]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/fork.c
perf_counter: Propagate inheritance failures down the fork() path
[mirror_ubuntu-focal-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <trace/sched.h>
65 #include <linux/magic.h>
66 #include <linux/perf_counter.h>
67
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
74
75 /*
76 * Protected counters by write_lock_irq(&tasklist_lock)
77 */
78 unsigned long total_forks; /* Handle normal Linux uptimes. */
79 int nr_threads; /* The idle threads do not count.. */
80
81 int max_threads; /* tunable limit on nr_threads */
82
83 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
84
85 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
86
87 DEFINE_TRACE(sched_process_fork);
88
89 int nr_processes(void)
90 {
91 int cpu;
92 int total = 0;
93
94 for_each_online_cpu(cpu)
95 total += per_cpu(process_counts, cpu);
96
97 return total;
98 }
99
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
105
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 {
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 gfp_t mask = GFP_KERNEL;
113 #endif
114 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 }
116
117 static inline void free_thread_info(struct thread_info *ti)
118 {
119 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 }
121 #endif
122
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
125
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
128
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
131
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
134
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
137
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
140
141 void free_task(struct task_struct *tsk)
142 {
143 prop_local_destroy_single(&tsk->dirties);
144 free_thread_info(tsk->stack);
145 rt_mutex_debug_task_free(tsk);
146 ftrace_graph_exit_task(tsk);
147 free_task_struct(tsk);
148 }
149 EXPORT_SYMBOL(free_task);
150
151 void __put_task_struct(struct task_struct *tsk)
152 {
153 WARN_ON(!tsk->exit_state);
154 WARN_ON(atomic_read(&tsk->usage));
155 WARN_ON(tsk == current);
156
157 put_cred(tsk->real_cred);
158 put_cred(tsk->cred);
159 delayacct_tsk_free(tsk);
160
161 if (!profile_handoff_task(tsk))
162 free_task(tsk);
163 }
164
165 /*
166 * macro override instead of weak attribute alias, to workaround
167 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
168 */
169 #ifndef arch_task_cache_init
170 #define arch_task_cache_init()
171 #endif
172
173 void __init fork_init(unsigned long mempages)
174 {
175 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
176 #ifndef ARCH_MIN_TASKALIGN
177 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
178 #endif
179 /* create a slab on which task_structs can be allocated */
180 task_struct_cachep =
181 kmem_cache_create("task_struct", sizeof(struct task_struct),
182 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
183 #endif
184
185 /* do the arch specific task caches init */
186 arch_task_cache_init();
187
188 /*
189 * The default maximum number of threads is set to a safe
190 * value: the thread structures can take up at most half
191 * of memory.
192 */
193 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
194
195 /*
196 * we need to allow at least 20 threads to boot a system
197 */
198 if(max_threads < 20)
199 max_threads = 20;
200
201 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
202 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
203 init_task.signal->rlim[RLIMIT_SIGPENDING] =
204 init_task.signal->rlim[RLIMIT_NPROC];
205 }
206
207 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
208 struct task_struct *src)
209 {
210 *dst = *src;
211 return 0;
212 }
213
214 static struct task_struct *dup_task_struct(struct task_struct *orig)
215 {
216 struct task_struct *tsk;
217 struct thread_info *ti;
218 unsigned long *stackend;
219
220 int err;
221
222 prepare_to_copy(orig);
223
224 tsk = alloc_task_struct();
225 if (!tsk)
226 return NULL;
227
228 ti = alloc_thread_info(tsk);
229 if (!ti) {
230 free_task_struct(tsk);
231 return NULL;
232 }
233
234 err = arch_dup_task_struct(tsk, orig);
235 if (err)
236 goto out;
237
238 tsk->stack = ti;
239
240 err = prop_local_init_single(&tsk->dirties);
241 if (err)
242 goto out;
243
244 setup_thread_stack(tsk, orig);
245 stackend = end_of_stack(tsk);
246 *stackend = STACK_END_MAGIC; /* for overflow detection */
247
248 #ifdef CONFIG_CC_STACKPROTECTOR
249 tsk->stack_canary = get_random_int();
250 #endif
251
252 /* One for us, one for whoever does the "release_task()" (usually parent) */
253 atomic_set(&tsk->usage,2);
254 atomic_set(&tsk->fs_excl, 0);
255 #ifdef CONFIG_BLK_DEV_IO_TRACE
256 tsk->btrace_seq = 0;
257 #endif
258 tsk->splice_pipe = NULL;
259 return tsk;
260
261 out:
262 free_thread_info(ti);
263 free_task_struct(tsk);
264 return NULL;
265 }
266
267 #ifdef CONFIG_MMU
268 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
269 {
270 struct vm_area_struct *mpnt, *tmp, **pprev;
271 struct rb_node **rb_link, *rb_parent;
272 int retval;
273 unsigned long charge;
274 struct mempolicy *pol;
275
276 down_write(&oldmm->mmap_sem);
277 flush_cache_dup_mm(oldmm);
278 /*
279 * Not linked in yet - no deadlock potential:
280 */
281 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
282
283 mm->locked_vm = 0;
284 mm->mmap = NULL;
285 mm->mmap_cache = NULL;
286 mm->free_area_cache = oldmm->mmap_base;
287 mm->cached_hole_size = ~0UL;
288 mm->map_count = 0;
289 cpumask_clear(mm_cpumask(mm));
290 mm->mm_rb = RB_ROOT;
291 rb_link = &mm->mm_rb.rb_node;
292 rb_parent = NULL;
293 pprev = &mm->mmap;
294
295 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
296 struct file *file;
297
298 if (mpnt->vm_flags & VM_DONTCOPY) {
299 long pages = vma_pages(mpnt);
300 mm->total_vm -= pages;
301 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
302 -pages);
303 continue;
304 }
305 charge = 0;
306 if (mpnt->vm_flags & VM_ACCOUNT) {
307 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
308 if (security_vm_enough_memory(len))
309 goto fail_nomem;
310 charge = len;
311 }
312 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
313 if (!tmp)
314 goto fail_nomem;
315 *tmp = *mpnt;
316 pol = mpol_dup(vma_policy(mpnt));
317 retval = PTR_ERR(pol);
318 if (IS_ERR(pol))
319 goto fail_nomem_policy;
320 vma_set_policy(tmp, pol);
321 tmp->vm_flags &= ~VM_LOCKED;
322 tmp->vm_mm = mm;
323 tmp->vm_next = NULL;
324 anon_vma_link(tmp);
325 file = tmp->vm_file;
326 if (file) {
327 struct inode *inode = file->f_path.dentry->d_inode;
328 struct address_space *mapping = file->f_mapping;
329
330 get_file(file);
331 if (tmp->vm_flags & VM_DENYWRITE)
332 atomic_dec(&inode->i_writecount);
333 spin_lock(&mapping->i_mmap_lock);
334 if (tmp->vm_flags & VM_SHARED)
335 mapping->i_mmap_writable++;
336 tmp->vm_truncate_count = mpnt->vm_truncate_count;
337 flush_dcache_mmap_lock(mapping);
338 /* insert tmp into the share list, just after mpnt */
339 vma_prio_tree_add(tmp, mpnt);
340 flush_dcache_mmap_unlock(mapping);
341 spin_unlock(&mapping->i_mmap_lock);
342 }
343
344 /*
345 * Clear hugetlb-related page reserves for children. This only
346 * affects MAP_PRIVATE mappings. Faults generated by the child
347 * are not guaranteed to succeed, even if read-only
348 */
349 if (is_vm_hugetlb_page(tmp))
350 reset_vma_resv_huge_pages(tmp);
351
352 /*
353 * Link in the new vma and copy the page table entries.
354 */
355 *pprev = tmp;
356 pprev = &tmp->vm_next;
357
358 __vma_link_rb(mm, tmp, rb_link, rb_parent);
359 rb_link = &tmp->vm_rb.rb_right;
360 rb_parent = &tmp->vm_rb;
361
362 mm->map_count++;
363 retval = copy_page_range(mm, oldmm, mpnt);
364
365 if (tmp->vm_ops && tmp->vm_ops->open)
366 tmp->vm_ops->open(tmp);
367
368 if (retval)
369 goto out;
370 }
371 /* a new mm has just been created */
372 arch_dup_mmap(oldmm, mm);
373 retval = 0;
374 out:
375 up_write(&mm->mmap_sem);
376 flush_tlb_mm(oldmm);
377 up_write(&oldmm->mmap_sem);
378 return retval;
379 fail_nomem_policy:
380 kmem_cache_free(vm_area_cachep, tmp);
381 fail_nomem:
382 retval = -ENOMEM;
383 vm_unacct_memory(charge);
384 goto out;
385 }
386
387 static inline int mm_alloc_pgd(struct mm_struct * mm)
388 {
389 mm->pgd = pgd_alloc(mm);
390 if (unlikely(!mm->pgd))
391 return -ENOMEM;
392 return 0;
393 }
394
395 static inline void mm_free_pgd(struct mm_struct * mm)
396 {
397 pgd_free(mm, mm->pgd);
398 }
399 #else
400 #define dup_mmap(mm, oldmm) (0)
401 #define mm_alloc_pgd(mm) (0)
402 #define mm_free_pgd(mm)
403 #endif /* CONFIG_MMU */
404
405 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
406
407 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
408 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
409
410 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
411
412 static int __init coredump_filter_setup(char *s)
413 {
414 default_dump_filter =
415 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
416 MMF_DUMP_FILTER_MASK;
417 return 1;
418 }
419
420 __setup("coredump_filter=", coredump_filter_setup);
421
422 #include <linux/init_task.h>
423
424 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
425 {
426 atomic_set(&mm->mm_users, 1);
427 atomic_set(&mm->mm_count, 1);
428 init_rwsem(&mm->mmap_sem);
429 INIT_LIST_HEAD(&mm->mmlist);
430 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
431 mm->core_state = NULL;
432 mm->nr_ptes = 0;
433 set_mm_counter(mm, file_rss, 0);
434 set_mm_counter(mm, anon_rss, 0);
435 spin_lock_init(&mm->page_table_lock);
436 spin_lock_init(&mm->ioctx_lock);
437 INIT_HLIST_HEAD(&mm->ioctx_list);
438 mm->free_area_cache = TASK_UNMAPPED_BASE;
439 mm->cached_hole_size = ~0UL;
440 mm_init_owner(mm, p);
441
442 if (likely(!mm_alloc_pgd(mm))) {
443 mm->def_flags = 0;
444 mmu_notifier_mm_init(mm);
445 return mm;
446 }
447
448 free_mm(mm);
449 return NULL;
450 }
451
452 /*
453 * Allocate and initialize an mm_struct.
454 */
455 struct mm_struct * mm_alloc(void)
456 {
457 struct mm_struct * mm;
458
459 mm = allocate_mm();
460 if (mm) {
461 memset(mm, 0, sizeof(*mm));
462 mm = mm_init(mm, current);
463 }
464 return mm;
465 }
466
467 /*
468 * Called when the last reference to the mm
469 * is dropped: either by a lazy thread or by
470 * mmput. Free the page directory and the mm.
471 */
472 void __mmdrop(struct mm_struct *mm)
473 {
474 BUG_ON(mm == &init_mm);
475 mm_free_pgd(mm);
476 destroy_context(mm);
477 mmu_notifier_mm_destroy(mm);
478 free_mm(mm);
479 }
480 EXPORT_SYMBOL_GPL(__mmdrop);
481
482 /*
483 * Decrement the use count and release all resources for an mm.
484 */
485 void mmput(struct mm_struct *mm)
486 {
487 might_sleep();
488
489 if (atomic_dec_and_test(&mm->mm_users)) {
490 exit_aio(mm);
491 exit_mmap(mm);
492 set_mm_exe_file(mm, NULL);
493 if (!list_empty(&mm->mmlist)) {
494 spin_lock(&mmlist_lock);
495 list_del(&mm->mmlist);
496 spin_unlock(&mmlist_lock);
497 }
498 put_swap_token(mm);
499 mmdrop(mm);
500 }
501 }
502 EXPORT_SYMBOL_GPL(mmput);
503
504 /**
505 * get_task_mm - acquire a reference to the task's mm
506 *
507 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
508 * this kernel workthread has transiently adopted a user mm with use_mm,
509 * to do its AIO) is not set and if so returns a reference to it, after
510 * bumping up the use count. User must release the mm via mmput()
511 * after use. Typically used by /proc and ptrace.
512 */
513 struct mm_struct *get_task_mm(struct task_struct *task)
514 {
515 struct mm_struct *mm;
516
517 task_lock(task);
518 mm = task->mm;
519 if (mm) {
520 if (task->flags & PF_KTHREAD)
521 mm = NULL;
522 else
523 atomic_inc(&mm->mm_users);
524 }
525 task_unlock(task);
526 return mm;
527 }
528 EXPORT_SYMBOL_GPL(get_task_mm);
529
530 /* Please note the differences between mmput and mm_release.
531 * mmput is called whenever we stop holding onto a mm_struct,
532 * error success whatever.
533 *
534 * mm_release is called after a mm_struct has been removed
535 * from the current process.
536 *
537 * This difference is important for error handling, when we
538 * only half set up a mm_struct for a new process and need to restore
539 * the old one. Because we mmput the new mm_struct before
540 * restoring the old one. . .
541 * Eric Biederman 10 January 1998
542 */
543 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
544 {
545 struct completion *vfork_done = tsk->vfork_done;
546
547 /* Get rid of any futexes when releasing the mm */
548 #ifdef CONFIG_FUTEX
549 if (unlikely(tsk->robust_list))
550 exit_robust_list(tsk);
551 #ifdef CONFIG_COMPAT
552 if (unlikely(tsk->compat_robust_list))
553 compat_exit_robust_list(tsk);
554 #endif
555 #endif
556
557 /* Get rid of any cached register state */
558 deactivate_mm(tsk, mm);
559
560 /* notify parent sleeping on vfork() */
561 if (vfork_done) {
562 tsk->vfork_done = NULL;
563 complete(vfork_done);
564 }
565
566 /*
567 * If we're exiting normally, clear a user-space tid field if
568 * requested. We leave this alone when dying by signal, to leave
569 * the value intact in a core dump, and to save the unnecessary
570 * trouble otherwise. Userland only wants this done for a sys_exit.
571 */
572 if (tsk->clear_child_tid
573 && !(tsk->flags & PF_SIGNALED)
574 && atomic_read(&mm->mm_users) > 1) {
575 u32 __user * tidptr = tsk->clear_child_tid;
576 tsk->clear_child_tid = NULL;
577
578 /*
579 * We don't check the error code - if userspace has
580 * not set up a proper pointer then tough luck.
581 */
582 put_user(0, tidptr);
583 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
584 }
585 }
586
587 /*
588 * Allocate a new mm structure and copy contents from the
589 * mm structure of the passed in task structure.
590 */
591 struct mm_struct *dup_mm(struct task_struct *tsk)
592 {
593 struct mm_struct *mm, *oldmm = current->mm;
594 int err;
595
596 if (!oldmm)
597 return NULL;
598
599 mm = allocate_mm();
600 if (!mm)
601 goto fail_nomem;
602
603 memcpy(mm, oldmm, sizeof(*mm));
604
605 /* Initializing for Swap token stuff */
606 mm->token_priority = 0;
607 mm->last_interval = 0;
608
609 if (!mm_init(mm, tsk))
610 goto fail_nomem;
611
612 if (init_new_context(tsk, mm))
613 goto fail_nocontext;
614
615 dup_mm_exe_file(oldmm, mm);
616
617 err = dup_mmap(mm, oldmm);
618 if (err)
619 goto free_pt;
620
621 mm->hiwater_rss = get_mm_rss(mm);
622 mm->hiwater_vm = mm->total_vm;
623
624 return mm;
625
626 free_pt:
627 mmput(mm);
628
629 fail_nomem:
630 return NULL;
631
632 fail_nocontext:
633 /*
634 * If init_new_context() failed, we cannot use mmput() to free the mm
635 * because it calls destroy_context()
636 */
637 mm_free_pgd(mm);
638 free_mm(mm);
639 return NULL;
640 }
641
642 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
643 {
644 struct mm_struct * mm, *oldmm;
645 int retval;
646
647 tsk->min_flt = tsk->maj_flt = 0;
648 tsk->nvcsw = tsk->nivcsw = 0;
649 #ifdef CONFIG_DETECT_HUNG_TASK
650 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
651 #endif
652
653 tsk->mm = NULL;
654 tsk->active_mm = NULL;
655
656 /*
657 * Are we cloning a kernel thread?
658 *
659 * We need to steal a active VM for that..
660 */
661 oldmm = current->mm;
662 if (!oldmm)
663 return 0;
664
665 if (clone_flags & CLONE_VM) {
666 atomic_inc(&oldmm->mm_users);
667 mm = oldmm;
668 goto good_mm;
669 }
670
671 retval = -ENOMEM;
672 mm = dup_mm(tsk);
673 if (!mm)
674 goto fail_nomem;
675
676 good_mm:
677 /* Initializing for Swap token stuff */
678 mm->token_priority = 0;
679 mm->last_interval = 0;
680
681 tsk->mm = mm;
682 tsk->active_mm = mm;
683 return 0;
684
685 fail_nomem:
686 return retval;
687 }
688
689 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
690 {
691 struct fs_struct *fs = current->fs;
692 if (clone_flags & CLONE_FS) {
693 /* tsk->fs is already what we want */
694 write_lock(&fs->lock);
695 if (fs->in_exec) {
696 write_unlock(&fs->lock);
697 return -EAGAIN;
698 }
699 fs->users++;
700 write_unlock(&fs->lock);
701 return 0;
702 }
703 tsk->fs = copy_fs_struct(fs);
704 if (!tsk->fs)
705 return -ENOMEM;
706 return 0;
707 }
708
709 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
710 {
711 struct files_struct *oldf, *newf;
712 int error = 0;
713
714 /*
715 * A background process may not have any files ...
716 */
717 oldf = current->files;
718 if (!oldf)
719 goto out;
720
721 if (clone_flags & CLONE_FILES) {
722 atomic_inc(&oldf->count);
723 goto out;
724 }
725
726 newf = dup_fd(oldf, &error);
727 if (!newf)
728 goto out;
729
730 tsk->files = newf;
731 error = 0;
732 out:
733 return error;
734 }
735
736 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
737 {
738 #ifdef CONFIG_BLOCK
739 struct io_context *ioc = current->io_context;
740
741 if (!ioc)
742 return 0;
743 /*
744 * Share io context with parent, if CLONE_IO is set
745 */
746 if (clone_flags & CLONE_IO) {
747 tsk->io_context = ioc_task_link(ioc);
748 if (unlikely(!tsk->io_context))
749 return -ENOMEM;
750 } else if (ioprio_valid(ioc->ioprio)) {
751 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
752 if (unlikely(!tsk->io_context))
753 return -ENOMEM;
754
755 tsk->io_context->ioprio = ioc->ioprio;
756 }
757 #endif
758 return 0;
759 }
760
761 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
762 {
763 struct sighand_struct *sig;
764
765 if (clone_flags & CLONE_SIGHAND) {
766 atomic_inc(&current->sighand->count);
767 return 0;
768 }
769 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
770 rcu_assign_pointer(tsk->sighand, sig);
771 if (!sig)
772 return -ENOMEM;
773 atomic_set(&sig->count, 1);
774 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
775 return 0;
776 }
777
778 void __cleanup_sighand(struct sighand_struct *sighand)
779 {
780 if (atomic_dec_and_test(&sighand->count))
781 kmem_cache_free(sighand_cachep, sighand);
782 }
783
784
785 /*
786 * Initialize POSIX timer handling for a thread group.
787 */
788 static void posix_cpu_timers_init_group(struct signal_struct *sig)
789 {
790 /* Thread group counters. */
791 thread_group_cputime_init(sig);
792
793 /* Expiration times and increments. */
794 sig->it_virt_expires = cputime_zero;
795 sig->it_virt_incr = cputime_zero;
796 sig->it_prof_expires = cputime_zero;
797 sig->it_prof_incr = cputime_zero;
798
799 /* Cached expiration times. */
800 sig->cputime_expires.prof_exp = cputime_zero;
801 sig->cputime_expires.virt_exp = cputime_zero;
802 sig->cputime_expires.sched_exp = 0;
803
804 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
805 sig->cputime_expires.prof_exp =
806 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
807 sig->cputimer.running = 1;
808 }
809
810 /* The timer lists. */
811 INIT_LIST_HEAD(&sig->cpu_timers[0]);
812 INIT_LIST_HEAD(&sig->cpu_timers[1]);
813 INIT_LIST_HEAD(&sig->cpu_timers[2]);
814 }
815
816 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
817 {
818 struct signal_struct *sig;
819
820 if (clone_flags & CLONE_THREAD) {
821 atomic_inc(&current->signal->count);
822 atomic_inc(&current->signal->live);
823 return 0;
824 }
825
826 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
827 tsk->signal = sig;
828 if (!sig)
829 return -ENOMEM;
830
831 atomic_set(&sig->count, 1);
832 atomic_set(&sig->live, 1);
833 init_waitqueue_head(&sig->wait_chldexit);
834 sig->flags = 0;
835 if (clone_flags & CLONE_NEWPID)
836 sig->flags |= SIGNAL_UNKILLABLE;
837 sig->group_exit_code = 0;
838 sig->group_exit_task = NULL;
839 sig->group_stop_count = 0;
840 sig->curr_target = tsk;
841 init_sigpending(&sig->shared_pending);
842 INIT_LIST_HEAD(&sig->posix_timers);
843
844 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
845 sig->it_real_incr.tv64 = 0;
846 sig->real_timer.function = it_real_fn;
847
848 sig->leader = 0; /* session leadership doesn't inherit */
849 sig->tty_old_pgrp = NULL;
850 sig->tty = NULL;
851
852 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
853 sig->gtime = cputime_zero;
854 sig->cgtime = cputime_zero;
855 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
856 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
857 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
858 task_io_accounting_init(&sig->ioac);
859 sig->sum_sched_runtime = 0;
860 taskstats_tgid_init(sig);
861
862 task_lock(current->group_leader);
863 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
864 task_unlock(current->group_leader);
865
866 posix_cpu_timers_init_group(sig);
867
868 acct_init_pacct(&sig->pacct);
869
870 tty_audit_fork(sig);
871
872 return 0;
873 }
874
875 void __cleanup_signal(struct signal_struct *sig)
876 {
877 thread_group_cputime_free(sig);
878 tty_kref_put(sig->tty);
879 kmem_cache_free(signal_cachep, sig);
880 }
881
882 static void cleanup_signal(struct task_struct *tsk)
883 {
884 struct signal_struct *sig = tsk->signal;
885
886 atomic_dec(&sig->live);
887
888 if (atomic_dec_and_test(&sig->count))
889 __cleanup_signal(sig);
890 }
891
892 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
893 {
894 unsigned long new_flags = p->flags;
895
896 new_flags &= ~PF_SUPERPRIV;
897 new_flags |= PF_FORKNOEXEC;
898 new_flags |= PF_STARTING;
899 p->flags = new_flags;
900 clear_freeze_flag(p);
901 }
902
903 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
904 {
905 current->clear_child_tid = tidptr;
906
907 return task_pid_vnr(current);
908 }
909
910 static void rt_mutex_init_task(struct task_struct *p)
911 {
912 spin_lock_init(&p->pi_lock);
913 #ifdef CONFIG_RT_MUTEXES
914 plist_head_init(&p->pi_waiters, &p->pi_lock);
915 p->pi_blocked_on = NULL;
916 #endif
917 }
918
919 #ifdef CONFIG_MM_OWNER
920 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
921 {
922 mm->owner = p;
923 }
924 #endif /* CONFIG_MM_OWNER */
925
926 /*
927 * Initialize POSIX timer handling for a single task.
928 */
929 static void posix_cpu_timers_init(struct task_struct *tsk)
930 {
931 tsk->cputime_expires.prof_exp = cputime_zero;
932 tsk->cputime_expires.virt_exp = cputime_zero;
933 tsk->cputime_expires.sched_exp = 0;
934 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
935 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
936 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
937 }
938
939 /*
940 * This creates a new process as a copy of the old one,
941 * but does not actually start it yet.
942 *
943 * It copies the registers, and all the appropriate
944 * parts of the process environment (as per the clone
945 * flags). The actual kick-off is left to the caller.
946 */
947 static struct task_struct *copy_process(unsigned long clone_flags,
948 unsigned long stack_start,
949 struct pt_regs *regs,
950 unsigned long stack_size,
951 int __user *child_tidptr,
952 struct pid *pid,
953 int trace)
954 {
955 int retval;
956 struct task_struct *p;
957 int cgroup_callbacks_done = 0;
958
959 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
960 return ERR_PTR(-EINVAL);
961
962 /*
963 * Thread groups must share signals as well, and detached threads
964 * can only be started up within the thread group.
965 */
966 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
967 return ERR_PTR(-EINVAL);
968
969 /*
970 * Shared signal handlers imply shared VM. By way of the above,
971 * thread groups also imply shared VM. Blocking this case allows
972 * for various simplifications in other code.
973 */
974 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
975 return ERR_PTR(-EINVAL);
976
977 retval = security_task_create(clone_flags);
978 if (retval)
979 goto fork_out;
980
981 retval = -ENOMEM;
982 p = dup_task_struct(current);
983 if (!p)
984 goto fork_out;
985
986 rt_mutex_init_task(p);
987
988 #ifdef CONFIG_PROVE_LOCKING
989 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
990 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
991 #endif
992 retval = -EAGAIN;
993 if (atomic_read(&p->real_cred->user->processes) >=
994 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
995 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
996 p->real_cred->user != INIT_USER)
997 goto bad_fork_free;
998 }
999
1000 retval = copy_creds(p, clone_flags);
1001 if (retval < 0)
1002 goto bad_fork_free;
1003
1004 /*
1005 * If multiple threads are within copy_process(), then this check
1006 * triggers too late. This doesn't hurt, the check is only there
1007 * to stop root fork bombs.
1008 */
1009 retval = -EAGAIN;
1010 if (nr_threads >= max_threads)
1011 goto bad_fork_cleanup_count;
1012
1013 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1014 goto bad_fork_cleanup_count;
1015
1016 if (p->binfmt && !try_module_get(p->binfmt->module))
1017 goto bad_fork_cleanup_put_domain;
1018
1019 p->did_exec = 0;
1020 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1021 copy_flags(clone_flags, p);
1022 INIT_LIST_HEAD(&p->children);
1023 INIT_LIST_HEAD(&p->sibling);
1024 #ifdef CONFIG_PREEMPT_RCU
1025 p->rcu_read_lock_nesting = 0;
1026 p->rcu_flipctr_idx = 0;
1027 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1028 p->vfork_done = NULL;
1029 spin_lock_init(&p->alloc_lock);
1030
1031 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1032 init_sigpending(&p->pending);
1033
1034 p->utime = cputime_zero;
1035 p->stime = cputime_zero;
1036 p->gtime = cputime_zero;
1037 p->utimescaled = cputime_zero;
1038 p->stimescaled = cputime_zero;
1039 p->prev_utime = cputime_zero;
1040 p->prev_stime = cputime_zero;
1041
1042 p->default_timer_slack_ns = current->timer_slack_ns;
1043
1044 task_io_accounting_init(&p->ioac);
1045 acct_clear_integrals(p);
1046
1047 posix_cpu_timers_init(p);
1048
1049 p->lock_depth = -1; /* -1 = no lock */
1050 do_posix_clock_monotonic_gettime(&p->start_time);
1051 p->real_start_time = p->start_time;
1052 monotonic_to_bootbased(&p->real_start_time);
1053 p->io_context = NULL;
1054 p->audit_context = NULL;
1055 cgroup_fork(p);
1056 #ifdef CONFIG_NUMA
1057 p->mempolicy = mpol_dup(p->mempolicy);
1058 if (IS_ERR(p->mempolicy)) {
1059 retval = PTR_ERR(p->mempolicy);
1060 p->mempolicy = NULL;
1061 goto bad_fork_cleanup_cgroup;
1062 }
1063 mpol_fix_fork_child_flag(p);
1064 #endif
1065 #ifdef CONFIG_TRACE_IRQFLAGS
1066 p->irq_events = 0;
1067 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1068 p->hardirqs_enabled = 1;
1069 #else
1070 p->hardirqs_enabled = 0;
1071 #endif
1072 p->hardirq_enable_ip = 0;
1073 p->hardirq_enable_event = 0;
1074 p->hardirq_disable_ip = _THIS_IP_;
1075 p->hardirq_disable_event = 0;
1076 p->softirqs_enabled = 1;
1077 p->softirq_enable_ip = _THIS_IP_;
1078 p->softirq_enable_event = 0;
1079 p->softirq_disable_ip = 0;
1080 p->softirq_disable_event = 0;
1081 p->hardirq_context = 0;
1082 p->softirq_context = 0;
1083 #endif
1084 #ifdef CONFIG_LOCKDEP
1085 p->lockdep_depth = 0; /* no locks held yet */
1086 p->curr_chain_key = 0;
1087 p->lockdep_recursion = 0;
1088 #endif
1089
1090 #ifdef CONFIG_DEBUG_MUTEXES
1091 p->blocked_on = NULL; /* not blocked yet */
1092 #endif
1093 if (unlikely(current->ptrace))
1094 ptrace_fork(p, clone_flags);
1095
1096 /* Perform scheduler related setup. Assign this task to a CPU. */
1097 sched_fork(p, clone_flags);
1098
1099 retval = perf_counter_init_task(p);
1100 if (retval)
1101 goto bad_fork_cleanup_policy;
1102
1103 if ((retval = audit_alloc(p)))
1104 goto bad_fork_cleanup_policy;
1105 /* copy all the process information */
1106 if ((retval = copy_semundo(clone_flags, p)))
1107 goto bad_fork_cleanup_audit;
1108 if ((retval = copy_files(clone_flags, p)))
1109 goto bad_fork_cleanup_semundo;
1110 if ((retval = copy_fs(clone_flags, p)))
1111 goto bad_fork_cleanup_files;
1112 if ((retval = copy_sighand(clone_flags, p)))
1113 goto bad_fork_cleanup_fs;
1114 if ((retval = copy_signal(clone_flags, p)))
1115 goto bad_fork_cleanup_sighand;
1116 if ((retval = copy_mm(clone_flags, p)))
1117 goto bad_fork_cleanup_signal;
1118 if ((retval = copy_namespaces(clone_flags, p)))
1119 goto bad_fork_cleanup_mm;
1120 if ((retval = copy_io(clone_flags, p)))
1121 goto bad_fork_cleanup_namespaces;
1122 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1123 if (retval)
1124 goto bad_fork_cleanup_io;
1125
1126 if (pid != &init_struct_pid) {
1127 retval = -ENOMEM;
1128 pid = alloc_pid(p->nsproxy->pid_ns);
1129 if (!pid)
1130 goto bad_fork_cleanup_io;
1131
1132 if (clone_flags & CLONE_NEWPID) {
1133 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1134 if (retval < 0)
1135 goto bad_fork_free_pid;
1136 }
1137 }
1138
1139 ftrace_graph_init_task(p);
1140
1141 p->pid = pid_nr(pid);
1142 p->tgid = p->pid;
1143 if (clone_flags & CLONE_THREAD)
1144 p->tgid = current->tgid;
1145
1146 if (current->nsproxy != p->nsproxy) {
1147 retval = ns_cgroup_clone(p, pid);
1148 if (retval)
1149 goto bad_fork_free_graph;
1150 }
1151
1152 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1153 /*
1154 * Clear TID on mm_release()?
1155 */
1156 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1157 #ifdef CONFIG_FUTEX
1158 p->robust_list = NULL;
1159 #ifdef CONFIG_COMPAT
1160 p->compat_robust_list = NULL;
1161 #endif
1162 INIT_LIST_HEAD(&p->pi_state_list);
1163 p->pi_state_cache = NULL;
1164 #endif
1165 /*
1166 * sigaltstack should be cleared when sharing the same VM
1167 */
1168 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1169 p->sas_ss_sp = p->sas_ss_size = 0;
1170
1171 /*
1172 * Syscall tracing should be turned off in the child regardless
1173 * of CLONE_PTRACE.
1174 */
1175 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1176 #ifdef TIF_SYSCALL_EMU
1177 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1178 #endif
1179 clear_all_latency_tracing(p);
1180
1181 /* ok, now we should be set up.. */
1182 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1183 p->pdeath_signal = 0;
1184 p->exit_state = 0;
1185
1186 /*
1187 * Ok, make it visible to the rest of the system.
1188 * We dont wake it up yet.
1189 */
1190 p->group_leader = p;
1191 INIT_LIST_HEAD(&p->thread_group);
1192
1193 /* Now that the task is set up, run cgroup callbacks if
1194 * necessary. We need to run them before the task is visible
1195 * on the tasklist. */
1196 cgroup_fork_callbacks(p);
1197 cgroup_callbacks_done = 1;
1198
1199 /* Need tasklist lock for parent etc handling! */
1200 write_lock_irq(&tasklist_lock);
1201
1202 /*
1203 * The task hasn't been attached yet, so its cpus_allowed mask will
1204 * not be changed, nor will its assigned CPU.
1205 *
1206 * The cpus_allowed mask of the parent may have changed after it was
1207 * copied first time - so re-copy it here, then check the child's CPU
1208 * to ensure it is on a valid CPU (and if not, just force it back to
1209 * parent's CPU). This avoids alot of nasty races.
1210 */
1211 p->cpus_allowed = current->cpus_allowed;
1212 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1213 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1214 !cpu_online(task_cpu(p))))
1215 set_task_cpu(p, smp_processor_id());
1216
1217 /* CLONE_PARENT re-uses the old parent */
1218 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1219 p->real_parent = current->real_parent;
1220 p->parent_exec_id = current->parent_exec_id;
1221 } else {
1222 p->real_parent = current;
1223 p->parent_exec_id = current->self_exec_id;
1224 }
1225
1226 spin_lock(&current->sighand->siglock);
1227
1228 /*
1229 * Process group and session signals need to be delivered to just the
1230 * parent before the fork or both the parent and the child after the
1231 * fork. Restart if a signal comes in before we add the new process to
1232 * it's process group.
1233 * A fatal signal pending means that current will exit, so the new
1234 * thread can't slip out of an OOM kill (or normal SIGKILL).
1235 */
1236 recalc_sigpending();
1237 if (signal_pending(current)) {
1238 spin_unlock(&current->sighand->siglock);
1239 write_unlock_irq(&tasklist_lock);
1240 retval = -ERESTARTNOINTR;
1241 goto bad_fork_free_graph;
1242 }
1243
1244 if (clone_flags & CLONE_THREAD) {
1245 p->group_leader = current->group_leader;
1246 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1247 }
1248
1249 if (likely(p->pid)) {
1250 list_add_tail(&p->sibling, &p->real_parent->children);
1251 tracehook_finish_clone(p, clone_flags, trace);
1252
1253 if (thread_group_leader(p)) {
1254 if (clone_flags & CLONE_NEWPID)
1255 p->nsproxy->pid_ns->child_reaper = p;
1256
1257 p->signal->leader_pid = pid;
1258 tty_kref_put(p->signal->tty);
1259 p->signal->tty = tty_kref_get(current->signal->tty);
1260 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1261 attach_pid(p, PIDTYPE_SID, task_session(current));
1262 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1263 __get_cpu_var(process_counts)++;
1264 }
1265 attach_pid(p, PIDTYPE_PID, pid);
1266 nr_threads++;
1267 }
1268
1269 total_forks++;
1270 spin_unlock(&current->sighand->siglock);
1271 write_unlock_irq(&tasklist_lock);
1272 proc_fork_connector(p);
1273 cgroup_post_fork(p);
1274 return p;
1275
1276 bad_fork_free_graph:
1277 ftrace_graph_exit_task(p);
1278 bad_fork_free_pid:
1279 if (pid != &init_struct_pid)
1280 free_pid(pid);
1281 bad_fork_cleanup_io:
1282 put_io_context(p->io_context);
1283 bad_fork_cleanup_namespaces:
1284 exit_task_namespaces(p);
1285 bad_fork_cleanup_mm:
1286 if (p->mm)
1287 mmput(p->mm);
1288 bad_fork_cleanup_signal:
1289 cleanup_signal(p);
1290 bad_fork_cleanup_sighand:
1291 __cleanup_sighand(p->sighand);
1292 bad_fork_cleanup_fs:
1293 exit_fs(p); /* blocking */
1294 bad_fork_cleanup_files:
1295 exit_files(p); /* blocking */
1296 bad_fork_cleanup_semundo:
1297 exit_sem(p);
1298 bad_fork_cleanup_audit:
1299 audit_free(p);
1300 bad_fork_cleanup_policy:
1301 perf_counter_exit_task(p);
1302 #ifdef CONFIG_NUMA
1303 mpol_put(p->mempolicy);
1304 bad_fork_cleanup_cgroup:
1305 #endif
1306 cgroup_exit(p, cgroup_callbacks_done);
1307 delayacct_tsk_free(p);
1308 if (p->binfmt)
1309 module_put(p->binfmt->module);
1310 bad_fork_cleanup_put_domain:
1311 module_put(task_thread_info(p)->exec_domain->module);
1312 bad_fork_cleanup_count:
1313 atomic_dec(&p->cred->user->processes);
1314 put_cred(p->real_cred);
1315 put_cred(p->cred);
1316 bad_fork_free:
1317 free_task(p);
1318 fork_out:
1319 return ERR_PTR(retval);
1320 }
1321
1322 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1323 {
1324 memset(regs, 0, sizeof(struct pt_regs));
1325 return regs;
1326 }
1327
1328 struct task_struct * __cpuinit fork_idle(int cpu)
1329 {
1330 struct task_struct *task;
1331 struct pt_regs regs;
1332
1333 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1334 &init_struct_pid, 0);
1335 if (!IS_ERR(task))
1336 init_idle(task, cpu);
1337
1338 return task;
1339 }
1340
1341 /*
1342 * Ok, this is the main fork-routine.
1343 *
1344 * It copies the process, and if successful kick-starts
1345 * it and waits for it to finish using the VM if required.
1346 */
1347 long do_fork(unsigned long clone_flags,
1348 unsigned long stack_start,
1349 struct pt_regs *regs,
1350 unsigned long stack_size,
1351 int __user *parent_tidptr,
1352 int __user *child_tidptr)
1353 {
1354 struct task_struct *p;
1355 int trace = 0;
1356 long nr;
1357
1358 /*
1359 * Do some preliminary argument and permissions checking before we
1360 * actually start allocating stuff
1361 */
1362 if (clone_flags & CLONE_NEWUSER) {
1363 if (clone_flags & CLONE_THREAD)
1364 return -EINVAL;
1365 /* hopefully this check will go away when userns support is
1366 * complete
1367 */
1368 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1369 !capable(CAP_SETGID))
1370 return -EPERM;
1371 }
1372
1373 /*
1374 * We hope to recycle these flags after 2.6.26
1375 */
1376 if (unlikely(clone_flags & CLONE_STOPPED)) {
1377 static int __read_mostly count = 100;
1378
1379 if (count > 0 && printk_ratelimit()) {
1380 char comm[TASK_COMM_LEN];
1381
1382 count--;
1383 printk(KERN_INFO "fork(): process `%s' used deprecated "
1384 "clone flags 0x%lx\n",
1385 get_task_comm(comm, current),
1386 clone_flags & CLONE_STOPPED);
1387 }
1388 }
1389
1390 /*
1391 * When called from kernel_thread, don't do user tracing stuff.
1392 */
1393 if (likely(user_mode(regs)))
1394 trace = tracehook_prepare_clone(clone_flags);
1395
1396 p = copy_process(clone_flags, stack_start, regs, stack_size,
1397 child_tidptr, NULL, trace);
1398 /*
1399 * Do this prior waking up the new thread - the thread pointer
1400 * might get invalid after that point, if the thread exits quickly.
1401 */
1402 if (!IS_ERR(p)) {
1403 struct completion vfork;
1404
1405 trace_sched_process_fork(current, p);
1406
1407 nr = task_pid_vnr(p);
1408
1409 if (clone_flags & CLONE_PARENT_SETTID)
1410 put_user(nr, parent_tidptr);
1411
1412 if (clone_flags & CLONE_VFORK) {
1413 p->vfork_done = &vfork;
1414 init_completion(&vfork);
1415 }
1416
1417 audit_finish_fork(p);
1418 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1419
1420 /*
1421 * We set PF_STARTING at creation in case tracing wants to
1422 * use this to distinguish a fully live task from one that
1423 * hasn't gotten to tracehook_report_clone() yet. Now we
1424 * clear it and set the child going.
1425 */
1426 p->flags &= ~PF_STARTING;
1427
1428 if (unlikely(clone_flags & CLONE_STOPPED)) {
1429 /*
1430 * We'll start up with an immediate SIGSTOP.
1431 */
1432 sigaddset(&p->pending.signal, SIGSTOP);
1433 set_tsk_thread_flag(p, TIF_SIGPENDING);
1434 __set_task_state(p, TASK_STOPPED);
1435 } else {
1436 wake_up_new_task(p, clone_flags);
1437 }
1438
1439 tracehook_report_clone_complete(trace, regs,
1440 clone_flags, nr, p);
1441
1442 if (clone_flags & CLONE_VFORK) {
1443 freezer_do_not_count();
1444 wait_for_completion(&vfork);
1445 freezer_count();
1446 tracehook_report_vfork_done(p, nr);
1447 }
1448 } else {
1449 nr = PTR_ERR(p);
1450 }
1451 return nr;
1452 }
1453
1454 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1455 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1456 #endif
1457
1458 static void sighand_ctor(void *data)
1459 {
1460 struct sighand_struct *sighand = data;
1461
1462 spin_lock_init(&sighand->siglock);
1463 init_waitqueue_head(&sighand->signalfd_wqh);
1464 }
1465
1466 void __init proc_caches_init(void)
1467 {
1468 sighand_cachep = kmem_cache_create("sighand_cache",
1469 sizeof(struct sighand_struct), 0,
1470 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1471 sighand_ctor);
1472 signal_cachep = kmem_cache_create("signal_cache",
1473 sizeof(struct signal_struct), 0,
1474 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1475 files_cachep = kmem_cache_create("files_cache",
1476 sizeof(struct files_struct), 0,
1477 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1478 fs_cachep = kmem_cache_create("fs_cache",
1479 sizeof(struct fs_struct), 0,
1480 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1481 mm_cachep = kmem_cache_create("mm_struct",
1482 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1483 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1484 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1485 mmap_init();
1486 }
1487
1488 /*
1489 * Check constraints on flags passed to the unshare system call and
1490 * force unsharing of additional process context as appropriate.
1491 */
1492 static void check_unshare_flags(unsigned long *flags_ptr)
1493 {
1494 /*
1495 * If unsharing a thread from a thread group, must also
1496 * unshare vm.
1497 */
1498 if (*flags_ptr & CLONE_THREAD)
1499 *flags_ptr |= CLONE_VM;
1500
1501 /*
1502 * If unsharing vm, must also unshare signal handlers.
1503 */
1504 if (*flags_ptr & CLONE_VM)
1505 *flags_ptr |= CLONE_SIGHAND;
1506
1507 /*
1508 * If unsharing signal handlers and the task was created
1509 * using CLONE_THREAD, then must unshare the thread
1510 */
1511 if ((*flags_ptr & CLONE_SIGHAND) &&
1512 (atomic_read(&current->signal->count) > 1))
1513 *flags_ptr |= CLONE_THREAD;
1514
1515 /*
1516 * If unsharing namespace, must also unshare filesystem information.
1517 */
1518 if (*flags_ptr & CLONE_NEWNS)
1519 *flags_ptr |= CLONE_FS;
1520 }
1521
1522 /*
1523 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1524 */
1525 static int unshare_thread(unsigned long unshare_flags)
1526 {
1527 if (unshare_flags & CLONE_THREAD)
1528 return -EINVAL;
1529
1530 return 0;
1531 }
1532
1533 /*
1534 * Unshare the filesystem structure if it is being shared
1535 */
1536 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1537 {
1538 struct fs_struct *fs = current->fs;
1539
1540 if (!(unshare_flags & CLONE_FS) || !fs)
1541 return 0;
1542
1543 /* don't need lock here; in the worst case we'll do useless copy */
1544 if (fs->users == 1)
1545 return 0;
1546
1547 *new_fsp = copy_fs_struct(fs);
1548 if (!*new_fsp)
1549 return -ENOMEM;
1550
1551 return 0;
1552 }
1553
1554 /*
1555 * Unsharing of sighand is not supported yet
1556 */
1557 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1558 {
1559 struct sighand_struct *sigh = current->sighand;
1560
1561 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1562 return -EINVAL;
1563 else
1564 return 0;
1565 }
1566
1567 /*
1568 * Unshare vm if it is being shared
1569 */
1570 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1571 {
1572 struct mm_struct *mm = current->mm;
1573
1574 if ((unshare_flags & CLONE_VM) &&
1575 (mm && atomic_read(&mm->mm_users) > 1)) {
1576 return -EINVAL;
1577 }
1578
1579 return 0;
1580 }
1581
1582 /*
1583 * Unshare file descriptor table if it is being shared
1584 */
1585 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1586 {
1587 struct files_struct *fd = current->files;
1588 int error = 0;
1589
1590 if ((unshare_flags & CLONE_FILES) &&
1591 (fd && atomic_read(&fd->count) > 1)) {
1592 *new_fdp = dup_fd(fd, &error);
1593 if (!*new_fdp)
1594 return error;
1595 }
1596
1597 return 0;
1598 }
1599
1600 /*
1601 * unshare allows a process to 'unshare' part of the process
1602 * context which was originally shared using clone. copy_*
1603 * functions used by do_fork() cannot be used here directly
1604 * because they modify an inactive task_struct that is being
1605 * constructed. Here we are modifying the current, active,
1606 * task_struct.
1607 */
1608 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1609 {
1610 int err = 0;
1611 struct fs_struct *fs, *new_fs = NULL;
1612 struct sighand_struct *new_sigh = NULL;
1613 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1614 struct files_struct *fd, *new_fd = NULL;
1615 struct nsproxy *new_nsproxy = NULL;
1616 int do_sysvsem = 0;
1617
1618 check_unshare_flags(&unshare_flags);
1619
1620 /* Return -EINVAL for all unsupported flags */
1621 err = -EINVAL;
1622 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1623 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1624 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1625 goto bad_unshare_out;
1626
1627 /*
1628 * CLONE_NEWIPC must also detach from the undolist: after switching
1629 * to a new ipc namespace, the semaphore arrays from the old
1630 * namespace are unreachable.
1631 */
1632 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1633 do_sysvsem = 1;
1634 if ((err = unshare_thread(unshare_flags)))
1635 goto bad_unshare_out;
1636 if ((err = unshare_fs(unshare_flags, &new_fs)))
1637 goto bad_unshare_cleanup_thread;
1638 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1639 goto bad_unshare_cleanup_fs;
1640 if ((err = unshare_vm(unshare_flags, &new_mm)))
1641 goto bad_unshare_cleanup_sigh;
1642 if ((err = unshare_fd(unshare_flags, &new_fd)))
1643 goto bad_unshare_cleanup_vm;
1644 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1645 new_fs)))
1646 goto bad_unshare_cleanup_fd;
1647
1648 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1649 if (do_sysvsem) {
1650 /*
1651 * CLONE_SYSVSEM is equivalent to sys_exit().
1652 */
1653 exit_sem(current);
1654 }
1655
1656 if (new_nsproxy) {
1657 switch_task_namespaces(current, new_nsproxy);
1658 new_nsproxy = NULL;
1659 }
1660
1661 task_lock(current);
1662
1663 if (new_fs) {
1664 fs = current->fs;
1665 write_lock(&fs->lock);
1666 current->fs = new_fs;
1667 if (--fs->users)
1668 new_fs = NULL;
1669 else
1670 new_fs = fs;
1671 write_unlock(&fs->lock);
1672 }
1673
1674 if (new_mm) {
1675 mm = current->mm;
1676 active_mm = current->active_mm;
1677 current->mm = new_mm;
1678 current->active_mm = new_mm;
1679 activate_mm(active_mm, new_mm);
1680 new_mm = mm;
1681 }
1682
1683 if (new_fd) {
1684 fd = current->files;
1685 current->files = new_fd;
1686 new_fd = fd;
1687 }
1688
1689 task_unlock(current);
1690 }
1691
1692 if (new_nsproxy)
1693 put_nsproxy(new_nsproxy);
1694
1695 bad_unshare_cleanup_fd:
1696 if (new_fd)
1697 put_files_struct(new_fd);
1698
1699 bad_unshare_cleanup_vm:
1700 if (new_mm)
1701 mmput(new_mm);
1702
1703 bad_unshare_cleanup_sigh:
1704 if (new_sigh)
1705 if (atomic_dec_and_test(&new_sigh->count))
1706 kmem_cache_free(sighand_cachep, new_sigh);
1707
1708 bad_unshare_cleanup_fs:
1709 if (new_fs)
1710 free_fs_struct(new_fs);
1711
1712 bad_unshare_cleanup_thread:
1713 bad_unshare_out:
1714 return err;
1715 }
1716
1717 /*
1718 * Helper to unshare the files of the current task.
1719 * We don't want to expose copy_files internals to
1720 * the exec layer of the kernel.
1721 */
1722
1723 int unshare_files(struct files_struct **displaced)
1724 {
1725 struct task_struct *task = current;
1726 struct files_struct *copy = NULL;
1727 int error;
1728
1729 error = unshare_fd(CLONE_FILES, &copy);
1730 if (error || !copy) {
1731 *displaced = NULL;
1732 return error;
1733 }
1734 *displaced = task->files;
1735 task_lock(task);
1736 task->files = copy;
1737 task_unlock(task);
1738 return 0;
1739 }