]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/fork.c
Merge drm-misc-next-fixes-2019-05-20 into drm-misc-fixes
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/anon_inodes.h>
15 #include <linux/slab.h>
16 #include <linux/sched/autogroup.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/seq_file.h>
26 #include <linux/rtmutex.h>
27 #include <linux/init.h>
28 #include <linux/unistd.h>
29 #include <linux/module.h>
30 #include <linux/vmalloc.h>
31 #include <linux/completion.h>
32 #include <linux/personality.h>
33 #include <linux/mempolicy.h>
34 #include <linux/sem.h>
35 #include <linux/file.h>
36 #include <linux/fdtable.h>
37 #include <linux/iocontext.h>
38 #include <linux/key.h>
39 #include <linux/binfmts.h>
40 #include <linux/mman.h>
41 #include <linux/mmu_notifier.h>
42 #include <linux/hmm.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96
97 #include <asm/pgtable.h>
98 #include <asm/pgalloc.h>
99 #include <linux/uaccess.h>
100 #include <asm/mmu_context.h>
101 #include <asm/cacheflush.h>
102 #include <asm/tlbflush.h>
103
104 #include <trace/events/sched.h>
105
106 #define CREATE_TRACE_POINTS
107 #include <trace/events/task.h>
108
109 /*
110 * Minimum number of threads to boot the kernel
111 */
112 #define MIN_THREADS 20
113
114 /*
115 * Maximum number of threads
116 */
117 #define MAX_THREADS FUTEX_TID_MASK
118
119 /*
120 * Protected counters by write_lock_irq(&tasklist_lock)
121 */
122 unsigned long total_forks; /* Handle normal Linux uptimes. */
123 int nr_threads; /* The idle threads do not count.. */
124
125 int max_threads; /* tunable limit on nr_threads */
126
127 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
128
129 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
130
131 #ifdef CONFIG_PROVE_RCU
132 int lockdep_tasklist_lock_is_held(void)
133 {
134 return lockdep_is_held(&tasklist_lock);
135 }
136 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
137 #endif /* #ifdef CONFIG_PROVE_RCU */
138
139 int nr_processes(void)
140 {
141 int cpu;
142 int total = 0;
143
144 for_each_possible_cpu(cpu)
145 total += per_cpu(process_counts, cpu);
146
147 return total;
148 }
149
150 void __weak arch_release_task_struct(struct task_struct *tsk)
151 {
152 }
153
154 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
155 static struct kmem_cache *task_struct_cachep;
156
157 static inline struct task_struct *alloc_task_struct_node(int node)
158 {
159 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
160 }
161
162 static inline void free_task_struct(struct task_struct *tsk)
163 {
164 kmem_cache_free(task_struct_cachep, tsk);
165 }
166 #endif
167
168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
169
170 /*
171 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
172 * kmemcache based allocator.
173 */
174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
175
176 #ifdef CONFIG_VMAP_STACK
177 /*
178 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
179 * flush. Try to minimize the number of calls by caching stacks.
180 */
181 #define NR_CACHED_STACKS 2
182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
183
184 static int free_vm_stack_cache(unsigned int cpu)
185 {
186 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
187 int i;
188
189 for (i = 0; i < NR_CACHED_STACKS; i++) {
190 struct vm_struct *vm_stack = cached_vm_stacks[i];
191
192 if (!vm_stack)
193 continue;
194
195 vfree(vm_stack->addr);
196 cached_vm_stacks[i] = NULL;
197 }
198
199 return 0;
200 }
201 #endif
202
203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
204 {
205 #ifdef CONFIG_VMAP_STACK
206 void *stack;
207 int i;
208
209 for (i = 0; i < NR_CACHED_STACKS; i++) {
210 struct vm_struct *s;
211
212 s = this_cpu_xchg(cached_stacks[i], NULL);
213
214 if (!s)
215 continue;
216
217 /* Clear stale pointers from reused stack. */
218 memset(s->addr, 0, THREAD_SIZE);
219
220 tsk->stack_vm_area = s;
221 tsk->stack = s->addr;
222 return s->addr;
223 }
224
225 /*
226 * Allocated stacks are cached and later reused by new threads,
227 * so memcg accounting is performed manually on assigning/releasing
228 * stacks to tasks. Drop __GFP_ACCOUNT.
229 */
230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
231 VMALLOC_START, VMALLOC_END,
232 THREADINFO_GFP & ~__GFP_ACCOUNT,
233 PAGE_KERNEL,
234 0, node, __builtin_return_address(0));
235
236 /*
237 * We can't call find_vm_area() in interrupt context, and
238 * free_thread_stack() can be called in interrupt context,
239 * so cache the vm_struct.
240 */
241 if (stack) {
242 tsk->stack_vm_area = find_vm_area(stack);
243 tsk->stack = stack;
244 }
245 return stack;
246 #else
247 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
248 THREAD_SIZE_ORDER);
249
250 return page ? page_address(page) : NULL;
251 #endif
252 }
253
254 static inline void free_thread_stack(struct task_struct *tsk)
255 {
256 #ifdef CONFIG_VMAP_STACK
257 struct vm_struct *vm = task_stack_vm_area(tsk);
258
259 if (vm) {
260 int i;
261
262 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
263 mod_memcg_page_state(vm->pages[i],
264 MEMCG_KERNEL_STACK_KB,
265 -(int)(PAGE_SIZE / 1024));
266
267 memcg_kmem_uncharge(vm->pages[i], 0);
268 }
269
270 for (i = 0; i < NR_CACHED_STACKS; i++) {
271 if (this_cpu_cmpxchg(cached_stacks[i],
272 NULL, tsk->stack_vm_area) != NULL)
273 continue;
274
275 return;
276 }
277
278 vfree_atomic(tsk->stack);
279 return;
280 }
281 #endif
282
283 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
284 }
285 # else
286 static struct kmem_cache *thread_stack_cache;
287
288 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
289 int node)
290 {
291 unsigned long *stack;
292 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
293 tsk->stack = stack;
294 return stack;
295 }
296
297 static void free_thread_stack(struct task_struct *tsk)
298 {
299 kmem_cache_free(thread_stack_cache, tsk->stack);
300 }
301
302 void thread_stack_cache_init(void)
303 {
304 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
305 THREAD_SIZE, THREAD_SIZE, 0, 0,
306 THREAD_SIZE, NULL);
307 BUG_ON(thread_stack_cache == NULL);
308 }
309 # endif
310 #endif
311
312 /* SLAB cache for signal_struct structures (tsk->signal) */
313 static struct kmem_cache *signal_cachep;
314
315 /* SLAB cache for sighand_struct structures (tsk->sighand) */
316 struct kmem_cache *sighand_cachep;
317
318 /* SLAB cache for files_struct structures (tsk->files) */
319 struct kmem_cache *files_cachep;
320
321 /* SLAB cache for fs_struct structures (tsk->fs) */
322 struct kmem_cache *fs_cachep;
323
324 /* SLAB cache for vm_area_struct structures */
325 static struct kmem_cache *vm_area_cachep;
326
327 /* SLAB cache for mm_struct structures (tsk->mm) */
328 static struct kmem_cache *mm_cachep;
329
330 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
331 {
332 struct vm_area_struct *vma;
333
334 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
335 if (vma)
336 vma_init(vma, mm);
337 return vma;
338 }
339
340 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
341 {
342 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
343
344 if (new) {
345 *new = *orig;
346 INIT_LIST_HEAD(&new->anon_vma_chain);
347 }
348 return new;
349 }
350
351 void vm_area_free(struct vm_area_struct *vma)
352 {
353 kmem_cache_free(vm_area_cachep, vma);
354 }
355
356 static void account_kernel_stack(struct task_struct *tsk, int account)
357 {
358 void *stack = task_stack_page(tsk);
359 struct vm_struct *vm = task_stack_vm_area(tsk);
360
361 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
362
363 if (vm) {
364 int i;
365
366 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
367
368 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
369 mod_zone_page_state(page_zone(vm->pages[i]),
370 NR_KERNEL_STACK_KB,
371 PAGE_SIZE / 1024 * account);
372 }
373 } else {
374 /*
375 * All stack pages are in the same zone and belong to the
376 * same memcg.
377 */
378 struct page *first_page = virt_to_page(stack);
379
380 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
381 THREAD_SIZE / 1024 * account);
382
383 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
384 account * (THREAD_SIZE / 1024));
385 }
386 }
387
388 static int memcg_charge_kernel_stack(struct task_struct *tsk)
389 {
390 #ifdef CONFIG_VMAP_STACK
391 struct vm_struct *vm = task_stack_vm_area(tsk);
392 int ret;
393
394 if (vm) {
395 int i;
396
397 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
398 /*
399 * If memcg_kmem_charge() fails, page->mem_cgroup
400 * pointer is NULL, and both memcg_kmem_uncharge()
401 * and mod_memcg_page_state() in free_thread_stack()
402 * will ignore this page. So it's safe.
403 */
404 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
405 if (ret)
406 return ret;
407
408 mod_memcg_page_state(vm->pages[i],
409 MEMCG_KERNEL_STACK_KB,
410 PAGE_SIZE / 1024);
411 }
412 }
413 #endif
414 return 0;
415 }
416
417 static void release_task_stack(struct task_struct *tsk)
418 {
419 if (WARN_ON(tsk->state != TASK_DEAD))
420 return; /* Better to leak the stack than to free prematurely */
421
422 account_kernel_stack(tsk, -1);
423 free_thread_stack(tsk);
424 tsk->stack = NULL;
425 #ifdef CONFIG_VMAP_STACK
426 tsk->stack_vm_area = NULL;
427 #endif
428 }
429
430 #ifdef CONFIG_THREAD_INFO_IN_TASK
431 void put_task_stack(struct task_struct *tsk)
432 {
433 if (refcount_dec_and_test(&tsk->stack_refcount))
434 release_task_stack(tsk);
435 }
436 #endif
437
438 void free_task(struct task_struct *tsk)
439 {
440 #ifndef CONFIG_THREAD_INFO_IN_TASK
441 /*
442 * The task is finally done with both the stack and thread_info,
443 * so free both.
444 */
445 release_task_stack(tsk);
446 #else
447 /*
448 * If the task had a separate stack allocation, it should be gone
449 * by now.
450 */
451 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
452 #endif
453 rt_mutex_debug_task_free(tsk);
454 ftrace_graph_exit_task(tsk);
455 put_seccomp_filter(tsk);
456 arch_release_task_struct(tsk);
457 if (tsk->flags & PF_KTHREAD)
458 free_kthread_struct(tsk);
459 free_task_struct(tsk);
460 }
461 EXPORT_SYMBOL(free_task);
462
463 #ifdef CONFIG_MMU
464 static __latent_entropy int dup_mmap(struct mm_struct *mm,
465 struct mm_struct *oldmm)
466 {
467 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
468 struct rb_node **rb_link, *rb_parent;
469 int retval;
470 unsigned long charge;
471 LIST_HEAD(uf);
472
473 uprobe_start_dup_mmap();
474 if (down_write_killable(&oldmm->mmap_sem)) {
475 retval = -EINTR;
476 goto fail_uprobe_end;
477 }
478 flush_cache_dup_mm(oldmm);
479 uprobe_dup_mmap(oldmm, mm);
480 /*
481 * Not linked in yet - no deadlock potential:
482 */
483 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
484
485 /* No ordering required: file already has been exposed. */
486 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
487
488 mm->total_vm = oldmm->total_vm;
489 mm->data_vm = oldmm->data_vm;
490 mm->exec_vm = oldmm->exec_vm;
491 mm->stack_vm = oldmm->stack_vm;
492
493 rb_link = &mm->mm_rb.rb_node;
494 rb_parent = NULL;
495 pprev = &mm->mmap;
496 retval = ksm_fork(mm, oldmm);
497 if (retval)
498 goto out;
499 retval = khugepaged_fork(mm, oldmm);
500 if (retval)
501 goto out;
502
503 prev = NULL;
504 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
505 struct file *file;
506
507 if (mpnt->vm_flags & VM_DONTCOPY) {
508 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
509 continue;
510 }
511 charge = 0;
512 /*
513 * Don't duplicate many vmas if we've been oom-killed (for
514 * example)
515 */
516 if (fatal_signal_pending(current)) {
517 retval = -EINTR;
518 goto out;
519 }
520 if (mpnt->vm_flags & VM_ACCOUNT) {
521 unsigned long len = vma_pages(mpnt);
522
523 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
524 goto fail_nomem;
525 charge = len;
526 }
527 tmp = vm_area_dup(mpnt);
528 if (!tmp)
529 goto fail_nomem;
530 retval = vma_dup_policy(mpnt, tmp);
531 if (retval)
532 goto fail_nomem_policy;
533 tmp->vm_mm = mm;
534 retval = dup_userfaultfd(tmp, &uf);
535 if (retval)
536 goto fail_nomem_anon_vma_fork;
537 if (tmp->vm_flags & VM_WIPEONFORK) {
538 /* VM_WIPEONFORK gets a clean slate in the child. */
539 tmp->anon_vma = NULL;
540 if (anon_vma_prepare(tmp))
541 goto fail_nomem_anon_vma_fork;
542 } else if (anon_vma_fork(tmp, mpnt))
543 goto fail_nomem_anon_vma_fork;
544 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
545 tmp->vm_next = tmp->vm_prev = NULL;
546 file = tmp->vm_file;
547 if (file) {
548 struct inode *inode = file_inode(file);
549 struct address_space *mapping = file->f_mapping;
550
551 get_file(file);
552 if (tmp->vm_flags & VM_DENYWRITE)
553 atomic_dec(&inode->i_writecount);
554 i_mmap_lock_write(mapping);
555 if (tmp->vm_flags & VM_SHARED)
556 atomic_inc(&mapping->i_mmap_writable);
557 flush_dcache_mmap_lock(mapping);
558 /* insert tmp into the share list, just after mpnt */
559 vma_interval_tree_insert_after(tmp, mpnt,
560 &mapping->i_mmap);
561 flush_dcache_mmap_unlock(mapping);
562 i_mmap_unlock_write(mapping);
563 }
564
565 /*
566 * Clear hugetlb-related page reserves for children. This only
567 * affects MAP_PRIVATE mappings. Faults generated by the child
568 * are not guaranteed to succeed, even if read-only
569 */
570 if (is_vm_hugetlb_page(tmp))
571 reset_vma_resv_huge_pages(tmp);
572
573 /*
574 * Link in the new vma and copy the page table entries.
575 */
576 *pprev = tmp;
577 pprev = &tmp->vm_next;
578 tmp->vm_prev = prev;
579 prev = tmp;
580
581 __vma_link_rb(mm, tmp, rb_link, rb_parent);
582 rb_link = &tmp->vm_rb.rb_right;
583 rb_parent = &tmp->vm_rb;
584
585 mm->map_count++;
586 if (!(tmp->vm_flags & VM_WIPEONFORK))
587 retval = copy_page_range(mm, oldmm, mpnt);
588
589 if (tmp->vm_ops && tmp->vm_ops->open)
590 tmp->vm_ops->open(tmp);
591
592 if (retval)
593 goto out;
594 }
595 /* a new mm has just been created */
596 retval = arch_dup_mmap(oldmm, mm);
597 out:
598 up_write(&mm->mmap_sem);
599 flush_tlb_mm(oldmm);
600 up_write(&oldmm->mmap_sem);
601 dup_userfaultfd_complete(&uf);
602 fail_uprobe_end:
603 uprobe_end_dup_mmap();
604 return retval;
605 fail_nomem_anon_vma_fork:
606 mpol_put(vma_policy(tmp));
607 fail_nomem_policy:
608 vm_area_free(tmp);
609 fail_nomem:
610 retval = -ENOMEM;
611 vm_unacct_memory(charge);
612 goto out;
613 }
614
615 static inline int mm_alloc_pgd(struct mm_struct *mm)
616 {
617 mm->pgd = pgd_alloc(mm);
618 if (unlikely(!mm->pgd))
619 return -ENOMEM;
620 return 0;
621 }
622
623 static inline void mm_free_pgd(struct mm_struct *mm)
624 {
625 pgd_free(mm, mm->pgd);
626 }
627 #else
628 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
629 {
630 down_write(&oldmm->mmap_sem);
631 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
632 up_write(&oldmm->mmap_sem);
633 return 0;
634 }
635 #define mm_alloc_pgd(mm) (0)
636 #define mm_free_pgd(mm)
637 #endif /* CONFIG_MMU */
638
639 static void check_mm(struct mm_struct *mm)
640 {
641 int i;
642
643 for (i = 0; i < NR_MM_COUNTERS; i++) {
644 long x = atomic_long_read(&mm->rss_stat.count[i]);
645
646 if (unlikely(x))
647 printk(KERN_ALERT "BUG: Bad rss-counter state "
648 "mm:%p idx:%d val:%ld\n", mm, i, x);
649 }
650
651 if (mm_pgtables_bytes(mm))
652 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
653 mm_pgtables_bytes(mm));
654
655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
656 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
657 #endif
658 }
659
660 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
661 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
662
663 /*
664 * Called when the last reference to the mm
665 * is dropped: either by a lazy thread or by
666 * mmput. Free the page directory and the mm.
667 */
668 void __mmdrop(struct mm_struct *mm)
669 {
670 BUG_ON(mm == &init_mm);
671 WARN_ON_ONCE(mm == current->mm);
672 WARN_ON_ONCE(mm == current->active_mm);
673 mm_free_pgd(mm);
674 destroy_context(mm);
675 hmm_mm_destroy(mm);
676 mmu_notifier_mm_destroy(mm);
677 check_mm(mm);
678 put_user_ns(mm->user_ns);
679 free_mm(mm);
680 }
681 EXPORT_SYMBOL_GPL(__mmdrop);
682
683 static void mmdrop_async_fn(struct work_struct *work)
684 {
685 struct mm_struct *mm;
686
687 mm = container_of(work, struct mm_struct, async_put_work);
688 __mmdrop(mm);
689 }
690
691 static void mmdrop_async(struct mm_struct *mm)
692 {
693 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
694 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
695 schedule_work(&mm->async_put_work);
696 }
697 }
698
699 static inline void free_signal_struct(struct signal_struct *sig)
700 {
701 taskstats_tgid_free(sig);
702 sched_autogroup_exit(sig);
703 /*
704 * __mmdrop is not safe to call from softirq context on x86 due to
705 * pgd_dtor so postpone it to the async context
706 */
707 if (sig->oom_mm)
708 mmdrop_async(sig->oom_mm);
709 kmem_cache_free(signal_cachep, sig);
710 }
711
712 static inline void put_signal_struct(struct signal_struct *sig)
713 {
714 if (refcount_dec_and_test(&sig->sigcnt))
715 free_signal_struct(sig);
716 }
717
718 void __put_task_struct(struct task_struct *tsk)
719 {
720 WARN_ON(!tsk->exit_state);
721 WARN_ON(refcount_read(&tsk->usage));
722 WARN_ON(tsk == current);
723
724 cgroup_free(tsk);
725 task_numa_free(tsk);
726 security_task_free(tsk);
727 exit_creds(tsk);
728 delayacct_tsk_free(tsk);
729 put_signal_struct(tsk->signal);
730
731 if (!profile_handoff_task(tsk))
732 free_task(tsk);
733 }
734 EXPORT_SYMBOL_GPL(__put_task_struct);
735
736 void __init __weak arch_task_cache_init(void) { }
737
738 /*
739 * set_max_threads
740 */
741 static void set_max_threads(unsigned int max_threads_suggested)
742 {
743 u64 threads;
744 unsigned long nr_pages = totalram_pages();
745
746 /*
747 * The number of threads shall be limited such that the thread
748 * structures may only consume a small part of the available memory.
749 */
750 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
751 threads = MAX_THREADS;
752 else
753 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
754 (u64) THREAD_SIZE * 8UL);
755
756 if (threads > max_threads_suggested)
757 threads = max_threads_suggested;
758
759 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
760 }
761
762 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
763 /* Initialized by the architecture: */
764 int arch_task_struct_size __read_mostly;
765 #endif
766
767 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
768 {
769 /* Fetch thread_struct whitelist for the architecture. */
770 arch_thread_struct_whitelist(offset, size);
771
772 /*
773 * Handle zero-sized whitelist or empty thread_struct, otherwise
774 * adjust offset to position of thread_struct in task_struct.
775 */
776 if (unlikely(*size == 0))
777 *offset = 0;
778 else
779 *offset += offsetof(struct task_struct, thread);
780 }
781
782 void __init fork_init(void)
783 {
784 int i;
785 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
786 #ifndef ARCH_MIN_TASKALIGN
787 #define ARCH_MIN_TASKALIGN 0
788 #endif
789 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
790 unsigned long useroffset, usersize;
791
792 /* create a slab on which task_structs can be allocated */
793 task_struct_whitelist(&useroffset, &usersize);
794 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
795 arch_task_struct_size, align,
796 SLAB_PANIC|SLAB_ACCOUNT,
797 useroffset, usersize, NULL);
798 #endif
799
800 /* do the arch specific task caches init */
801 arch_task_cache_init();
802
803 set_max_threads(MAX_THREADS);
804
805 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
806 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
807 init_task.signal->rlim[RLIMIT_SIGPENDING] =
808 init_task.signal->rlim[RLIMIT_NPROC];
809
810 for (i = 0; i < UCOUNT_COUNTS; i++) {
811 init_user_ns.ucount_max[i] = max_threads/2;
812 }
813
814 #ifdef CONFIG_VMAP_STACK
815 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
816 NULL, free_vm_stack_cache);
817 #endif
818
819 lockdep_init_task(&init_task);
820 uprobes_init();
821 }
822
823 int __weak arch_dup_task_struct(struct task_struct *dst,
824 struct task_struct *src)
825 {
826 *dst = *src;
827 return 0;
828 }
829
830 void set_task_stack_end_magic(struct task_struct *tsk)
831 {
832 unsigned long *stackend;
833
834 stackend = end_of_stack(tsk);
835 *stackend = STACK_END_MAGIC; /* for overflow detection */
836 }
837
838 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
839 {
840 struct task_struct *tsk;
841 unsigned long *stack;
842 struct vm_struct *stack_vm_area __maybe_unused;
843 int err;
844
845 if (node == NUMA_NO_NODE)
846 node = tsk_fork_get_node(orig);
847 tsk = alloc_task_struct_node(node);
848 if (!tsk)
849 return NULL;
850
851 stack = alloc_thread_stack_node(tsk, node);
852 if (!stack)
853 goto free_tsk;
854
855 if (memcg_charge_kernel_stack(tsk))
856 goto free_stack;
857
858 stack_vm_area = task_stack_vm_area(tsk);
859
860 err = arch_dup_task_struct(tsk, orig);
861
862 /*
863 * arch_dup_task_struct() clobbers the stack-related fields. Make
864 * sure they're properly initialized before using any stack-related
865 * functions again.
866 */
867 tsk->stack = stack;
868 #ifdef CONFIG_VMAP_STACK
869 tsk->stack_vm_area = stack_vm_area;
870 #endif
871 #ifdef CONFIG_THREAD_INFO_IN_TASK
872 refcount_set(&tsk->stack_refcount, 1);
873 #endif
874
875 if (err)
876 goto free_stack;
877
878 #ifdef CONFIG_SECCOMP
879 /*
880 * We must handle setting up seccomp filters once we're under
881 * the sighand lock in case orig has changed between now and
882 * then. Until then, filter must be NULL to avoid messing up
883 * the usage counts on the error path calling free_task.
884 */
885 tsk->seccomp.filter = NULL;
886 #endif
887
888 setup_thread_stack(tsk, orig);
889 clear_user_return_notifier(tsk);
890 clear_tsk_need_resched(tsk);
891 set_task_stack_end_magic(tsk);
892
893 #ifdef CONFIG_STACKPROTECTOR
894 tsk->stack_canary = get_random_canary();
895 #endif
896
897 /*
898 * One for us, one for whoever does the "release_task()" (usually
899 * parent)
900 */
901 refcount_set(&tsk->usage, 2);
902 #ifdef CONFIG_BLK_DEV_IO_TRACE
903 tsk->btrace_seq = 0;
904 #endif
905 tsk->splice_pipe = NULL;
906 tsk->task_frag.page = NULL;
907 tsk->wake_q.next = NULL;
908
909 account_kernel_stack(tsk, 1);
910
911 kcov_task_init(tsk);
912
913 #ifdef CONFIG_FAULT_INJECTION
914 tsk->fail_nth = 0;
915 #endif
916
917 #ifdef CONFIG_BLK_CGROUP
918 tsk->throttle_queue = NULL;
919 tsk->use_memdelay = 0;
920 #endif
921
922 #ifdef CONFIG_MEMCG
923 tsk->active_memcg = NULL;
924 #endif
925 return tsk;
926
927 free_stack:
928 free_thread_stack(tsk);
929 free_tsk:
930 free_task_struct(tsk);
931 return NULL;
932 }
933
934 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
935
936 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
937
938 static int __init coredump_filter_setup(char *s)
939 {
940 default_dump_filter =
941 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
942 MMF_DUMP_FILTER_MASK;
943 return 1;
944 }
945
946 __setup("coredump_filter=", coredump_filter_setup);
947
948 #include <linux/init_task.h>
949
950 static void mm_init_aio(struct mm_struct *mm)
951 {
952 #ifdef CONFIG_AIO
953 spin_lock_init(&mm->ioctx_lock);
954 mm->ioctx_table = NULL;
955 #endif
956 }
957
958 static __always_inline void mm_clear_owner(struct mm_struct *mm,
959 struct task_struct *p)
960 {
961 #ifdef CONFIG_MEMCG
962 if (mm->owner == p)
963 WRITE_ONCE(mm->owner, NULL);
964 #endif
965 }
966
967 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
968 {
969 #ifdef CONFIG_MEMCG
970 mm->owner = p;
971 #endif
972 }
973
974 static void mm_init_uprobes_state(struct mm_struct *mm)
975 {
976 #ifdef CONFIG_UPROBES
977 mm->uprobes_state.xol_area = NULL;
978 #endif
979 }
980
981 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
982 struct user_namespace *user_ns)
983 {
984 mm->mmap = NULL;
985 mm->mm_rb = RB_ROOT;
986 mm->vmacache_seqnum = 0;
987 atomic_set(&mm->mm_users, 1);
988 atomic_set(&mm->mm_count, 1);
989 init_rwsem(&mm->mmap_sem);
990 INIT_LIST_HEAD(&mm->mmlist);
991 mm->core_state = NULL;
992 mm_pgtables_bytes_init(mm);
993 mm->map_count = 0;
994 mm->locked_vm = 0;
995 atomic64_set(&mm->pinned_vm, 0);
996 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
997 spin_lock_init(&mm->page_table_lock);
998 spin_lock_init(&mm->arg_lock);
999 mm_init_cpumask(mm);
1000 mm_init_aio(mm);
1001 mm_init_owner(mm, p);
1002 RCU_INIT_POINTER(mm->exe_file, NULL);
1003 mmu_notifier_mm_init(mm);
1004 hmm_mm_init(mm);
1005 init_tlb_flush_pending(mm);
1006 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1007 mm->pmd_huge_pte = NULL;
1008 #endif
1009 mm_init_uprobes_state(mm);
1010
1011 if (current->mm) {
1012 mm->flags = current->mm->flags & MMF_INIT_MASK;
1013 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1014 } else {
1015 mm->flags = default_dump_filter;
1016 mm->def_flags = 0;
1017 }
1018
1019 if (mm_alloc_pgd(mm))
1020 goto fail_nopgd;
1021
1022 if (init_new_context(p, mm))
1023 goto fail_nocontext;
1024
1025 mm->user_ns = get_user_ns(user_ns);
1026 return mm;
1027
1028 fail_nocontext:
1029 mm_free_pgd(mm);
1030 fail_nopgd:
1031 free_mm(mm);
1032 return NULL;
1033 }
1034
1035 /*
1036 * Allocate and initialize an mm_struct.
1037 */
1038 struct mm_struct *mm_alloc(void)
1039 {
1040 struct mm_struct *mm;
1041
1042 mm = allocate_mm();
1043 if (!mm)
1044 return NULL;
1045
1046 memset(mm, 0, sizeof(*mm));
1047 return mm_init(mm, current, current_user_ns());
1048 }
1049
1050 static inline void __mmput(struct mm_struct *mm)
1051 {
1052 VM_BUG_ON(atomic_read(&mm->mm_users));
1053
1054 uprobe_clear_state(mm);
1055 exit_aio(mm);
1056 ksm_exit(mm);
1057 khugepaged_exit(mm); /* must run before exit_mmap */
1058 exit_mmap(mm);
1059 mm_put_huge_zero_page(mm);
1060 set_mm_exe_file(mm, NULL);
1061 if (!list_empty(&mm->mmlist)) {
1062 spin_lock(&mmlist_lock);
1063 list_del(&mm->mmlist);
1064 spin_unlock(&mmlist_lock);
1065 }
1066 if (mm->binfmt)
1067 module_put(mm->binfmt->module);
1068 mmdrop(mm);
1069 }
1070
1071 /*
1072 * Decrement the use count and release all resources for an mm.
1073 */
1074 void mmput(struct mm_struct *mm)
1075 {
1076 might_sleep();
1077
1078 if (atomic_dec_and_test(&mm->mm_users))
1079 __mmput(mm);
1080 }
1081 EXPORT_SYMBOL_GPL(mmput);
1082
1083 #ifdef CONFIG_MMU
1084 static void mmput_async_fn(struct work_struct *work)
1085 {
1086 struct mm_struct *mm = container_of(work, struct mm_struct,
1087 async_put_work);
1088
1089 __mmput(mm);
1090 }
1091
1092 void mmput_async(struct mm_struct *mm)
1093 {
1094 if (atomic_dec_and_test(&mm->mm_users)) {
1095 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1096 schedule_work(&mm->async_put_work);
1097 }
1098 }
1099 #endif
1100
1101 /**
1102 * set_mm_exe_file - change a reference to the mm's executable file
1103 *
1104 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1105 *
1106 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1107 * invocations: in mmput() nobody alive left, in execve task is single
1108 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1109 * mm->exe_file, but does so without using set_mm_exe_file() in order
1110 * to do avoid the need for any locks.
1111 */
1112 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1113 {
1114 struct file *old_exe_file;
1115
1116 /*
1117 * It is safe to dereference the exe_file without RCU as
1118 * this function is only called if nobody else can access
1119 * this mm -- see comment above for justification.
1120 */
1121 old_exe_file = rcu_dereference_raw(mm->exe_file);
1122
1123 if (new_exe_file)
1124 get_file(new_exe_file);
1125 rcu_assign_pointer(mm->exe_file, new_exe_file);
1126 if (old_exe_file)
1127 fput(old_exe_file);
1128 }
1129
1130 /**
1131 * get_mm_exe_file - acquire a reference to the mm's executable file
1132 *
1133 * Returns %NULL if mm has no associated executable file.
1134 * User must release file via fput().
1135 */
1136 struct file *get_mm_exe_file(struct mm_struct *mm)
1137 {
1138 struct file *exe_file;
1139
1140 rcu_read_lock();
1141 exe_file = rcu_dereference(mm->exe_file);
1142 if (exe_file && !get_file_rcu(exe_file))
1143 exe_file = NULL;
1144 rcu_read_unlock();
1145 return exe_file;
1146 }
1147 EXPORT_SYMBOL(get_mm_exe_file);
1148
1149 /**
1150 * get_task_exe_file - acquire a reference to the task's executable file
1151 *
1152 * Returns %NULL if task's mm (if any) has no associated executable file or
1153 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1154 * User must release file via fput().
1155 */
1156 struct file *get_task_exe_file(struct task_struct *task)
1157 {
1158 struct file *exe_file = NULL;
1159 struct mm_struct *mm;
1160
1161 task_lock(task);
1162 mm = task->mm;
1163 if (mm) {
1164 if (!(task->flags & PF_KTHREAD))
1165 exe_file = get_mm_exe_file(mm);
1166 }
1167 task_unlock(task);
1168 return exe_file;
1169 }
1170 EXPORT_SYMBOL(get_task_exe_file);
1171
1172 /**
1173 * get_task_mm - acquire a reference to the task's mm
1174 *
1175 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1176 * this kernel workthread has transiently adopted a user mm with use_mm,
1177 * to do its AIO) is not set and if so returns a reference to it, after
1178 * bumping up the use count. User must release the mm via mmput()
1179 * after use. Typically used by /proc and ptrace.
1180 */
1181 struct mm_struct *get_task_mm(struct task_struct *task)
1182 {
1183 struct mm_struct *mm;
1184
1185 task_lock(task);
1186 mm = task->mm;
1187 if (mm) {
1188 if (task->flags & PF_KTHREAD)
1189 mm = NULL;
1190 else
1191 mmget(mm);
1192 }
1193 task_unlock(task);
1194 return mm;
1195 }
1196 EXPORT_SYMBOL_GPL(get_task_mm);
1197
1198 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1199 {
1200 struct mm_struct *mm;
1201 int err;
1202
1203 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1204 if (err)
1205 return ERR_PTR(err);
1206
1207 mm = get_task_mm(task);
1208 if (mm && mm != current->mm &&
1209 !ptrace_may_access(task, mode)) {
1210 mmput(mm);
1211 mm = ERR_PTR(-EACCES);
1212 }
1213 mutex_unlock(&task->signal->cred_guard_mutex);
1214
1215 return mm;
1216 }
1217
1218 static void complete_vfork_done(struct task_struct *tsk)
1219 {
1220 struct completion *vfork;
1221
1222 task_lock(tsk);
1223 vfork = tsk->vfork_done;
1224 if (likely(vfork)) {
1225 tsk->vfork_done = NULL;
1226 complete(vfork);
1227 }
1228 task_unlock(tsk);
1229 }
1230
1231 static int wait_for_vfork_done(struct task_struct *child,
1232 struct completion *vfork)
1233 {
1234 int killed;
1235
1236 freezer_do_not_count();
1237 cgroup_enter_frozen();
1238 killed = wait_for_completion_killable(vfork);
1239 cgroup_leave_frozen(false);
1240 freezer_count();
1241
1242 if (killed) {
1243 task_lock(child);
1244 child->vfork_done = NULL;
1245 task_unlock(child);
1246 }
1247
1248 put_task_struct(child);
1249 return killed;
1250 }
1251
1252 /* Please note the differences between mmput and mm_release.
1253 * mmput is called whenever we stop holding onto a mm_struct,
1254 * error success whatever.
1255 *
1256 * mm_release is called after a mm_struct has been removed
1257 * from the current process.
1258 *
1259 * This difference is important for error handling, when we
1260 * only half set up a mm_struct for a new process and need to restore
1261 * the old one. Because we mmput the new mm_struct before
1262 * restoring the old one. . .
1263 * Eric Biederman 10 January 1998
1264 */
1265 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1266 {
1267 /* Get rid of any futexes when releasing the mm */
1268 #ifdef CONFIG_FUTEX
1269 if (unlikely(tsk->robust_list)) {
1270 exit_robust_list(tsk);
1271 tsk->robust_list = NULL;
1272 }
1273 #ifdef CONFIG_COMPAT
1274 if (unlikely(tsk->compat_robust_list)) {
1275 compat_exit_robust_list(tsk);
1276 tsk->compat_robust_list = NULL;
1277 }
1278 #endif
1279 if (unlikely(!list_empty(&tsk->pi_state_list)))
1280 exit_pi_state_list(tsk);
1281 #endif
1282
1283 uprobe_free_utask(tsk);
1284
1285 /* Get rid of any cached register state */
1286 deactivate_mm(tsk, mm);
1287
1288 /*
1289 * Signal userspace if we're not exiting with a core dump
1290 * because we want to leave the value intact for debugging
1291 * purposes.
1292 */
1293 if (tsk->clear_child_tid) {
1294 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1295 atomic_read(&mm->mm_users) > 1) {
1296 /*
1297 * We don't check the error code - if userspace has
1298 * not set up a proper pointer then tough luck.
1299 */
1300 put_user(0, tsk->clear_child_tid);
1301 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1302 1, NULL, NULL, 0, 0);
1303 }
1304 tsk->clear_child_tid = NULL;
1305 }
1306
1307 /*
1308 * All done, finally we can wake up parent and return this mm to him.
1309 * Also kthread_stop() uses this completion for synchronization.
1310 */
1311 if (tsk->vfork_done)
1312 complete_vfork_done(tsk);
1313 }
1314
1315 /**
1316 * dup_mm() - duplicates an existing mm structure
1317 * @tsk: the task_struct with which the new mm will be associated.
1318 * @oldmm: the mm to duplicate.
1319 *
1320 * Allocates a new mm structure and duplicates the provided @oldmm structure
1321 * content into it.
1322 *
1323 * Return: the duplicated mm or NULL on failure.
1324 */
1325 static struct mm_struct *dup_mm(struct task_struct *tsk,
1326 struct mm_struct *oldmm)
1327 {
1328 struct mm_struct *mm;
1329 int err;
1330
1331 mm = allocate_mm();
1332 if (!mm)
1333 goto fail_nomem;
1334
1335 memcpy(mm, oldmm, sizeof(*mm));
1336
1337 if (!mm_init(mm, tsk, mm->user_ns))
1338 goto fail_nomem;
1339
1340 err = dup_mmap(mm, oldmm);
1341 if (err)
1342 goto free_pt;
1343
1344 mm->hiwater_rss = get_mm_rss(mm);
1345 mm->hiwater_vm = mm->total_vm;
1346
1347 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1348 goto free_pt;
1349
1350 return mm;
1351
1352 free_pt:
1353 /* don't put binfmt in mmput, we haven't got module yet */
1354 mm->binfmt = NULL;
1355 mm_init_owner(mm, NULL);
1356 mmput(mm);
1357
1358 fail_nomem:
1359 return NULL;
1360 }
1361
1362 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1363 {
1364 struct mm_struct *mm, *oldmm;
1365 int retval;
1366
1367 tsk->min_flt = tsk->maj_flt = 0;
1368 tsk->nvcsw = tsk->nivcsw = 0;
1369 #ifdef CONFIG_DETECT_HUNG_TASK
1370 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1371 tsk->last_switch_time = 0;
1372 #endif
1373
1374 tsk->mm = NULL;
1375 tsk->active_mm = NULL;
1376
1377 /*
1378 * Are we cloning a kernel thread?
1379 *
1380 * We need to steal a active VM for that..
1381 */
1382 oldmm = current->mm;
1383 if (!oldmm)
1384 return 0;
1385
1386 /* initialize the new vmacache entries */
1387 vmacache_flush(tsk);
1388
1389 if (clone_flags & CLONE_VM) {
1390 mmget(oldmm);
1391 mm = oldmm;
1392 goto good_mm;
1393 }
1394
1395 retval = -ENOMEM;
1396 mm = dup_mm(tsk, current->mm);
1397 if (!mm)
1398 goto fail_nomem;
1399
1400 good_mm:
1401 tsk->mm = mm;
1402 tsk->active_mm = mm;
1403 return 0;
1404
1405 fail_nomem:
1406 return retval;
1407 }
1408
1409 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1410 {
1411 struct fs_struct *fs = current->fs;
1412 if (clone_flags & CLONE_FS) {
1413 /* tsk->fs is already what we want */
1414 spin_lock(&fs->lock);
1415 if (fs->in_exec) {
1416 spin_unlock(&fs->lock);
1417 return -EAGAIN;
1418 }
1419 fs->users++;
1420 spin_unlock(&fs->lock);
1421 return 0;
1422 }
1423 tsk->fs = copy_fs_struct(fs);
1424 if (!tsk->fs)
1425 return -ENOMEM;
1426 return 0;
1427 }
1428
1429 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1430 {
1431 struct files_struct *oldf, *newf;
1432 int error = 0;
1433
1434 /*
1435 * A background process may not have any files ...
1436 */
1437 oldf = current->files;
1438 if (!oldf)
1439 goto out;
1440
1441 if (clone_flags & CLONE_FILES) {
1442 atomic_inc(&oldf->count);
1443 goto out;
1444 }
1445
1446 newf = dup_fd(oldf, &error);
1447 if (!newf)
1448 goto out;
1449
1450 tsk->files = newf;
1451 error = 0;
1452 out:
1453 return error;
1454 }
1455
1456 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1457 {
1458 #ifdef CONFIG_BLOCK
1459 struct io_context *ioc = current->io_context;
1460 struct io_context *new_ioc;
1461
1462 if (!ioc)
1463 return 0;
1464 /*
1465 * Share io context with parent, if CLONE_IO is set
1466 */
1467 if (clone_flags & CLONE_IO) {
1468 ioc_task_link(ioc);
1469 tsk->io_context = ioc;
1470 } else if (ioprio_valid(ioc->ioprio)) {
1471 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1472 if (unlikely(!new_ioc))
1473 return -ENOMEM;
1474
1475 new_ioc->ioprio = ioc->ioprio;
1476 put_io_context(new_ioc);
1477 }
1478 #endif
1479 return 0;
1480 }
1481
1482 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1483 {
1484 struct sighand_struct *sig;
1485
1486 if (clone_flags & CLONE_SIGHAND) {
1487 refcount_inc(&current->sighand->count);
1488 return 0;
1489 }
1490 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1491 rcu_assign_pointer(tsk->sighand, sig);
1492 if (!sig)
1493 return -ENOMEM;
1494
1495 refcount_set(&sig->count, 1);
1496 spin_lock_irq(&current->sighand->siglock);
1497 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1498 spin_unlock_irq(&current->sighand->siglock);
1499 return 0;
1500 }
1501
1502 void __cleanup_sighand(struct sighand_struct *sighand)
1503 {
1504 if (refcount_dec_and_test(&sighand->count)) {
1505 signalfd_cleanup(sighand);
1506 /*
1507 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1508 * without an RCU grace period, see __lock_task_sighand().
1509 */
1510 kmem_cache_free(sighand_cachep, sighand);
1511 }
1512 }
1513
1514 #ifdef CONFIG_POSIX_TIMERS
1515 /*
1516 * Initialize POSIX timer handling for a thread group.
1517 */
1518 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1519 {
1520 unsigned long cpu_limit;
1521
1522 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1523 if (cpu_limit != RLIM_INFINITY) {
1524 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1525 sig->cputimer.running = true;
1526 }
1527
1528 /* The timer lists. */
1529 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1530 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1531 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1532 }
1533 #else
1534 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1535 #endif
1536
1537 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1538 {
1539 struct signal_struct *sig;
1540
1541 if (clone_flags & CLONE_THREAD)
1542 return 0;
1543
1544 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1545 tsk->signal = sig;
1546 if (!sig)
1547 return -ENOMEM;
1548
1549 sig->nr_threads = 1;
1550 atomic_set(&sig->live, 1);
1551 refcount_set(&sig->sigcnt, 1);
1552
1553 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1554 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1555 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1556
1557 init_waitqueue_head(&sig->wait_chldexit);
1558 sig->curr_target = tsk;
1559 init_sigpending(&sig->shared_pending);
1560 INIT_HLIST_HEAD(&sig->multiprocess);
1561 seqlock_init(&sig->stats_lock);
1562 prev_cputime_init(&sig->prev_cputime);
1563
1564 #ifdef CONFIG_POSIX_TIMERS
1565 INIT_LIST_HEAD(&sig->posix_timers);
1566 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1567 sig->real_timer.function = it_real_fn;
1568 #endif
1569
1570 task_lock(current->group_leader);
1571 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1572 task_unlock(current->group_leader);
1573
1574 posix_cpu_timers_init_group(sig);
1575
1576 tty_audit_fork(sig);
1577 sched_autogroup_fork(sig);
1578
1579 sig->oom_score_adj = current->signal->oom_score_adj;
1580 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1581
1582 mutex_init(&sig->cred_guard_mutex);
1583
1584 return 0;
1585 }
1586
1587 static void copy_seccomp(struct task_struct *p)
1588 {
1589 #ifdef CONFIG_SECCOMP
1590 /*
1591 * Must be called with sighand->lock held, which is common to
1592 * all threads in the group. Holding cred_guard_mutex is not
1593 * needed because this new task is not yet running and cannot
1594 * be racing exec.
1595 */
1596 assert_spin_locked(&current->sighand->siglock);
1597
1598 /* Ref-count the new filter user, and assign it. */
1599 get_seccomp_filter(current);
1600 p->seccomp = current->seccomp;
1601
1602 /*
1603 * Explicitly enable no_new_privs here in case it got set
1604 * between the task_struct being duplicated and holding the
1605 * sighand lock. The seccomp state and nnp must be in sync.
1606 */
1607 if (task_no_new_privs(current))
1608 task_set_no_new_privs(p);
1609
1610 /*
1611 * If the parent gained a seccomp mode after copying thread
1612 * flags and between before we held the sighand lock, we have
1613 * to manually enable the seccomp thread flag here.
1614 */
1615 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1616 set_tsk_thread_flag(p, TIF_SECCOMP);
1617 #endif
1618 }
1619
1620 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1621 {
1622 current->clear_child_tid = tidptr;
1623
1624 return task_pid_vnr(current);
1625 }
1626
1627 static void rt_mutex_init_task(struct task_struct *p)
1628 {
1629 raw_spin_lock_init(&p->pi_lock);
1630 #ifdef CONFIG_RT_MUTEXES
1631 p->pi_waiters = RB_ROOT_CACHED;
1632 p->pi_top_task = NULL;
1633 p->pi_blocked_on = NULL;
1634 #endif
1635 }
1636
1637 #ifdef CONFIG_POSIX_TIMERS
1638 /*
1639 * Initialize POSIX timer handling for a single task.
1640 */
1641 static void posix_cpu_timers_init(struct task_struct *tsk)
1642 {
1643 tsk->cputime_expires.prof_exp = 0;
1644 tsk->cputime_expires.virt_exp = 0;
1645 tsk->cputime_expires.sched_exp = 0;
1646 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1647 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1648 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1649 }
1650 #else
1651 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1652 #endif
1653
1654 static inline void init_task_pid_links(struct task_struct *task)
1655 {
1656 enum pid_type type;
1657
1658 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1659 INIT_HLIST_NODE(&task->pid_links[type]);
1660 }
1661 }
1662
1663 static inline void
1664 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1665 {
1666 if (type == PIDTYPE_PID)
1667 task->thread_pid = pid;
1668 else
1669 task->signal->pids[type] = pid;
1670 }
1671
1672 static inline void rcu_copy_process(struct task_struct *p)
1673 {
1674 #ifdef CONFIG_PREEMPT_RCU
1675 p->rcu_read_lock_nesting = 0;
1676 p->rcu_read_unlock_special.s = 0;
1677 p->rcu_blocked_node = NULL;
1678 INIT_LIST_HEAD(&p->rcu_node_entry);
1679 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1680 #ifdef CONFIG_TASKS_RCU
1681 p->rcu_tasks_holdout = false;
1682 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1683 p->rcu_tasks_idle_cpu = -1;
1684 #endif /* #ifdef CONFIG_TASKS_RCU */
1685 }
1686
1687 static int pidfd_release(struct inode *inode, struct file *file)
1688 {
1689 struct pid *pid = file->private_data;
1690
1691 file->private_data = NULL;
1692 put_pid(pid);
1693 return 0;
1694 }
1695
1696 #ifdef CONFIG_PROC_FS
1697 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1698 {
1699 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1700 struct pid *pid = f->private_data;
1701
1702 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1703 seq_putc(m, '\n');
1704 }
1705 #endif
1706
1707 const struct file_operations pidfd_fops = {
1708 .release = pidfd_release,
1709 #ifdef CONFIG_PROC_FS
1710 .show_fdinfo = pidfd_show_fdinfo,
1711 #endif
1712 };
1713
1714 /**
1715 * pidfd_create() - Create a new pid file descriptor.
1716 *
1717 * @pid: struct pid that the pidfd will reference
1718 *
1719 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
1720 *
1721 * Note, that this function can only be called after the fd table has
1722 * been unshared to avoid leaking the pidfd to the new process.
1723 *
1724 * Return: On success, a cloexec pidfd is returned.
1725 * On error, a negative errno number will be returned.
1726 */
1727 static int pidfd_create(struct pid *pid)
1728 {
1729 int fd;
1730
1731 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
1732 O_RDWR | O_CLOEXEC);
1733 if (fd < 0)
1734 put_pid(pid);
1735
1736 return fd;
1737 }
1738
1739 static void __delayed_free_task(struct rcu_head *rhp)
1740 {
1741 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1742
1743 free_task(tsk);
1744 }
1745
1746 static __always_inline void delayed_free_task(struct task_struct *tsk)
1747 {
1748 if (IS_ENABLED(CONFIG_MEMCG))
1749 call_rcu(&tsk->rcu, __delayed_free_task);
1750 else
1751 free_task(tsk);
1752 }
1753
1754 /*
1755 * This creates a new process as a copy of the old one,
1756 * but does not actually start it yet.
1757 *
1758 * It copies the registers, and all the appropriate
1759 * parts of the process environment (as per the clone
1760 * flags). The actual kick-off is left to the caller.
1761 */
1762 static __latent_entropy struct task_struct *copy_process(
1763 unsigned long clone_flags,
1764 unsigned long stack_start,
1765 unsigned long stack_size,
1766 int __user *parent_tidptr,
1767 int __user *child_tidptr,
1768 struct pid *pid,
1769 int trace,
1770 unsigned long tls,
1771 int node)
1772 {
1773 int pidfd = -1, retval;
1774 struct task_struct *p;
1775 struct multiprocess_signals delayed;
1776
1777 /*
1778 * Don't allow sharing the root directory with processes in a different
1779 * namespace
1780 */
1781 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1782 return ERR_PTR(-EINVAL);
1783
1784 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1785 return ERR_PTR(-EINVAL);
1786
1787 /*
1788 * Thread groups must share signals as well, and detached threads
1789 * can only be started up within the thread group.
1790 */
1791 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1792 return ERR_PTR(-EINVAL);
1793
1794 /*
1795 * Shared signal handlers imply shared VM. By way of the above,
1796 * thread groups also imply shared VM. Blocking this case allows
1797 * for various simplifications in other code.
1798 */
1799 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1800 return ERR_PTR(-EINVAL);
1801
1802 /*
1803 * Siblings of global init remain as zombies on exit since they are
1804 * not reaped by their parent (swapper). To solve this and to avoid
1805 * multi-rooted process trees, prevent global and container-inits
1806 * from creating siblings.
1807 */
1808 if ((clone_flags & CLONE_PARENT) &&
1809 current->signal->flags & SIGNAL_UNKILLABLE)
1810 return ERR_PTR(-EINVAL);
1811
1812 /*
1813 * If the new process will be in a different pid or user namespace
1814 * do not allow it to share a thread group with the forking task.
1815 */
1816 if (clone_flags & CLONE_THREAD) {
1817 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1818 (task_active_pid_ns(current) !=
1819 current->nsproxy->pid_ns_for_children))
1820 return ERR_PTR(-EINVAL);
1821 }
1822
1823 if (clone_flags & CLONE_PIDFD) {
1824 int reserved;
1825
1826 /*
1827 * - CLONE_PARENT_SETTID is useless for pidfds and also
1828 * parent_tidptr is used to return pidfds.
1829 * - CLONE_DETACHED is blocked so that we can potentially
1830 * reuse it later for CLONE_PIDFD.
1831 * - CLONE_THREAD is blocked until someone really needs it.
1832 */
1833 if (clone_flags &
1834 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD))
1835 return ERR_PTR(-EINVAL);
1836
1837 /*
1838 * Verify that parent_tidptr is sane so we can potentially
1839 * reuse it later.
1840 */
1841 if (get_user(reserved, parent_tidptr))
1842 return ERR_PTR(-EFAULT);
1843
1844 if (reserved != 0)
1845 return ERR_PTR(-EINVAL);
1846 }
1847
1848 /*
1849 * Force any signals received before this point to be delivered
1850 * before the fork happens. Collect up signals sent to multiple
1851 * processes that happen during the fork and delay them so that
1852 * they appear to happen after the fork.
1853 */
1854 sigemptyset(&delayed.signal);
1855 INIT_HLIST_NODE(&delayed.node);
1856
1857 spin_lock_irq(&current->sighand->siglock);
1858 if (!(clone_flags & CLONE_THREAD))
1859 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1860 recalc_sigpending();
1861 spin_unlock_irq(&current->sighand->siglock);
1862 retval = -ERESTARTNOINTR;
1863 if (signal_pending(current))
1864 goto fork_out;
1865
1866 retval = -ENOMEM;
1867 p = dup_task_struct(current, node);
1868 if (!p)
1869 goto fork_out;
1870
1871 /*
1872 * This _must_ happen before we call free_task(), i.e. before we jump
1873 * to any of the bad_fork_* labels. This is to avoid freeing
1874 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1875 * kernel threads (PF_KTHREAD).
1876 */
1877 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1878 /*
1879 * Clear TID on mm_release()?
1880 */
1881 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1882
1883 ftrace_graph_init_task(p);
1884
1885 rt_mutex_init_task(p);
1886
1887 #ifdef CONFIG_PROVE_LOCKING
1888 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1889 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1890 #endif
1891 retval = -EAGAIN;
1892 if (atomic_read(&p->real_cred->user->processes) >=
1893 task_rlimit(p, RLIMIT_NPROC)) {
1894 if (p->real_cred->user != INIT_USER &&
1895 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1896 goto bad_fork_free;
1897 }
1898 current->flags &= ~PF_NPROC_EXCEEDED;
1899
1900 retval = copy_creds(p, clone_flags);
1901 if (retval < 0)
1902 goto bad_fork_free;
1903
1904 /*
1905 * If multiple threads are within copy_process(), then this check
1906 * triggers too late. This doesn't hurt, the check is only there
1907 * to stop root fork bombs.
1908 */
1909 retval = -EAGAIN;
1910 if (nr_threads >= max_threads)
1911 goto bad_fork_cleanup_count;
1912
1913 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1914 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1915 p->flags |= PF_FORKNOEXEC;
1916 INIT_LIST_HEAD(&p->children);
1917 INIT_LIST_HEAD(&p->sibling);
1918 rcu_copy_process(p);
1919 p->vfork_done = NULL;
1920 spin_lock_init(&p->alloc_lock);
1921
1922 init_sigpending(&p->pending);
1923
1924 p->utime = p->stime = p->gtime = 0;
1925 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1926 p->utimescaled = p->stimescaled = 0;
1927 #endif
1928 prev_cputime_init(&p->prev_cputime);
1929
1930 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1931 seqcount_init(&p->vtime.seqcount);
1932 p->vtime.starttime = 0;
1933 p->vtime.state = VTIME_INACTIVE;
1934 #endif
1935
1936 #if defined(SPLIT_RSS_COUNTING)
1937 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1938 #endif
1939
1940 p->default_timer_slack_ns = current->timer_slack_ns;
1941
1942 #ifdef CONFIG_PSI
1943 p->psi_flags = 0;
1944 #endif
1945
1946 task_io_accounting_init(&p->ioac);
1947 acct_clear_integrals(p);
1948
1949 posix_cpu_timers_init(p);
1950
1951 p->io_context = NULL;
1952 audit_set_context(p, NULL);
1953 cgroup_fork(p);
1954 #ifdef CONFIG_NUMA
1955 p->mempolicy = mpol_dup(p->mempolicy);
1956 if (IS_ERR(p->mempolicy)) {
1957 retval = PTR_ERR(p->mempolicy);
1958 p->mempolicy = NULL;
1959 goto bad_fork_cleanup_threadgroup_lock;
1960 }
1961 #endif
1962 #ifdef CONFIG_CPUSETS
1963 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1964 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1965 seqcount_init(&p->mems_allowed_seq);
1966 #endif
1967 #ifdef CONFIG_TRACE_IRQFLAGS
1968 p->irq_events = 0;
1969 p->hardirqs_enabled = 0;
1970 p->hardirq_enable_ip = 0;
1971 p->hardirq_enable_event = 0;
1972 p->hardirq_disable_ip = _THIS_IP_;
1973 p->hardirq_disable_event = 0;
1974 p->softirqs_enabled = 1;
1975 p->softirq_enable_ip = _THIS_IP_;
1976 p->softirq_enable_event = 0;
1977 p->softirq_disable_ip = 0;
1978 p->softirq_disable_event = 0;
1979 p->hardirq_context = 0;
1980 p->softirq_context = 0;
1981 #endif
1982
1983 p->pagefault_disabled = 0;
1984
1985 #ifdef CONFIG_LOCKDEP
1986 p->lockdep_depth = 0; /* no locks held yet */
1987 p->curr_chain_key = 0;
1988 p->lockdep_recursion = 0;
1989 lockdep_init_task(p);
1990 #endif
1991
1992 #ifdef CONFIG_DEBUG_MUTEXES
1993 p->blocked_on = NULL; /* not blocked yet */
1994 #endif
1995 #ifdef CONFIG_BCACHE
1996 p->sequential_io = 0;
1997 p->sequential_io_avg = 0;
1998 #endif
1999
2000 /* Perform scheduler related setup. Assign this task to a CPU. */
2001 retval = sched_fork(clone_flags, p);
2002 if (retval)
2003 goto bad_fork_cleanup_policy;
2004
2005 retval = perf_event_init_task(p);
2006 if (retval)
2007 goto bad_fork_cleanup_policy;
2008 retval = audit_alloc(p);
2009 if (retval)
2010 goto bad_fork_cleanup_perf;
2011 /* copy all the process information */
2012 shm_init_task(p);
2013 retval = security_task_alloc(p, clone_flags);
2014 if (retval)
2015 goto bad_fork_cleanup_audit;
2016 retval = copy_semundo(clone_flags, p);
2017 if (retval)
2018 goto bad_fork_cleanup_security;
2019 retval = copy_files(clone_flags, p);
2020 if (retval)
2021 goto bad_fork_cleanup_semundo;
2022 retval = copy_fs(clone_flags, p);
2023 if (retval)
2024 goto bad_fork_cleanup_files;
2025 retval = copy_sighand(clone_flags, p);
2026 if (retval)
2027 goto bad_fork_cleanup_fs;
2028 retval = copy_signal(clone_flags, p);
2029 if (retval)
2030 goto bad_fork_cleanup_sighand;
2031 retval = copy_mm(clone_flags, p);
2032 if (retval)
2033 goto bad_fork_cleanup_signal;
2034 retval = copy_namespaces(clone_flags, p);
2035 if (retval)
2036 goto bad_fork_cleanup_mm;
2037 retval = copy_io(clone_flags, p);
2038 if (retval)
2039 goto bad_fork_cleanup_namespaces;
2040 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
2041 if (retval)
2042 goto bad_fork_cleanup_io;
2043
2044 stackleak_task_init(p);
2045
2046 if (pid != &init_struct_pid) {
2047 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2048 if (IS_ERR(pid)) {
2049 retval = PTR_ERR(pid);
2050 goto bad_fork_cleanup_thread;
2051 }
2052 }
2053
2054 /*
2055 * This has to happen after we've potentially unshared the file
2056 * descriptor table (so that the pidfd doesn't leak into the child
2057 * if the fd table isn't shared).
2058 */
2059 if (clone_flags & CLONE_PIDFD) {
2060 retval = pidfd_create(pid);
2061 if (retval < 0)
2062 goto bad_fork_free_pid;
2063
2064 pidfd = retval;
2065 retval = put_user(pidfd, parent_tidptr);
2066 if (retval)
2067 goto bad_fork_put_pidfd;
2068 }
2069
2070 #ifdef CONFIG_BLOCK
2071 p->plug = NULL;
2072 #endif
2073 #ifdef CONFIG_FUTEX
2074 p->robust_list = NULL;
2075 #ifdef CONFIG_COMPAT
2076 p->compat_robust_list = NULL;
2077 #endif
2078 INIT_LIST_HEAD(&p->pi_state_list);
2079 p->pi_state_cache = NULL;
2080 #endif
2081 /*
2082 * sigaltstack should be cleared when sharing the same VM
2083 */
2084 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2085 sas_ss_reset(p);
2086
2087 /*
2088 * Syscall tracing and stepping should be turned off in the
2089 * child regardless of CLONE_PTRACE.
2090 */
2091 user_disable_single_step(p);
2092 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2093 #ifdef TIF_SYSCALL_EMU
2094 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2095 #endif
2096 clear_tsk_latency_tracing(p);
2097
2098 /* ok, now we should be set up.. */
2099 p->pid = pid_nr(pid);
2100 if (clone_flags & CLONE_THREAD) {
2101 p->exit_signal = -1;
2102 p->group_leader = current->group_leader;
2103 p->tgid = current->tgid;
2104 } else {
2105 if (clone_flags & CLONE_PARENT)
2106 p->exit_signal = current->group_leader->exit_signal;
2107 else
2108 p->exit_signal = (clone_flags & CSIGNAL);
2109 p->group_leader = p;
2110 p->tgid = p->pid;
2111 }
2112
2113 p->nr_dirtied = 0;
2114 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2115 p->dirty_paused_when = 0;
2116
2117 p->pdeath_signal = 0;
2118 INIT_LIST_HEAD(&p->thread_group);
2119 p->task_works = NULL;
2120
2121 cgroup_threadgroup_change_begin(current);
2122 /*
2123 * Ensure that the cgroup subsystem policies allow the new process to be
2124 * forked. It should be noted the the new process's css_set can be changed
2125 * between here and cgroup_post_fork() if an organisation operation is in
2126 * progress.
2127 */
2128 retval = cgroup_can_fork(p);
2129 if (retval)
2130 goto bad_fork_cgroup_threadgroup_change_end;
2131
2132 /*
2133 * From this point on we must avoid any synchronous user-space
2134 * communication until we take the tasklist-lock. In particular, we do
2135 * not want user-space to be able to predict the process start-time by
2136 * stalling fork(2) after we recorded the start_time but before it is
2137 * visible to the system.
2138 */
2139
2140 p->start_time = ktime_get_ns();
2141 p->real_start_time = ktime_get_boot_ns();
2142
2143 /*
2144 * Make it visible to the rest of the system, but dont wake it up yet.
2145 * Need tasklist lock for parent etc handling!
2146 */
2147 write_lock_irq(&tasklist_lock);
2148
2149 /* CLONE_PARENT re-uses the old parent */
2150 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2151 p->real_parent = current->real_parent;
2152 p->parent_exec_id = current->parent_exec_id;
2153 } else {
2154 p->real_parent = current;
2155 p->parent_exec_id = current->self_exec_id;
2156 }
2157
2158 klp_copy_process(p);
2159
2160 spin_lock(&current->sighand->siglock);
2161
2162 /*
2163 * Copy seccomp details explicitly here, in case they were changed
2164 * before holding sighand lock.
2165 */
2166 copy_seccomp(p);
2167
2168 rseq_fork(p, clone_flags);
2169
2170 /* Don't start children in a dying pid namespace */
2171 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2172 retval = -ENOMEM;
2173 goto bad_fork_cancel_cgroup;
2174 }
2175
2176 /* Let kill terminate clone/fork in the middle */
2177 if (fatal_signal_pending(current)) {
2178 retval = -EINTR;
2179 goto bad_fork_cancel_cgroup;
2180 }
2181
2182
2183 init_task_pid_links(p);
2184 if (likely(p->pid)) {
2185 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2186
2187 init_task_pid(p, PIDTYPE_PID, pid);
2188 if (thread_group_leader(p)) {
2189 init_task_pid(p, PIDTYPE_TGID, pid);
2190 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2191 init_task_pid(p, PIDTYPE_SID, task_session(current));
2192
2193 if (is_child_reaper(pid)) {
2194 ns_of_pid(pid)->child_reaper = p;
2195 p->signal->flags |= SIGNAL_UNKILLABLE;
2196 }
2197 p->signal->shared_pending.signal = delayed.signal;
2198 p->signal->tty = tty_kref_get(current->signal->tty);
2199 /*
2200 * Inherit has_child_subreaper flag under the same
2201 * tasklist_lock with adding child to the process tree
2202 * for propagate_has_child_subreaper optimization.
2203 */
2204 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2205 p->real_parent->signal->is_child_subreaper;
2206 list_add_tail(&p->sibling, &p->real_parent->children);
2207 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2208 attach_pid(p, PIDTYPE_TGID);
2209 attach_pid(p, PIDTYPE_PGID);
2210 attach_pid(p, PIDTYPE_SID);
2211 __this_cpu_inc(process_counts);
2212 } else {
2213 current->signal->nr_threads++;
2214 atomic_inc(&current->signal->live);
2215 refcount_inc(&current->signal->sigcnt);
2216 task_join_group_stop(p);
2217 list_add_tail_rcu(&p->thread_group,
2218 &p->group_leader->thread_group);
2219 list_add_tail_rcu(&p->thread_node,
2220 &p->signal->thread_head);
2221 }
2222 attach_pid(p, PIDTYPE_PID);
2223 nr_threads++;
2224 }
2225 total_forks++;
2226 hlist_del_init(&delayed.node);
2227 spin_unlock(&current->sighand->siglock);
2228 syscall_tracepoint_update(p);
2229 write_unlock_irq(&tasklist_lock);
2230
2231 proc_fork_connector(p);
2232 cgroup_post_fork(p);
2233 cgroup_threadgroup_change_end(current);
2234 perf_event_fork(p);
2235
2236 trace_task_newtask(p, clone_flags);
2237 uprobe_copy_process(p, clone_flags);
2238
2239 return p;
2240
2241 bad_fork_cancel_cgroup:
2242 spin_unlock(&current->sighand->siglock);
2243 write_unlock_irq(&tasklist_lock);
2244 cgroup_cancel_fork(p);
2245 bad_fork_cgroup_threadgroup_change_end:
2246 cgroup_threadgroup_change_end(current);
2247 bad_fork_put_pidfd:
2248 if (clone_flags & CLONE_PIDFD)
2249 ksys_close(pidfd);
2250 bad_fork_free_pid:
2251 if (pid != &init_struct_pid)
2252 free_pid(pid);
2253 bad_fork_cleanup_thread:
2254 exit_thread(p);
2255 bad_fork_cleanup_io:
2256 if (p->io_context)
2257 exit_io_context(p);
2258 bad_fork_cleanup_namespaces:
2259 exit_task_namespaces(p);
2260 bad_fork_cleanup_mm:
2261 if (p->mm) {
2262 mm_clear_owner(p->mm, p);
2263 mmput(p->mm);
2264 }
2265 bad_fork_cleanup_signal:
2266 if (!(clone_flags & CLONE_THREAD))
2267 free_signal_struct(p->signal);
2268 bad_fork_cleanup_sighand:
2269 __cleanup_sighand(p->sighand);
2270 bad_fork_cleanup_fs:
2271 exit_fs(p); /* blocking */
2272 bad_fork_cleanup_files:
2273 exit_files(p); /* blocking */
2274 bad_fork_cleanup_semundo:
2275 exit_sem(p);
2276 bad_fork_cleanup_security:
2277 security_task_free(p);
2278 bad_fork_cleanup_audit:
2279 audit_free(p);
2280 bad_fork_cleanup_perf:
2281 perf_event_free_task(p);
2282 bad_fork_cleanup_policy:
2283 lockdep_free_task(p);
2284 #ifdef CONFIG_NUMA
2285 mpol_put(p->mempolicy);
2286 bad_fork_cleanup_threadgroup_lock:
2287 #endif
2288 delayacct_tsk_free(p);
2289 bad_fork_cleanup_count:
2290 atomic_dec(&p->cred->user->processes);
2291 exit_creds(p);
2292 bad_fork_free:
2293 p->state = TASK_DEAD;
2294 put_task_stack(p);
2295 delayed_free_task(p);
2296 fork_out:
2297 spin_lock_irq(&current->sighand->siglock);
2298 hlist_del_init(&delayed.node);
2299 spin_unlock_irq(&current->sighand->siglock);
2300 return ERR_PTR(retval);
2301 }
2302
2303 static inline void init_idle_pids(struct task_struct *idle)
2304 {
2305 enum pid_type type;
2306
2307 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2308 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2309 init_task_pid(idle, type, &init_struct_pid);
2310 }
2311 }
2312
2313 struct task_struct *fork_idle(int cpu)
2314 {
2315 struct task_struct *task;
2316 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0,
2317 cpu_to_node(cpu));
2318 if (!IS_ERR(task)) {
2319 init_idle_pids(task);
2320 init_idle(task, cpu);
2321 }
2322
2323 return task;
2324 }
2325
2326 struct mm_struct *copy_init_mm(void)
2327 {
2328 return dup_mm(NULL, &init_mm);
2329 }
2330
2331 /*
2332 * Ok, this is the main fork-routine.
2333 *
2334 * It copies the process, and if successful kick-starts
2335 * it and waits for it to finish using the VM if required.
2336 */
2337 long _do_fork(unsigned long clone_flags,
2338 unsigned long stack_start,
2339 unsigned long stack_size,
2340 int __user *parent_tidptr,
2341 int __user *child_tidptr,
2342 unsigned long tls)
2343 {
2344 struct completion vfork;
2345 struct pid *pid;
2346 struct task_struct *p;
2347 int trace = 0;
2348 long nr;
2349
2350 /*
2351 * Determine whether and which event to report to ptracer. When
2352 * called from kernel_thread or CLONE_UNTRACED is explicitly
2353 * requested, no event is reported; otherwise, report if the event
2354 * for the type of forking is enabled.
2355 */
2356 if (!(clone_flags & CLONE_UNTRACED)) {
2357 if (clone_flags & CLONE_VFORK)
2358 trace = PTRACE_EVENT_VFORK;
2359 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2360 trace = PTRACE_EVENT_CLONE;
2361 else
2362 trace = PTRACE_EVENT_FORK;
2363
2364 if (likely(!ptrace_event_enabled(current, trace)))
2365 trace = 0;
2366 }
2367
2368 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr,
2369 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2370 add_latent_entropy();
2371
2372 if (IS_ERR(p))
2373 return PTR_ERR(p);
2374
2375 /*
2376 * Do this prior waking up the new thread - the thread pointer
2377 * might get invalid after that point, if the thread exits quickly.
2378 */
2379 trace_sched_process_fork(current, p);
2380
2381 pid = get_task_pid(p, PIDTYPE_PID);
2382 nr = pid_vnr(pid);
2383
2384 if (clone_flags & CLONE_PARENT_SETTID)
2385 put_user(nr, parent_tidptr);
2386
2387 if (clone_flags & CLONE_VFORK) {
2388 p->vfork_done = &vfork;
2389 init_completion(&vfork);
2390 get_task_struct(p);
2391 }
2392
2393 wake_up_new_task(p);
2394
2395 /* forking complete and child started to run, tell ptracer */
2396 if (unlikely(trace))
2397 ptrace_event_pid(trace, pid);
2398
2399 if (clone_flags & CLONE_VFORK) {
2400 if (!wait_for_vfork_done(p, &vfork))
2401 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2402 }
2403
2404 put_pid(pid);
2405 return nr;
2406 }
2407
2408 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2409 /* For compatibility with architectures that call do_fork directly rather than
2410 * using the syscall entry points below. */
2411 long do_fork(unsigned long clone_flags,
2412 unsigned long stack_start,
2413 unsigned long stack_size,
2414 int __user *parent_tidptr,
2415 int __user *child_tidptr)
2416 {
2417 return _do_fork(clone_flags, stack_start, stack_size,
2418 parent_tidptr, child_tidptr, 0);
2419 }
2420 #endif
2421
2422 /*
2423 * Create a kernel thread.
2424 */
2425 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2426 {
2427 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2428 (unsigned long)arg, NULL, NULL, 0);
2429 }
2430
2431 #ifdef __ARCH_WANT_SYS_FORK
2432 SYSCALL_DEFINE0(fork)
2433 {
2434 #ifdef CONFIG_MMU
2435 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2436 #else
2437 /* can not support in nommu mode */
2438 return -EINVAL;
2439 #endif
2440 }
2441 #endif
2442
2443 #ifdef __ARCH_WANT_SYS_VFORK
2444 SYSCALL_DEFINE0(vfork)
2445 {
2446 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2447 0, NULL, NULL, 0);
2448 }
2449 #endif
2450
2451 #ifdef __ARCH_WANT_SYS_CLONE
2452 #ifdef CONFIG_CLONE_BACKWARDS
2453 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2454 int __user *, parent_tidptr,
2455 unsigned long, tls,
2456 int __user *, child_tidptr)
2457 #elif defined(CONFIG_CLONE_BACKWARDS2)
2458 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2459 int __user *, parent_tidptr,
2460 int __user *, child_tidptr,
2461 unsigned long, tls)
2462 #elif defined(CONFIG_CLONE_BACKWARDS3)
2463 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2464 int, stack_size,
2465 int __user *, parent_tidptr,
2466 int __user *, child_tidptr,
2467 unsigned long, tls)
2468 #else
2469 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2470 int __user *, parent_tidptr,
2471 int __user *, child_tidptr,
2472 unsigned long, tls)
2473 #endif
2474 {
2475 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2476 }
2477 #endif
2478
2479 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2480 {
2481 struct task_struct *leader, *parent, *child;
2482 int res;
2483
2484 read_lock(&tasklist_lock);
2485 leader = top = top->group_leader;
2486 down:
2487 for_each_thread(leader, parent) {
2488 list_for_each_entry(child, &parent->children, sibling) {
2489 res = visitor(child, data);
2490 if (res) {
2491 if (res < 0)
2492 goto out;
2493 leader = child;
2494 goto down;
2495 }
2496 up:
2497 ;
2498 }
2499 }
2500
2501 if (leader != top) {
2502 child = leader;
2503 parent = child->real_parent;
2504 leader = parent->group_leader;
2505 goto up;
2506 }
2507 out:
2508 read_unlock(&tasklist_lock);
2509 }
2510
2511 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2512 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2513 #endif
2514
2515 static void sighand_ctor(void *data)
2516 {
2517 struct sighand_struct *sighand = data;
2518
2519 spin_lock_init(&sighand->siglock);
2520 init_waitqueue_head(&sighand->signalfd_wqh);
2521 }
2522
2523 void __init proc_caches_init(void)
2524 {
2525 unsigned int mm_size;
2526
2527 sighand_cachep = kmem_cache_create("sighand_cache",
2528 sizeof(struct sighand_struct), 0,
2529 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2530 SLAB_ACCOUNT, sighand_ctor);
2531 signal_cachep = kmem_cache_create("signal_cache",
2532 sizeof(struct signal_struct), 0,
2533 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2534 NULL);
2535 files_cachep = kmem_cache_create("files_cache",
2536 sizeof(struct files_struct), 0,
2537 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2538 NULL);
2539 fs_cachep = kmem_cache_create("fs_cache",
2540 sizeof(struct fs_struct), 0,
2541 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2542 NULL);
2543
2544 /*
2545 * The mm_cpumask is located at the end of mm_struct, and is
2546 * dynamically sized based on the maximum CPU number this system
2547 * can have, taking hotplug into account (nr_cpu_ids).
2548 */
2549 mm_size = sizeof(struct mm_struct) + cpumask_size();
2550
2551 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2552 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2553 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2554 offsetof(struct mm_struct, saved_auxv),
2555 sizeof_field(struct mm_struct, saved_auxv),
2556 NULL);
2557 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2558 mmap_init();
2559 nsproxy_cache_init();
2560 }
2561
2562 /*
2563 * Check constraints on flags passed to the unshare system call.
2564 */
2565 static int check_unshare_flags(unsigned long unshare_flags)
2566 {
2567 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2568 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2569 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2570 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2571 return -EINVAL;
2572 /*
2573 * Not implemented, but pretend it works if there is nothing
2574 * to unshare. Note that unsharing the address space or the
2575 * signal handlers also need to unshare the signal queues (aka
2576 * CLONE_THREAD).
2577 */
2578 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2579 if (!thread_group_empty(current))
2580 return -EINVAL;
2581 }
2582 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2583 if (refcount_read(&current->sighand->count) > 1)
2584 return -EINVAL;
2585 }
2586 if (unshare_flags & CLONE_VM) {
2587 if (!current_is_single_threaded())
2588 return -EINVAL;
2589 }
2590
2591 return 0;
2592 }
2593
2594 /*
2595 * Unshare the filesystem structure if it is being shared
2596 */
2597 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2598 {
2599 struct fs_struct *fs = current->fs;
2600
2601 if (!(unshare_flags & CLONE_FS) || !fs)
2602 return 0;
2603
2604 /* don't need lock here; in the worst case we'll do useless copy */
2605 if (fs->users == 1)
2606 return 0;
2607
2608 *new_fsp = copy_fs_struct(fs);
2609 if (!*new_fsp)
2610 return -ENOMEM;
2611
2612 return 0;
2613 }
2614
2615 /*
2616 * Unshare file descriptor table if it is being shared
2617 */
2618 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2619 {
2620 struct files_struct *fd = current->files;
2621 int error = 0;
2622
2623 if ((unshare_flags & CLONE_FILES) &&
2624 (fd && atomic_read(&fd->count) > 1)) {
2625 *new_fdp = dup_fd(fd, &error);
2626 if (!*new_fdp)
2627 return error;
2628 }
2629
2630 return 0;
2631 }
2632
2633 /*
2634 * unshare allows a process to 'unshare' part of the process
2635 * context which was originally shared using clone. copy_*
2636 * functions used by do_fork() cannot be used here directly
2637 * because they modify an inactive task_struct that is being
2638 * constructed. Here we are modifying the current, active,
2639 * task_struct.
2640 */
2641 int ksys_unshare(unsigned long unshare_flags)
2642 {
2643 struct fs_struct *fs, *new_fs = NULL;
2644 struct files_struct *fd, *new_fd = NULL;
2645 struct cred *new_cred = NULL;
2646 struct nsproxy *new_nsproxy = NULL;
2647 int do_sysvsem = 0;
2648 int err;
2649
2650 /*
2651 * If unsharing a user namespace must also unshare the thread group
2652 * and unshare the filesystem root and working directories.
2653 */
2654 if (unshare_flags & CLONE_NEWUSER)
2655 unshare_flags |= CLONE_THREAD | CLONE_FS;
2656 /*
2657 * If unsharing vm, must also unshare signal handlers.
2658 */
2659 if (unshare_flags & CLONE_VM)
2660 unshare_flags |= CLONE_SIGHAND;
2661 /*
2662 * If unsharing a signal handlers, must also unshare the signal queues.
2663 */
2664 if (unshare_flags & CLONE_SIGHAND)
2665 unshare_flags |= CLONE_THREAD;
2666 /*
2667 * If unsharing namespace, must also unshare filesystem information.
2668 */
2669 if (unshare_flags & CLONE_NEWNS)
2670 unshare_flags |= CLONE_FS;
2671
2672 err = check_unshare_flags(unshare_flags);
2673 if (err)
2674 goto bad_unshare_out;
2675 /*
2676 * CLONE_NEWIPC must also detach from the undolist: after switching
2677 * to a new ipc namespace, the semaphore arrays from the old
2678 * namespace are unreachable.
2679 */
2680 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2681 do_sysvsem = 1;
2682 err = unshare_fs(unshare_flags, &new_fs);
2683 if (err)
2684 goto bad_unshare_out;
2685 err = unshare_fd(unshare_flags, &new_fd);
2686 if (err)
2687 goto bad_unshare_cleanup_fs;
2688 err = unshare_userns(unshare_flags, &new_cred);
2689 if (err)
2690 goto bad_unshare_cleanup_fd;
2691 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2692 new_cred, new_fs);
2693 if (err)
2694 goto bad_unshare_cleanup_cred;
2695
2696 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2697 if (do_sysvsem) {
2698 /*
2699 * CLONE_SYSVSEM is equivalent to sys_exit().
2700 */
2701 exit_sem(current);
2702 }
2703 if (unshare_flags & CLONE_NEWIPC) {
2704 /* Orphan segments in old ns (see sem above). */
2705 exit_shm(current);
2706 shm_init_task(current);
2707 }
2708
2709 if (new_nsproxy)
2710 switch_task_namespaces(current, new_nsproxy);
2711
2712 task_lock(current);
2713
2714 if (new_fs) {
2715 fs = current->fs;
2716 spin_lock(&fs->lock);
2717 current->fs = new_fs;
2718 if (--fs->users)
2719 new_fs = NULL;
2720 else
2721 new_fs = fs;
2722 spin_unlock(&fs->lock);
2723 }
2724
2725 if (new_fd) {
2726 fd = current->files;
2727 current->files = new_fd;
2728 new_fd = fd;
2729 }
2730
2731 task_unlock(current);
2732
2733 if (new_cred) {
2734 /* Install the new user namespace */
2735 commit_creds(new_cred);
2736 new_cred = NULL;
2737 }
2738 }
2739
2740 perf_event_namespaces(current);
2741
2742 bad_unshare_cleanup_cred:
2743 if (new_cred)
2744 put_cred(new_cred);
2745 bad_unshare_cleanup_fd:
2746 if (new_fd)
2747 put_files_struct(new_fd);
2748
2749 bad_unshare_cleanup_fs:
2750 if (new_fs)
2751 free_fs_struct(new_fs);
2752
2753 bad_unshare_out:
2754 return err;
2755 }
2756
2757 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2758 {
2759 return ksys_unshare(unshare_flags);
2760 }
2761
2762 /*
2763 * Helper to unshare the files of the current task.
2764 * We don't want to expose copy_files internals to
2765 * the exec layer of the kernel.
2766 */
2767
2768 int unshare_files(struct files_struct **displaced)
2769 {
2770 struct task_struct *task = current;
2771 struct files_struct *copy = NULL;
2772 int error;
2773
2774 error = unshare_fd(CLONE_FILES, &copy);
2775 if (error || !copy) {
2776 *displaced = NULL;
2777 return error;
2778 }
2779 *displaced = task->files;
2780 task_lock(task);
2781 task->files = copy;
2782 task_unlock(task);
2783 return 0;
2784 }
2785
2786 int sysctl_max_threads(struct ctl_table *table, int write,
2787 void __user *buffer, size_t *lenp, loff_t *ppos)
2788 {
2789 struct ctl_table t;
2790 int ret;
2791 int threads = max_threads;
2792 int min = MIN_THREADS;
2793 int max = MAX_THREADS;
2794
2795 t = *table;
2796 t.data = &threads;
2797 t.extra1 = &min;
2798 t.extra2 = &max;
2799
2800 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2801 if (ret || !write)
2802 return ret;
2803
2804 set_max_threads(threads);
2805
2806 return 0;
2807 }