
2436 if (err)
2437 goto bad_unshare_out;
2438 err = unshare_fd(unshare_flags, &new_fd);
2439 if (err)
2440 goto bad_unshare_cleanup_fs;
2441 err = unshare_userns(unshare_flags, &new_cred);
2442 if (err)
2443 goto bad_unshare_cleanup_fd;
2444 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2445 new_cred, new_fs);
2446 if (err)
2447 goto bad_unshare_cleanup_cred;
2448
2449 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2450 if (do_sysvsem) {
2451 /*
2452 * CLONE_SYSVSEM is equivalent to sys_exit().
2453 */
2454 exit_sem(current);
2455 }
2456 if (unshare_flags & CLONE_NEWIPC) {
2457 /* Orphan segments in old ns (see sem above). */
2458 exit_shm(current);
2459 shm_init_task(current);
2460 }
2461
2462 if (new_nsproxy)
2463 switch_task_namespaces(current, new_nsproxy);
2464
2465 task_lock(current);
2466
2467 if (new_fs) {
2468 fs = current->fs;
2469 spin_lock(&fs->lock);
2470 current->fs = new_fs;
2471 if (--fs->users)
2472 new_fs = NULL;
2473 else
2474 new_fs = fs;
2475 spin_unlock(&fs->lock);
2476 }
2477
2478 if (new_fd) {
2479 fd = current->files;
2480 current->files = new_fd;
2481 new_fd = fd;
2482 }
2483
2484 task_unlock(current);
2485
2486 if (new_cred) {
2487 /* Install the new user namespace */
2488 commit_creds(new_cred);
2489 new_cred = NULL;
2490 }
2491 }
2492
2493 perf_event_namespaces(current);
2494
2495 bad_unshare_cleanup_cred:
2496 if (new_cred)
2497 put_cred(new_cred);
2498 bad_unshare_cleanup_fd:
2499 if (new_fd)
2500 put_files_struct(new_fd);
2501
2502 bad_unshare_cleanup_fs:
2503 if (new_fs)
2504 free_fs_struct(new_fs);
2505
2506 bad_unshare_out:
2507 return err;
2508 }
2509
2510 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2511 {
2512 return ksys_unshare(unshare_flags);
2513 }
2514
2515 /*
2516 * Helper to unshare the files of the current task.
2517 * We don't want to expose copy_files internals to
2518 * the exec layer of the kernel.
2519 */
2520
2521 int unshare_files(struct files_struct **displaced)
2522 {
2523 struct task_struct *task = current;
2524 struct files_struct *copy = NULL;
2525 int error;
2526
2527 error = unshare_fd(CLONE_FILES, &copy);
2528 if (error || !copy) {
2529 *displaced = NULL;
2530 return error;
2531 }
2532 *displaced = task->files;
2533 task_lock(task);
2534 task->files = copy;
2535 task_unlock(task);
2536 return 0;
2537 }
2538
2539 int sysctl_max_threads(struct ctl_table *table, int write,
2540 void __user *buffer, size_t *lenp, loff_t *ppos)
2541 {
2542 struct ctl_table t;
2543 int ret;
2544 int threads = max_threads;
2545 int min = MIN_THREADS;
2546 int max = MAX_THREADS;
2547
2548 t = *table;
2549 t.data = &threads;
2550 t.extra1 = &min;
2551 t.extra2 = &max;
2552
2553 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2554 if (ret || !write)
2555 return ret;
2556
2557 set_max_threads(threads);
2558
2559 return 0;
2560 }