]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/fork.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-jammy-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98
99 #include <asm/pgtable.h>
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105
106 #include <trace/events/sched.h>
107
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 static int max_threads; /* tunable limit on nr_threads */
128
129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
130
131 static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
141
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145 return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149
150 int nr_processes(void)
151 {
152 int cpu;
153 int total = 0;
154
155 for_each_possible_cpu(cpu)
156 total += per_cpu(process_counts, cpu);
157
158 return total;
159 }
160
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180
181 /*
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
184 */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186
187 #ifdef CONFIG_VMAP_STACK
188 /*
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
191 */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 int i;
199
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
202
203 if (!vm_stack)
204 continue;
205
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
208 }
209
210 return 0;
211 }
212 #endif
213
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 void *stack;
218 int i;
219
220 for (i = 0; i < NR_CACHED_STACKS; i++) {
221 struct vm_struct *s;
222
223 s = this_cpu_xchg(cached_stacks[i], NULL);
224
225 if (!s)
226 continue;
227
228 /* Clear the KASAN shadow of the stack. */
229 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
230
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
233
234 tsk->stack_vm_area = s;
235 tsk->stack = s->addr;
236 return s->addr;
237 }
238
239 /*
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
243 */
244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 VMALLOC_START, VMALLOC_END,
246 THREADINFO_GFP & ~__GFP_ACCOUNT,
247 PAGE_KERNEL,
248 0, node, __builtin_return_address(0));
249
250 /*
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
254 */
255 if (stack) {
256 tsk->stack_vm_area = find_vm_area(stack);
257 tsk->stack = stack;
258 }
259 return stack;
260 #else
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 THREAD_SIZE_ORDER);
263
264 if (likely(page)) {
265 tsk->stack = page_address(page);
266 return tsk->stack;
267 }
268 return NULL;
269 #endif
270 }
271
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 struct vm_struct *vm = task_stack_vm_area(tsk);
276
277 if (vm) {
278 int i;
279
280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
281 mod_memcg_page_state(vm->pages[i],
282 MEMCG_KERNEL_STACK_KB,
283 -(int)(PAGE_SIZE / 1024));
284
285 memcg_kmem_uncharge_page(vm->pages[i], 0);
286 }
287
288 for (i = 0; i < NR_CACHED_STACKS; i++) {
289 if (this_cpu_cmpxchg(cached_stacks[i],
290 NULL, tsk->stack_vm_area) != NULL)
291 continue;
292
293 return;
294 }
295
296 vfree_atomic(tsk->stack);
297 return;
298 }
299 #endif
300
301 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
302 }
303 # else
304 static struct kmem_cache *thread_stack_cache;
305
306 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
307 int node)
308 {
309 unsigned long *stack;
310 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
311 tsk->stack = stack;
312 return stack;
313 }
314
315 static void free_thread_stack(struct task_struct *tsk)
316 {
317 kmem_cache_free(thread_stack_cache, tsk->stack);
318 }
319
320 void thread_stack_cache_init(void)
321 {
322 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
323 THREAD_SIZE, THREAD_SIZE, 0, 0,
324 THREAD_SIZE, NULL);
325 BUG_ON(thread_stack_cache == NULL);
326 }
327 # endif
328 #endif
329
330 /* SLAB cache for signal_struct structures (tsk->signal) */
331 static struct kmem_cache *signal_cachep;
332
333 /* SLAB cache for sighand_struct structures (tsk->sighand) */
334 struct kmem_cache *sighand_cachep;
335
336 /* SLAB cache for files_struct structures (tsk->files) */
337 struct kmem_cache *files_cachep;
338
339 /* SLAB cache for fs_struct structures (tsk->fs) */
340 struct kmem_cache *fs_cachep;
341
342 /* SLAB cache for vm_area_struct structures */
343 static struct kmem_cache *vm_area_cachep;
344
345 /* SLAB cache for mm_struct structures (tsk->mm) */
346 static struct kmem_cache *mm_cachep;
347
348 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
349 {
350 struct vm_area_struct *vma;
351
352 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
353 if (vma)
354 vma_init(vma, mm);
355 return vma;
356 }
357
358 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
359 {
360 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
361
362 if (new) {
363 *new = *orig;
364 INIT_LIST_HEAD(&new->anon_vma_chain);
365 new->vm_next = new->vm_prev = NULL;
366 }
367 return new;
368 }
369
370 void vm_area_free(struct vm_area_struct *vma)
371 {
372 kmem_cache_free(vm_area_cachep, vma);
373 }
374
375 static void account_kernel_stack(struct task_struct *tsk, int account)
376 {
377 void *stack = task_stack_page(tsk);
378 struct vm_struct *vm = task_stack_vm_area(tsk);
379
380 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
381
382 if (vm) {
383 int i;
384
385 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
386
387 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
388 mod_zone_page_state(page_zone(vm->pages[i]),
389 NR_KERNEL_STACK_KB,
390 PAGE_SIZE / 1024 * account);
391 }
392 } else {
393 /*
394 * All stack pages are in the same zone and belong to the
395 * same memcg.
396 */
397 struct page *first_page = virt_to_page(stack);
398
399 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
400 THREAD_SIZE / 1024 * account);
401
402 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
403 account * (THREAD_SIZE / 1024));
404 }
405 }
406
407 static int memcg_charge_kernel_stack(struct task_struct *tsk)
408 {
409 #ifdef CONFIG_VMAP_STACK
410 struct vm_struct *vm = task_stack_vm_area(tsk);
411 int ret;
412
413 if (vm) {
414 int i;
415
416 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
417 /*
418 * If memcg_kmem_charge_page() fails, page->mem_cgroup
419 * pointer is NULL, and both memcg_kmem_uncharge_page()
420 * and mod_memcg_page_state() in free_thread_stack()
421 * will ignore this page. So it's safe.
422 */
423 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
424 0);
425 if (ret)
426 return ret;
427
428 mod_memcg_page_state(vm->pages[i],
429 MEMCG_KERNEL_STACK_KB,
430 PAGE_SIZE / 1024);
431 }
432 }
433 #endif
434 return 0;
435 }
436
437 static void release_task_stack(struct task_struct *tsk)
438 {
439 if (WARN_ON(tsk->state != TASK_DEAD))
440 return; /* Better to leak the stack than to free prematurely */
441
442 account_kernel_stack(tsk, -1);
443 free_thread_stack(tsk);
444 tsk->stack = NULL;
445 #ifdef CONFIG_VMAP_STACK
446 tsk->stack_vm_area = NULL;
447 #endif
448 }
449
450 #ifdef CONFIG_THREAD_INFO_IN_TASK
451 void put_task_stack(struct task_struct *tsk)
452 {
453 if (refcount_dec_and_test(&tsk->stack_refcount))
454 release_task_stack(tsk);
455 }
456 #endif
457
458 void free_task(struct task_struct *tsk)
459 {
460 scs_release(tsk);
461
462 #ifndef CONFIG_THREAD_INFO_IN_TASK
463 /*
464 * The task is finally done with both the stack and thread_info,
465 * so free both.
466 */
467 release_task_stack(tsk);
468 #else
469 /*
470 * If the task had a separate stack allocation, it should be gone
471 * by now.
472 */
473 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
474 #endif
475 rt_mutex_debug_task_free(tsk);
476 ftrace_graph_exit_task(tsk);
477 put_seccomp_filter(tsk);
478 arch_release_task_struct(tsk);
479 if (tsk->flags & PF_KTHREAD)
480 free_kthread_struct(tsk);
481 free_task_struct(tsk);
482 }
483 EXPORT_SYMBOL(free_task);
484
485 #ifdef CONFIG_MMU
486 static __latent_entropy int dup_mmap(struct mm_struct *mm,
487 struct mm_struct *oldmm)
488 {
489 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
490 struct rb_node **rb_link, *rb_parent;
491 int retval;
492 unsigned long charge;
493 LIST_HEAD(uf);
494
495 uprobe_start_dup_mmap();
496 if (down_write_killable(&oldmm->mmap_sem)) {
497 retval = -EINTR;
498 goto fail_uprobe_end;
499 }
500 flush_cache_dup_mm(oldmm);
501 uprobe_dup_mmap(oldmm, mm);
502 /*
503 * Not linked in yet - no deadlock potential:
504 */
505 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
506
507 /* No ordering required: file already has been exposed. */
508 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
509
510 mm->total_vm = oldmm->total_vm;
511 mm->data_vm = oldmm->data_vm;
512 mm->exec_vm = oldmm->exec_vm;
513 mm->stack_vm = oldmm->stack_vm;
514
515 rb_link = &mm->mm_rb.rb_node;
516 rb_parent = NULL;
517 pprev = &mm->mmap;
518 retval = ksm_fork(mm, oldmm);
519 if (retval)
520 goto out;
521 retval = khugepaged_fork(mm, oldmm);
522 if (retval)
523 goto out;
524
525 prev = NULL;
526 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
527 struct file *file;
528
529 if (mpnt->vm_flags & VM_DONTCOPY) {
530 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
531 continue;
532 }
533 charge = 0;
534 /*
535 * Don't duplicate many vmas if we've been oom-killed (for
536 * example)
537 */
538 if (fatal_signal_pending(current)) {
539 retval = -EINTR;
540 goto out;
541 }
542 if (mpnt->vm_flags & VM_ACCOUNT) {
543 unsigned long len = vma_pages(mpnt);
544
545 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
546 goto fail_nomem;
547 charge = len;
548 }
549 tmp = vm_area_dup(mpnt);
550 if (!tmp)
551 goto fail_nomem;
552 retval = vma_dup_policy(mpnt, tmp);
553 if (retval)
554 goto fail_nomem_policy;
555 tmp->vm_mm = mm;
556 retval = dup_userfaultfd(tmp, &uf);
557 if (retval)
558 goto fail_nomem_anon_vma_fork;
559 if (tmp->vm_flags & VM_WIPEONFORK) {
560 /*
561 * VM_WIPEONFORK gets a clean slate in the child.
562 * Don't prepare anon_vma until fault since we don't
563 * copy page for current vma.
564 */
565 tmp->anon_vma = NULL;
566 } else if (anon_vma_fork(tmp, mpnt))
567 goto fail_nomem_anon_vma_fork;
568 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
569 file = tmp->vm_file;
570 if (file) {
571 struct inode *inode = file_inode(file);
572 struct address_space *mapping = file->f_mapping;
573
574 get_file(file);
575 if (tmp->vm_flags & VM_DENYWRITE)
576 atomic_dec(&inode->i_writecount);
577 i_mmap_lock_write(mapping);
578 if (tmp->vm_flags & VM_SHARED)
579 atomic_inc(&mapping->i_mmap_writable);
580 flush_dcache_mmap_lock(mapping);
581 /* insert tmp into the share list, just after mpnt */
582 vma_interval_tree_insert_after(tmp, mpnt,
583 &mapping->i_mmap);
584 flush_dcache_mmap_unlock(mapping);
585 i_mmap_unlock_write(mapping);
586 }
587
588 /*
589 * Clear hugetlb-related page reserves for children. This only
590 * affects MAP_PRIVATE mappings. Faults generated by the child
591 * are not guaranteed to succeed, even if read-only
592 */
593 if (is_vm_hugetlb_page(tmp))
594 reset_vma_resv_huge_pages(tmp);
595
596 /*
597 * Link in the new vma and copy the page table entries.
598 */
599 *pprev = tmp;
600 pprev = &tmp->vm_next;
601 tmp->vm_prev = prev;
602 prev = tmp;
603
604 __vma_link_rb(mm, tmp, rb_link, rb_parent);
605 rb_link = &tmp->vm_rb.rb_right;
606 rb_parent = &tmp->vm_rb;
607
608 mm->map_count++;
609 if (!(tmp->vm_flags & VM_WIPEONFORK))
610 retval = copy_page_range(mm, oldmm, mpnt);
611
612 if (tmp->vm_ops && tmp->vm_ops->open)
613 tmp->vm_ops->open(tmp);
614
615 if (retval)
616 goto out;
617 }
618 /* a new mm has just been created */
619 retval = arch_dup_mmap(oldmm, mm);
620 out:
621 up_write(&mm->mmap_sem);
622 flush_tlb_mm(oldmm);
623 up_write(&oldmm->mmap_sem);
624 dup_userfaultfd_complete(&uf);
625 fail_uprobe_end:
626 uprobe_end_dup_mmap();
627 return retval;
628 fail_nomem_anon_vma_fork:
629 mpol_put(vma_policy(tmp));
630 fail_nomem_policy:
631 vm_area_free(tmp);
632 fail_nomem:
633 retval = -ENOMEM;
634 vm_unacct_memory(charge);
635 goto out;
636 }
637
638 static inline int mm_alloc_pgd(struct mm_struct *mm)
639 {
640 mm->pgd = pgd_alloc(mm);
641 if (unlikely(!mm->pgd))
642 return -ENOMEM;
643 return 0;
644 }
645
646 static inline void mm_free_pgd(struct mm_struct *mm)
647 {
648 pgd_free(mm, mm->pgd);
649 }
650 #else
651 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
652 {
653 down_write(&oldmm->mmap_sem);
654 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
655 up_write(&oldmm->mmap_sem);
656 return 0;
657 }
658 #define mm_alloc_pgd(mm) (0)
659 #define mm_free_pgd(mm)
660 #endif /* CONFIG_MMU */
661
662 static void check_mm(struct mm_struct *mm)
663 {
664 int i;
665
666 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
667 "Please make sure 'struct resident_page_types[]' is updated as well");
668
669 for (i = 0; i < NR_MM_COUNTERS; i++) {
670 long x = atomic_long_read(&mm->rss_stat.count[i]);
671
672 if (unlikely(x))
673 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
674 mm, resident_page_types[i], x);
675 }
676
677 if (mm_pgtables_bytes(mm))
678 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
679 mm_pgtables_bytes(mm));
680
681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
682 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
683 #endif
684 }
685
686 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
687 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
688
689 /*
690 * Called when the last reference to the mm
691 * is dropped: either by a lazy thread or by
692 * mmput. Free the page directory and the mm.
693 */
694 void __mmdrop(struct mm_struct *mm)
695 {
696 BUG_ON(mm == &init_mm);
697 WARN_ON_ONCE(mm == current->mm);
698 WARN_ON_ONCE(mm == current->active_mm);
699 mm_free_pgd(mm);
700 destroy_context(mm);
701 mmu_notifier_subscriptions_destroy(mm);
702 check_mm(mm);
703 put_user_ns(mm->user_ns);
704 free_mm(mm);
705 }
706 EXPORT_SYMBOL_GPL(__mmdrop);
707
708 static void mmdrop_async_fn(struct work_struct *work)
709 {
710 struct mm_struct *mm;
711
712 mm = container_of(work, struct mm_struct, async_put_work);
713 __mmdrop(mm);
714 }
715
716 static void mmdrop_async(struct mm_struct *mm)
717 {
718 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
719 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
720 schedule_work(&mm->async_put_work);
721 }
722 }
723
724 static inline void free_signal_struct(struct signal_struct *sig)
725 {
726 taskstats_tgid_free(sig);
727 sched_autogroup_exit(sig);
728 /*
729 * __mmdrop is not safe to call from softirq context on x86 due to
730 * pgd_dtor so postpone it to the async context
731 */
732 if (sig->oom_mm)
733 mmdrop_async(sig->oom_mm);
734 kmem_cache_free(signal_cachep, sig);
735 }
736
737 static inline void put_signal_struct(struct signal_struct *sig)
738 {
739 if (refcount_dec_and_test(&sig->sigcnt))
740 free_signal_struct(sig);
741 }
742
743 void __put_task_struct(struct task_struct *tsk)
744 {
745 WARN_ON(!tsk->exit_state);
746 WARN_ON(refcount_read(&tsk->usage));
747 WARN_ON(tsk == current);
748
749 cgroup_free(tsk);
750 task_numa_free(tsk, true);
751 security_task_free(tsk);
752 exit_creds(tsk);
753 delayacct_tsk_free(tsk);
754 put_signal_struct(tsk->signal);
755
756 if (!profile_handoff_task(tsk))
757 free_task(tsk);
758 }
759 EXPORT_SYMBOL_GPL(__put_task_struct);
760
761 void __init __weak arch_task_cache_init(void) { }
762
763 /*
764 * set_max_threads
765 */
766 static void set_max_threads(unsigned int max_threads_suggested)
767 {
768 u64 threads;
769 unsigned long nr_pages = totalram_pages();
770
771 /*
772 * The number of threads shall be limited such that the thread
773 * structures may only consume a small part of the available memory.
774 */
775 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
776 threads = MAX_THREADS;
777 else
778 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
779 (u64) THREAD_SIZE * 8UL);
780
781 if (threads > max_threads_suggested)
782 threads = max_threads_suggested;
783
784 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
785 }
786
787 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
788 /* Initialized by the architecture: */
789 int arch_task_struct_size __read_mostly;
790 #endif
791
792 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
793 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
794 {
795 /* Fetch thread_struct whitelist for the architecture. */
796 arch_thread_struct_whitelist(offset, size);
797
798 /*
799 * Handle zero-sized whitelist or empty thread_struct, otherwise
800 * adjust offset to position of thread_struct in task_struct.
801 */
802 if (unlikely(*size == 0))
803 *offset = 0;
804 else
805 *offset += offsetof(struct task_struct, thread);
806 }
807 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
808
809 void __init fork_init(void)
810 {
811 int i;
812 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
813 #ifndef ARCH_MIN_TASKALIGN
814 #define ARCH_MIN_TASKALIGN 0
815 #endif
816 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
817 unsigned long useroffset, usersize;
818
819 /* create a slab on which task_structs can be allocated */
820 task_struct_whitelist(&useroffset, &usersize);
821 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
822 arch_task_struct_size, align,
823 SLAB_PANIC|SLAB_ACCOUNT,
824 useroffset, usersize, NULL);
825 #endif
826
827 /* do the arch specific task caches init */
828 arch_task_cache_init();
829
830 set_max_threads(MAX_THREADS);
831
832 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
833 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
834 init_task.signal->rlim[RLIMIT_SIGPENDING] =
835 init_task.signal->rlim[RLIMIT_NPROC];
836
837 for (i = 0; i < UCOUNT_COUNTS; i++) {
838 init_user_ns.ucount_max[i] = max_threads/2;
839 }
840
841 #ifdef CONFIG_VMAP_STACK
842 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
843 NULL, free_vm_stack_cache);
844 #endif
845
846 scs_init();
847
848 lockdep_init_task(&init_task);
849 uprobes_init();
850 }
851
852 int __weak arch_dup_task_struct(struct task_struct *dst,
853 struct task_struct *src)
854 {
855 *dst = *src;
856 return 0;
857 }
858
859 void set_task_stack_end_magic(struct task_struct *tsk)
860 {
861 unsigned long *stackend;
862
863 stackend = end_of_stack(tsk);
864 *stackend = STACK_END_MAGIC; /* for overflow detection */
865 }
866
867 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
868 {
869 struct task_struct *tsk;
870 unsigned long *stack;
871 struct vm_struct *stack_vm_area __maybe_unused;
872 int err;
873
874 if (node == NUMA_NO_NODE)
875 node = tsk_fork_get_node(orig);
876 tsk = alloc_task_struct_node(node);
877 if (!tsk)
878 return NULL;
879
880 stack = alloc_thread_stack_node(tsk, node);
881 if (!stack)
882 goto free_tsk;
883
884 if (memcg_charge_kernel_stack(tsk))
885 goto free_stack;
886
887 stack_vm_area = task_stack_vm_area(tsk);
888
889 err = arch_dup_task_struct(tsk, orig);
890
891 /*
892 * arch_dup_task_struct() clobbers the stack-related fields. Make
893 * sure they're properly initialized before using any stack-related
894 * functions again.
895 */
896 tsk->stack = stack;
897 #ifdef CONFIG_VMAP_STACK
898 tsk->stack_vm_area = stack_vm_area;
899 #endif
900 #ifdef CONFIG_THREAD_INFO_IN_TASK
901 refcount_set(&tsk->stack_refcount, 1);
902 #endif
903
904 if (err)
905 goto free_stack;
906
907 err = scs_prepare(tsk, node);
908 if (err)
909 goto free_stack;
910
911 #ifdef CONFIG_SECCOMP
912 /*
913 * We must handle setting up seccomp filters once we're under
914 * the sighand lock in case orig has changed between now and
915 * then. Until then, filter must be NULL to avoid messing up
916 * the usage counts on the error path calling free_task.
917 */
918 tsk->seccomp.filter = NULL;
919 #endif
920
921 setup_thread_stack(tsk, orig);
922 clear_user_return_notifier(tsk);
923 clear_tsk_need_resched(tsk);
924 set_task_stack_end_magic(tsk);
925
926 #ifdef CONFIG_STACKPROTECTOR
927 tsk->stack_canary = get_random_canary();
928 #endif
929 if (orig->cpus_ptr == &orig->cpus_mask)
930 tsk->cpus_ptr = &tsk->cpus_mask;
931
932 /*
933 * One for the user space visible state that goes away when reaped.
934 * One for the scheduler.
935 */
936 refcount_set(&tsk->rcu_users, 2);
937 /* One for the rcu users */
938 refcount_set(&tsk->usage, 1);
939 #ifdef CONFIG_BLK_DEV_IO_TRACE
940 tsk->btrace_seq = 0;
941 #endif
942 tsk->splice_pipe = NULL;
943 tsk->task_frag.page = NULL;
944 tsk->wake_q.next = NULL;
945
946 account_kernel_stack(tsk, 1);
947
948 kcov_task_init(tsk);
949
950 #ifdef CONFIG_FAULT_INJECTION
951 tsk->fail_nth = 0;
952 #endif
953
954 #ifdef CONFIG_BLK_CGROUP
955 tsk->throttle_queue = NULL;
956 tsk->use_memdelay = 0;
957 #endif
958
959 #ifdef CONFIG_MEMCG
960 tsk->active_memcg = NULL;
961 #endif
962 return tsk;
963
964 free_stack:
965 free_thread_stack(tsk);
966 free_tsk:
967 free_task_struct(tsk);
968 return NULL;
969 }
970
971 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
972
973 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
974
975 static int __init coredump_filter_setup(char *s)
976 {
977 default_dump_filter =
978 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
979 MMF_DUMP_FILTER_MASK;
980 return 1;
981 }
982
983 __setup("coredump_filter=", coredump_filter_setup);
984
985 #include <linux/init_task.h>
986
987 static void mm_init_aio(struct mm_struct *mm)
988 {
989 #ifdef CONFIG_AIO
990 spin_lock_init(&mm->ioctx_lock);
991 mm->ioctx_table = NULL;
992 #endif
993 }
994
995 static __always_inline void mm_clear_owner(struct mm_struct *mm,
996 struct task_struct *p)
997 {
998 #ifdef CONFIG_MEMCG
999 if (mm->owner == p)
1000 WRITE_ONCE(mm->owner, NULL);
1001 #endif
1002 }
1003
1004 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1005 {
1006 #ifdef CONFIG_MEMCG
1007 mm->owner = p;
1008 #endif
1009 }
1010
1011 static void mm_init_uprobes_state(struct mm_struct *mm)
1012 {
1013 #ifdef CONFIG_UPROBES
1014 mm->uprobes_state.xol_area = NULL;
1015 #endif
1016 }
1017
1018 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1019 struct user_namespace *user_ns)
1020 {
1021 mm->mmap = NULL;
1022 mm->mm_rb = RB_ROOT;
1023 mm->vmacache_seqnum = 0;
1024 atomic_set(&mm->mm_users, 1);
1025 atomic_set(&mm->mm_count, 1);
1026 init_rwsem(&mm->mmap_sem);
1027 INIT_LIST_HEAD(&mm->mmlist);
1028 mm->core_state = NULL;
1029 mm_pgtables_bytes_init(mm);
1030 mm->map_count = 0;
1031 mm->locked_vm = 0;
1032 atomic64_set(&mm->pinned_vm, 0);
1033 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1034 spin_lock_init(&mm->page_table_lock);
1035 spin_lock_init(&mm->arg_lock);
1036 mm_init_cpumask(mm);
1037 mm_init_aio(mm);
1038 mm_init_owner(mm, p);
1039 RCU_INIT_POINTER(mm->exe_file, NULL);
1040 mmu_notifier_subscriptions_init(mm);
1041 init_tlb_flush_pending(mm);
1042 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1043 mm->pmd_huge_pte = NULL;
1044 #endif
1045 mm_init_uprobes_state(mm);
1046
1047 if (current->mm) {
1048 mm->flags = current->mm->flags & MMF_INIT_MASK;
1049 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1050 } else {
1051 mm->flags = default_dump_filter;
1052 mm->def_flags = 0;
1053 }
1054
1055 if (mm_alloc_pgd(mm))
1056 goto fail_nopgd;
1057
1058 if (init_new_context(p, mm))
1059 goto fail_nocontext;
1060
1061 mm->user_ns = get_user_ns(user_ns);
1062 return mm;
1063
1064 fail_nocontext:
1065 mm_free_pgd(mm);
1066 fail_nopgd:
1067 free_mm(mm);
1068 return NULL;
1069 }
1070
1071 /*
1072 * Allocate and initialize an mm_struct.
1073 */
1074 struct mm_struct *mm_alloc(void)
1075 {
1076 struct mm_struct *mm;
1077
1078 mm = allocate_mm();
1079 if (!mm)
1080 return NULL;
1081
1082 memset(mm, 0, sizeof(*mm));
1083 return mm_init(mm, current, current_user_ns());
1084 }
1085
1086 static inline void __mmput(struct mm_struct *mm)
1087 {
1088 VM_BUG_ON(atomic_read(&mm->mm_users));
1089
1090 uprobe_clear_state(mm);
1091 exit_aio(mm);
1092 ksm_exit(mm);
1093 khugepaged_exit(mm); /* must run before exit_mmap */
1094 exit_mmap(mm);
1095 mm_put_huge_zero_page(mm);
1096 set_mm_exe_file(mm, NULL);
1097 if (!list_empty(&mm->mmlist)) {
1098 spin_lock(&mmlist_lock);
1099 list_del(&mm->mmlist);
1100 spin_unlock(&mmlist_lock);
1101 }
1102 if (mm->binfmt)
1103 module_put(mm->binfmt->module);
1104 mmdrop(mm);
1105 }
1106
1107 /*
1108 * Decrement the use count and release all resources for an mm.
1109 */
1110 void mmput(struct mm_struct *mm)
1111 {
1112 might_sleep();
1113
1114 if (atomic_dec_and_test(&mm->mm_users))
1115 __mmput(mm);
1116 }
1117 EXPORT_SYMBOL_GPL(mmput);
1118
1119 #ifdef CONFIG_MMU
1120 static void mmput_async_fn(struct work_struct *work)
1121 {
1122 struct mm_struct *mm = container_of(work, struct mm_struct,
1123 async_put_work);
1124
1125 __mmput(mm);
1126 }
1127
1128 void mmput_async(struct mm_struct *mm)
1129 {
1130 if (atomic_dec_and_test(&mm->mm_users)) {
1131 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1132 schedule_work(&mm->async_put_work);
1133 }
1134 }
1135 #endif
1136
1137 /**
1138 * set_mm_exe_file - change a reference to the mm's executable file
1139 *
1140 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1141 *
1142 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1143 * invocations: in mmput() nobody alive left, in execve task is single
1144 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1145 * mm->exe_file, but does so without using set_mm_exe_file() in order
1146 * to do avoid the need for any locks.
1147 */
1148 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1149 {
1150 struct file *old_exe_file;
1151
1152 /*
1153 * It is safe to dereference the exe_file without RCU as
1154 * this function is only called if nobody else can access
1155 * this mm -- see comment above for justification.
1156 */
1157 old_exe_file = rcu_dereference_raw(mm->exe_file);
1158
1159 if (new_exe_file)
1160 get_file(new_exe_file);
1161 rcu_assign_pointer(mm->exe_file, new_exe_file);
1162 if (old_exe_file)
1163 fput(old_exe_file);
1164 }
1165
1166 /**
1167 * get_mm_exe_file - acquire a reference to the mm's executable file
1168 *
1169 * Returns %NULL if mm has no associated executable file.
1170 * User must release file via fput().
1171 */
1172 struct file *get_mm_exe_file(struct mm_struct *mm)
1173 {
1174 struct file *exe_file;
1175
1176 rcu_read_lock();
1177 exe_file = rcu_dereference(mm->exe_file);
1178 if (exe_file && !get_file_rcu(exe_file))
1179 exe_file = NULL;
1180 rcu_read_unlock();
1181 return exe_file;
1182 }
1183 EXPORT_SYMBOL(get_mm_exe_file);
1184
1185 /**
1186 * get_task_exe_file - acquire a reference to the task's executable file
1187 *
1188 * Returns %NULL if task's mm (if any) has no associated executable file or
1189 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1190 * User must release file via fput().
1191 */
1192 struct file *get_task_exe_file(struct task_struct *task)
1193 {
1194 struct file *exe_file = NULL;
1195 struct mm_struct *mm;
1196
1197 task_lock(task);
1198 mm = task->mm;
1199 if (mm) {
1200 if (!(task->flags & PF_KTHREAD))
1201 exe_file = get_mm_exe_file(mm);
1202 }
1203 task_unlock(task);
1204 return exe_file;
1205 }
1206 EXPORT_SYMBOL(get_task_exe_file);
1207
1208 /**
1209 * get_task_mm - acquire a reference to the task's mm
1210 *
1211 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1212 * this kernel workthread has transiently adopted a user mm with use_mm,
1213 * to do its AIO) is not set and if so returns a reference to it, after
1214 * bumping up the use count. User must release the mm via mmput()
1215 * after use. Typically used by /proc and ptrace.
1216 */
1217 struct mm_struct *get_task_mm(struct task_struct *task)
1218 {
1219 struct mm_struct *mm;
1220
1221 task_lock(task);
1222 mm = task->mm;
1223 if (mm) {
1224 if (task->flags & PF_KTHREAD)
1225 mm = NULL;
1226 else
1227 mmget(mm);
1228 }
1229 task_unlock(task);
1230 return mm;
1231 }
1232 EXPORT_SYMBOL_GPL(get_task_mm);
1233
1234 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1235 {
1236 struct mm_struct *mm;
1237 int err;
1238
1239 err = mutex_lock_killable(&task->signal->exec_update_mutex);
1240 if (err)
1241 return ERR_PTR(err);
1242
1243 mm = get_task_mm(task);
1244 if (mm && mm != current->mm &&
1245 !ptrace_may_access(task, mode)) {
1246 mmput(mm);
1247 mm = ERR_PTR(-EACCES);
1248 }
1249 mutex_unlock(&task->signal->exec_update_mutex);
1250
1251 return mm;
1252 }
1253
1254 static void complete_vfork_done(struct task_struct *tsk)
1255 {
1256 struct completion *vfork;
1257
1258 task_lock(tsk);
1259 vfork = tsk->vfork_done;
1260 if (likely(vfork)) {
1261 tsk->vfork_done = NULL;
1262 complete(vfork);
1263 }
1264 task_unlock(tsk);
1265 }
1266
1267 static int wait_for_vfork_done(struct task_struct *child,
1268 struct completion *vfork)
1269 {
1270 int killed;
1271
1272 freezer_do_not_count();
1273 cgroup_enter_frozen();
1274 killed = wait_for_completion_killable(vfork);
1275 cgroup_leave_frozen(false);
1276 freezer_count();
1277
1278 if (killed) {
1279 task_lock(child);
1280 child->vfork_done = NULL;
1281 task_unlock(child);
1282 }
1283
1284 put_task_struct(child);
1285 return killed;
1286 }
1287
1288 /* Please note the differences between mmput and mm_release.
1289 * mmput is called whenever we stop holding onto a mm_struct,
1290 * error success whatever.
1291 *
1292 * mm_release is called after a mm_struct has been removed
1293 * from the current process.
1294 *
1295 * This difference is important for error handling, when we
1296 * only half set up a mm_struct for a new process and need to restore
1297 * the old one. Because we mmput the new mm_struct before
1298 * restoring the old one. . .
1299 * Eric Biederman 10 January 1998
1300 */
1301 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1302 {
1303 uprobe_free_utask(tsk);
1304
1305 /* Get rid of any cached register state */
1306 deactivate_mm(tsk, mm);
1307
1308 /*
1309 * Signal userspace if we're not exiting with a core dump
1310 * because we want to leave the value intact for debugging
1311 * purposes.
1312 */
1313 if (tsk->clear_child_tid) {
1314 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1315 atomic_read(&mm->mm_users) > 1) {
1316 /*
1317 * We don't check the error code - if userspace has
1318 * not set up a proper pointer then tough luck.
1319 */
1320 put_user(0, tsk->clear_child_tid);
1321 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1322 1, NULL, NULL, 0, 0);
1323 }
1324 tsk->clear_child_tid = NULL;
1325 }
1326
1327 /*
1328 * All done, finally we can wake up parent and return this mm to him.
1329 * Also kthread_stop() uses this completion for synchronization.
1330 */
1331 if (tsk->vfork_done)
1332 complete_vfork_done(tsk);
1333 }
1334
1335 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1336 {
1337 futex_exit_release(tsk);
1338 mm_release(tsk, mm);
1339 }
1340
1341 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1342 {
1343 futex_exec_release(tsk);
1344 mm_release(tsk, mm);
1345 }
1346
1347 /**
1348 * dup_mm() - duplicates an existing mm structure
1349 * @tsk: the task_struct with which the new mm will be associated.
1350 * @oldmm: the mm to duplicate.
1351 *
1352 * Allocates a new mm structure and duplicates the provided @oldmm structure
1353 * content into it.
1354 *
1355 * Return: the duplicated mm or NULL on failure.
1356 */
1357 static struct mm_struct *dup_mm(struct task_struct *tsk,
1358 struct mm_struct *oldmm)
1359 {
1360 struct mm_struct *mm;
1361 int err;
1362
1363 mm = allocate_mm();
1364 if (!mm)
1365 goto fail_nomem;
1366
1367 memcpy(mm, oldmm, sizeof(*mm));
1368
1369 if (!mm_init(mm, tsk, mm->user_ns))
1370 goto fail_nomem;
1371
1372 err = dup_mmap(mm, oldmm);
1373 if (err)
1374 goto free_pt;
1375
1376 mm->hiwater_rss = get_mm_rss(mm);
1377 mm->hiwater_vm = mm->total_vm;
1378
1379 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1380 goto free_pt;
1381
1382 return mm;
1383
1384 free_pt:
1385 /* don't put binfmt in mmput, we haven't got module yet */
1386 mm->binfmt = NULL;
1387 mm_init_owner(mm, NULL);
1388 mmput(mm);
1389
1390 fail_nomem:
1391 return NULL;
1392 }
1393
1394 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1395 {
1396 struct mm_struct *mm, *oldmm;
1397 int retval;
1398
1399 tsk->min_flt = tsk->maj_flt = 0;
1400 tsk->nvcsw = tsk->nivcsw = 0;
1401 #ifdef CONFIG_DETECT_HUNG_TASK
1402 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1403 tsk->last_switch_time = 0;
1404 #endif
1405
1406 tsk->mm = NULL;
1407 tsk->active_mm = NULL;
1408
1409 /*
1410 * Are we cloning a kernel thread?
1411 *
1412 * We need to steal a active VM for that..
1413 */
1414 oldmm = current->mm;
1415 if (!oldmm)
1416 return 0;
1417
1418 /* initialize the new vmacache entries */
1419 vmacache_flush(tsk);
1420
1421 if (clone_flags & CLONE_VM) {
1422 mmget(oldmm);
1423 mm = oldmm;
1424 goto good_mm;
1425 }
1426
1427 retval = -ENOMEM;
1428 mm = dup_mm(tsk, current->mm);
1429 if (!mm)
1430 goto fail_nomem;
1431
1432 good_mm:
1433 tsk->mm = mm;
1434 tsk->active_mm = mm;
1435 return 0;
1436
1437 fail_nomem:
1438 return retval;
1439 }
1440
1441 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1442 {
1443 struct fs_struct *fs = current->fs;
1444 if (clone_flags & CLONE_FS) {
1445 /* tsk->fs is already what we want */
1446 spin_lock(&fs->lock);
1447 if (fs->in_exec) {
1448 spin_unlock(&fs->lock);
1449 return -EAGAIN;
1450 }
1451 fs->users++;
1452 spin_unlock(&fs->lock);
1453 return 0;
1454 }
1455 tsk->fs = copy_fs_struct(fs);
1456 if (!tsk->fs)
1457 return -ENOMEM;
1458 return 0;
1459 }
1460
1461 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1462 {
1463 struct files_struct *oldf, *newf;
1464 int error = 0;
1465
1466 /*
1467 * A background process may not have any files ...
1468 */
1469 oldf = current->files;
1470 if (!oldf)
1471 goto out;
1472
1473 if (clone_flags & CLONE_FILES) {
1474 atomic_inc(&oldf->count);
1475 goto out;
1476 }
1477
1478 newf = dup_fd(oldf, &error);
1479 if (!newf)
1480 goto out;
1481
1482 tsk->files = newf;
1483 error = 0;
1484 out:
1485 return error;
1486 }
1487
1488 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1489 {
1490 #ifdef CONFIG_BLOCK
1491 struct io_context *ioc = current->io_context;
1492 struct io_context *new_ioc;
1493
1494 if (!ioc)
1495 return 0;
1496 /*
1497 * Share io context with parent, if CLONE_IO is set
1498 */
1499 if (clone_flags & CLONE_IO) {
1500 ioc_task_link(ioc);
1501 tsk->io_context = ioc;
1502 } else if (ioprio_valid(ioc->ioprio)) {
1503 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1504 if (unlikely(!new_ioc))
1505 return -ENOMEM;
1506
1507 new_ioc->ioprio = ioc->ioprio;
1508 put_io_context(new_ioc);
1509 }
1510 #endif
1511 return 0;
1512 }
1513
1514 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1515 {
1516 struct sighand_struct *sig;
1517
1518 if (clone_flags & CLONE_SIGHAND) {
1519 refcount_inc(&current->sighand->count);
1520 return 0;
1521 }
1522 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1523 RCU_INIT_POINTER(tsk->sighand, sig);
1524 if (!sig)
1525 return -ENOMEM;
1526
1527 refcount_set(&sig->count, 1);
1528 spin_lock_irq(&current->sighand->siglock);
1529 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1530 spin_unlock_irq(&current->sighand->siglock);
1531
1532 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1533 if (clone_flags & CLONE_CLEAR_SIGHAND)
1534 flush_signal_handlers(tsk, 0);
1535
1536 return 0;
1537 }
1538
1539 void __cleanup_sighand(struct sighand_struct *sighand)
1540 {
1541 if (refcount_dec_and_test(&sighand->count)) {
1542 signalfd_cleanup(sighand);
1543 /*
1544 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1545 * without an RCU grace period, see __lock_task_sighand().
1546 */
1547 kmem_cache_free(sighand_cachep, sighand);
1548 }
1549 }
1550
1551 /*
1552 * Initialize POSIX timer handling for a thread group.
1553 */
1554 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1555 {
1556 struct posix_cputimers *pct = &sig->posix_cputimers;
1557 unsigned long cpu_limit;
1558
1559 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1560 posix_cputimers_group_init(pct, cpu_limit);
1561 }
1562
1563 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1564 {
1565 struct signal_struct *sig;
1566
1567 if (clone_flags & CLONE_THREAD)
1568 return 0;
1569
1570 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1571 tsk->signal = sig;
1572 if (!sig)
1573 return -ENOMEM;
1574
1575 sig->nr_threads = 1;
1576 atomic_set(&sig->live, 1);
1577 refcount_set(&sig->sigcnt, 1);
1578
1579 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1580 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1581 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1582
1583 init_waitqueue_head(&sig->wait_chldexit);
1584 sig->curr_target = tsk;
1585 init_sigpending(&sig->shared_pending);
1586 INIT_HLIST_HEAD(&sig->multiprocess);
1587 seqlock_init(&sig->stats_lock);
1588 prev_cputime_init(&sig->prev_cputime);
1589
1590 #ifdef CONFIG_POSIX_TIMERS
1591 INIT_LIST_HEAD(&sig->posix_timers);
1592 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1593 sig->real_timer.function = it_real_fn;
1594 #endif
1595
1596 task_lock(current->group_leader);
1597 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1598 task_unlock(current->group_leader);
1599
1600 posix_cpu_timers_init_group(sig);
1601
1602 tty_audit_fork(sig);
1603 sched_autogroup_fork(sig);
1604
1605 sig->oom_score_adj = current->signal->oom_score_adj;
1606 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1607
1608 mutex_init(&sig->cred_guard_mutex);
1609 mutex_init(&sig->exec_update_mutex);
1610
1611 return 0;
1612 }
1613
1614 static void copy_seccomp(struct task_struct *p)
1615 {
1616 #ifdef CONFIG_SECCOMP
1617 /*
1618 * Must be called with sighand->lock held, which is common to
1619 * all threads in the group. Holding cred_guard_mutex is not
1620 * needed because this new task is not yet running and cannot
1621 * be racing exec.
1622 */
1623 assert_spin_locked(&current->sighand->siglock);
1624
1625 /* Ref-count the new filter user, and assign it. */
1626 get_seccomp_filter(current);
1627 p->seccomp = current->seccomp;
1628
1629 /*
1630 * Explicitly enable no_new_privs here in case it got set
1631 * between the task_struct being duplicated and holding the
1632 * sighand lock. The seccomp state and nnp must be in sync.
1633 */
1634 if (task_no_new_privs(current))
1635 task_set_no_new_privs(p);
1636
1637 /*
1638 * If the parent gained a seccomp mode after copying thread
1639 * flags and between before we held the sighand lock, we have
1640 * to manually enable the seccomp thread flag here.
1641 */
1642 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1643 set_tsk_thread_flag(p, TIF_SECCOMP);
1644 #endif
1645 }
1646
1647 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1648 {
1649 current->clear_child_tid = tidptr;
1650
1651 return task_pid_vnr(current);
1652 }
1653
1654 static void rt_mutex_init_task(struct task_struct *p)
1655 {
1656 raw_spin_lock_init(&p->pi_lock);
1657 #ifdef CONFIG_RT_MUTEXES
1658 p->pi_waiters = RB_ROOT_CACHED;
1659 p->pi_top_task = NULL;
1660 p->pi_blocked_on = NULL;
1661 #endif
1662 }
1663
1664 static inline void init_task_pid_links(struct task_struct *task)
1665 {
1666 enum pid_type type;
1667
1668 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1669 INIT_HLIST_NODE(&task->pid_links[type]);
1670 }
1671 }
1672
1673 static inline void
1674 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1675 {
1676 if (type == PIDTYPE_PID)
1677 task->thread_pid = pid;
1678 else
1679 task->signal->pids[type] = pid;
1680 }
1681
1682 static inline void rcu_copy_process(struct task_struct *p)
1683 {
1684 #ifdef CONFIG_PREEMPT_RCU
1685 p->rcu_read_lock_nesting = 0;
1686 p->rcu_read_unlock_special.s = 0;
1687 p->rcu_blocked_node = NULL;
1688 INIT_LIST_HEAD(&p->rcu_node_entry);
1689 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1690 #ifdef CONFIG_TASKS_RCU
1691 p->rcu_tasks_holdout = false;
1692 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1693 p->rcu_tasks_idle_cpu = -1;
1694 #endif /* #ifdef CONFIG_TASKS_RCU */
1695 #ifdef CONFIG_TASKS_TRACE_RCU
1696 p->trc_reader_nesting = 0;
1697 p->trc_reader_special.s = 0;
1698 INIT_LIST_HEAD(&p->trc_holdout_list);
1699 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1700 }
1701
1702 struct pid *pidfd_pid(const struct file *file)
1703 {
1704 if (file->f_op == &pidfd_fops)
1705 return file->private_data;
1706
1707 return ERR_PTR(-EBADF);
1708 }
1709
1710 static int pidfd_release(struct inode *inode, struct file *file)
1711 {
1712 struct pid *pid = file->private_data;
1713
1714 file->private_data = NULL;
1715 put_pid(pid);
1716 return 0;
1717 }
1718
1719 #ifdef CONFIG_PROC_FS
1720 /**
1721 * pidfd_show_fdinfo - print information about a pidfd
1722 * @m: proc fdinfo file
1723 * @f: file referencing a pidfd
1724 *
1725 * Pid:
1726 * This function will print the pid that a given pidfd refers to in the
1727 * pid namespace of the procfs instance.
1728 * If the pid namespace of the process is not a descendant of the pid
1729 * namespace of the procfs instance 0 will be shown as its pid. This is
1730 * similar to calling getppid() on a process whose parent is outside of
1731 * its pid namespace.
1732 *
1733 * NSpid:
1734 * If pid namespaces are supported then this function will also print
1735 * the pid of a given pidfd refers to for all descendant pid namespaces
1736 * starting from the current pid namespace of the instance, i.e. the
1737 * Pid field and the first entry in the NSpid field will be identical.
1738 * If the pid namespace of the process is not a descendant of the pid
1739 * namespace of the procfs instance 0 will be shown as its first NSpid
1740 * entry and no others will be shown.
1741 * Note that this differs from the Pid and NSpid fields in
1742 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1743 * the pid namespace of the procfs instance. The difference becomes
1744 * obvious when sending around a pidfd between pid namespaces from a
1745 * different branch of the tree, i.e. where no ancestoral relation is
1746 * present between the pid namespaces:
1747 * - create two new pid namespaces ns1 and ns2 in the initial pid
1748 * namespace (also take care to create new mount namespaces in the
1749 * new pid namespace and mount procfs)
1750 * - create a process with a pidfd in ns1
1751 * - send pidfd from ns1 to ns2
1752 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1753 * have exactly one entry, which is 0
1754 */
1755 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1756 {
1757 struct pid *pid = f->private_data;
1758 struct pid_namespace *ns;
1759 pid_t nr = -1;
1760
1761 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1762 ns = proc_pid_ns(file_inode(m->file));
1763 nr = pid_nr_ns(pid, ns);
1764 }
1765
1766 seq_put_decimal_ll(m, "Pid:\t", nr);
1767
1768 #ifdef CONFIG_PID_NS
1769 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1770 if (nr > 0) {
1771 int i;
1772
1773 /* If nr is non-zero it means that 'pid' is valid and that
1774 * ns, i.e. the pid namespace associated with the procfs
1775 * instance, is in the pid namespace hierarchy of pid.
1776 * Start at one below the already printed level.
1777 */
1778 for (i = ns->level + 1; i <= pid->level; i++)
1779 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1780 }
1781 #endif
1782 seq_putc(m, '\n');
1783 }
1784 #endif
1785
1786 /*
1787 * Poll support for process exit notification.
1788 */
1789 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1790 {
1791 struct task_struct *task;
1792 struct pid *pid = file->private_data;
1793 __poll_t poll_flags = 0;
1794
1795 poll_wait(file, &pid->wait_pidfd, pts);
1796
1797 rcu_read_lock();
1798 task = pid_task(pid, PIDTYPE_PID);
1799 /*
1800 * Inform pollers only when the whole thread group exits.
1801 * If the thread group leader exits before all other threads in the
1802 * group, then poll(2) should block, similar to the wait(2) family.
1803 */
1804 if (!task || (task->exit_state && thread_group_empty(task)))
1805 poll_flags = EPOLLIN | EPOLLRDNORM;
1806 rcu_read_unlock();
1807
1808 return poll_flags;
1809 }
1810
1811 const struct file_operations pidfd_fops = {
1812 .release = pidfd_release,
1813 .poll = pidfd_poll,
1814 #ifdef CONFIG_PROC_FS
1815 .show_fdinfo = pidfd_show_fdinfo,
1816 #endif
1817 };
1818
1819 static void __delayed_free_task(struct rcu_head *rhp)
1820 {
1821 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1822
1823 free_task(tsk);
1824 }
1825
1826 static __always_inline void delayed_free_task(struct task_struct *tsk)
1827 {
1828 if (IS_ENABLED(CONFIG_MEMCG))
1829 call_rcu(&tsk->rcu, __delayed_free_task);
1830 else
1831 free_task(tsk);
1832 }
1833
1834 /*
1835 * This creates a new process as a copy of the old one,
1836 * but does not actually start it yet.
1837 *
1838 * It copies the registers, and all the appropriate
1839 * parts of the process environment (as per the clone
1840 * flags). The actual kick-off is left to the caller.
1841 */
1842 static __latent_entropy struct task_struct *copy_process(
1843 struct pid *pid,
1844 int trace,
1845 int node,
1846 struct kernel_clone_args *args)
1847 {
1848 int pidfd = -1, retval;
1849 struct task_struct *p;
1850 struct multiprocess_signals delayed;
1851 struct file *pidfile = NULL;
1852 u64 clone_flags = args->flags;
1853 struct nsproxy *nsp = current->nsproxy;
1854
1855 /*
1856 * Don't allow sharing the root directory with processes in a different
1857 * namespace
1858 */
1859 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1860 return ERR_PTR(-EINVAL);
1861
1862 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1863 return ERR_PTR(-EINVAL);
1864
1865 /*
1866 * Thread groups must share signals as well, and detached threads
1867 * can only be started up within the thread group.
1868 */
1869 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1870 return ERR_PTR(-EINVAL);
1871
1872 /*
1873 * Shared signal handlers imply shared VM. By way of the above,
1874 * thread groups also imply shared VM. Blocking this case allows
1875 * for various simplifications in other code.
1876 */
1877 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1878 return ERR_PTR(-EINVAL);
1879
1880 /*
1881 * Siblings of global init remain as zombies on exit since they are
1882 * not reaped by their parent (swapper). To solve this and to avoid
1883 * multi-rooted process trees, prevent global and container-inits
1884 * from creating siblings.
1885 */
1886 if ((clone_flags & CLONE_PARENT) &&
1887 current->signal->flags & SIGNAL_UNKILLABLE)
1888 return ERR_PTR(-EINVAL);
1889
1890 /*
1891 * If the new process will be in a different pid or user namespace
1892 * do not allow it to share a thread group with the forking task.
1893 */
1894 if (clone_flags & CLONE_THREAD) {
1895 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1896 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1897 return ERR_PTR(-EINVAL);
1898 }
1899
1900 /*
1901 * If the new process will be in a different time namespace
1902 * do not allow it to share VM or a thread group with the forking task.
1903 */
1904 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1905 if (nsp->time_ns != nsp->time_ns_for_children)
1906 return ERR_PTR(-EINVAL);
1907 }
1908
1909 if (clone_flags & CLONE_PIDFD) {
1910 /*
1911 * - CLONE_DETACHED is blocked so that we can potentially
1912 * reuse it later for CLONE_PIDFD.
1913 * - CLONE_THREAD is blocked until someone really needs it.
1914 */
1915 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1916 return ERR_PTR(-EINVAL);
1917 }
1918
1919 /*
1920 * Force any signals received before this point to be delivered
1921 * before the fork happens. Collect up signals sent to multiple
1922 * processes that happen during the fork and delay them so that
1923 * they appear to happen after the fork.
1924 */
1925 sigemptyset(&delayed.signal);
1926 INIT_HLIST_NODE(&delayed.node);
1927
1928 spin_lock_irq(&current->sighand->siglock);
1929 if (!(clone_flags & CLONE_THREAD))
1930 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1931 recalc_sigpending();
1932 spin_unlock_irq(&current->sighand->siglock);
1933 retval = -ERESTARTNOINTR;
1934 if (signal_pending(current))
1935 goto fork_out;
1936
1937 retval = -ENOMEM;
1938 p = dup_task_struct(current, node);
1939 if (!p)
1940 goto fork_out;
1941
1942 /*
1943 * This _must_ happen before we call free_task(), i.e. before we jump
1944 * to any of the bad_fork_* labels. This is to avoid freeing
1945 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1946 * kernel threads (PF_KTHREAD).
1947 */
1948 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1949 /*
1950 * Clear TID on mm_release()?
1951 */
1952 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1953
1954 ftrace_graph_init_task(p);
1955
1956 rt_mutex_init_task(p);
1957
1958 #ifdef CONFIG_PROVE_LOCKING
1959 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1960 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1961 #endif
1962 retval = -EAGAIN;
1963 if (atomic_read(&p->real_cred->user->processes) >=
1964 task_rlimit(p, RLIMIT_NPROC)) {
1965 if (p->real_cred->user != INIT_USER &&
1966 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1967 goto bad_fork_free;
1968 }
1969 current->flags &= ~PF_NPROC_EXCEEDED;
1970
1971 retval = copy_creds(p, clone_flags);
1972 if (retval < 0)
1973 goto bad_fork_free;
1974
1975 /*
1976 * If multiple threads are within copy_process(), then this check
1977 * triggers too late. This doesn't hurt, the check is only there
1978 * to stop root fork bombs.
1979 */
1980 retval = -EAGAIN;
1981 if (nr_threads >= max_threads)
1982 goto bad_fork_cleanup_count;
1983
1984 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1985 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1986 p->flags |= PF_FORKNOEXEC;
1987 INIT_LIST_HEAD(&p->children);
1988 INIT_LIST_HEAD(&p->sibling);
1989 rcu_copy_process(p);
1990 p->vfork_done = NULL;
1991 spin_lock_init(&p->alloc_lock);
1992
1993 init_sigpending(&p->pending);
1994
1995 p->utime = p->stime = p->gtime = 0;
1996 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1997 p->utimescaled = p->stimescaled = 0;
1998 #endif
1999 prev_cputime_init(&p->prev_cputime);
2000
2001 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2002 seqcount_init(&p->vtime.seqcount);
2003 p->vtime.starttime = 0;
2004 p->vtime.state = VTIME_INACTIVE;
2005 #endif
2006
2007 #if defined(SPLIT_RSS_COUNTING)
2008 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2009 #endif
2010
2011 p->default_timer_slack_ns = current->timer_slack_ns;
2012
2013 #ifdef CONFIG_PSI
2014 p->psi_flags = 0;
2015 #endif
2016
2017 task_io_accounting_init(&p->ioac);
2018 acct_clear_integrals(p);
2019
2020 posix_cputimers_init(&p->posix_cputimers);
2021
2022 p->io_context = NULL;
2023 audit_set_context(p, NULL);
2024 cgroup_fork(p);
2025 #ifdef CONFIG_NUMA
2026 p->mempolicy = mpol_dup(p->mempolicy);
2027 if (IS_ERR(p->mempolicy)) {
2028 retval = PTR_ERR(p->mempolicy);
2029 p->mempolicy = NULL;
2030 goto bad_fork_cleanup_threadgroup_lock;
2031 }
2032 #endif
2033 #ifdef CONFIG_CPUSETS
2034 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2035 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2036 seqcount_init(&p->mems_allowed_seq);
2037 #endif
2038 #ifdef CONFIG_TRACE_IRQFLAGS
2039 p->irq_events = 0;
2040 p->hardirqs_enabled = 0;
2041 p->hardirq_enable_ip = 0;
2042 p->hardirq_enable_event = 0;
2043 p->hardirq_disable_ip = _THIS_IP_;
2044 p->hardirq_disable_event = 0;
2045 p->softirqs_enabled = 1;
2046 p->softirq_enable_ip = _THIS_IP_;
2047 p->softirq_enable_event = 0;
2048 p->softirq_disable_ip = 0;
2049 p->softirq_disable_event = 0;
2050 p->hardirq_context = 0;
2051 p->softirq_context = 0;
2052 #endif
2053
2054 p->pagefault_disabled = 0;
2055
2056 #ifdef CONFIG_LOCKDEP
2057 lockdep_init_task(p);
2058 #endif
2059
2060 #ifdef CONFIG_DEBUG_MUTEXES
2061 p->blocked_on = NULL; /* not blocked yet */
2062 #endif
2063 #ifdef CONFIG_BCACHE
2064 p->sequential_io = 0;
2065 p->sequential_io_avg = 0;
2066 #endif
2067
2068 /* Perform scheduler related setup. Assign this task to a CPU. */
2069 retval = sched_fork(clone_flags, p);
2070 if (retval)
2071 goto bad_fork_cleanup_policy;
2072
2073 retval = perf_event_init_task(p);
2074 if (retval)
2075 goto bad_fork_cleanup_policy;
2076 retval = audit_alloc(p);
2077 if (retval)
2078 goto bad_fork_cleanup_perf;
2079 /* copy all the process information */
2080 shm_init_task(p);
2081 retval = security_task_alloc(p, clone_flags);
2082 if (retval)
2083 goto bad_fork_cleanup_audit;
2084 retval = copy_semundo(clone_flags, p);
2085 if (retval)
2086 goto bad_fork_cleanup_security;
2087 retval = copy_files(clone_flags, p);
2088 if (retval)
2089 goto bad_fork_cleanup_semundo;
2090 retval = copy_fs(clone_flags, p);
2091 if (retval)
2092 goto bad_fork_cleanup_files;
2093 retval = copy_sighand(clone_flags, p);
2094 if (retval)
2095 goto bad_fork_cleanup_fs;
2096 retval = copy_signal(clone_flags, p);
2097 if (retval)
2098 goto bad_fork_cleanup_sighand;
2099 retval = copy_mm(clone_flags, p);
2100 if (retval)
2101 goto bad_fork_cleanup_signal;
2102 retval = copy_namespaces(clone_flags, p);
2103 if (retval)
2104 goto bad_fork_cleanup_mm;
2105 retval = copy_io(clone_flags, p);
2106 if (retval)
2107 goto bad_fork_cleanup_namespaces;
2108 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2109 args->tls);
2110 if (retval)
2111 goto bad_fork_cleanup_io;
2112
2113 stackleak_task_init(p);
2114
2115 if (pid != &init_struct_pid) {
2116 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2117 args->set_tid_size);
2118 if (IS_ERR(pid)) {
2119 retval = PTR_ERR(pid);
2120 goto bad_fork_cleanup_thread;
2121 }
2122 }
2123
2124 /*
2125 * This has to happen after we've potentially unshared the file
2126 * descriptor table (so that the pidfd doesn't leak into the child
2127 * if the fd table isn't shared).
2128 */
2129 if (clone_flags & CLONE_PIDFD) {
2130 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2131 if (retval < 0)
2132 goto bad_fork_free_pid;
2133
2134 pidfd = retval;
2135
2136 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2137 O_RDWR | O_CLOEXEC);
2138 if (IS_ERR(pidfile)) {
2139 put_unused_fd(pidfd);
2140 retval = PTR_ERR(pidfile);
2141 goto bad_fork_free_pid;
2142 }
2143 get_pid(pid); /* held by pidfile now */
2144
2145 retval = put_user(pidfd, args->pidfd);
2146 if (retval)
2147 goto bad_fork_put_pidfd;
2148 }
2149
2150 #ifdef CONFIG_BLOCK
2151 p->plug = NULL;
2152 #endif
2153 futex_init_task(p);
2154
2155 /*
2156 * sigaltstack should be cleared when sharing the same VM
2157 */
2158 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2159 sas_ss_reset(p);
2160
2161 /*
2162 * Syscall tracing and stepping should be turned off in the
2163 * child regardless of CLONE_PTRACE.
2164 */
2165 user_disable_single_step(p);
2166 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2167 #ifdef TIF_SYSCALL_EMU
2168 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2169 #endif
2170 clear_tsk_latency_tracing(p);
2171
2172 /* ok, now we should be set up.. */
2173 p->pid = pid_nr(pid);
2174 if (clone_flags & CLONE_THREAD) {
2175 p->exit_signal = -1;
2176 p->group_leader = current->group_leader;
2177 p->tgid = current->tgid;
2178 } else {
2179 if (clone_flags & CLONE_PARENT)
2180 p->exit_signal = current->group_leader->exit_signal;
2181 else
2182 p->exit_signal = args->exit_signal;
2183 p->group_leader = p;
2184 p->tgid = p->pid;
2185 }
2186
2187 p->nr_dirtied = 0;
2188 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2189 p->dirty_paused_when = 0;
2190
2191 p->pdeath_signal = 0;
2192 INIT_LIST_HEAD(&p->thread_group);
2193 p->task_works = NULL;
2194
2195 /*
2196 * Ensure that the cgroup subsystem policies allow the new process to be
2197 * forked. It should be noted the the new process's css_set can be changed
2198 * between here and cgroup_post_fork() if an organisation operation is in
2199 * progress.
2200 */
2201 retval = cgroup_can_fork(p, args);
2202 if (retval)
2203 goto bad_fork_put_pidfd;
2204
2205 /*
2206 * From this point on we must avoid any synchronous user-space
2207 * communication until we take the tasklist-lock. In particular, we do
2208 * not want user-space to be able to predict the process start-time by
2209 * stalling fork(2) after we recorded the start_time but before it is
2210 * visible to the system.
2211 */
2212
2213 p->start_time = ktime_get_ns();
2214 p->start_boottime = ktime_get_boottime_ns();
2215
2216 /*
2217 * Make it visible to the rest of the system, but dont wake it up yet.
2218 * Need tasklist lock for parent etc handling!
2219 */
2220 write_lock_irq(&tasklist_lock);
2221
2222 /* CLONE_PARENT re-uses the old parent */
2223 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2224 p->real_parent = current->real_parent;
2225 p->parent_exec_id = current->parent_exec_id;
2226 } else {
2227 p->real_parent = current;
2228 p->parent_exec_id = current->self_exec_id;
2229 }
2230
2231 klp_copy_process(p);
2232
2233 spin_lock(&current->sighand->siglock);
2234
2235 /*
2236 * Copy seccomp details explicitly here, in case they were changed
2237 * before holding sighand lock.
2238 */
2239 copy_seccomp(p);
2240
2241 rseq_fork(p, clone_flags);
2242
2243 /* Don't start children in a dying pid namespace */
2244 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2245 retval = -ENOMEM;
2246 goto bad_fork_cancel_cgroup;
2247 }
2248
2249 /* Let kill terminate clone/fork in the middle */
2250 if (fatal_signal_pending(current)) {
2251 retval = -EINTR;
2252 goto bad_fork_cancel_cgroup;
2253 }
2254
2255 /* past the last point of failure */
2256 if (pidfile)
2257 fd_install(pidfd, pidfile);
2258
2259 init_task_pid_links(p);
2260 if (likely(p->pid)) {
2261 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2262
2263 init_task_pid(p, PIDTYPE_PID, pid);
2264 if (thread_group_leader(p)) {
2265 init_task_pid(p, PIDTYPE_TGID, pid);
2266 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2267 init_task_pid(p, PIDTYPE_SID, task_session(current));
2268
2269 if (is_child_reaper(pid)) {
2270 ns_of_pid(pid)->child_reaper = p;
2271 p->signal->flags |= SIGNAL_UNKILLABLE;
2272 }
2273 p->signal->shared_pending.signal = delayed.signal;
2274 p->signal->tty = tty_kref_get(current->signal->tty);
2275 /*
2276 * Inherit has_child_subreaper flag under the same
2277 * tasklist_lock with adding child to the process tree
2278 * for propagate_has_child_subreaper optimization.
2279 */
2280 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2281 p->real_parent->signal->is_child_subreaper;
2282 list_add_tail(&p->sibling, &p->real_parent->children);
2283 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2284 attach_pid(p, PIDTYPE_TGID);
2285 attach_pid(p, PIDTYPE_PGID);
2286 attach_pid(p, PIDTYPE_SID);
2287 __this_cpu_inc(process_counts);
2288 } else {
2289 current->signal->nr_threads++;
2290 atomic_inc(&current->signal->live);
2291 refcount_inc(&current->signal->sigcnt);
2292 task_join_group_stop(p);
2293 list_add_tail_rcu(&p->thread_group,
2294 &p->group_leader->thread_group);
2295 list_add_tail_rcu(&p->thread_node,
2296 &p->signal->thread_head);
2297 }
2298 attach_pid(p, PIDTYPE_PID);
2299 nr_threads++;
2300 }
2301 total_forks++;
2302 hlist_del_init(&delayed.node);
2303 spin_unlock(&current->sighand->siglock);
2304 syscall_tracepoint_update(p);
2305 write_unlock_irq(&tasklist_lock);
2306
2307 proc_fork_connector(p);
2308 cgroup_post_fork(p, args);
2309 perf_event_fork(p);
2310
2311 trace_task_newtask(p, clone_flags);
2312 uprobe_copy_process(p, clone_flags);
2313
2314 return p;
2315
2316 bad_fork_cancel_cgroup:
2317 spin_unlock(&current->sighand->siglock);
2318 write_unlock_irq(&tasklist_lock);
2319 cgroup_cancel_fork(p, args);
2320 bad_fork_put_pidfd:
2321 if (clone_flags & CLONE_PIDFD) {
2322 fput(pidfile);
2323 put_unused_fd(pidfd);
2324 }
2325 bad_fork_free_pid:
2326 if (pid != &init_struct_pid)
2327 free_pid(pid);
2328 bad_fork_cleanup_thread:
2329 exit_thread(p);
2330 bad_fork_cleanup_io:
2331 if (p->io_context)
2332 exit_io_context(p);
2333 bad_fork_cleanup_namespaces:
2334 exit_task_namespaces(p);
2335 bad_fork_cleanup_mm:
2336 if (p->mm) {
2337 mm_clear_owner(p->mm, p);
2338 mmput(p->mm);
2339 }
2340 bad_fork_cleanup_signal:
2341 if (!(clone_flags & CLONE_THREAD))
2342 free_signal_struct(p->signal);
2343 bad_fork_cleanup_sighand:
2344 __cleanup_sighand(p->sighand);
2345 bad_fork_cleanup_fs:
2346 exit_fs(p); /* blocking */
2347 bad_fork_cleanup_files:
2348 exit_files(p); /* blocking */
2349 bad_fork_cleanup_semundo:
2350 exit_sem(p);
2351 bad_fork_cleanup_security:
2352 security_task_free(p);
2353 bad_fork_cleanup_audit:
2354 audit_free(p);
2355 bad_fork_cleanup_perf:
2356 perf_event_free_task(p);
2357 bad_fork_cleanup_policy:
2358 lockdep_free_task(p);
2359 #ifdef CONFIG_NUMA
2360 mpol_put(p->mempolicy);
2361 bad_fork_cleanup_threadgroup_lock:
2362 #endif
2363 delayacct_tsk_free(p);
2364 bad_fork_cleanup_count:
2365 atomic_dec(&p->cred->user->processes);
2366 exit_creds(p);
2367 bad_fork_free:
2368 p->state = TASK_DEAD;
2369 put_task_stack(p);
2370 delayed_free_task(p);
2371 fork_out:
2372 spin_lock_irq(&current->sighand->siglock);
2373 hlist_del_init(&delayed.node);
2374 spin_unlock_irq(&current->sighand->siglock);
2375 return ERR_PTR(retval);
2376 }
2377
2378 static inline void init_idle_pids(struct task_struct *idle)
2379 {
2380 enum pid_type type;
2381
2382 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2383 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2384 init_task_pid(idle, type, &init_struct_pid);
2385 }
2386 }
2387
2388 struct task_struct *fork_idle(int cpu)
2389 {
2390 struct task_struct *task;
2391 struct kernel_clone_args args = {
2392 .flags = CLONE_VM,
2393 };
2394
2395 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2396 if (!IS_ERR(task)) {
2397 init_idle_pids(task);
2398 init_idle(task, cpu);
2399 }
2400
2401 return task;
2402 }
2403
2404 struct mm_struct *copy_init_mm(void)
2405 {
2406 return dup_mm(NULL, &init_mm);
2407 }
2408
2409 /*
2410 * Ok, this is the main fork-routine.
2411 *
2412 * It copies the process, and if successful kick-starts
2413 * it and waits for it to finish using the VM if required.
2414 *
2415 * args->exit_signal is expected to be checked for sanity by the caller.
2416 */
2417 long _do_fork(struct kernel_clone_args *args)
2418 {
2419 u64 clone_flags = args->flags;
2420 struct completion vfork;
2421 struct pid *pid;
2422 struct task_struct *p;
2423 int trace = 0;
2424 long nr;
2425
2426 /*
2427 * Determine whether and which event to report to ptracer. When
2428 * called from kernel_thread or CLONE_UNTRACED is explicitly
2429 * requested, no event is reported; otherwise, report if the event
2430 * for the type of forking is enabled.
2431 */
2432 if (!(clone_flags & CLONE_UNTRACED)) {
2433 if (clone_flags & CLONE_VFORK)
2434 trace = PTRACE_EVENT_VFORK;
2435 else if (args->exit_signal != SIGCHLD)
2436 trace = PTRACE_EVENT_CLONE;
2437 else
2438 trace = PTRACE_EVENT_FORK;
2439
2440 if (likely(!ptrace_event_enabled(current, trace)))
2441 trace = 0;
2442 }
2443
2444 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2445 add_latent_entropy();
2446
2447 if (IS_ERR(p))
2448 return PTR_ERR(p);
2449
2450 /*
2451 * Do this prior waking up the new thread - the thread pointer
2452 * might get invalid after that point, if the thread exits quickly.
2453 */
2454 trace_sched_process_fork(current, p);
2455
2456 pid = get_task_pid(p, PIDTYPE_PID);
2457 nr = pid_vnr(pid);
2458
2459 if (clone_flags & CLONE_PARENT_SETTID)
2460 put_user(nr, args->parent_tid);
2461
2462 if (clone_flags & CLONE_VFORK) {
2463 p->vfork_done = &vfork;
2464 init_completion(&vfork);
2465 get_task_struct(p);
2466 }
2467
2468 wake_up_new_task(p);
2469
2470 /* forking complete and child started to run, tell ptracer */
2471 if (unlikely(trace))
2472 ptrace_event_pid(trace, pid);
2473
2474 if (clone_flags & CLONE_VFORK) {
2475 if (!wait_for_vfork_done(p, &vfork))
2476 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2477 }
2478
2479 put_pid(pid);
2480 return nr;
2481 }
2482
2483 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2484 {
2485 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2486 if ((kargs->flags & CLONE_PIDFD) &&
2487 (kargs->flags & CLONE_PARENT_SETTID))
2488 return false;
2489
2490 return true;
2491 }
2492
2493 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2494 /* For compatibility with architectures that call do_fork directly rather than
2495 * using the syscall entry points below. */
2496 long do_fork(unsigned long clone_flags,
2497 unsigned long stack_start,
2498 unsigned long stack_size,
2499 int __user *parent_tidptr,
2500 int __user *child_tidptr)
2501 {
2502 struct kernel_clone_args args = {
2503 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2504 .pidfd = parent_tidptr,
2505 .child_tid = child_tidptr,
2506 .parent_tid = parent_tidptr,
2507 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2508 .stack = stack_start,
2509 .stack_size = stack_size,
2510 };
2511
2512 if (!legacy_clone_args_valid(&args))
2513 return -EINVAL;
2514
2515 return _do_fork(&args);
2516 }
2517 #endif
2518
2519 /*
2520 * Create a kernel thread.
2521 */
2522 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2523 {
2524 struct kernel_clone_args args = {
2525 .flags = ((lower_32_bits(flags) | CLONE_VM |
2526 CLONE_UNTRACED) & ~CSIGNAL),
2527 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2528 .stack = (unsigned long)fn,
2529 .stack_size = (unsigned long)arg,
2530 };
2531
2532 return _do_fork(&args);
2533 }
2534
2535 #ifdef __ARCH_WANT_SYS_FORK
2536 SYSCALL_DEFINE0(fork)
2537 {
2538 #ifdef CONFIG_MMU
2539 struct kernel_clone_args args = {
2540 .exit_signal = SIGCHLD,
2541 };
2542
2543 return _do_fork(&args);
2544 #else
2545 /* can not support in nommu mode */
2546 return -EINVAL;
2547 #endif
2548 }
2549 #endif
2550
2551 #ifdef __ARCH_WANT_SYS_VFORK
2552 SYSCALL_DEFINE0(vfork)
2553 {
2554 struct kernel_clone_args args = {
2555 .flags = CLONE_VFORK | CLONE_VM,
2556 .exit_signal = SIGCHLD,
2557 };
2558
2559 return _do_fork(&args);
2560 }
2561 #endif
2562
2563 #ifdef __ARCH_WANT_SYS_CLONE
2564 #ifdef CONFIG_CLONE_BACKWARDS
2565 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2566 int __user *, parent_tidptr,
2567 unsigned long, tls,
2568 int __user *, child_tidptr)
2569 #elif defined(CONFIG_CLONE_BACKWARDS2)
2570 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2571 int __user *, parent_tidptr,
2572 int __user *, child_tidptr,
2573 unsigned long, tls)
2574 #elif defined(CONFIG_CLONE_BACKWARDS3)
2575 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2576 int, stack_size,
2577 int __user *, parent_tidptr,
2578 int __user *, child_tidptr,
2579 unsigned long, tls)
2580 #else
2581 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2582 int __user *, parent_tidptr,
2583 int __user *, child_tidptr,
2584 unsigned long, tls)
2585 #endif
2586 {
2587 struct kernel_clone_args args = {
2588 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2589 .pidfd = parent_tidptr,
2590 .child_tid = child_tidptr,
2591 .parent_tid = parent_tidptr,
2592 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2593 .stack = newsp,
2594 .tls = tls,
2595 };
2596
2597 if (!legacy_clone_args_valid(&args))
2598 return -EINVAL;
2599
2600 return _do_fork(&args);
2601 }
2602 #endif
2603
2604 #ifdef __ARCH_WANT_SYS_CLONE3
2605
2606 /*
2607 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2608 * the registers containing the syscall arguments for clone. This doesn't work
2609 * with clone3 since the TLS value is passed in clone_args instead.
2610 */
2611 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2612 #error clone3 requires copy_thread_tls support in arch
2613 #endif
2614
2615 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2616 struct clone_args __user *uargs,
2617 size_t usize)
2618 {
2619 int err;
2620 struct clone_args args;
2621 pid_t *kset_tid = kargs->set_tid;
2622
2623 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2624 CLONE_ARGS_SIZE_VER0);
2625 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2626 CLONE_ARGS_SIZE_VER1);
2627 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2628 CLONE_ARGS_SIZE_VER2);
2629 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2630
2631 if (unlikely(usize > PAGE_SIZE))
2632 return -E2BIG;
2633 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2634 return -EINVAL;
2635
2636 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2637 if (err)
2638 return err;
2639
2640 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2641 return -EINVAL;
2642
2643 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2644 return -EINVAL;
2645
2646 if (unlikely(args.set_tid && args.set_tid_size == 0))
2647 return -EINVAL;
2648
2649 /*
2650 * Verify that higher 32bits of exit_signal are unset and that
2651 * it is a valid signal
2652 */
2653 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2654 !valid_signal(args.exit_signal)))
2655 return -EINVAL;
2656
2657 if ((args.flags & CLONE_INTO_CGROUP) &&
2658 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2659 return -EINVAL;
2660
2661 *kargs = (struct kernel_clone_args){
2662 .flags = args.flags,
2663 .pidfd = u64_to_user_ptr(args.pidfd),
2664 .child_tid = u64_to_user_ptr(args.child_tid),
2665 .parent_tid = u64_to_user_ptr(args.parent_tid),
2666 .exit_signal = args.exit_signal,
2667 .stack = args.stack,
2668 .stack_size = args.stack_size,
2669 .tls = args.tls,
2670 .set_tid_size = args.set_tid_size,
2671 .cgroup = args.cgroup,
2672 };
2673
2674 if (args.set_tid &&
2675 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2676 (kargs->set_tid_size * sizeof(pid_t))))
2677 return -EFAULT;
2678
2679 kargs->set_tid = kset_tid;
2680
2681 return 0;
2682 }
2683
2684 /**
2685 * clone3_stack_valid - check and prepare stack
2686 * @kargs: kernel clone args
2687 *
2688 * Verify that the stack arguments userspace gave us are sane.
2689 * In addition, set the stack direction for userspace since it's easy for us to
2690 * determine.
2691 */
2692 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2693 {
2694 if (kargs->stack == 0) {
2695 if (kargs->stack_size > 0)
2696 return false;
2697 } else {
2698 if (kargs->stack_size == 0)
2699 return false;
2700
2701 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2702 return false;
2703
2704 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2705 kargs->stack += kargs->stack_size;
2706 #endif
2707 }
2708
2709 return true;
2710 }
2711
2712 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2713 {
2714 /* Verify that no unknown flags are passed along. */
2715 if (kargs->flags &
2716 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2717 return false;
2718
2719 /*
2720 * - make the CLONE_DETACHED bit reuseable for clone3
2721 * - make the CSIGNAL bits reuseable for clone3
2722 */
2723 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2724 return false;
2725
2726 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2727 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2728 return false;
2729
2730 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2731 kargs->exit_signal)
2732 return false;
2733
2734 if (!clone3_stack_valid(kargs))
2735 return false;
2736
2737 return true;
2738 }
2739
2740 /**
2741 * clone3 - create a new process with specific properties
2742 * @uargs: argument structure
2743 * @size: size of @uargs
2744 *
2745 * clone3() is the extensible successor to clone()/clone2().
2746 * It takes a struct as argument that is versioned by its size.
2747 *
2748 * Return: On success, a positive PID for the child process.
2749 * On error, a negative errno number.
2750 */
2751 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2752 {
2753 int err;
2754
2755 struct kernel_clone_args kargs;
2756 pid_t set_tid[MAX_PID_NS_LEVEL];
2757
2758 kargs.set_tid = set_tid;
2759
2760 err = copy_clone_args_from_user(&kargs, uargs, size);
2761 if (err)
2762 return err;
2763
2764 if (!clone3_args_valid(&kargs))
2765 return -EINVAL;
2766
2767 return _do_fork(&kargs);
2768 }
2769 #endif
2770
2771 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2772 {
2773 struct task_struct *leader, *parent, *child;
2774 int res;
2775
2776 read_lock(&tasklist_lock);
2777 leader = top = top->group_leader;
2778 down:
2779 for_each_thread(leader, parent) {
2780 list_for_each_entry(child, &parent->children, sibling) {
2781 res = visitor(child, data);
2782 if (res) {
2783 if (res < 0)
2784 goto out;
2785 leader = child;
2786 goto down;
2787 }
2788 up:
2789 ;
2790 }
2791 }
2792
2793 if (leader != top) {
2794 child = leader;
2795 parent = child->real_parent;
2796 leader = parent->group_leader;
2797 goto up;
2798 }
2799 out:
2800 read_unlock(&tasklist_lock);
2801 }
2802
2803 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2804 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2805 #endif
2806
2807 static void sighand_ctor(void *data)
2808 {
2809 struct sighand_struct *sighand = data;
2810
2811 spin_lock_init(&sighand->siglock);
2812 init_waitqueue_head(&sighand->signalfd_wqh);
2813 }
2814
2815 void __init proc_caches_init(void)
2816 {
2817 unsigned int mm_size;
2818
2819 sighand_cachep = kmem_cache_create("sighand_cache",
2820 sizeof(struct sighand_struct), 0,
2821 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2822 SLAB_ACCOUNT, sighand_ctor);
2823 signal_cachep = kmem_cache_create("signal_cache",
2824 sizeof(struct signal_struct), 0,
2825 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2826 NULL);
2827 files_cachep = kmem_cache_create("files_cache",
2828 sizeof(struct files_struct), 0,
2829 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2830 NULL);
2831 fs_cachep = kmem_cache_create("fs_cache",
2832 sizeof(struct fs_struct), 0,
2833 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2834 NULL);
2835
2836 /*
2837 * The mm_cpumask is located at the end of mm_struct, and is
2838 * dynamically sized based on the maximum CPU number this system
2839 * can have, taking hotplug into account (nr_cpu_ids).
2840 */
2841 mm_size = sizeof(struct mm_struct) + cpumask_size();
2842
2843 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2844 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2845 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2846 offsetof(struct mm_struct, saved_auxv),
2847 sizeof_field(struct mm_struct, saved_auxv),
2848 NULL);
2849 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2850 mmap_init();
2851 nsproxy_cache_init();
2852 }
2853
2854 /*
2855 * Check constraints on flags passed to the unshare system call.
2856 */
2857 static int check_unshare_flags(unsigned long unshare_flags)
2858 {
2859 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2860 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2861 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2862 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2863 CLONE_NEWTIME))
2864 return -EINVAL;
2865 /*
2866 * Not implemented, but pretend it works if there is nothing
2867 * to unshare. Note that unsharing the address space or the
2868 * signal handlers also need to unshare the signal queues (aka
2869 * CLONE_THREAD).
2870 */
2871 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2872 if (!thread_group_empty(current))
2873 return -EINVAL;
2874 }
2875 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2876 if (refcount_read(&current->sighand->count) > 1)
2877 return -EINVAL;
2878 }
2879 if (unshare_flags & CLONE_VM) {
2880 if (!current_is_single_threaded())
2881 return -EINVAL;
2882 }
2883
2884 return 0;
2885 }
2886
2887 /*
2888 * Unshare the filesystem structure if it is being shared
2889 */
2890 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2891 {
2892 struct fs_struct *fs = current->fs;
2893
2894 if (!(unshare_flags & CLONE_FS) || !fs)
2895 return 0;
2896
2897 /* don't need lock here; in the worst case we'll do useless copy */
2898 if (fs->users == 1)
2899 return 0;
2900
2901 *new_fsp = copy_fs_struct(fs);
2902 if (!*new_fsp)
2903 return -ENOMEM;
2904
2905 return 0;
2906 }
2907
2908 /*
2909 * Unshare file descriptor table if it is being shared
2910 */
2911 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2912 {
2913 struct files_struct *fd = current->files;
2914 int error = 0;
2915
2916 if ((unshare_flags & CLONE_FILES) &&
2917 (fd && atomic_read(&fd->count) > 1)) {
2918 *new_fdp = dup_fd(fd, &error);
2919 if (!*new_fdp)
2920 return error;
2921 }
2922
2923 return 0;
2924 }
2925
2926 /*
2927 * unshare allows a process to 'unshare' part of the process
2928 * context which was originally shared using clone. copy_*
2929 * functions used by do_fork() cannot be used here directly
2930 * because they modify an inactive task_struct that is being
2931 * constructed. Here we are modifying the current, active,
2932 * task_struct.
2933 */
2934 int ksys_unshare(unsigned long unshare_flags)
2935 {
2936 struct fs_struct *fs, *new_fs = NULL;
2937 struct files_struct *fd, *new_fd = NULL;
2938 struct cred *new_cred = NULL;
2939 struct nsproxy *new_nsproxy = NULL;
2940 int do_sysvsem = 0;
2941 int err;
2942
2943 /*
2944 * If unsharing a user namespace must also unshare the thread group
2945 * and unshare the filesystem root and working directories.
2946 */
2947 if (unshare_flags & CLONE_NEWUSER)
2948 unshare_flags |= CLONE_THREAD | CLONE_FS;
2949 /*
2950 * If unsharing vm, must also unshare signal handlers.
2951 */
2952 if (unshare_flags & CLONE_VM)
2953 unshare_flags |= CLONE_SIGHAND;
2954 /*
2955 * If unsharing a signal handlers, must also unshare the signal queues.
2956 */
2957 if (unshare_flags & CLONE_SIGHAND)
2958 unshare_flags |= CLONE_THREAD;
2959 /*
2960 * If unsharing namespace, must also unshare filesystem information.
2961 */
2962 if (unshare_flags & CLONE_NEWNS)
2963 unshare_flags |= CLONE_FS;
2964
2965 err = check_unshare_flags(unshare_flags);
2966 if (err)
2967 goto bad_unshare_out;
2968 /*
2969 * CLONE_NEWIPC must also detach from the undolist: after switching
2970 * to a new ipc namespace, the semaphore arrays from the old
2971 * namespace are unreachable.
2972 */
2973 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2974 do_sysvsem = 1;
2975 err = unshare_fs(unshare_flags, &new_fs);
2976 if (err)
2977 goto bad_unshare_out;
2978 err = unshare_fd(unshare_flags, &new_fd);
2979 if (err)
2980 goto bad_unshare_cleanup_fs;
2981 err = unshare_userns(unshare_flags, &new_cred);
2982 if (err)
2983 goto bad_unshare_cleanup_fd;
2984 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2985 new_cred, new_fs);
2986 if (err)
2987 goto bad_unshare_cleanup_cred;
2988
2989 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2990 if (do_sysvsem) {
2991 /*
2992 * CLONE_SYSVSEM is equivalent to sys_exit().
2993 */
2994 exit_sem(current);
2995 }
2996 if (unshare_flags & CLONE_NEWIPC) {
2997 /* Orphan segments in old ns (see sem above). */
2998 exit_shm(current);
2999 shm_init_task(current);
3000 }
3001
3002 if (new_nsproxy)
3003 switch_task_namespaces(current, new_nsproxy);
3004
3005 task_lock(current);
3006
3007 if (new_fs) {
3008 fs = current->fs;
3009 spin_lock(&fs->lock);
3010 current->fs = new_fs;
3011 if (--fs->users)
3012 new_fs = NULL;
3013 else
3014 new_fs = fs;
3015 spin_unlock(&fs->lock);
3016 }
3017
3018 if (new_fd) {
3019 fd = current->files;
3020 current->files = new_fd;
3021 new_fd = fd;
3022 }
3023
3024 task_unlock(current);
3025
3026 if (new_cred) {
3027 /* Install the new user namespace */
3028 commit_creds(new_cred);
3029 new_cred = NULL;
3030 }
3031 }
3032
3033 perf_event_namespaces(current);
3034
3035 bad_unshare_cleanup_cred:
3036 if (new_cred)
3037 put_cred(new_cred);
3038 bad_unshare_cleanup_fd:
3039 if (new_fd)
3040 put_files_struct(new_fd);
3041
3042 bad_unshare_cleanup_fs:
3043 if (new_fs)
3044 free_fs_struct(new_fs);
3045
3046 bad_unshare_out:
3047 return err;
3048 }
3049
3050 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3051 {
3052 return ksys_unshare(unshare_flags);
3053 }
3054
3055 /*
3056 * Helper to unshare the files of the current task.
3057 * We don't want to expose copy_files internals to
3058 * the exec layer of the kernel.
3059 */
3060
3061 int unshare_files(struct files_struct **displaced)
3062 {
3063 struct task_struct *task = current;
3064 struct files_struct *copy = NULL;
3065 int error;
3066
3067 error = unshare_fd(CLONE_FILES, &copy);
3068 if (error || !copy) {
3069 *displaced = NULL;
3070 return error;
3071 }
3072 *displaced = task->files;
3073 task_lock(task);
3074 task->files = copy;
3075 task_unlock(task);
3076 return 0;
3077 }
3078
3079 int sysctl_max_threads(struct ctl_table *table, int write,
3080 void __user *buffer, size_t *lenp, loff_t *ppos)
3081 {
3082 struct ctl_table t;
3083 int ret;
3084 int threads = max_threads;
3085 int min = 1;
3086 int max = MAX_THREADS;
3087
3088 t = *table;
3089 t.data = &threads;
3090 t.extra1 = &min;
3091 t.extra2 = &max;
3092
3093 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3094 if (ret || !write)
3095 return ret;
3096
3097 max_threads = threads;
3098
3099 return 0;
3100 }