]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/fork.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-kernels.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 /*
113 * Minimum number of threads to boot the kernel
114 */
115 #define MIN_THREADS 20
116
117 /*
118 * Maximum number of threads
119 */
120 #define MAX_THREADS FUTEX_TID_MASK
121
122 /*
123 * Protected counters by write_lock_irq(&tasklist_lock)
124 */
125 unsigned long total_forks; /* Handle normal Linux uptimes. */
126 int nr_threads; /* The idle threads do not count.. */
127
128 static int max_threads; /* tunable limit on nr_threads */
129
130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131
132 static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
142
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150
151 int nr_processes(void)
152 {
153 int cpu;
154 int total = 0;
155
156 for_each_possible_cpu(cpu)
157 total += per_cpu(process_counts, cpu);
158
159 return total;
160 }
161
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182 /*
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
185 */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188 #ifdef CONFIG_VMAP_STACK
189 /*
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
192 */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 int i;
200
201 for (i = 0; i < NR_CACHED_STACKS; i++) {
202 struct vm_struct *vm_stack = cached_vm_stacks[i];
203
204 if (!vm_stack)
205 continue;
206
207 vfree(vm_stack->addr);
208 cached_vm_stacks[i] = NULL;
209 }
210
211 return 0;
212 }
213 #endif
214
215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 void *stack;
219 int i;
220
221 for (i = 0; i < NR_CACHED_STACKS; i++) {
222 struct vm_struct *s;
223
224 s = this_cpu_xchg(cached_stacks[i], NULL);
225
226 if (!s)
227 continue;
228
229 /* Mark stack accessible for KASAN. */
230 kasan_unpoison_range(s->addr, THREAD_SIZE);
231
232 /* Clear stale pointers from reused stack. */
233 memset(s->addr, 0, THREAD_SIZE);
234
235 tsk->stack_vm_area = s;
236 tsk->stack = s->addr;
237 return s->addr;
238 }
239
240 /*
241 * Allocated stacks are cached and later reused by new threads,
242 * so memcg accounting is performed manually on assigning/releasing
243 * stacks to tasks. Drop __GFP_ACCOUNT.
244 */
245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 VMALLOC_START, VMALLOC_END,
247 THREADINFO_GFP & ~__GFP_ACCOUNT,
248 PAGE_KERNEL,
249 0, node, __builtin_return_address(0));
250
251 /*
252 * We can't call find_vm_area() in interrupt context, and
253 * free_thread_stack() can be called in interrupt context,
254 * so cache the vm_struct.
255 */
256 if (stack) {
257 tsk->stack_vm_area = find_vm_area(stack);
258 tsk->stack = stack;
259 }
260 return stack;
261 #else
262 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 THREAD_SIZE_ORDER);
264
265 if (likely(page)) {
266 tsk->stack = kasan_reset_tag(page_address(page));
267 return tsk->stack;
268 }
269 return NULL;
270 #endif
271 }
272
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 struct vm_struct *vm = task_stack_vm_area(tsk);
277
278 if (vm) {
279 int i;
280
281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 memcg_kmem_uncharge_page(vm->pages[i], 0);
283
284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
287 continue;
288
289 return;
290 }
291
292 vfree_atomic(tsk->stack);
293 return;
294 }
295 #endif
296
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 int node)
304 {
305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 stack = kasan_reset_tag(stack);
308 tsk->stack = stack;
309 return stack;
310 }
311
312 static void free_thread_stack(struct task_struct *tsk)
313 {
314 kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316
317 void thread_stack_cache_init(void)
318 {
319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 THREAD_SIZE, THREAD_SIZE, 0, 0,
321 THREAD_SIZE, NULL);
322 BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344
345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347 struct vm_area_struct *vma;
348
349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 if (vma)
351 vma_init(vma, mm);
352 return vma;
353 }
354
355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358
359 if (new) {
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 /*
363 * orig->shared.rb may be modified concurrently, but the clone
364 * will be reinitialized.
365 */
366 *new = data_race(*orig);
367 INIT_LIST_HEAD(&new->anon_vma_chain);
368 new->vm_next = new->vm_prev = NULL;
369 }
370 return new;
371 }
372
373 void vm_area_free(struct vm_area_struct *vma)
374 {
375 kmem_cache_free(vm_area_cachep, vma);
376 }
377
378 static void account_kernel_stack(struct task_struct *tsk, int account)
379 {
380 void *stack = task_stack_page(tsk);
381 struct vm_struct *vm = task_stack_vm_area(tsk);
382
383 if (vm) {
384 int i;
385
386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
388 account * (PAGE_SIZE / 1024));
389 } else {
390 /* All stack pages are in the same node. */
391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
392 account * (THREAD_SIZE / 1024));
393 }
394 }
395
396 static int memcg_charge_kernel_stack(struct task_struct *tsk)
397 {
398 #ifdef CONFIG_VMAP_STACK
399 struct vm_struct *vm = task_stack_vm_area(tsk);
400 int ret;
401
402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
403
404 if (vm) {
405 int i;
406
407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
408
409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
410 /*
411 * If memcg_kmem_charge_page() fails, page's
412 * memory cgroup pointer is NULL, and
413 * memcg_kmem_uncharge_page() in free_thread_stack()
414 * will ignore this page.
415 */
416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
417 0);
418 if (ret)
419 return ret;
420 }
421 }
422 #endif
423 return 0;
424 }
425
426 static void release_task_stack(struct task_struct *tsk)
427 {
428 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
429 return; /* Better to leak the stack than to free prematurely */
430
431 account_kernel_stack(tsk, -1);
432 free_thread_stack(tsk);
433 tsk->stack = NULL;
434 #ifdef CONFIG_VMAP_STACK
435 tsk->stack_vm_area = NULL;
436 #endif
437 }
438
439 #ifdef CONFIG_THREAD_INFO_IN_TASK
440 void put_task_stack(struct task_struct *tsk)
441 {
442 if (refcount_dec_and_test(&tsk->stack_refcount))
443 release_task_stack(tsk);
444 }
445 #endif
446
447 void free_task(struct task_struct *tsk)
448 {
449 scs_release(tsk);
450
451 #ifndef CONFIG_THREAD_INFO_IN_TASK
452 /*
453 * The task is finally done with both the stack and thread_info,
454 * so free both.
455 */
456 release_task_stack(tsk);
457 #else
458 /*
459 * If the task had a separate stack allocation, it should be gone
460 * by now.
461 */
462 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
463 #endif
464 rt_mutex_debug_task_free(tsk);
465 ftrace_graph_exit_task(tsk);
466 arch_release_task_struct(tsk);
467 if (tsk->flags & PF_KTHREAD)
468 free_kthread_struct(tsk);
469 free_task_struct(tsk);
470 }
471 EXPORT_SYMBOL(free_task);
472
473 #ifdef CONFIG_MMU
474 static __latent_entropy int dup_mmap(struct mm_struct *mm,
475 struct mm_struct *oldmm)
476 {
477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
478 struct rb_node **rb_link, *rb_parent;
479 int retval;
480 unsigned long charge;
481 LIST_HEAD(uf);
482
483 uprobe_start_dup_mmap();
484 if (mmap_write_lock_killable(oldmm)) {
485 retval = -EINTR;
486 goto fail_uprobe_end;
487 }
488 flush_cache_dup_mm(oldmm);
489 uprobe_dup_mmap(oldmm, mm);
490 /*
491 * Not linked in yet - no deadlock potential:
492 */
493 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
494
495 /* No ordering required: file already has been exposed. */
496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
497
498 mm->total_vm = oldmm->total_vm;
499 mm->data_vm = oldmm->data_vm;
500 mm->exec_vm = oldmm->exec_vm;
501 mm->stack_vm = oldmm->stack_vm;
502
503 rb_link = &mm->mm_rb.rb_node;
504 rb_parent = NULL;
505 pprev = &mm->mmap;
506 retval = ksm_fork(mm, oldmm);
507 if (retval)
508 goto out;
509 retval = khugepaged_fork(mm, oldmm);
510 if (retval)
511 goto out;
512
513 prev = NULL;
514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
515 struct file *file;
516
517 if (mpnt->vm_flags & VM_DONTCOPY) {
518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
519 continue;
520 }
521 charge = 0;
522 /*
523 * Don't duplicate many vmas if we've been oom-killed (for
524 * example)
525 */
526 if (fatal_signal_pending(current)) {
527 retval = -EINTR;
528 goto out;
529 }
530 if (mpnt->vm_flags & VM_ACCOUNT) {
531 unsigned long len = vma_pages(mpnt);
532
533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
534 goto fail_nomem;
535 charge = len;
536 }
537 tmp = vm_area_dup(mpnt);
538 if (!tmp)
539 goto fail_nomem;
540 retval = vma_dup_policy(mpnt, tmp);
541 if (retval)
542 goto fail_nomem_policy;
543 tmp->vm_mm = mm;
544 retval = dup_userfaultfd(tmp, &uf);
545 if (retval)
546 goto fail_nomem_anon_vma_fork;
547 if (tmp->vm_flags & VM_WIPEONFORK) {
548 /*
549 * VM_WIPEONFORK gets a clean slate in the child.
550 * Don't prepare anon_vma until fault since we don't
551 * copy page for current vma.
552 */
553 tmp->anon_vma = NULL;
554 } else if (anon_vma_fork(tmp, mpnt))
555 goto fail_nomem_anon_vma_fork;
556 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
557 file = tmp->vm_file;
558 if (file) {
559 struct inode *inode = file_inode(file);
560 struct address_space *mapping = file->f_mapping;
561
562 get_file(file);
563 if (tmp->vm_flags & VM_DENYWRITE)
564 put_write_access(inode);
565 i_mmap_lock_write(mapping);
566 if (tmp->vm_flags & VM_SHARED)
567 mapping_allow_writable(mapping);
568 flush_dcache_mmap_lock(mapping);
569 /* insert tmp into the share list, just after mpnt */
570 vma_interval_tree_insert_after(tmp, mpnt,
571 &mapping->i_mmap);
572 flush_dcache_mmap_unlock(mapping);
573 i_mmap_unlock_write(mapping);
574 }
575
576 /*
577 * Clear hugetlb-related page reserves for children. This only
578 * affects MAP_PRIVATE mappings. Faults generated by the child
579 * are not guaranteed to succeed, even if read-only
580 */
581 if (is_vm_hugetlb_page(tmp))
582 reset_vma_resv_huge_pages(tmp);
583
584 /*
585 * Link in the new vma and copy the page table entries.
586 */
587 *pprev = tmp;
588 pprev = &tmp->vm_next;
589 tmp->vm_prev = prev;
590 prev = tmp;
591
592 __vma_link_rb(mm, tmp, rb_link, rb_parent);
593 rb_link = &tmp->vm_rb.rb_right;
594 rb_parent = &tmp->vm_rb;
595
596 mm->map_count++;
597 if (!(tmp->vm_flags & VM_WIPEONFORK))
598 retval = copy_page_range(tmp, mpnt);
599
600 if (tmp->vm_ops && tmp->vm_ops->open)
601 tmp->vm_ops->open(tmp);
602
603 if (retval)
604 goto out;
605 }
606 /* a new mm has just been created */
607 retval = arch_dup_mmap(oldmm, mm);
608 out:
609 mmap_write_unlock(mm);
610 flush_tlb_mm(oldmm);
611 mmap_write_unlock(oldmm);
612 dup_userfaultfd_complete(&uf);
613 fail_uprobe_end:
614 uprobe_end_dup_mmap();
615 return retval;
616 fail_nomem_anon_vma_fork:
617 mpol_put(vma_policy(tmp));
618 fail_nomem_policy:
619 vm_area_free(tmp);
620 fail_nomem:
621 retval = -ENOMEM;
622 vm_unacct_memory(charge);
623 goto out;
624 }
625
626 static inline int mm_alloc_pgd(struct mm_struct *mm)
627 {
628 mm->pgd = pgd_alloc(mm);
629 if (unlikely(!mm->pgd))
630 return -ENOMEM;
631 return 0;
632 }
633
634 static inline void mm_free_pgd(struct mm_struct *mm)
635 {
636 pgd_free(mm, mm->pgd);
637 }
638 #else
639 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
640 {
641 mmap_write_lock(oldmm);
642 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
643 mmap_write_unlock(oldmm);
644 return 0;
645 }
646 #define mm_alloc_pgd(mm) (0)
647 #define mm_free_pgd(mm)
648 #endif /* CONFIG_MMU */
649
650 static void check_mm(struct mm_struct *mm)
651 {
652 int i;
653
654 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
655 "Please make sure 'struct resident_page_types[]' is updated as well");
656
657 for (i = 0; i < NR_MM_COUNTERS; i++) {
658 long x = atomic_long_read(&mm->rss_stat.count[i]);
659
660 if (unlikely(x))
661 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
662 mm, resident_page_types[i], x);
663 }
664
665 if (mm_pgtables_bytes(mm))
666 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
667 mm_pgtables_bytes(mm));
668
669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
671 #endif
672 }
673
674 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
675 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
676
677 /*
678 * Called when the last reference to the mm
679 * is dropped: either by a lazy thread or by
680 * mmput. Free the page directory and the mm.
681 */
682 void __mmdrop(struct mm_struct *mm)
683 {
684 BUG_ON(mm == &init_mm);
685 WARN_ON_ONCE(mm == current->mm);
686 WARN_ON_ONCE(mm == current->active_mm);
687 mm_free_pgd(mm);
688 destroy_context(mm);
689 mmu_notifier_subscriptions_destroy(mm);
690 check_mm(mm);
691 put_user_ns(mm->user_ns);
692 free_mm(mm);
693 }
694 EXPORT_SYMBOL_GPL(__mmdrop);
695
696 static void mmdrop_async_fn(struct work_struct *work)
697 {
698 struct mm_struct *mm;
699
700 mm = container_of(work, struct mm_struct, async_put_work);
701 __mmdrop(mm);
702 }
703
704 static void mmdrop_async(struct mm_struct *mm)
705 {
706 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
707 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
708 schedule_work(&mm->async_put_work);
709 }
710 }
711
712 static inline void free_signal_struct(struct signal_struct *sig)
713 {
714 taskstats_tgid_free(sig);
715 sched_autogroup_exit(sig);
716 /*
717 * __mmdrop is not safe to call from softirq context on x86 due to
718 * pgd_dtor so postpone it to the async context
719 */
720 if (sig->oom_mm)
721 mmdrop_async(sig->oom_mm);
722 kmem_cache_free(signal_cachep, sig);
723 }
724
725 static inline void put_signal_struct(struct signal_struct *sig)
726 {
727 if (refcount_dec_and_test(&sig->sigcnt))
728 free_signal_struct(sig);
729 }
730
731 void __put_task_struct(struct task_struct *tsk)
732 {
733 WARN_ON(!tsk->exit_state);
734 WARN_ON(refcount_read(&tsk->usage));
735 WARN_ON(tsk == current);
736
737 io_uring_free(tsk);
738 cgroup_free(tsk);
739 task_numa_free(tsk, true);
740 security_task_free(tsk);
741 bpf_task_storage_free(tsk);
742 exit_creds(tsk);
743 delayacct_tsk_free(tsk);
744 put_signal_struct(tsk->signal);
745 sched_core_free(tsk);
746
747 if (!profile_handoff_task(tsk))
748 free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751
752 void __init __weak arch_task_cache_init(void) { }
753
754 /*
755 * set_max_threads
756 */
757 static void set_max_threads(unsigned int max_threads_suggested)
758 {
759 u64 threads;
760 unsigned long nr_pages = totalram_pages();
761
762 /*
763 * The number of threads shall be limited such that the thread
764 * structures may only consume a small part of the available memory.
765 */
766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 threads = MAX_THREADS;
768 else
769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 (u64) THREAD_SIZE * 8UL);
771
772 if (threads > max_threads_suggested)
773 threads = max_threads_suggested;
774
775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776 }
777
778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779 /* Initialized by the architecture: */
780 int arch_task_struct_size __read_mostly;
781 #endif
782
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 {
786 /* Fetch thread_struct whitelist for the architecture. */
787 arch_thread_struct_whitelist(offset, size);
788
789 /*
790 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 * adjust offset to position of thread_struct in task_struct.
792 */
793 if (unlikely(*size == 0))
794 *offset = 0;
795 else
796 *offset += offsetof(struct task_struct, thread);
797 }
798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799
800 void __init fork_init(void)
801 {
802 int i;
803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804 #ifndef ARCH_MIN_TASKALIGN
805 #define ARCH_MIN_TASKALIGN 0
806 #endif
807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 unsigned long useroffset, usersize;
809
810 /* create a slab on which task_structs can be allocated */
811 task_struct_whitelist(&useroffset, &usersize);
812 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 arch_task_struct_size, align,
814 SLAB_PANIC|SLAB_ACCOUNT,
815 useroffset, usersize, NULL);
816 #endif
817
818 /* do the arch specific task caches init */
819 arch_task_cache_init();
820
821 set_max_threads(MAX_THREADS);
822
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 init_task.signal->rlim[RLIMIT_NPROC];
827
828 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
829 init_user_ns.ucount_max[i] = max_threads/2;
830
831 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, task_rlimit(&init_task, RLIMIT_NPROC));
832 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, task_rlimit(&init_task, RLIMIT_MSGQUEUE));
833 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, task_rlimit(&init_task, RLIMIT_SIGPENDING));
834 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, task_rlimit(&init_task, RLIMIT_MEMLOCK));
835
836 #ifdef CONFIG_VMAP_STACK
837 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
838 NULL, free_vm_stack_cache);
839 #endif
840
841 scs_init();
842
843 lockdep_init_task(&init_task);
844 uprobes_init();
845 }
846
847 int __weak arch_dup_task_struct(struct task_struct *dst,
848 struct task_struct *src)
849 {
850 *dst = *src;
851 return 0;
852 }
853
854 void set_task_stack_end_magic(struct task_struct *tsk)
855 {
856 unsigned long *stackend;
857
858 stackend = end_of_stack(tsk);
859 *stackend = STACK_END_MAGIC; /* for overflow detection */
860 }
861
862 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
863 {
864 struct task_struct *tsk;
865 unsigned long *stack;
866 struct vm_struct *stack_vm_area __maybe_unused;
867 int err;
868
869 if (node == NUMA_NO_NODE)
870 node = tsk_fork_get_node(orig);
871 tsk = alloc_task_struct_node(node);
872 if (!tsk)
873 return NULL;
874
875 stack = alloc_thread_stack_node(tsk, node);
876 if (!stack)
877 goto free_tsk;
878
879 if (memcg_charge_kernel_stack(tsk))
880 goto free_stack;
881
882 stack_vm_area = task_stack_vm_area(tsk);
883
884 err = arch_dup_task_struct(tsk, orig);
885
886 /*
887 * arch_dup_task_struct() clobbers the stack-related fields. Make
888 * sure they're properly initialized before using any stack-related
889 * functions again.
890 */
891 tsk->stack = stack;
892 #ifdef CONFIG_VMAP_STACK
893 tsk->stack_vm_area = stack_vm_area;
894 #endif
895 #ifdef CONFIG_THREAD_INFO_IN_TASK
896 refcount_set(&tsk->stack_refcount, 1);
897 #endif
898
899 if (err)
900 goto free_stack;
901
902 err = scs_prepare(tsk, node);
903 if (err)
904 goto free_stack;
905
906 #ifdef CONFIG_SECCOMP
907 /*
908 * We must handle setting up seccomp filters once we're under
909 * the sighand lock in case orig has changed between now and
910 * then. Until then, filter must be NULL to avoid messing up
911 * the usage counts on the error path calling free_task.
912 */
913 tsk->seccomp.filter = NULL;
914 #endif
915
916 setup_thread_stack(tsk, orig);
917 clear_user_return_notifier(tsk);
918 clear_tsk_need_resched(tsk);
919 set_task_stack_end_magic(tsk);
920 clear_syscall_work_syscall_user_dispatch(tsk);
921
922 #ifdef CONFIG_STACKPROTECTOR
923 tsk->stack_canary = get_random_canary();
924 #endif
925 if (orig->cpus_ptr == &orig->cpus_mask)
926 tsk->cpus_ptr = &tsk->cpus_mask;
927
928 /*
929 * One for the user space visible state that goes away when reaped.
930 * One for the scheduler.
931 */
932 refcount_set(&tsk->rcu_users, 2);
933 /* One for the rcu users */
934 refcount_set(&tsk->usage, 1);
935 #ifdef CONFIG_BLK_DEV_IO_TRACE
936 tsk->btrace_seq = 0;
937 #endif
938 tsk->splice_pipe = NULL;
939 tsk->task_frag.page = NULL;
940 tsk->wake_q.next = NULL;
941 tsk->pf_io_worker = NULL;
942
943 account_kernel_stack(tsk, 1);
944
945 kcov_task_init(tsk);
946 kmap_local_fork(tsk);
947
948 #ifdef CONFIG_FAULT_INJECTION
949 tsk->fail_nth = 0;
950 #endif
951
952 #ifdef CONFIG_BLK_CGROUP
953 tsk->throttle_queue = NULL;
954 tsk->use_memdelay = 0;
955 #endif
956
957 #ifdef CONFIG_MEMCG
958 tsk->active_memcg = NULL;
959 #endif
960 return tsk;
961
962 free_stack:
963 free_thread_stack(tsk);
964 free_tsk:
965 free_task_struct(tsk);
966 return NULL;
967 }
968
969 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
970
971 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
972
973 static int __init coredump_filter_setup(char *s)
974 {
975 default_dump_filter =
976 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
977 MMF_DUMP_FILTER_MASK;
978 return 1;
979 }
980
981 __setup("coredump_filter=", coredump_filter_setup);
982
983 #include <linux/init_task.h>
984
985 static void mm_init_aio(struct mm_struct *mm)
986 {
987 #ifdef CONFIG_AIO
988 spin_lock_init(&mm->ioctx_lock);
989 mm->ioctx_table = NULL;
990 #endif
991 }
992
993 static __always_inline void mm_clear_owner(struct mm_struct *mm,
994 struct task_struct *p)
995 {
996 #ifdef CONFIG_MEMCG
997 if (mm->owner == p)
998 WRITE_ONCE(mm->owner, NULL);
999 #endif
1000 }
1001
1002 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1003 {
1004 #ifdef CONFIG_MEMCG
1005 mm->owner = p;
1006 #endif
1007 }
1008
1009 static void mm_init_pasid(struct mm_struct *mm)
1010 {
1011 #ifdef CONFIG_IOMMU_SUPPORT
1012 mm->pasid = INIT_PASID;
1013 #endif
1014 }
1015
1016 static void mm_init_uprobes_state(struct mm_struct *mm)
1017 {
1018 #ifdef CONFIG_UPROBES
1019 mm->uprobes_state.xol_area = NULL;
1020 #endif
1021 }
1022
1023 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1024 struct user_namespace *user_ns)
1025 {
1026 mm->mmap = NULL;
1027 mm->mm_rb = RB_ROOT;
1028 mm->vmacache_seqnum = 0;
1029 atomic_set(&mm->mm_users, 1);
1030 atomic_set(&mm->mm_count, 1);
1031 seqcount_init(&mm->write_protect_seq);
1032 mmap_init_lock(mm);
1033 INIT_LIST_HEAD(&mm->mmlist);
1034 mm->core_state = NULL;
1035 mm_pgtables_bytes_init(mm);
1036 mm->map_count = 0;
1037 mm->locked_vm = 0;
1038 atomic64_set(&mm->pinned_vm, 0);
1039 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1040 spin_lock_init(&mm->page_table_lock);
1041 spin_lock_init(&mm->arg_lock);
1042 mm_init_cpumask(mm);
1043 mm_init_aio(mm);
1044 mm_init_owner(mm, p);
1045 mm_init_pasid(mm);
1046 RCU_INIT_POINTER(mm->exe_file, NULL);
1047 mmu_notifier_subscriptions_init(mm);
1048 init_tlb_flush_pending(mm);
1049 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1050 mm->pmd_huge_pte = NULL;
1051 #endif
1052 mm_init_uprobes_state(mm);
1053
1054 if (current->mm) {
1055 mm->flags = current->mm->flags & MMF_INIT_MASK;
1056 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1057 } else {
1058 mm->flags = default_dump_filter;
1059 mm->def_flags = 0;
1060 }
1061
1062 if (mm_alloc_pgd(mm))
1063 goto fail_nopgd;
1064
1065 if (init_new_context(p, mm))
1066 goto fail_nocontext;
1067
1068 mm->user_ns = get_user_ns(user_ns);
1069 return mm;
1070
1071 fail_nocontext:
1072 mm_free_pgd(mm);
1073 fail_nopgd:
1074 free_mm(mm);
1075 return NULL;
1076 }
1077
1078 /*
1079 * Allocate and initialize an mm_struct.
1080 */
1081 struct mm_struct *mm_alloc(void)
1082 {
1083 struct mm_struct *mm;
1084
1085 mm = allocate_mm();
1086 if (!mm)
1087 return NULL;
1088
1089 memset(mm, 0, sizeof(*mm));
1090 return mm_init(mm, current, current_user_ns());
1091 }
1092
1093 static inline void __mmput(struct mm_struct *mm)
1094 {
1095 VM_BUG_ON(atomic_read(&mm->mm_users));
1096
1097 uprobe_clear_state(mm);
1098 exit_aio(mm);
1099 ksm_exit(mm);
1100 khugepaged_exit(mm); /* must run before exit_mmap */
1101 exit_mmap(mm);
1102 mm_put_huge_zero_page(mm);
1103 set_mm_exe_file(mm, NULL);
1104 if (!list_empty(&mm->mmlist)) {
1105 spin_lock(&mmlist_lock);
1106 list_del(&mm->mmlist);
1107 spin_unlock(&mmlist_lock);
1108 }
1109 if (mm->binfmt)
1110 module_put(mm->binfmt->module);
1111 mmdrop(mm);
1112 }
1113
1114 /*
1115 * Decrement the use count and release all resources for an mm.
1116 */
1117 void mmput(struct mm_struct *mm)
1118 {
1119 might_sleep();
1120
1121 if (atomic_dec_and_test(&mm->mm_users))
1122 __mmput(mm);
1123 }
1124 EXPORT_SYMBOL_GPL(mmput);
1125
1126 #ifdef CONFIG_MMU
1127 static void mmput_async_fn(struct work_struct *work)
1128 {
1129 struct mm_struct *mm = container_of(work, struct mm_struct,
1130 async_put_work);
1131
1132 __mmput(mm);
1133 }
1134
1135 void mmput_async(struct mm_struct *mm)
1136 {
1137 if (atomic_dec_and_test(&mm->mm_users)) {
1138 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1139 schedule_work(&mm->async_put_work);
1140 }
1141 }
1142 #endif
1143
1144 /**
1145 * set_mm_exe_file - change a reference to the mm's executable file
1146 *
1147 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1148 *
1149 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1150 * invocations: in mmput() nobody alive left, in execve task is single
1151 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1152 * mm->exe_file, but does so without using set_mm_exe_file() in order
1153 * to avoid the need for any locks.
1154 */
1155 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1156 {
1157 struct file *old_exe_file;
1158
1159 /*
1160 * It is safe to dereference the exe_file without RCU as
1161 * this function is only called if nobody else can access
1162 * this mm -- see comment above for justification.
1163 */
1164 old_exe_file = rcu_dereference_raw(mm->exe_file);
1165
1166 if (new_exe_file)
1167 get_file(new_exe_file);
1168 rcu_assign_pointer(mm->exe_file, new_exe_file);
1169 if (old_exe_file)
1170 fput(old_exe_file);
1171 }
1172
1173 /**
1174 * get_mm_exe_file - acquire a reference to the mm's executable file
1175 *
1176 * Returns %NULL if mm has no associated executable file.
1177 * User must release file via fput().
1178 */
1179 struct file *get_mm_exe_file(struct mm_struct *mm)
1180 {
1181 struct file *exe_file;
1182
1183 rcu_read_lock();
1184 exe_file = rcu_dereference(mm->exe_file);
1185 if (exe_file && !get_file_rcu(exe_file))
1186 exe_file = NULL;
1187 rcu_read_unlock();
1188 return exe_file;
1189 }
1190 EXPORT_SYMBOL(get_mm_exe_file);
1191
1192 /**
1193 * get_task_exe_file - acquire a reference to the task's executable file
1194 *
1195 * Returns %NULL if task's mm (if any) has no associated executable file or
1196 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1197 * User must release file via fput().
1198 */
1199 struct file *get_task_exe_file(struct task_struct *task)
1200 {
1201 struct file *exe_file = NULL;
1202 struct mm_struct *mm;
1203
1204 task_lock(task);
1205 mm = task->mm;
1206 if (mm) {
1207 if (!(task->flags & PF_KTHREAD))
1208 exe_file = get_mm_exe_file(mm);
1209 }
1210 task_unlock(task);
1211 return exe_file;
1212 }
1213 EXPORT_SYMBOL(get_task_exe_file);
1214
1215 /**
1216 * get_task_mm - acquire a reference to the task's mm
1217 *
1218 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1219 * this kernel workthread has transiently adopted a user mm with use_mm,
1220 * to do its AIO) is not set and if so returns a reference to it, after
1221 * bumping up the use count. User must release the mm via mmput()
1222 * after use. Typically used by /proc and ptrace.
1223 */
1224 struct mm_struct *get_task_mm(struct task_struct *task)
1225 {
1226 struct mm_struct *mm;
1227
1228 task_lock(task);
1229 mm = task->mm;
1230 if (mm) {
1231 if (task->flags & PF_KTHREAD)
1232 mm = NULL;
1233 else
1234 mmget(mm);
1235 }
1236 task_unlock(task);
1237 return mm;
1238 }
1239 EXPORT_SYMBOL_GPL(get_task_mm);
1240
1241 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1242 {
1243 struct mm_struct *mm;
1244 int err;
1245
1246 err = down_read_killable(&task->signal->exec_update_lock);
1247 if (err)
1248 return ERR_PTR(err);
1249
1250 mm = get_task_mm(task);
1251 if (mm && mm != current->mm &&
1252 !ptrace_may_access(task, mode)) {
1253 mmput(mm);
1254 mm = ERR_PTR(-EACCES);
1255 }
1256 up_read(&task->signal->exec_update_lock);
1257
1258 return mm;
1259 }
1260
1261 static void complete_vfork_done(struct task_struct *tsk)
1262 {
1263 struct completion *vfork;
1264
1265 task_lock(tsk);
1266 vfork = tsk->vfork_done;
1267 if (likely(vfork)) {
1268 tsk->vfork_done = NULL;
1269 complete(vfork);
1270 }
1271 task_unlock(tsk);
1272 }
1273
1274 static int wait_for_vfork_done(struct task_struct *child,
1275 struct completion *vfork)
1276 {
1277 int killed;
1278
1279 freezer_do_not_count();
1280 cgroup_enter_frozen();
1281 killed = wait_for_completion_killable(vfork);
1282 cgroup_leave_frozen(false);
1283 freezer_count();
1284
1285 if (killed) {
1286 task_lock(child);
1287 child->vfork_done = NULL;
1288 task_unlock(child);
1289 }
1290
1291 put_task_struct(child);
1292 return killed;
1293 }
1294
1295 /* Please note the differences between mmput and mm_release.
1296 * mmput is called whenever we stop holding onto a mm_struct,
1297 * error success whatever.
1298 *
1299 * mm_release is called after a mm_struct has been removed
1300 * from the current process.
1301 *
1302 * This difference is important for error handling, when we
1303 * only half set up a mm_struct for a new process and need to restore
1304 * the old one. Because we mmput the new mm_struct before
1305 * restoring the old one. . .
1306 * Eric Biederman 10 January 1998
1307 */
1308 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1309 {
1310 uprobe_free_utask(tsk);
1311
1312 /* Get rid of any cached register state */
1313 deactivate_mm(tsk, mm);
1314
1315 /*
1316 * Signal userspace if we're not exiting with a core dump
1317 * because we want to leave the value intact for debugging
1318 * purposes.
1319 */
1320 if (tsk->clear_child_tid) {
1321 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1322 atomic_read(&mm->mm_users) > 1) {
1323 /*
1324 * We don't check the error code - if userspace has
1325 * not set up a proper pointer then tough luck.
1326 */
1327 put_user(0, tsk->clear_child_tid);
1328 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1329 1, NULL, NULL, 0, 0);
1330 }
1331 tsk->clear_child_tid = NULL;
1332 }
1333
1334 /*
1335 * All done, finally we can wake up parent and return this mm to him.
1336 * Also kthread_stop() uses this completion for synchronization.
1337 */
1338 if (tsk->vfork_done)
1339 complete_vfork_done(tsk);
1340 }
1341
1342 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1343 {
1344 futex_exit_release(tsk);
1345 mm_release(tsk, mm);
1346 }
1347
1348 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1349 {
1350 futex_exec_release(tsk);
1351 mm_release(tsk, mm);
1352 }
1353
1354 /**
1355 * dup_mm() - duplicates an existing mm structure
1356 * @tsk: the task_struct with which the new mm will be associated.
1357 * @oldmm: the mm to duplicate.
1358 *
1359 * Allocates a new mm structure and duplicates the provided @oldmm structure
1360 * content into it.
1361 *
1362 * Return: the duplicated mm or NULL on failure.
1363 */
1364 static struct mm_struct *dup_mm(struct task_struct *tsk,
1365 struct mm_struct *oldmm)
1366 {
1367 struct mm_struct *mm;
1368 int err;
1369
1370 mm = allocate_mm();
1371 if (!mm)
1372 goto fail_nomem;
1373
1374 memcpy(mm, oldmm, sizeof(*mm));
1375
1376 if (!mm_init(mm, tsk, mm->user_ns))
1377 goto fail_nomem;
1378
1379 err = dup_mmap(mm, oldmm);
1380 if (err)
1381 goto free_pt;
1382
1383 mm->hiwater_rss = get_mm_rss(mm);
1384 mm->hiwater_vm = mm->total_vm;
1385
1386 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1387 goto free_pt;
1388
1389 return mm;
1390
1391 free_pt:
1392 /* don't put binfmt in mmput, we haven't got module yet */
1393 mm->binfmt = NULL;
1394 mm_init_owner(mm, NULL);
1395 mmput(mm);
1396
1397 fail_nomem:
1398 return NULL;
1399 }
1400
1401 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1402 {
1403 struct mm_struct *mm, *oldmm;
1404
1405 tsk->min_flt = tsk->maj_flt = 0;
1406 tsk->nvcsw = tsk->nivcsw = 0;
1407 #ifdef CONFIG_DETECT_HUNG_TASK
1408 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1409 tsk->last_switch_time = 0;
1410 #endif
1411
1412 tsk->mm = NULL;
1413 tsk->active_mm = NULL;
1414
1415 /*
1416 * Are we cloning a kernel thread?
1417 *
1418 * We need to steal a active VM for that..
1419 */
1420 oldmm = current->mm;
1421 if (!oldmm)
1422 return 0;
1423
1424 /* initialize the new vmacache entries */
1425 vmacache_flush(tsk);
1426
1427 if (clone_flags & CLONE_VM) {
1428 mmget(oldmm);
1429 mm = oldmm;
1430 } else {
1431 mm = dup_mm(tsk, current->mm);
1432 if (!mm)
1433 return -ENOMEM;
1434 }
1435
1436 tsk->mm = mm;
1437 tsk->active_mm = mm;
1438 return 0;
1439 }
1440
1441 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1442 {
1443 struct fs_struct *fs = current->fs;
1444 if (clone_flags & CLONE_FS) {
1445 /* tsk->fs is already what we want */
1446 spin_lock(&fs->lock);
1447 if (fs->in_exec) {
1448 spin_unlock(&fs->lock);
1449 return -EAGAIN;
1450 }
1451 fs->users++;
1452 spin_unlock(&fs->lock);
1453 return 0;
1454 }
1455 tsk->fs = copy_fs_struct(fs);
1456 if (!tsk->fs)
1457 return -ENOMEM;
1458 return 0;
1459 }
1460
1461 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1462 {
1463 struct files_struct *oldf, *newf;
1464 int error = 0;
1465
1466 /*
1467 * A background process may not have any files ...
1468 */
1469 oldf = current->files;
1470 if (!oldf)
1471 goto out;
1472
1473 if (clone_flags & CLONE_FILES) {
1474 atomic_inc(&oldf->count);
1475 goto out;
1476 }
1477
1478 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1479 if (!newf)
1480 goto out;
1481
1482 tsk->files = newf;
1483 error = 0;
1484 out:
1485 return error;
1486 }
1487
1488 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1489 {
1490 #ifdef CONFIG_BLOCK
1491 struct io_context *ioc = current->io_context;
1492 struct io_context *new_ioc;
1493
1494 if (!ioc)
1495 return 0;
1496 /*
1497 * Share io context with parent, if CLONE_IO is set
1498 */
1499 if (clone_flags & CLONE_IO) {
1500 ioc_task_link(ioc);
1501 tsk->io_context = ioc;
1502 } else if (ioprio_valid(ioc->ioprio)) {
1503 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1504 if (unlikely(!new_ioc))
1505 return -ENOMEM;
1506
1507 new_ioc->ioprio = ioc->ioprio;
1508 put_io_context(new_ioc);
1509 }
1510 #endif
1511 return 0;
1512 }
1513
1514 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1515 {
1516 struct sighand_struct *sig;
1517
1518 if (clone_flags & CLONE_SIGHAND) {
1519 refcount_inc(&current->sighand->count);
1520 return 0;
1521 }
1522 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1523 RCU_INIT_POINTER(tsk->sighand, sig);
1524 if (!sig)
1525 return -ENOMEM;
1526
1527 refcount_set(&sig->count, 1);
1528 spin_lock_irq(&current->sighand->siglock);
1529 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1530 spin_unlock_irq(&current->sighand->siglock);
1531
1532 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1533 if (clone_flags & CLONE_CLEAR_SIGHAND)
1534 flush_signal_handlers(tsk, 0);
1535
1536 return 0;
1537 }
1538
1539 void __cleanup_sighand(struct sighand_struct *sighand)
1540 {
1541 if (refcount_dec_and_test(&sighand->count)) {
1542 signalfd_cleanup(sighand);
1543 /*
1544 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1545 * without an RCU grace period, see __lock_task_sighand().
1546 */
1547 kmem_cache_free(sighand_cachep, sighand);
1548 }
1549 }
1550
1551 /*
1552 * Initialize POSIX timer handling for a thread group.
1553 */
1554 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1555 {
1556 struct posix_cputimers *pct = &sig->posix_cputimers;
1557 unsigned long cpu_limit;
1558
1559 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1560 posix_cputimers_group_init(pct, cpu_limit);
1561 }
1562
1563 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1564 {
1565 struct signal_struct *sig;
1566
1567 if (clone_flags & CLONE_THREAD)
1568 return 0;
1569
1570 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1571 tsk->signal = sig;
1572 if (!sig)
1573 return -ENOMEM;
1574
1575 sig->nr_threads = 1;
1576 atomic_set(&sig->live, 1);
1577 refcount_set(&sig->sigcnt, 1);
1578
1579 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1580 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1581 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1582
1583 init_waitqueue_head(&sig->wait_chldexit);
1584 sig->curr_target = tsk;
1585 init_sigpending(&sig->shared_pending);
1586 INIT_HLIST_HEAD(&sig->multiprocess);
1587 seqlock_init(&sig->stats_lock);
1588 prev_cputime_init(&sig->prev_cputime);
1589
1590 #ifdef CONFIG_POSIX_TIMERS
1591 INIT_LIST_HEAD(&sig->posix_timers);
1592 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1593 sig->real_timer.function = it_real_fn;
1594 #endif
1595
1596 task_lock(current->group_leader);
1597 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1598 task_unlock(current->group_leader);
1599
1600 posix_cpu_timers_init_group(sig);
1601
1602 tty_audit_fork(sig);
1603 sched_autogroup_fork(sig);
1604
1605 sig->oom_score_adj = current->signal->oom_score_adj;
1606 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1607
1608 mutex_init(&sig->cred_guard_mutex);
1609 init_rwsem(&sig->exec_update_lock);
1610
1611 return 0;
1612 }
1613
1614 static void copy_seccomp(struct task_struct *p)
1615 {
1616 #ifdef CONFIG_SECCOMP
1617 /*
1618 * Must be called with sighand->lock held, which is common to
1619 * all threads in the group. Holding cred_guard_mutex is not
1620 * needed because this new task is not yet running and cannot
1621 * be racing exec.
1622 */
1623 assert_spin_locked(&current->sighand->siglock);
1624
1625 /* Ref-count the new filter user, and assign it. */
1626 get_seccomp_filter(current);
1627 p->seccomp = current->seccomp;
1628
1629 /*
1630 * Explicitly enable no_new_privs here in case it got set
1631 * between the task_struct being duplicated and holding the
1632 * sighand lock. The seccomp state and nnp must be in sync.
1633 */
1634 if (task_no_new_privs(current))
1635 task_set_no_new_privs(p);
1636
1637 /*
1638 * If the parent gained a seccomp mode after copying thread
1639 * flags and between before we held the sighand lock, we have
1640 * to manually enable the seccomp thread flag here.
1641 */
1642 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1643 set_task_syscall_work(p, SECCOMP);
1644 #endif
1645 }
1646
1647 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1648 {
1649 current->clear_child_tid = tidptr;
1650
1651 return task_pid_vnr(current);
1652 }
1653
1654 static void rt_mutex_init_task(struct task_struct *p)
1655 {
1656 raw_spin_lock_init(&p->pi_lock);
1657 #ifdef CONFIG_RT_MUTEXES
1658 p->pi_waiters = RB_ROOT_CACHED;
1659 p->pi_top_task = NULL;
1660 p->pi_blocked_on = NULL;
1661 #endif
1662 }
1663
1664 static inline void init_task_pid_links(struct task_struct *task)
1665 {
1666 enum pid_type type;
1667
1668 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1669 INIT_HLIST_NODE(&task->pid_links[type]);
1670 }
1671
1672 static inline void
1673 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1674 {
1675 if (type == PIDTYPE_PID)
1676 task->thread_pid = pid;
1677 else
1678 task->signal->pids[type] = pid;
1679 }
1680
1681 static inline void rcu_copy_process(struct task_struct *p)
1682 {
1683 #ifdef CONFIG_PREEMPT_RCU
1684 p->rcu_read_lock_nesting = 0;
1685 p->rcu_read_unlock_special.s = 0;
1686 p->rcu_blocked_node = NULL;
1687 INIT_LIST_HEAD(&p->rcu_node_entry);
1688 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1689 #ifdef CONFIG_TASKS_RCU
1690 p->rcu_tasks_holdout = false;
1691 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1692 p->rcu_tasks_idle_cpu = -1;
1693 #endif /* #ifdef CONFIG_TASKS_RCU */
1694 #ifdef CONFIG_TASKS_TRACE_RCU
1695 p->trc_reader_nesting = 0;
1696 p->trc_reader_special.s = 0;
1697 INIT_LIST_HEAD(&p->trc_holdout_list);
1698 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1699 }
1700
1701 struct pid *pidfd_pid(const struct file *file)
1702 {
1703 if (file->f_op == &pidfd_fops)
1704 return file->private_data;
1705
1706 return ERR_PTR(-EBADF);
1707 }
1708
1709 static int pidfd_release(struct inode *inode, struct file *file)
1710 {
1711 struct pid *pid = file->private_data;
1712
1713 file->private_data = NULL;
1714 put_pid(pid);
1715 return 0;
1716 }
1717
1718 #ifdef CONFIG_PROC_FS
1719 /**
1720 * pidfd_show_fdinfo - print information about a pidfd
1721 * @m: proc fdinfo file
1722 * @f: file referencing a pidfd
1723 *
1724 * Pid:
1725 * This function will print the pid that a given pidfd refers to in the
1726 * pid namespace of the procfs instance.
1727 * If the pid namespace of the process is not a descendant of the pid
1728 * namespace of the procfs instance 0 will be shown as its pid. This is
1729 * similar to calling getppid() on a process whose parent is outside of
1730 * its pid namespace.
1731 *
1732 * NSpid:
1733 * If pid namespaces are supported then this function will also print
1734 * the pid of a given pidfd refers to for all descendant pid namespaces
1735 * starting from the current pid namespace of the instance, i.e. the
1736 * Pid field and the first entry in the NSpid field will be identical.
1737 * If the pid namespace of the process is not a descendant of the pid
1738 * namespace of the procfs instance 0 will be shown as its first NSpid
1739 * entry and no others will be shown.
1740 * Note that this differs from the Pid and NSpid fields in
1741 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1742 * the pid namespace of the procfs instance. The difference becomes
1743 * obvious when sending around a pidfd between pid namespaces from a
1744 * different branch of the tree, i.e. where no ancestral relation is
1745 * present between the pid namespaces:
1746 * - create two new pid namespaces ns1 and ns2 in the initial pid
1747 * namespace (also take care to create new mount namespaces in the
1748 * new pid namespace and mount procfs)
1749 * - create a process with a pidfd in ns1
1750 * - send pidfd from ns1 to ns2
1751 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1752 * have exactly one entry, which is 0
1753 */
1754 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1755 {
1756 struct pid *pid = f->private_data;
1757 struct pid_namespace *ns;
1758 pid_t nr = -1;
1759
1760 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1761 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1762 nr = pid_nr_ns(pid, ns);
1763 }
1764
1765 seq_put_decimal_ll(m, "Pid:\t", nr);
1766
1767 #ifdef CONFIG_PID_NS
1768 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1769 if (nr > 0) {
1770 int i;
1771
1772 /* If nr is non-zero it means that 'pid' is valid and that
1773 * ns, i.e. the pid namespace associated with the procfs
1774 * instance, is in the pid namespace hierarchy of pid.
1775 * Start at one below the already printed level.
1776 */
1777 for (i = ns->level + 1; i <= pid->level; i++)
1778 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1779 }
1780 #endif
1781 seq_putc(m, '\n');
1782 }
1783 #endif
1784
1785 /*
1786 * Poll support for process exit notification.
1787 */
1788 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1789 {
1790 struct pid *pid = file->private_data;
1791 __poll_t poll_flags = 0;
1792
1793 poll_wait(file, &pid->wait_pidfd, pts);
1794
1795 /*
1796 * Inform pollers only when the whole thread group exits.
1797 * If the thread group leader exits before all other threads in the
1798 * group, then poll(2) should block, similar to the wait(2) family.
1799 */
1800 if (thread_group_exited(pid))
1801 poll_flags = EPOLLIN | EPOLLRDNORM;
1802
1803 return poll_flags;
1804 }
1805
1806 const struct file_operations pidfd_fops = {
1807 .release = pidfd_release,
1808 .poll = pidfd_poll,
1809 #ifdef CONFIG_PROC_FS
1810 .show_fdinfo = pidfd_show_fdinfo,
1811 #endif
1812 };
1813
1814 static void __delayed_free_task(struct rcu_head *rhp)
1815 {
1816 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1817
1818 free_task(tsk);
1819 }
1820
1821 static __always_inline void delayed_free_task(struct task_struct *tsk)
1822 {
1823 if (IS_ENABLED(CONFIG_MEMCG))
1824 call_rcu(&tsk->rcu, __delayed_free_task);
1825 else
1826 free_task(tsk);
1827 }
1828
1829 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1830 {
1831 /* Skip if kernel thread */
1832 if (!tsk->mm)
1833 return;
1834
1835 /* Skip if spawning a thread or using vfork */
1836 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1837 return;
1838
1839 /* We need to synchronize with __set_oom_adj */
1840 mutex_lock(&oom_adj_mutex);
1841 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1842 /* Update the values in case they were changed after copy_signal */
1843 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1844 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1845 mutex_unlock(&oom_adj_mutex);
1846 }
1847
1848 /*
1849 * This creates a new process as a copy of the old one,
1850 * but does not actually start it yet.
1851 *
1852 * It copies the registers, and all the appropriate
1853 * parts of the process environment (as per the clone
1854 * flags). The actual kick-off is left to the caller.
1855 */
1856 static __latent_entropy struct task_struct *copy_process(
1857 struct pid *pid,
1858 int trace,
1859 int node,
1860 struct kernel_clone_args *args)
1861 {
1862 int pidfd = -1, retval;
1863 struct task_struct *p;
1864 struct multiprocess_signals delayed;
1865 struct file *pidfile = NULL;
1866 u64 clone_flags = args->flags;
1867 struct nsproxy *nsp = current->nsproxy;
1868
1869 /*
1870 * Don't allow sharing the root directory with processes in a different
1871 * namespace
1872 */
1873 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1874 return ERR_PTR(-EINVAL);
1875
1876 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1877 return ERR_PTR(-EINVAL);
1878
1879 /*
1880 * Thread groups must share signals as well, and detached threads
1881 * can only be started up within the thread group.
1882 */
1883 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1884 return ERR_PTR(-EINVAL);
1885
1886 /*
1887 * Shared signal handlers imply shared VM. By way of the above,
1888 * thread groups also imply shared VM. Blocking this case allows
1889 * for various simplifications in other code.
1890 */
1891 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1892 return ERR_PTR(-EINVAL);
1893
1894 /*
1895 * Siblings of global init remain as zombies on exit since they are
1896 * not reaped by their parent (swapper). To solve this and to avoid
1897 * multi-rooted process trees, prevent global and container-inits
1898 * from creating siblings.
1899 */
1900 if ((clone_flags & CLONE_PARENT) &&
1901 current->signal->flags & SIGNAL_UNKILLABLE)
1902 return ERR_PTR(-EINVAL);
1903
1904 /*
1905 * If the new process will be in a different pid or user namespace
1906 * do not allow it to share a thread group with the forking task.
1907 */
1908 if (clone_flags & CLONE_THREAD) {
1909 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1910 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1911 return ERR_PTR(-EINVAL);
1912 }
1913
1914 /*
1915 * If the new process will be in a different time namespace
1916 * do not allow it to share VM or a thread group with the forking task.
1917 */
1918 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1919 if (nsp->time_ns != nsp->time_ns_for_children)
1920 return ERR_PTR(-EINVAL);
1921 }
1922
1923 if (clone_flags & CLONE_PIDFD) {
1924 /*
1925 * - CLONE_DETACHED is blocked so that we can potentially
1926 * reuse it later for CLONE_PIDFD.
1927 * - CLONE_THREAD is blocked until someone really needs it.
1928 */
1929 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1930 return ERR_PTR(-EINVAL);
1931 }
1932
1933 /*
1934 * Force any signals received before this point to be delivered
1935 * before the fork happens. Collect up signals sent to multiple
1936 * processes that happen during the fork and delay them so that
1937 * they appear to happen after the fork.
1938 */
1939 sigemptyset(&delayed.signal);
1940 INIT_HLIST_NODE(&delayed.node);
1941
1942 spin_lock_irq(&current->sighand->siglock);
1943 if (!(clone_flags & CLONE_THREAD))
1944 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1945 recalc_sigpending();
1946 spin_unlock_irq(&current->sighand->siglock);
1947 retval = -ERESTARTNOINTR;
1948 if (task_sigpending(current))
1949 goto fork_out;
1950
1951 retval = -ENOMEM;
1952 p = dup_task_struct(current, node);
1953 if (!p)
1954 goto fork_out;
1955 if (args->io_thread) {
1956 /*
1957 * Mark us an IO worker, and block any signal that isn't
1958 * fatal or STOP
1959 */
1960 p->flags |= PF_IO_WORKER;
1961 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1962 }
1963
1964 /*
1965 * This _must_ happen before we call free_task(), i.e. before we jump
1966 * to any of the bad_fork_* labels. This is to avoid freeing
1967 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1968 * kernel threads (PF_KTHREAD).
1969 */
1970 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1971 /*
1972 * Clear TID on mm_release()?
1973 */
1974 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1975
1976 ftrace_graph_init_task(p);
1977
1978 rt_mutex_init_task(p);
1979
1980 lockdep_assert_irqs_enabled();
1981 #ifdef CONFIG_PROVE_LOCKING
1982 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1983 #endif
1984 retval = -EAGAIN;
1985 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1986 if (p->real_cred->user != INIT_USER &&
1987 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1988 goto bad_fork_free;
1989 }
1990 current->flags &= ~PF_NPROC_EXCEEDED;
1991
1992 retval = copy_creds(p, clone_flags);
1993 if (retval < 0)
1994 goto bad_fork_free;
1995
1996 /*
1997 * If multiple threads are within copy_process(), then this check
1998 * triggers too late. This doesn't hurt, the check is only there
1999 * to stop root fork bombs.
2000 */
2001 retval = -EAGAIN;
2002 if (data_race(nr_threads >= max_threads))
2003 goto bad_fork_cleanup_count;
2004
2005 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2006 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2007 p->flags |= PF_FORKNOEXEC;
2008 INIT_LIST_HEAD(&p->children);
2009 INIT_LIST_HEAD(&p->sibling);
2010 rcu_copy_process(p);
2011 p->vfork_done = NULL;
2012 spin_lock_init(&p->alloc_lock);
2013
2014 init_sigpending(&p->pending);
2015
2016 p->utime = p->stime = p->gtime = 0;
2017 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2018 p->utimescaled = p->stimescaled = 0;
2019 #endif
2020 prev_cputime_init(&p->prev_cputime);
2021
2022 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2023 seqcount_init(&p->vtime.seqcount);
2024 p->vtime.starttime = 0;
2025 p->vtime.state = VTIME_INACTIVE;
2026 #endif
2027
2028 #ifdef CONFIG_IO_URING
2029 p->io_uring = NULL;
2030 #endif
2031
2032 #if defined(SPLIT_RSS_COUNTING)
2033 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2034 #endif
2035
2036 p->default_timer_slack_ns = current->timer_slack_ns;
2037
2038 #ifdef CONFIG_PSI
2039 p->psi_flags = 0;
2040 #endif
2041
2042 task_io_accounting_init(&p->ioac);
2043 acct_clear_integrals(p);
2044
2045 posix_cputimers_init(&p->posix_cputimers);
2046
2047 p->io_context = NULL;
2048 audit_set_context(p, NULL);
2049 cgroup_fork(p);
2050 #ifdef CONFIG_NUMA
2051 p->mempolicy = mpol_dup(p->mempolicy);
2052 if (IS_ERR(p->mempolicy)) {
2053 retval = PTR_ERR(p->mempolicy);
2054 p->mempolicy = NULL;
2055 goto bad_fork_cleanup_threadgroup_lock;
2056 }
2057 #endif
2058 #ifdef CONFIG_CPUSETS
2059 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2060 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2061 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2062 #endif
2063 #ifdef CONFIG_TRACE_IRQFLAGS
2064 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2065 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2066 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2067 p->softirqs_enabled = 1;
2068 p->softirq_context = 0;
2069 #endif
2070
2071 p->pagefault_disabled = 0;
2072
2073 #ifdef CONFIG_LOCKDEP
2074 lockdep_init_task(p);
2075 #endif
2076
2077 #ifdef CONFIG_DEBUG_MUTEXES
2078 p->blocked_on = NULL; /* not blocked yet */
2079 #endif
2080 #ifdef CONFIG_BCACHE
2081 p->sequential_io = 0;
2082 p->sequential_io_avg = 0;
2083 #endif
2084 #ifdef CONFIG_BPF_SYSCALL
2085 RCU_INIT_POINTER(p->bpf_storage, NULL);
2086 #endif
2087
2088 /* Perform scheduler related setup. Assign this task to a CPU. */
2089 retval = sched_fork(clone_flags, p);
2090 if (retval)
2091 goto bad_fork_cleanup_policy;
2092
2093 retval = perf_event_init_task(p, clone_flags);
2094 if (retval)
2095 goto bad_fork_cleanup_policy;
2096 retval = audit_alloc(p);
2097 if (retval)
2098 goto bad_fork_cleanup_perf;
2099 /* copy all the process information */
2100 shm_init_task(p);
2101 retval = security_task_alloc(p, clone_flags);
2102 if (retval)
2103 goto bad_fork_cleanup_audit;
2104 retval = copy_semundo(clone_flags, p);
2105 if (retval)
2106 goto bad_fork_cleanup_security;
2107 retval = copy_files(clone_flags, p);
2108 if (retval)
2109 goto bad_fork_cleanup_semundo;
2110 retval = copy_fs(clone_flags, p);
2111 if (retval)
2112 goto bad_fork_cleanup_files;
2113 retval = copy_sighand(clone_flags, p);
2114 if (retval)
2115 goto bad_fork_cleanup_fs;
2116 retval = copy_signal(clone_flags, p);
2117 if (retval)
2118 goto bad_fork_cleanup_sighand;
2119 retval = copy_mm(clone_flags, p);
2120 if (retval)
2121 goto bad_fork_cleanup_signal;
2122 retval = copy_namespaces(clone_flags, p);
2123 if (retval)
2124 goto bad_fork_cleanup_mm;
2125 retval = copy_io(clone_flags, p);
2126 if (retval)
2127 goto bad_fork_cleanup_namespaces;
2128 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2129 if (retval)
2130 goto bad_fork_cleanup_io;
2131
2132 stackleak_task_init(p);
2133
2134 if (pid != &init_struct_pid) {
2135 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2136 args->set_tid_size);
2137 if (IS_ERR(pid)) {
2138 retval = PTR_ERR(pid);
2139 goto bad_fork_cleanup_thread;
2140 }
2141 }
2142
2143 /*
2144 * This has to happen after we've potentially unshared the file
2145 * descriptor table (so that the pidfd doesn't leak into the child
2146 * if the fd table isn't shared).
2147 */
2148 if (clone_flags & CLONE_PIDFD) {
2149 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2150 if (retval < 0)
2151 goto bad_fork_free_pid;
2152
2153 pidfd = retval;
2154
2155 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2156 O_RDWR | O_CLOEXEC);
2157 if (IS_ERR(pidfile)) {
2158 put_unused_fd(pidfd);
2159 retval = PTR_ERR(pidfile);
2160 goto bad_fork_free_pid;
2161 }
2162 get_pid(pid); /* held by pidfile now */
2163
2164 retval = put_user(pidfd, args->pidfd);
2165 if (retval)
2166 goto bad_fork_put_pidfd;
2167 }
2168
2169 #ifdef CONFIG_BLOCK
2170 p->plug = NULL;
2171 #endif
2172 futex_init_task(p);
2173
2174 /*
2175 * sigaltstack should be cleared when sharing the same VM
2176 */
2177 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2178 sas_ss_reset(p);
2179
2180 /*
2181 * Syscall tracing and stepping should be turned off in the
2182 * child regardless of CLONE_PTRACE.
2183 */
2184 user_disable_single_step(p);
2185 clear_task_syscall_work(p, SYSCALL_TRACE);
2186 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2187 clear_task_syscall_work(p, SYSCALL_EMU);
2188 #endif
2189 clear_tsk_latency_tracing(p);
2190
2191 /* ok, now we should be set up.. */
2192 p->pid = pid_nr(pid);
2193 if (clone_flags & CLONE_THREAD) {
2194 p->group_leader = current->group_leader;
2195 p->tgid = current->tgid;
2196 } else {
2197 p->group_leader = p;
2198 p->tgid = p->pid;
2199 }
2200
2201 p->nr_dirtied = 0;
2202 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2203 p->dirty_paused_when = 0;
2204
2205 p->pdeath_signal = 0;
2206 INIT_LIST_HEAD(&p->thread_group);
2207 p->task_works = NULL;
2208
2209 #ifdef CONFIG_KRETPROBES
2210 p->kretprobe_instances.first = NULL;
2211 #endif
2212
2213 /*
2214 * Ensure that the cgroup subsystem policies allow the new process to be
2215 * forked. It should be noted that the new process's css_set can be changed
2216 * between here and cgroup_post_fork() if an organisation operation is in
2217 * progress.
2218 */
2219 retval = cgroup_can_fork(p, args);
2220 if (retval)
2221 goto bad_fork_put_pidfd;
2222
2223 /*
2224 * From this point on we must avoid any synchronous user-space
2225 * communication until we take the tasklist-lock. In particular, we do
2226 * not want user-space to be able to predict the process start-time by
2227 * stalling fork(2) after we recorded the start_time but before it is
2228 * visible to the system.
2229 */
2230
2231 p->start_time = ktime_get_ns();
2232 p->start_boottime = ktime_get_boottime_ns();
2233
2234 /*
2235 * Make it visible to the rest of the system, but dont wake it up yet.
2236 * Need tasklist lock for parent etc handling!
2237 */
2238 write_lock_irq(&tasklist_lock);
2239
2240 /* CLONE_PARENT re-uses the old parent */
2241 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2242 p->real_parent = current->real_parent;
2243 p->parent_exec_id = current->parent_exec_id;
2244 if (clone_flags & CLONE_THREAD)
2245 p->exit_signal = -1;
2246 else
2247 p->exit_signal = current->group_leader->exit_signal;
2248 } else {
2249 p->real_parent = current;
2250 p->parent_exec_id = current->self_exec_id;
2251 p->exit_signal = args->exit_signal;
2252 }
2253
2254 klp_copy_process(p);
2255
2256 sched_core_fork(p);
2257
2258 spin_lock(&current->sighand->siglock);
2259
2260 /*
2261 * Copy seccomp details explicitly here, in case they were changed
2262 * before holding sighand lock.
2263 */
2264 copy_seccomp(p);
2265
2266 rseq_fork(p, clone_flags);
2267
2268 /* Don't start children in a dying pid namespace */
2269 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2270 retval = -ENOMEM;
2271 goto bad_fork_cancel_cgroup;
2272 }
2273
2274 /* Let kill terminate clone/fork in the middle */
2275 if (fatal_signal_pending(current)) {
2276 retval = -EINTR;
2277 goto bad_fork_cancel_cgroup;
2278 }
2279
2280 /* past the last point of failure */
2281 if (pidfile)
2282 fd_install(pidfd, pidfile);
2283
2284 init_task_pid_links(p);
2285 if (likely(p->pid)) {
2286 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2287
2288 init_task_pid(p, PIDTYPE_PID, pid);
2289 if (thread_group_leader(p)) {
2290 init_task_pid(p, PIDTYPE_TGID, pid);
2291 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2292 init_task_pid(p, PIDTYPE_SID, task_session(current));
2293
2294 if (is_child_reaper(pid)) {
2295 ns_of_pid(pid)->child_reaper = p;
2296 p->signal->flags |= SIGNAL_UNKILLABLE;
2297 }
2298 p->signal->shared_pending.signal = delayed.signal;
2299 p->signal->tty = tty_kref_get(current->signal->tty);
2300 /*
2301 * Inherit has_child_subreaper flag under the same
2302 * tasklist_lock with adding child to the process tree
2303 * for propagate_has_child_subreaper optimization.
2304 */
2305 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2306 p->real_parent->signal->is_child_subreaper;
2307 list_add_tail(&p->sibling, &p->real_parent->children);
2308 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2309 attach_pid(p, PIDTYPE_TGID);
2310 attach_pid(p, PIDTYPE_PGID);
2311 attach_pid(p, PIDTYPE_SID);
2312 __this_cpu_inc(process_counts);
2313 } else {
2314 current->signal->nr_threads++;
2315 atomic_inc(&current->signal->live);
2316 refcount_inc(&current->signal->sigcnt);
2317 task_join_group_stop(p);
2318 list_add_tail_rcu(&p->thread_group,
2319 &p->group_leader->thread_group);
2320 list_add_tail_rcu(&p->thread_node,
2321 &p->signal->thread_head);
2322 }
2323 attach_pid(p, PIDTYPE_PID);
2324 nr_threads++;
2325 }
2326 total_forks++;
2327 hlist_del_init(&delayed.node);
2328 spin_unlock(&current->sighand->siglock);
2329 syscall_tracepoint_update(p);
2330 write_unlock_irq(&tasklist_lock);
2331
2332 proc_fork_connector(p);
2333 sched_post_fork(p);
2334 cgroup_post_fork(p, args);
2335 perf_event_fork(p);
2336
2337 trace_task_newtask(p, clone_flags);
2338 uprobe_copy_process(p, clone_flags);
2339
2340 copy_oom_score_adj(clone_flags, p);
2341
2342 return p;
2343
2344 bad_fork_cancel_cgroup:
2345 sched_core_free(p);
2346 spin_unlock(&current->sighand->siglock);
2347 write_unlock_irq(&tasklist_lock);
2348 cgroup_cancel_fork(p, args);
2349 bad_fork_put_pidfd:
2350 if (clone_flags & CLONE_PIDFD) {
2351 fput(pidfile);
2352 put_unused_fd(pidfd);
2353 }
2354 bad_fork_free_pid:
2355 if (pid != &init_struct_pid)
2356 free_pid(pid);
2357 bad_fork_cleanup_thread:
2358 exit_thread(p);
2359 bad_fork_cleanup_io:
2360 if (p->io_context)
2361 exit_io_context(p);
2362 bad_fork_cleanup_namespaces:
2363 exit_task_namespaces(p);
2364 bad_fork_cleanup_mm:
2365 if (p->mm) {
2366 mm_clear_owner(p->mm, p);
2367 mmput(p->mm);
2368 }
2369 bad_fork_cleanup_signal:
2370 if (!(clone_flags & CLONE_THREAD))
2371 free_signal_struct(p->signal);
2372 bad_fork_cleanup_sighand:
2373 __cleanup_sighand(p->sighand);
2374 bad_fork_cleanup_fs:
2375 exit_fs(p); /* blocking */
2376 bad_fork_cleanup_files:
2377 exit_files(p); /* blocking */
2378 bad_fork_cleanup_semundo:
2379 exit_sem(p);
2380 bad_fork_cleanup_security:
2381 security_task_free(p);
2382 bad_fork_cleanup_audit:
2383 audit_free(p);
2384 bad_fork_cleanup_perf:
2385 perf_event_free_task(p);
2386 bad_fork_cleanup_policy:
2387 lockdep_free_task(p);
2388 #ifdef CONFIG_NUMA
2389 mpol_put(p->mempolicy);
2390 bad_fork_cleanup_threadgroup_lock:
2391 #endif
2392 delayacct_tsk_free(p);
2393 bad_fork_cleanup_count:
2394 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2395 exit_creds(p);
2396 bad_fork_free:
2397 WRITE_ONCE(p->__state, TASK_DEAD);
2398 put_task_stack(p);
2399 delayed_free_task(p);
2400 fork_out:
2401 spin_lock_irq(&current->sighand->siglock);
2402 hlist_del_init(&delayed.node);
2403 spin_unlock_irq(&current->sighand->siglock);
2404 return ERR_PTR(retval);
2405 }
2406
2407 static inline void init_idle_pids(struct task_struct *idle)
2408 {
2409 enum pid_type type;
2410
2411 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2412 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2413 init_task_pid(idle, type, &init_struct_pid);
2414 }
2415 }
2416
2417 struct task_struct * __init fork_idle(int cpu)
2418 {
2419 struct task_struct *task;
2420 struct kernel_clone_args args = {
2421 .flags = CLONE_VM,
2422 };
2423
2424 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2425 if (!IS_ERR(task)) {
2426 init_idle_pids(task);
2427 init_idle(task, cpu);
2428 }
2429
2430 return task;
2431 }
2432
2433 struct mm_struct *copy_init_mm(void)
2434 {
2435 return dup_mm(NULL, &init_mm);
2436 }
2437
2438 /*
2439 * This is like kernel_clone(), but shaved down and tailored to just
2440 * creating io_uring workers. It returns a created task, or an error pointer.
2441 * The returned task is inactive, and the caller must fire it up through
2442 * wake_up_new_task(p). All signals are blocked in the created task.
2443 */
2444 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2445 {
2446 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2447 CLONE_IO;
2448 struct kernel_clone_args args = {
2449 .flags = ((lower_32_bits(flags) | CLONE_VM |
2450 CLONE_UNTRACED) & ~CSIGNAL),
2451 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2452 .stack = (unsigned long)fn,
2453 .stack_size = (unsigned long)arg,
2454 .io_thread = 1,
2455 };
2456
2457 return copy_process(NULL, 0, node, &args);
2458 }
2459
2460 /*
2461 * Ok, this is the main fork-routine.
2462 *
2463 * It copies the process, and if successful kick-starts
2464 * it and waits for it to finish using the VM if required.
2465 *
2466 * args->exit_signal is expected to be checked for sanity by the caller.
2467 */
2468 pid_t kernel_clone(struct kernel_clone_args *args)
2469 {
2470 u64 clone_flags = args->flags;
2471 struct completion vfork;
2472 struct pid *pid;
2473 struct task_struct *p;
2474 int trace = 0;
2475 pid_t nr;
2476
2477 /*
2478 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2479 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2480 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2481 * field in struct clone_args and it still doesn't make sense to have
2482 * them both point at the same memory location. Performing this check
2483 * here has the advantage that we don't need to have a separate helper
2484 * to check for legacy clone().
2485 */
2486 if ((args->flags & CLONE_PIDFD) &&
2487 (args->flags & CLONE_PARENT_SETTID) &&
2488 (args->pidfd == args->parent_tid))
2489 return -EINVAL;
2490
2491 /*
2492 * Determine whether and which event to report to ptracer. When
2493 * called from kernel_thread or CLONE_UNTRACED is explicitly
2494 * requested, no event is reported; otherwise, report if the event
2495 * for the type of forking is enabled.
2496 */
2497 if (!(clone_flags & CLONE_UNTRACED)) {
2498 if (clone_flags & CLONE_VFORK)
2499 trace = PTRACE_EVENT_VFORK;
2500 else if (args->exit_signal != SIGCHLD)
2501 trace = PTRACE_EVENT_CLONE;
2502 else
2503 trace = PTRACE_EVENT_FORK;
2504
2505 if (likely(!ptrace_event_enabled(current, trace)))
2506 trace = 0;
2507 }
2508
2509 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2510 add_latent_entropy();
2511
2512 if (IS_ERR(p))
2513 return PTR_ERR(p);
2514
2515 /*
2516 * Do this prior waking up the new thread - the thread pointer
2517 * might get invalid after that point, if the thread exits quickly.
2518 */
2519 trace_sched_process_fork(current, p);
2520
2521 pid = get_task_pid(p, PIDTYPE_PID);
2522 nr = pid_vnr(pid);
2523
2524 if (clone_flags & CLONE_PARENT_SETTID)
2525 put_user(nr, args->parent_tid);
2526
2527 if (clone_flags & CLONE_VFORK) {
2528 p->vfork_done = &vfork;
2529 init_completion(&vfork);
2530 get_task_struct(p);
2531 }
2532
2533 wake_up_new_task(p);
2534
2535 /* forking complete and child started to run, tell ptracer */
2536 if (unlikely(trace))
2537 ptrace_event_pid(trace, pid);
2538
2539 if (clone_flags & CLONE_VFORK) {
2540 if (!wait_for_vfork_done(p, &vfork))
2541 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2542 }
2543
2544 put_pid(pid);
2545 return nr;
2546 }
2547
2548 /*
2549 * Create a kernel thread.
2550 */
2551 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2552 {
2553 struct kernel_clone_args args = {
2554 .flags = ((lower_32_bits(flags) | CLONE_VM |
2555 CLONE_UNTRACED) & ~CSIGNAL),
2556 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2557 .stack = (unsigned long)fn,
2558 .stack_size = (unsigned long)arg,
2559 };
2560
2561 return kernel_clone(&args);
2562 }
2563
2564 #ifdef __ARCH_WANT_SYS_FORK
2565 SYSCALL_DEFINE0(fork)
2566 {
2567 #ifdef CONFIG_MMU
2568 struct kernel_clone_args args = {
2569 .exit_signal = SIGCHLD,
2570 };
2571
2572 return kernel_clone(&args);
2573 #else
2574 /* can not support in nommu mode */
2575 return -EINVAL;
2576 #endif
2577 }
2578 #endif
2579
2580 #ifdef __ARCH_WANT_SYS_VFORK
2581 SYSCALL_DEFINE0(vfork)
2582 {
2583 struct kernel_clone_args args = {
2584 .flags = CLONE_VFORK | CLONE_VM,
2585 .exit_signal = SIGCHLD,
2586 };
2587
2588 return kernel_clone(&args);
2589 }
2590 #endif
2591
2592 #ifdef __ARCH_WANT_SYS_CLONE
2593 #ifdef CONFIG_CLONE_BACKWARDS
2594 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2595 int __user *, parent_tidptr,
2596 unsigned long, tls,
2597 int __user *, child_tidptr)
2598 #elif defined(CONFIG_CLONE_BACKWARDS2)
2599 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2600 int __user *, parent_tidptr,
2601 int __user *, child_tidptr,
2602 unsigned long, tls)
2603 #elif defined(CONFIG_CLONE_BACKWARDS3)
2604 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2605 int, stack_size,
2606 int __user *, parent_tidptr,
2607 int __user *, child_tidptr,
2608 unsigned long, tls)
2609 #else
2610 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2611 int __user *, parent_tidptr,
2612 int __user *, child_tidptr,
2613 unsigned long, tls)
2614 #endif
2615 {
2616 struct kernel_clone_args args = {
2617 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2618 .pidfd = parent_tidptr,
2619 .child_tid = child_tidptr,
2620 .parent_tid = parent_tidptr,
2621 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2622 .stack = newsp,
2623 .tls = tls,
2624 };
2625
2626 return kernel_clone(&args);
2627 }
2628 #endif
2629
2630 #ifdef __ARCH_WANT_SYS_CLONE3
2631
2632 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2633 struct clone_args __user *uargs,
2634 size_t usize)
2635 {
2636 int err;
2637 struct clone_args args;
2638 pid_t *kset_tid = kargs->set_tid;
2639
2640 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2641 CLONE_ARGS_SIZE_VER0);
2642 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2643 CLONE_ARGS_SIZE_VER1);
2644 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2645 CLONE_ARGS_SIZE_VER2);
2646 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2647
2648 if (unlikely(usize > PAGE_SIZE))
2649 return -E2BIG;
2650 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2651 return -EINVAL;
2652
2653 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2654 if (err)
2655 return err;
2656
2657 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2658 return -EINVAL;
2659
2660 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2661 return -EINVAL;
2662
2663 if (unlikely(args.set_tid && args.set_tid_size == 0))
2664 return -EINVAL;
2665
2666 /*
2667 * Verify that higher 32bits of exit_signal are unset and that
2668 * it is a valid signal
2669 */
2670 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2671 !valid_signal(args.exit_signal)))
2672 return -EINVAL;
2673
2674 if ((args.flags & CLONE_INTO_CGROUP) &&
2675 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2676 return -EINVAL;
2677
2678 *kargs = (struct kernel_clone_args){
2679 .flags = args.flags,
2680 .pidfd = u64_to_user_ptr(args.pidfd),
2681 .child_tid = u64_to_user_ptr(args.child_tid),
2682 .parent_tid = u64_to_user_ptr(args.parent_tid),
2683 .exit_signal = args.exit_signal,
2684 .stack = args.stack,
2685 .stack_size = args.stack_size,
2686 .tls = args.tls,
2687 .set_tid_size = args.set_tid_size,
2688 .cgroup = args.cgroup,
2689 };
2690
2691 if (args.set_tid &&
2692 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2693 (kargs->set_tid_size * sizeof(pid_t))))
2694 return -EFAULT;
2695
2696 kargs->set_tid = kset_tid;
2697
2698 return 0;
2699 }
2700
2701 /**
2702 * clone3_stack_valid - check and prepare stack
2703 * @kargs: kernel clone args
2704 *
2705 * Verify that the stack arguments userspace gave us are sane.
2706 * In addition, set the stack direction for userspace since it's easy for us to
2707 * determine.
2708 */
2709 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2710 {
2711 if (kargs->stack == 0) {
2712 if (kargs->stack_size > 0)
2713 return false;
2714 } else {
2715 if (kargs->stack_size == 0)
2716 return false;
2717
2718 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2719 return false;
2720
2721 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2722 kargs->stack += kargs->stack_size;
2723 #endif
2724 }
2725
2726 return true;
2727 }
2728
2729 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2730 {
2731 /* Verify that no unknown flags are passed along. */
2732 if (kargs->flags &
2733 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2734 return false;
2735
2736 /*
2737 * - make the CLONE_DETACHED bit reusable for clone3
2738 * - make the CSIGNAL bits reusable for clone3
2739 */
2740 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2741 return false;
2742
2743 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2744 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2745 return false;
2746
2747 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2748 kargs->exit_signal)
2749 return false;
2750
2751 if (!clone3_stack_valid(kargs))
2752 return false;
2753
2754 return true;
2755 }
2756
2757 /**
2758 * clone3 - create a new process with specific properties
2759 * @uargs: argument structure
2760 * @size: size of @uargs
2761 *
2762 * clone3() is the extensible successor to clone()/clone2().
2763 * It takes a struct as argument that is versioned by its size.
2764 *
2765 * Return: On success, a positive PID for the child process.
2766 * On error, a negative errno number.
2767 */
2768 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2769 {
2770 int err;
2771
2772 struct kernel_clone_args kargs;
2773 pid_t set_tid[MAX_PID_NS_LEVEL];
2774
2775 kargs.set_tid = set_tid;
2776
2777 err = copy_clone_args_from_user(&kargs, uargs, size);
2778 if (err)
2779 return err;
2780
2781 if (!clone3_args_valid(&kargs))
2782 return -EINVAL;
2783
2784 return kernel_clone(&kargs);
2785 }
2786 #endif
2787
2788 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2789 {
2790 struct task_struct *leader, *parent, *child;
2791 int res;
2792
2793 read_lock(&tasklist_lock);
2794 leader = top = top->group_leader;
2795 down:
2796 for_each_thread(leader, parent) {
2797 list_for_each_entry(child, &parent->children, sibling) {
2798 res = visitor(child, data);
2799 if (res) {
2800 if (res < 0)
2801 goto out;
2802 leader = child;
2803 goto down;
2804 }
2805 up:
2806 ;
2807 }
2808 }
2809
2810 if (leader != top) {
2811 child = leader;
2812 parent = child->real_parent;
2813 leader = parent->group_leader;
2814 goto up;
2815 }
2816 out:
2817 read_unlock(&tasklist_lock);
2818 }
2819
2820 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2821 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2822 #endif
2823
2824 static void sighand_ctor(void *data)
2825 {
2826 struct sighand_struct *sighand = data;
2827
2828 spin_lock_init(&sighand->siglock);
2829 init_waitqueue_head(&sighand->signalfd_wqh);
2830 }
2831
2832 void __init proc_caches_init(void)
2833 {
2834 unsigned int mm_size;
2835
2836 sighand_cachep = kmem_cache_create("sighand_cache",
2837 sizeof(struct sighand_struct), 0,
2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2839 SLAB_ACCOUNT, sighand_ctor);
2840 signal_cachep = kmem_cache_create("signal_cache",
2841 sizeof(struct signal_struct), 0,
2842 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2843 NULL);
2844 files_cachep = kmem_cache_create("files_cache",
2845 sizeof(struct files_struct), 0,
2846 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2847 NULL);
2848 fs_cachep = kmem_cache_create("fs_cache",
2849 sizeof(struct fs_struct), 0,
2850 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2851 NULL);
2852
2853 /*
2854 * The mm_cpumask is located at the end of mm_struct, and is
2855 * dynamically sized based on the maximum CPU number this system
2856 * can have, taking hotplug into account (nr_cpu_ids).
2857 */
2858 mm_size = sizeof(struct mm_struct) + cpumask_size();
2859
2860 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2861 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2862 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2863 offsetof(struct mm_struct, saved_auxv),
2864 sizeof_field(struct mm_struct, saved_auxv),
2865 NULL);
2866 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2867 mmap_init();
2868 nsproxy_cache_init();
2869 }
2870
2871 /*
2872 * Check constraints on flags passed to the unshare system call.
2873 */
2874 static int check_unshare_flags(unsigned long unshare_flags)
2875 {
2876 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2877 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2878 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2879 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2880 CLONE_NEWTIME))
2881 return -EINVAL;
2882 /*
2883 * Not implemented, but pretend it works if there is nothing
2884 * to unshare. Note that unsharing the address space or the
2885 * signal handlers also need to unshare the signal queues (aka
2886 * CLONE_THREAD).
2887 */
2888 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2889 if (!thread_group_empty(current))
2890 return -EINVAL;
2891 }
2892 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2893 if (refcount_read(&current->sighand->count) > 1)
2894 return -EINVAL;
2895 }
2896 if (unshare_flags & CLONE_VM) {
2897 if (!current_is_single_threaded())
2898 return -EINVAL;
2899 }
2900
2901 return 0;
2902 }
2903
2904 /*
2905 * Unshare the filesystem structure if it is being shared
2906 */
2907 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2908 {
2909 struct fs_struct *fs = current->fs;
2910
2911 if (!(unshare_flags & CLONE_FS) || !fs)
2912 return 0;
2913
2914 /* don't need lock here; in the worst case we'll do useless copy */
2915 if (fs->users == 1)
2916 return 0;
2917
2918 *new_fsp = copy_fs_struct(fs);
2919 if (!*new_fsp)
2920 return -ENOMEM;
2921
2922 return 0;
2923 }
2924
2925 /*
2926 * Unshare file descriptor table if it is being shared
2927 */
2928 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2929 struct files_struct **new_fdp)
2930 {
2931 struct files_struct *fd = current->files;
2932 int error = 0;
2933
2934 if ((unshare_flags & CLONE_FILES) &&
2935 (fd && atomic_read(&fd->count) > 1)) {
2936 *new_fdp = dup_fd(fd, max_fds, &error);
2937 if (!*new_fdp)
2938 return error;
2939 }
2940
2941 return 0;
2942 }
2943
2944 /*
2945 * unshare allows a process to 'unshare' part of the process
2946 * context which was originally shared using clone. copy_*
2947 * functions used by kernel_clone() cannot be used here directly
2948 * because they modify an inactive task_struct that is being
2949 * constructed. Here we are modifying the current, active,
2950 * task_struct.
2951 */
2952 int ksys_unshare(unsigned long unshare_flags)
2953 {
2954 struct fs_struct *fs, *new_fs = NULL;
2955 struct files_struct *fd, *new_fd = NULL;
2956 struct cred *new_cred = NULL;
2957 struct nsproxy *new_nsproxy = NULL;
2958 int do_sysvsem = 0;
2959 int err;
2960
2961 /*
2962 * If unsharing a user namespace must also unshare the thread group
2963 * and unshare the filesystem root and working directories.
2964 */
2965 if (unshare_flags & CLONE_NEWUSER)
2966 unshare_flags |= CLONE_THREAD | CLONE_FS;
2967 /*
2968 * If unsharing vm, must also unshare signal handlers.
2969 */
2970 if (unshare_flags & CLONE_VM)
2971 unshare_flags |= CLONE_SIGHAND;
2972 /*
2973 * If unsharing a signal handlers, must also unshare the signal queues.
2974 */
2975 if (unshare_flags & CLONE_SIGHAND)
2976 unshare_flags |= CLONE_THREAD;
2977 /*
2978 * If unsharing namespace, must also unshare filesystem information.
2979 */
2980 if (unshare_flags & CLONE_NEWNS)
2981 unshare_flags |= CLONE_FS;
2982
2983 err = check_unshare_flags(unshare_flags);
2984 if (err)
2985 goto bad_unshare_out;
2986 /*
2987 * CLONE_NEWIPC must also detach from the undolist: after switching
2988 * to a new ipc namespace, the semaphore arrays from the old
2989 * namespace are unreachable.
2990 */
2991 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2992 do_sysvsem = 1;
2993 err = unshare_fs(unshare_flags, &new_fs);
2994 if (err)
2995 goto bad_unshare_out;
2996 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2997 if (err)
2998 goto bad_unshare_cleanup_fs;
2999 err = unshare_userns(unshare_flags, &new_cred);
3000 if (err)
3001 goto bad_unshare_cleanup_fd;
3002 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3003 new_cred, new_fs);
3004 if (err)
3005 goto bad_unshare_cleanup_cred;
3006
3007 if (new_cred) {
3008 err = set_cred_ucounts(new_cred);
3009 if (err)
3010 goto bad_unshare_cleanup_cred;
3011 }
3012
3013 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3014 if (do_sysvsem) {
3015 /*
3016 * CLONE_SYSVSEM is equivalent to sys_exit().
3017 */
3018 exit_sem(current);
3019 }
3020 if (unshare_flags & CLONE_NEWIPC) {
3021 /* Orphan segments in old ns (see sem above). */
3022 exit_shm(current);
3023 shm_init_task(current);
3024 }
3025
3026 if (new_nsproxy)
3027 switch_task_namespaces(current, new_nsproxy);
3028
3029 task_lock(current);
3030
3031 if (new_fs) {
3032 fs = current->fs;
3033 spin_lock(&fs->lock);
3034 current->fs = new_fs;
3035 if (--fs->users)
3036 new_fs = NULL;
3037 else
3038 new_fs = fs;
3039 spin_unlock(&fs->lock);
3040 }
3041
3042 if (new_fd) {
3043 fd = current->files;
3044 current->files = new_fd;
3045 new_fd = fd;
3046 }
3047
3048 task_unlock(current);
3049
3050 if (new_cred) {
3051 /* Install the new user namespace */
3052 commit_creds(new_cred);
3053 new_cred = NULL;
3054 }
3055 }
3056
3057 perf_event_namespaces(current);
3058
3059 bad_unshare_cleanup_cred:
3060 if (new_cred)
3061 put_cred(new_cred);
3062 bad_unshare_cleanup_fd:
3063 if (new_fd)
3064 put_files_struct(new_fd);
3065
3066 bad_unshare_cleanup_fs:
3067 if (new_fs)
3068 free_fs_struct(new_fs);
3069
3070 bad_unshare_out:
3071 return err;
3072 }
3073
3074 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3075 {
3076 return ksys_unshare(unshare_flags);
3077 }
3078
3079 /*
3080 * Helper to unshare the files of the current task.
3081 * We don't want to expose copy_files internals to
3082 * the exec layer of the kernel.
3083 */
3084
3085 int unshare_files(void)
3086 {
3087 struct task_struct *task = current;
3088 struct files_struct *old, *copy = NULL;
3089 int error;
3090
3091 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3092 if (error || !copy)
3093 return error;
3094
3095 old = task->files;
3096 task_lock(task);
3097 task->files = copy;
3098 task_unlock(task);
3099 put_files_struct(old);
3100 return 0;
3101 }
3102
3103 int sysctl_max_threads(struct ctl_table *table, int write,
3104 void *buffer, size_t *lenp, loff_t *ppos)
3105 {
3106 struct ctl_table t;
3107 int ret;
3108 int threads = max_threads;
3109 int min = 1;
3110 int max = MAX_THREADS;
3111
3112 t = *table;
3113 t.data = &threads;
3114 t.extra1 = &min;
3115 t.extra2 = &max;
3116
3117 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3118 if (ret || !write)
3119 return ret;
3120
3121 max_threads = threads;
3122
3123 return 0;
3124 }