]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
gpio: Make of_count_named_gpios() use new of_count_phandle_with_args()
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87 * Protected counters by write_lock_irq(&tasklist_lock)
88 */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91
92 int max_threads; /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108 int cpu;
109 int total = 0;
110
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
113
114 return total;
115 }
116
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140
141 /*
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
144 */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 int node)
148 {
149 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
150 THREAD_SIZE_ORDER);
151
152 return page ? page_address(page) : NULL;
153 }
154
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
164 {
165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167
168 static void free_thread_info(struct thread_info *ti)
169 {
170 kmem_cache_free(thread_info_cache, ti);
171 }
172
173 void thread_info_cache_init(void)
174 {
175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 THREAD_SIZE, 0, NULL);
177 BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 struct zone *zone = page_zone(virt_to_page(ti));
203
204 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206
207 void free_task(struct task_struct *tsk)
208 {
209 account_kernel_stack(tsk->stack, -1);
210 arch_release_thread_info(tsk->stack);
211 free_thread_info(tsk->stack);
212 rt_mutex_debug_task_free(tsk);
213 ftrace_graph_exit_task(tsk);
214 put_seccomp_filter(tsk);
215 arch_release_task_struct(tsk);
216 free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 taskstats_tgid_free(sig);
223 sched_autogroup_exit(sig);
224 kmem_cache_free(signal_cachep, sig);
225 }
226
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 if (atomic_dec_and_test(&sig->sigcnt))
230 free_signal_struct(sig);
231 }
232
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 WARN_ON(!tsk->exit_state);
236 WARN_ON(atomic_read(&tsk->usage));
237 WARN_ON(tsk == current);
238
239 security_task_free(tsk);
240 exit_creds(tsk);
241 delayacct_tsk_free(tsk);
242 put_signal_struct(tsk->signal);
243
244 if (!profile_handoff_task(tsk))
245 free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248
249 void __init __weak arch_task_cache_init(void) { }
250
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
256 #endif
257 /* create a slab on which task_structs can be allocated */
258 task_struct_cachep =
259 kmem_cache_create("task_struct", sizeof(struct task_struct),
260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
265
266 /*
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
269 * of memory.
270 */
271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272
273 /*
274 * we need to allow at least 20 threads to boot a system
275 */
276 if (max_threads < 20)
277 max_threads = 20;
278
279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 init_task.signal->rlim[RLIMIT_NPROC];
283 }
284
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 struct task_struct *src)
287 {
288 *dst = *src;
289 return 0;
290 }
291
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 struct task_struct *tsk;
295 struct thread_info *ti;
296 unsigned long *stackend;
297 int node = tsk_fork_get_node(orig);
298 int err;
299
300 tsk = alloc_task_struct_node(node);
301 if (!tsk)
302 return NULL;
303
304 ti = alloc_thread_info_node(tsk, node);
305 if (!ti)
306 goto free_tsk;
307
308 err = arch_dup_task_struct(tsk, orig);
309 if (err)
310 goto free_ti;
311
312 tsk->stack = ti;
313
314 setup_thread_stack(tsk, orig);
315 clear_user_return_notifier(tsk);
316 clear_tsk_need_resched(tsk);
317 stackend = end_of_stack(tsk);
318 *stackend = STACK_END_MAGIC; /* for overflow detection */
319
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk->stack_canary = get_random_int();
322 #endif
323
324 /*
325 * One for us, one for whoever does the "release_task()" (usually
326 * parent)
327 */
328 atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 tsk->btrace_seq = 0;
331 #endif
332 tsk->splice_pipe = NULL;
333 tsk->task_frag.page = NULL;
334
335 account_kernel_stack(ti, 1);
336
337 return tsk;
338
339 free_ti:
340 free_thread_info(ti);
341 free_tsk:
342 free_task_struct(tsk);
343 return NULL;
344 }
345
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350 struct rb_node **rb_link, *rb_parent;
351 int retval;
352 unsigned long charge;
353 struct mempolicy *pol;
354
355 uprobe_start_dup_mmap();
356 down_write(&oldmm->mmap_sem);
357 flush_cache_dup_mm(oldmm);
358 uprobe_dup_mmap(oldmm, mm);
359 /*
360 * Not linked in yet - no deadlock potential:
361 */
362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363
364 mm->locked_vm = 0;
365 mm->mmap = NULL;
366 mm->mmap_cache = NULL;
367 mm->free_area_cache = oldmm->mmap_base;
368 mm->cached_hole_size = ~0UL;
369 mm->map_count = 0;
370 cpumask_clear(mm_cpumask(mm));
371 mm->mm_rb = RB_ROOT;
372 rb_link = &mm->mm_rb.rb_node;
373 rb_parent = NULL;
374 pprev = &mm->mmap;
375 retval = ksm_fork(mm, oldmm);
376 if (retval)
377 goto out;
378 retval = khugepaged_fork(mm, oldmm);
379 if (retval)
380 goto out;
381
382 prev = NULL;
383 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
384 struct file *file;
385
386 if (mpnt->vm_flags & VM_DONTCOPY) {
387 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
388 -vma_pages(mpnt));
389 continue;
390 }
391 charge = 0;
392 if (mpnt->vm_flags & VM_ACCOUNT) {
393 unsigned long len = vma_pages(mpnt);
394
395 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
396 goto fail_nomem;
397 charge = len;
398 }
399 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
400 if (!tmp)
401 goto fail_nomem;
402 *tmp = *mpnt;
403 INIT_LIST_HEAD(&tmp->anon_vma_chain);
404 pol = mpol_dup(vma_policy(mpnt));
405 retval = PTR_ERR(pol);
406 if (IS_ERR(pol))
407 goto fail_nomem_policy;
408 vma_set_policy(tmp, pol);
409 tmp->vm_mm = mm;
410 if (anon_vma_fork(tmp, mpnt))
411 goto fail_nomem_anon_vma_fork;
412 tmp->vm_flags &= ~VM_LOCKED;
413 tmp->vm_next = tmp->vm_prev = NULL;
414 file = tmp->vm_file;
415 if (file) {
416 struct inode *inode = file->f_path.dentry->d_inode;
417 struct address_space *mapping = file->f_mapping;
418
419 get_file(file);
420 if (tmp->vm_flags & VM_DENYWRITE)
421 atomic_dec(&inode->i_writecount);
422 mutex_lock(&mapping->i_mmap_mutex);
423 if (tmp->vm_flags & VM_SHARED)
424 mapping->i_mmap_writable++;
425 flush_dcache_mmap_lock(mapping);
426 /* insert tmp into the share list, just after mpnt */
427 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
428 vma_nonlinear_insert(tmp,
429 &mapping->i_mmap_nonlinear);
430 else
431 vma_interval_tree_insert_after(tmp, mpnt,
432 &mapping->i_mmap);
433 flush_dcache_mmap_unlock(mapping);
434 mutex_unlock(&mapping->i_mmap_mutex);
435 }
436
437 /*
438 * Clear hugetlb-related page reserves for children. This only
439 * affects MAP_PRIVATE mappings. Faults generated by the child
440 * are not guaranteed to succeed, even if read-only
441 */
442 if (is_vm_hugetlb_page(tmp))
443 reset_vma_resv_huge_pages(tmp);
444
445 /*
446 * Link in the new vma and copy the page table entries.
447 */
448 *pprev = tmp;
449 pprev = &tmp->vm_next;
450 tmp->vm_prev = prev;
451 prev = tmp;
452
453 __vma_link_rb(mm, tmp, rb_link, rb_parent);
454 rb_link = &tmp->vm_rb.rb_right;
455 rb_parent = &tmp->vm_rb;
456
457 mm->map_count++;
458 retval = copy_page_range(mm, oldmm, mpnt);
459
460 if (tmp->vm_ops && tmp->vm_ops->open)
461 tmp->vm_ops->open(tmp);
462
463 if (retval)
464 goto out;
465 }
466 /* a new mm has just been created */
467 arch_dup_mmap(oldmm, mm);
468 retval = 0;
469 out:
470 up_write(&mm->mmap_sem);
471 flush_tlb_mm(oldmm);
472 up_write(&oldmm->mmap_sem);
473 uprobe_end_dup_mmap();
474 return retval;
475 fail_nomem_anon_vma_fork:
476 mpol_put(pol);
477 fail_nomem_policy:
478 kmem_cache_free(vm_area_cachep, tmp);
479 fail_nomem:
480 retval = -ENOMEM;
481 vm_unacct_memory(charge);
482 goto out;
483 }
484
485 static inline int mm_alloc_pgd(struct mm_struct *mm)
486 {
487 mm->pgd = pgd_alloc(mm);
488 if (unlikely(!mm->pgd))
489 return -ENOMEM;
490 return 0;
491 }
492
493 static inline void mm_free_pgd(struct mm_struct *mm)
494 {
495 pgd_free(mm, mm->pgd);
496 }
497 #else
498 #define dup_mmap(mm, oldmm) (0)
499 #define mm_alloc_pgd(mm) (0)
500 #define mm_free_pgd(mm)
501 #endif /* CONFIG_MMU */
502
503 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
504
505 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
506 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
507
508 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
509
510 static int __init coredump_filter_setup(char *s)
511 {
512 default_dump_filter =
513 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
514 MMF_DUMP_FILTER_MASK;
515 return 1;
516 }
517
518 __setup("coredump_filter=", coredump_filter_setup);
519
520 #include <linux/init_task.h>
521
522 static void mm_init_aio(struct mm_struct *mm)
523 {
524 #ifdef CONFIG_AIO
525 spin_lock_init(&mm->ioctx_lock);
526 INIT_HLIST_HEAD(&mm->ioctx_list);
527 #endif
528 }
529
530 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
531 {
532 atomic_set(&mm->mm_users, 1);
533 atomic_set(&mm->mm_count, 1);
534 init_rwsem(&mm->mmap_sem);
535 INIT_LIST_HEAD(&mm->mmlist);
536 mm->flags = (current->mm) ?
537 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
538 mm->core_state = NULL;
539 mm->nr_ptes = 0;
540 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
541 spin_lock_init(&mm->page_table_lock);
542 mm->free_area_cache = TASK_UNMAPPED_BASE;
543 mm->cached_hole_size = ~0UL;
544 mm_init_aio(mm);
545 mm_init_owner(mm, p);
546
547 if (likely(!mm_alloc_pgd(mm))) {
548 mm->def_flags = 0;
549 mmu_notifier_mm_init(mm);
550 return mm;
551 }
552
553 free_mm(mm);
554 return NULL;
555 }
556
557 static void check_mm(struct mm_struct *mm)
558 {
559 int i;
560
561 for (i = 0; i < NR_MM_COUNTERS; i++) {
562 long x = atomic_long_read(&mm->rss_stat.count[i]);
563
564 if (unlikely(x))
565 printk(KERN_ALERT "BUG: Bad rss-counter state "
566 "mm:%p idx:%d val:%ld\n", mm, i, x);
567 }
568
569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
570 VM_BUG_ON(mm->pmd_huge_pte);
571 #endif
572 }
573
574 /*
575 * Allocate and initialize an mm_struct.
576 */
577 struct mm_struct *mm_alloc(void)
578 {
579 struct mm_struct *mm;
580
581 mm = allocate_mm();
582 if (!mm)
583 return NULL;
584
585 memset(mm, 0, sizeof(*mm));
586 mm_init_cpumask(mm);
587 return mm_init(mm, current);
588 }
589
590 /*
591 * Called when the last reference to the mm
592 * is dropped: either by a lazy thread or by
593 * mmput. Free the page directory and the mm.
594 */
595 void __mmdrop(struct mm_struct *mm)
596 {
597 BUG_ON(mm == &init_mm);
598 mm_free_pgd(mm);
599 destroy_context(mm);
600 mmu_notifier_mm_destroy(mm);
601 check_mm(mm);
602 free_mm(mm);
603 }
604 EXPORT_SYMBOL_GPL(__mmdrop);
605
606 /*
607 * Decrement the use count and release all resources for an mm.
608 */
609 void mmput(struct mm_struct *mm)
610 {
611 might_sleep();
612
613 if (atomic_dec_and_test(&mm->mm_users)) {
614 uprobe_clear_state(mm);
615 exit_aio(mm);
616 ksm_exit(mm);
617 khugepaged_exit(mm); /* must run before exit_mmap */
618 exit_mmap(mm);
619 set_mm_exe_file(mm, NULL);
620 if (!list_empty(&mm->mmlist)) {
621 spin_lock(&mmlist_lock);
622 list_del(&mm->mmlist);
623 spin_unlock(&mmlist_lock);
624 }
625 if (mm->binfmt)
626 module_put(mm->binfmt->module);
627 mmdrop(mm);
628 }
629 }
630 EXPORT_SYMBOL_GPL(mmput);
631
632 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
633 {
634 if (new_exe_file)
635 get_file(new_exe_file);
636 if (mm->exe_file)
637 fput(mm->exe_file);
638 mm->exe_file = new_exe_file;
639 }
640
641 struct file *get_mm_exe_file(struct mm_struct *mm)
642 {
643 struct file *exe_file;
644
645 /* We need mmap_sem to protect against races with removal of exe_file */
646 down_read(&mm->mmap_sem);
647 exe_file = mm->exe_file;
648 if (exe_file)
649 get_file(exe_file);
650 up_read(&mm->mmap_sem);
651 return exe_file;
652 }
653
654 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
655 {
656 /* It's safe to write the exe_file pointer without exe_file_lock because
657 * this is called during fork when the task is not yet in /proc */
658 newmm->exe_file = get_mm_exe_file(oldmm);
659 }
660
661 /**
662 * get_task_mm - acquire a reference to the task's mm
663 *
664 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
665 * this kernel workthread has transiently adopted a user mm with use_mm,
666 * to do its AIO) is not set and if so returns a reference to it, after
667 * bumping up the use count. User must release the mm via mmput()
668 * after use. Typically used by /proc and ptrace.
669 */
670 struct mm_struct *get_task_mm(struct task_struct *task)
671 {
672 struct mm_struct *mm;
673
674 task_lock(task);
675 mm = task->mm;
676 if (mm) {
677 if (task->flags & PF_KTHREAD)
678 mm = NULL;
679 else
680 atomic_inc(&mm->mm_users);
681 }
682 task_unlock(task);
683 return mm;
684 }
685 EXPORT_SYMBOL_GPL(get_task_mm);
686
687 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
688 {
689 struct mm_struct *mm;
690 int err;
691
692 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
693 if (err)
694 return ERR_PTR(err);
695
696 mm = get_task_mm(task);
697 if (mm && mm != current->mm &&
698 !ptrace_may_access(task, mode)) {
699 mmput(mm);
700 mm = ERR_PTR(-EACCES);
701 }
702 mutex_unlock(&task->signal->cred_guard_mutex);
703
704 return mm;
705 }
706
707 static void complete_vfork_done(struct task_struct *tsk)
708 {
709 struct completion *vfork;
710
711 task_lock(tsk);
712 vfork = tsk->vfork_done;
713 if (likely(vfork)) {
714 tsk->vfork_done = NULL;
715 complete(vfork);
716 }
717 task_unlock(tsk);
718 }
719
720 static int wait_for_vfork_done(struct task_struct *child,
721 struct completion *vfork)
722 {
723 int killed;
724
725 freezer_do_not_count();
726 killed = wait_for_completion_killable(vfork);
727 freezer_count();
728
729 if (killed) {
730 task_lock(child);
731 child->vfork_done = NULL;
732 task_unlock(child);
733 }
734
735 put_task_struct(child);
736 return killed;
737 }
738
739 /* Please note the differences between mmput and mm_release.
740 * mmput is called whenever we stop holding onto a mm_struct,
741 * error success whatever.
742 *
743 * mm_release is called after a mm_struct has been removed
744 * from the current process.
745 *
746 * This difference is important for error handling, when we
747 * only half set up a mm_struct for a new process and need to restore
748 * the old one. Because we mmput the new mm_struct before
749 * restoring the old one. . .
750 * Eric Biederman 10 January 1998
751 */
752 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
753 {
754 /* Get rid of any futexes when releasing the mm */
755 #ifdef CONFIG_FUTEX
756 if (unlikely(tsk->robust_list)) {
757 exit_robust_list(tsk);
758 tsk->robust_list = NULL;
759 }
760 #ifdef CONFIG_COMPAT
761 if (unlikely(tsk->compat_robust_list)) {
762 compat_exit_robust_list(tsk);
763 tsk->compat_robust_list = NULL;
764 }
765 #endif
766 if (unlikely(!list_empty(&tsk->pi_state_list)))
767 exit_pi_state_list(tsk);
768 #endif
769
770 uprobe_free_utask(tsk);
771
772 /* Get rid of any cached register state */
773 deactivate_mm(tsk, mm);
774
775 /*
776 * If we're exiting normally, clear a user-space tid field if
777 * requested. We leave this alone when dying by signal, to leave
778 * the value intact in a core dump, and to save the unnecessary
779 * trouble, say, a killed vfork parent shouldn't touch this mm.
780 * Userland only wants this done for a sys_exit.
781 */
782 if (tsk->clear_child_tid) {
783 if (!(tsk->flags & PF_SIGNALED) &&
784 atomic_read(&mm->mm_users) > 1) {
785 /*
786 * We don't check the error code - if userspace has
787 * not set up a proper pointer then tough luck.
788 */
789 put_user(0, tsk->clear_child_tid);
790 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
791 1, NULL, NULL, 0);
792 }
793 tsk->clear_child_tid = NULL;
794 }
795
796 /*
797 * All done, finally we can wake up parent and return this mm to him.
798 * Also kthread_stop() uses this completion for synchronization.
799 */
800 if (tsk->vfork_done)
801 complete_vfork_done(tsk);
802 }
803
804 /*
805 * Allocate a new mm structure and copy contents from the
806 * mm structure of the passed in task structure.
807 */
808 struct mm_struct *dup_mm(struct task_struct *tsk)
809 {
810 struct mm_struct *mm, *oldmm = current->mm;
811 int err;
812
813 if (!oldmm)
814 return NULL;
815
816 mm = allocate_mm();
817 if (!mm)
818 goto fail_nomem;
819
820 memcpy(mm, oldmm, sizeof(*mm));
821 mm_init_cpumask(mm);
822
823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
824 mm->pmd_huge_pte = NULL;
825 #endif
826 #ifdef CONFIG_NUMA_BALANCING
827 mm->first_nid = NUMA_PTE_SCAN_INIT;
828 #endif
829 if (!mm_init(mm, tsk))
830 goto fail_nomem;
831
832 if (init_new_context(tsk, mm))
833 goto fail_nocontext;
834
835 dup_mm_exe_file(oldmm, mm);
836
837 err = dup_mmap(mm, oldmm);
838 if (err)
839 goto free_pt;
840
841 mm->hiwater_rss = get_mm_rss(mm);
842 mm->hiwater_vm = mm->total_vm;
843
844 if (mm->binfmt && !try_module_get(mm->binfmt->module))
845 goto free_pt;
846
847 return mm;
848
849 free_pt:
850 /* don't put binfmt in mmput, we haven't got module yet */
851 mm->binfmt = NULL;
852 mmput(mm);
853
854 fail_nomem:
855 return NULL;
856
857 fail_nocontext:
858 /*
859 * If init_new_context() failed, we cannot use mmput() to free the mm
860 * because it calls destroy_context()
861 */
862 mm_free_pgd(mm);
863 free_mm(mm);
864 return NULL;
865 }
866
867 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
868 {
869 struct mm_struct *mm, *oldmm;
870 int retval;
871
872 tsk->min_flt = tsk->maj_flt = 0;
873 tsk->nvcsw = tsk->nivcsw = 0;
874 #ifdef CONFIG_DETECT_HUNG_TASK
875 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
876 #endif
877
878 tsk->mm = NULL;
879 tsk->active_mm = NULL;
880
881 /*
882 * Are we cloning a kernel thread?
883 *
884 * We need to steal a active VM for that..
885 */
886 oldmm = current->mm;
887 if (!oldmm)
888 return 0;
889
890 if (clone_flags & CLONE_VM) {
891 atomic_inc(&oldmm->mm_users);
892 mm = oldmm;
893 goto good_mm;
894 }
895
896 retval = -ENOMEM;
897 mm = dup_mm(tsk);
898 if (!mm)
899 goto fail_nomem;
900
901 good_mm:
902 tsk->mm = mm;
903 tsk->active_mm = mm;
904 return 0;
905
906 fail_nomem:
907 return retval;
908 }
909
910 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
911 {
912 struct fs_struct *fs = current->fs;
913 if (clone_flags & CLONE_FS) {
914 /* tsk->fs is already what we want */
915 spin_lock(&fs->lock);
916 if (fs->in_exec) {
917 spin_unlock(&fs->lock);
918 return -EAGAIN;
919 }
920 fs->users++;
921 spin_unlock(&fs->lock);
922 return 0;
923 }
924 tsk->fs = copy_fs_struct(fs);
925 if (!tsk->fs)
926 return -ENOMEM;
927 return 0;
928 }
929
930 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
931 {
932 struct files_struct *oldf, *newf;
933 int error = 0;
934
935 /*
936 * A background process may not have any files ...
937 */
938 oldf = current->files;
939 if (!oldf)
940 goto out;
941
942 if (clone_flags & CLONE_FILES) {
943 atomic_inc(&oldf->count);
944 goto out;
945 }
946
947 newf = dup_fd(oldf, &error);
948 if (!newf)
949 goto out;
950
951 tsk->files = newf;
952 error = 0;
953 out:
954 return error;
955 }
956
957 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
958 {
959 #ifdef CONFIG_BLOCK
960 struct io_context *ioc = current->io_context;
961 struct io_context *new_ioc;
962
963 if (!ioc)
964 return 0;
965 /*
966 * Share io context with parent, if CLONE_IO is set
967 */
968 if (clone_flags & CLONE_IO) {
969 ioc_task_link(ioc);
970 tsk->io_context = ioc;
971 } else if (ioprio_valid(ioc->ioprio)) {
972 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
973 if (unlikely(!new_ioc))
974 return -ENOMEM;
975
976 new_ioc->ioprio = ioc->ioprio;
977 put_io_context(new_ioc);
978 }
979 #endif
980 return 0;
981 }
982
983 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
984 {
985 struct sighand_struct *sig;
986
987 if (clone_flags & CLONE_SIGHAND) {
988 atomic_inc(&current->sighand->count);
989 return 0;
990 }
991 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
992 rcu_assign_pointer(tsk->sighand, sig);
993 if (!sig)
994 return -ENOMEM;
995 atomic_set(&sig->count, 1);
996 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
997 return 0;
998 }
999
1000 void __cleanup_sighand(struct sighand_struct *sighand)
1001 {
1002 if (atomic_dec_and_test(&sighand->count)) {
1003 signalfd_cleanup(sighand);
1004 kmem_cache_free(sighand_cachep, sighand);
1005 }
1006 }
1007
1008
1009 /*
1010 * Initialize POSIX timer handling for a thread group.
1011 */
1012 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1013 {
1014 unsigned long cpu_limit;
1015
1016 /* Thread group counters. */
1017 thread_group_cputime_init(sig);
1018
1019 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1020 if (cpu_limit != RLIM_INFINITY) {
1021 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1022 sig->cputimer.running = 1;
1023 }
1024
1025 /* The timer lists. */
1026 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1027 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1028 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1029 }
1030
1031 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1032 {
1033 struct signal_struct *sig;
1034
1035 if (clone_flags & CLONE_THREAD)
1036 return 0;
1037
1038 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1039 tsk->signal = sig;
1040 if (!sig)
1041 return -ENOMEM;
1042
1043 sig->nr_threads = 1;
1044 atomic_set(&sig->live, 1);
1045 atomic_set(&sig->sigcnt, 1);
1046 init_waitqueue_head(&sig->wait_chldexit);
1047 sig->curr_target = tsk;
1048 init_sigpending(&sig->shared_pending);
1049 INIT_LIST_HEAD(&sig->posix_timers);
1050
1051 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1052 sig->real_timer.function = it_real_fn;
1053
1054 task_lock(current->group_leader);
1055 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1056 task_unlock(current->group_leader);
1057
1058 posix_cpu_timers_init_group(sig);
1059
1060 tty_audit_fork(sig);
1061 sched_autogroup_fork(sig);
1062
1063 #ifdef CONFIG_CGROUPS
1064 init_rwsem(&sig->group_rwsem);
1065 #endif
1066
1067 sig->oom_score_adj = current->signal->oom_score_adj;
1068 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1069
1070 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1071 current->signal->is_child_subreaper;
1072
1073 mutex_init(&sig->cred_guard_mutex);
1074
1075 return 0;
1076 }
1077
1078 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1079 {
1080 unsigned long new_flags = p->flags;
1081
1082 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1083 new_flags |= PF_FORKNOEXEC;
1084 p->flags = new_flags;
1085 }
1086
1087 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1088 {
1089 current->clear_child_tid = tidptr;
1090
1091 return task_pid_vnr(current);
1092 }
1093
1094 static void rt_mutex_init_task(struct task_struct *p)
1095 {
1096 raw_spin_lock_init(&p->pi_lock);
1097 #ifdef CONFIG_RT_MUTEXES
1098 plist_head_init(&p->pi_waiters);
1099 p->pi_blocked_on = NULL;
1100 #endif
1101 }
1102
1103 #ifdef CONFIG_MM_OWNER
1104 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1105 {
1106 mm->owner = p;
1107 }
1108 #endif /* CONFIG_MM_OWNER */
1109
1110 /*
1111 * Initialize POSIX timer handling for a single task.
1112 */
1113 static void posix_cpu_timers_init(struct task_struct *tsk)
1114 {
1115 tsk->cputime_expires.prof_exp = 0;
1116 tsk->cputime_expires.virt_exp = 0;
1117 tsk->cputime_expires.sched_exp = 0;
1118 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1119 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1120 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1121 }
1122
1123 /*
1124 * This creates a new process as a copy of the old one,
1125 * but does not actually start it yet.
1126 *
1127 * It copies the registers, and all the appropriate
1128 * parts of the process environment (as per the clone
1129 * flags). The actual kick-off is left to the caller.
1130 */
1131 static struct task_struct *copy_process(unsigned long clone_flags,
1132 unsigned long stack_start,
1133 unsigned long stack_size,
1134 int __user *child_tidptr,
1135 struct pid *pid,
1136 int trace)
1137 {
1138 int retval;
1139 struct task_struct *p;
1140
1141 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1142 return ERR_PTR(-EINVAL);
1143
1144 /*
1145 * Thread groups must share signals as well, and detached threads
1146 * can only be started up within the thread group.
1147 */
1148 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1149 return ERR_PTR(-EINVAL);
1150
1151 /*
1152 * Shared signal handlers imply shared VM. By way of the above,
1153 * thread groups also imply shared VM. Blocking this case allows
1154 * for various simplifications in other code.
1155 */
1156 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1157 return ERR_PTR(-EINVAL);
1158
1159 /*
1160 * Siblings of global init remain as zombies on exit since they are
1161 * not reaped by their parent (swapper). To solve this and to avoid
1162 * multi-rooted process trees, prevent global and container-inits
1163 * from creating siblings.
1164 */
1165 if ((clone_flags & CLONE_PARENT) &&
1166 current->signal->flags & SIGNAL_UNKILLABLE)
1167 return ERR_PTR(-EINVAL);
1168
1169 /*
1170 * If the new process will be in a different pid namespace
1171 * don't allow the creation of threads.
1172 */
1173 if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1174 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1175 return ERR_PTR(-EINVAL);
1176
1177 retval = security_task_create(clone_flags);
1178 if (retval)
1179 goto fork_out;
1180
1181 retval = -ENOMEM;
1182 p = dup_task_struct(current);
1183 if (!p)
1184 goto fork_out;
1185
1186 ftrace_graph_init_task(p);
1187 get_seccomp_filter(p);
1188
1189 rt_mutex_init_task(p);
1190
1191 #ifdef CONFIG_PROVE_LOCKING
1192 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1193 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1194 #endif
1195 retval = -EAGAIN;
1196 if (atomic_read(&p->real_cred->user->processes) >=
1197 task_rlimit(p, RLIMIT_NPROC)) {
1198 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1199 p->real_cred->user != INIT_USER)
1200 goto bad_fork_free;
1201 }
1202 current->flags &= ~PF_NPROC_EXCEEDED;
1203
1204 retval = copy_creds(p, clone_flags);
1205 if (retval < 0)
1206 goto bad_fork_free;
1207
1208 /*
1209 * If multiple threads are within copy_process(), then this check
1210 * triggers too late. This doesn't hurt, the check is only there
1211 * to stop root fork bombs.
1212 */
1213 retval = -EAGAIN;
1214 if (nr_threads >= max_threads)
1215 goto bad_fork_cleanup_count;
1216
1217 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1218 goto bad_fork_cleanup_count;
1219
1220 p->did_exec = 0;
1221 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1222 copy_flags(clone_flags, p);
1223 INIT_LIST_HEAD(&p->children);
1224 INIT_LIST_HEAD(&p->sibling);
1225 rcu_copy_process(p);
1226 p->vfork_done = NULL;
1227 spin_lock_init(&p->alloc_lock);
1228
1229 init_sigpending(&p->pending);
1230
1231 p->utime = p->stime = p->gtime = 0;
1232 p->utimescaled = p->stimescaled = 0;
1233 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1234 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1235 #endif
1236 #if defined(SPLIT_RSS_COUNTING)
1237 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1238 #endif
1239
1240 p->default_timer_slack_ns = current->timer_slack_ns;
1241
1242 task_io_accounting_init(&p->ioac);
1243 acct_clear_integrals(p);
1244
1245 posix_cpu_timers_init(p);
1246
1247 do_posix_clock_monotonic_gettime(&p->start_time);
1248 p->real_start_time = p->start_time;
1249 monotonic_to_bootbased(&p->real_start_time);
1250 p->io_context = NULL;
1251 p->audit_context = NULL;
1252 if (clone_flags & CLONE_THREAD)
1253 threadgroup_change_begin(current);
1254 cgroup_fork(p);
1255 #ifdef CONFIG_NUMA
1256 p->mempolicy = mpol_dup(p->mempolicy);
1257 if (IS_ERR(p->mempolicy)) {
1258 retval = PTR_ERR(p->mempolicy);
1259 p->mempolicy = NULL;
1260 goto bad_fork_cleanup_cgroup;
1261 }
1262 mpol_fix_fork_child_flag(p);
1263 #endif
1264 #ifdef CONFIG_CPUSETS
1265 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1266 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1267 seqcount_init(&p->mems_allowed_seq);
1268 #endif
1269 #ifdef CONFIG_TRACE_IRQFLAGS
1270 p->irq_events = 0;
1271 p->hardirqs_enabled = 0;
1272 p->hardirq_enable_ip = 0;
1273 p->hardirq_enable_event = 0;
1274 p->hardirq_disable_ip = _THIS_IP_;
1275 p->hardirq_disable_event = 0;
1276 p->softirqs_enabled = 1;
1277 p->softirq_enable_ip = _THIS_IP_;
1278 p->softirq_enable_event = 0;
1279 p->softirq_disable_ip = 0;
1280 p->softirq_disable_event = 0;
1281 p->hardirq_context = 0;
1282 p->softirq_context = 0;
1283 #endif
1284 #ifdef CONFIG_LOCKDEP
1285 p->lockdep_depth = 0; /* no locks held yet */
1286 p->curr_chain_key = 0;
1287 p->lockdep_recursion = 0;
1288 #endif
1289
1290 #ifdef CONFIG_DEBUG_MUTEXES
1291 p->blocked_on = NULL; /* not blocked yet */
1292 #endif
1293 #ifdef CONFIG_MEMCG
1294 p->memcg_batch.do_batch = 0;
1295 p->memcg_batch.memcg = NULL;
1296 #endif
1297
1298 /* Perform scheduler related setup. Assign this task to a CPU. */
1299 sched_fork(p);
1300
1301 retval = perf_event_init_task(p);
1302 if (retval)
1303 goto bad_fork_cleanup_policy;
1304 retval = audit_alloc(p);
1305 if (retval)
1306 goto bad_fork_cleanup_policy;
1307 /* copy all the process information */
1308 retval = copy_semundo(clone_flags, p);
1309 if (retval)
1310 goto bad_fork_cleanup_audit;
1311 retval = copy_files(clone_flags, p);
1312 if (retval)
1313 goto bad_fork_cleanup_semundo;
1314 retval = copy_fs(clone_flags, p);
1315 if (retval)
1316 goto bad_fork_cleanup_files;
1317 retval = copy_sighand(clone_flags, p);
1318 if (retval)
1319 goto bad_fork_cleanup_fs;
1320 retval = copy_signal(clone_flags, p);
1321 if (retval)
1322 goto bad_fork_cleanup_sighand;
1323 retval = copy_mm(clone_flags, p);
1324 if (retval)
1325 goto bad_fork_cleanup_signal;
1326 retval = copy_namespaces(clone_flags, p);
1327 if (retval)
1328 goto bad_fork_cleanup_mm;
1329 retval = copy_io(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_namespaces;
1332 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1333 if (retval)
1334 goto bad_fork_cleanup_io;
1335
1336 if (pid != &init_struct_pid) {
1337 retval = -ENOMEM;
1338 pid = alloc_pid(p->nsproxy->pid_ns);
1339 if (!pid)
1340 goto bad_fork_cleanup_io;
1341 }
1342
1343 p->pid = pid_nr(pid);
1344 p->tgid = p->pid;
1345 if (clone_flags & CLONE_THREAD)
1346 p->tgid = current->tgid;
1347
1348 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1349 /*
1350 * Clear TID on mm_release()?
1351 */
1352 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1353 #ifdef CONFIG_BLOCK
1354 p->plug = NULL;
1355 #endif
1356 #ifdef CONFIG_FUTEX
1357 p->robust_list = NULL;
1358 #ifdef CONFIG_COMPAT
1359 p->compat_robust_list = NULL;
1360 #endif
1361 INIT_LIST_HEAD(&p->pi_state_list);
1362 p->pi_state_cache = NULL;
1363 #endif
1364 uprobe_copy_process(p);
1365 /*
1366 * sigaltstack should be cleared when sharing the same VM
1367 */
1368 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1369 p->sas_ss_sp = p->sas_ss_size = 0;
1370
1371 /*
1372 * Syscall tracing and stepping should be turned off in the
1373 * child regardless of CLONE_PTRACE.
1374 */
1375 user_disable_single_step(p);
1376 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1377 #ifdef TIF_SYSCALL_EMU
1378 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1379 #endif
1380 clear_all_latency_tracing(p);
1381
1382 /* ok, now we should be set up.. */
1383 if (clone_flags & CLONE_THREAD)
1384 p->exit_signal = -1;
1385 else if (clone_flags & CLONE_PARENT)
1386 p->exit_signal = current->group_leader->exit_signal;
1387 else
1388 p->exit_signal = (clone_flags & CSIGNAL);
1389
1390 p->pdeath_signal = 0;
1391 p->exit_state = 0;
1392
1393 p->nr_dirtied = 0;
1394 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1395 p->dirty_paused_when = 0;
1396
1397 /*
1398 * Ok, make it visible to the rest of the system.
1399 * We dont wake it up yet.
1400 */
1401 p->group_leader = p;
1402 INIT_LIST_HEAD(&p->thread_group);
1403 p->task_works = NULL;
1404
1405 /* Need tasklist lock for parent etc handling! */
1406 write_lock_irq(&tasklist_lock);
1407
1408 /* CLONE_PARENT re-uses the old parent */
1409 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1410 p->real_parent = current->real_parent;
1411 p->parent_exec_id = current->parent_exec_id;
1412 } else {
1413 p->real_parent = current;
1414 p->parent_exec_id = current->self_exec_id;
1415 }
1416
1417 spin_lock(&current->sighand->siglock);
1418
1419 /*
1420 * Process group and session signals need to be delivered to just the
1421 * parent before the fork or both the parent and the child after the
1422 * fork. Restart if a signal comes in before we add the new process to
1423 * it's process group.
1424 * A fatal signal pending means that current will exit, so the new
1425 * thread can't slip out of an OOM kill (or normal SIGKILL).
1426 */
1427 recalc_sigpending();
1428 if (signal_pending(current)) {
1429 spin_unlock(&current->sighand->siglock);
1430 write_unlock_irq(&tasklist_lock);
1431 retval = -ERESTARTNOINTR;
1432 goto bad_fork_free_pid;
1433 }
1434
1435 if (clone_flags & CLONE_THREAD) {
1436 current->signal->nr_threads++;
1437 atomic_inc(&current->signal->live);
1438 atomic_inc(&current->signal->sigcnt);
1439 p->group_leader = current->group_leader;
1440 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1441 }
1442
1443 if (likely(p->pid)) {
1444 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1445
1446 if (thread_group_leader(p)) {
1447 if (is_child_reaper(pid)) {
1448 ns_of_pid(pid)->child_reaper = p;
1449 p->signal->flags |= SIGNAL_UNKILLABLE;
1450 }
1451
1452 p->signal->leader_pid = pid;
1453 p->signal->tty = tty_kref_get(current->signal->tty);
1454 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1455 attach_pid(p, PIDTYPE_SID, task_session(current));
1456 list_add_tail(&p->sibling, &p->real_parent->children);
1457 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1458 __this_cpu_inc(process_counts);
1459 }
1460 attach_pid(p, PIDTYPE_PID, pid);
1461 nr_threads++;
1462 }
1463
1464 total_forks++;
1465 spin_unlock(&current->sighand->siglock);
1466 write_unlock_irq(&tasklist_lock);
1467 proc_fork_connector(p);
1468 cgroup_post_fork(p);
1469 if (clone_flags & CLONE_THREAD)
1470 threadgroup_change_end(current);
1471 perf_event_fork(p);
1472
1473 trace_task_newtask(p, clone_flags);
1474
1475 return p;
1476
1477 bad_fork_free_pid:
1478 if (pid != &init_struct_pid)
1479 free_pid(pid);
1480 bad_fork_cleanup_io:
1481 if (p->io_context)
1482 exit_io_context(p);
1483 bad_fork_cleanup_namespaces:
1484 exit_task_namespaces(p);
1485 bad_fork_cleanup_mm:
1486 if (p->mm)
1487 mmput(p->mm);
1488 bad_fork_cleanup_signal:
1489 if (!(clone_flags & CLONE_THREAD))
1490 free_signal_struct(p->signal);
1491 bad_fork_cleanup_sighand:
1492 __cleanup_sighand(p->sighand);
1493 bad_fork_cleanup_fs:
1494 exit_fs(p); /* blocking */
1495 bad_fork_cleanup_files:
1496 exit_files(p); /* blocking */
1497 bad_fork_cleanup_semundo:
1498 exit_sem(p);
1499 bad_fork_cleanup_audit:
1500 audit_free(p);
1501 bad_fork_cleanup_policy:
1502 perf_event_free_task(p);
1503 #ifdef CONFIG_NUMA
1504 mpol_put(p->mempolicy);
1505 bad_fork_cleanup_cgroup:
1506 #endif
1507 if (clone_flags & CLONE_THREAD)
1508 threadgroup_change_end(current);
1509 cgroup_exit(p, 0);
1510 delayacct_tsk_free(p);
1511 module_put(task_thread_info(p)->exec_domain->module);
1512 bad_fork_cleanup_count:
1513 atomic_dec(&p->cred->user->processes);
1514 exit_creds(p);
1515 bad_fork_free:
1516 free_task(p);
1517 fork_out:
1518 return ERR_PTR(retval);
1519 }
1520
1521 static inline void init_idle_pids(struct pid_link *links)
1522 {
1523 enum pid_type type;
1524
1525 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1526 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1527 links[type].pid = &init_struct_pid;
1528 }
1529 }
1530
1531 struct task_struct * __cpuinit fork_idle(int cpu)
1532 {
1533 struct task_struct *task;
1534 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1535 if (!IS_ERR(task)) {
1536 init_idle_pids(task->pids);
1537 init_idle(task, cpu);
1538 }
1539
1540 return task;
1541 }
1542
1543 /*
1544 * Ok, this is the main fork-routine.
1545 *
1546 * It copies the process, and if successful kick-starts
1547 * it and waits for it to finish using the VM if required.
1548 */
1549 long do_fork(unsigned long clone_flags,
1550 unsigned long stack_start,
1551 unsigned long stack_size,
1552 int __user *parent_tidptr,
1553 int __user *child_tidptr)
1554 {
1555 struct task_struct *p;
1556 int trace = 0;
1557 long nr;
1558
1559 /*
1560 * Do some preliminary argument and permissions checking before we
1561 * actually start allocating stuff
1562 */
1563 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1564 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1565 return -EINVAL;
1566 }
1567
1568 /*
1569 * Determine whether and which event to report to ptracer. When
1570 * called from kernel_thread or CLONE_UNTRACED is explicitly
1571 * requested, no event is reported; otherwise, report if the event
1572 * for the type of forking is enabled.
1573 */
1574 if (!(clone_flags & CLONE_UNTRACED)) {
1575 if (clone_flags & CLONE_VFORK)
1576 trace = PTRACE_EVENT_VFORK;
1577 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1578 trace = PTRACE_EVENT_CLONE;
1579 else
1580 trace = PTRACE_EVENT_FORK;
1581
1582 if (likely(!ptrace_event_enabled(current, trace)))
1583 trace = 0;
1584 }
1585
1586 p = copy_process(clone_flags, stack_start, stack_size,
1587 child_tidptr, NULL, trace);
1588 /*
1589 * Do this prior waking up the new thread - the thread pointer
1590 * might get invalid after that point, if the thread exits quickly.
1591 */
1592 if (!IS_ERR(p)) {
1593 struct completion vfork;
1594
1595 trace_sched_process_fork(current, p);
1596
1597 nr = task_pid_vnr(p);
1598
1599 if (clone_flags & CLONE_PARENT_SETTID)
1600 put_user(nr, parent_tidptr);
1601
1602 if (clone_flags & CLONE_VFORK) {
1603 p->vfork_done = &vfork;
1604 init_completion(&vfork);
1605 get_task_struct(p);
1606 }
1607
1608 wake_up_new_task(p);
1609
1610 /* forking complete and child started to run, tell ptracer */
1611 if (unlikely(trace))
1612 ptrace_event(trace, nr);
1613
1614 if (clone_flags & CLONE_VFORK) {
1615 if (!wait_for_vfork_done(p, &vfork))
1616 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1617 }
1618 } else {
1619 nr = PTR_ERR(p);
1620 }
1621 return nr;
1622 }
1623
1624 /*
1625 * Create a kernel thread.
1626 */
1627 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1628 {
1629 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1630 (unsigned long)arg, NULL, NULL);
1631 }
1632
1633 #ifdef __ARCH_WANT_SYS_FORK
1634 SYSCALL_DEFINE0(fork)
1635 {
1636 #ifdef CONFIG_MMU
1637 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1638 #else
1639 /* can not support in nommu mode */
1640 return(-EINVAL);
1641 #endif
1642 }
1643 #endif
1644
1645 #ifdef __ARCH_WANT_SYS_VFORK
1646 SYSCALL_DEFINE0(vfork)
1647 {
1648 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1649 0, NULL, NULL);
1650 }
1651 #endif
1652
1653 #ifdef __ARCH_WANT_SYS_CLONE
1654 #ifdef CONFIG_CLONE_BACKWARDS
1655 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1656 int __user *, parent_tidptr,
1657 int, tls_val,
1658 int __user *, child_tidptr)
1659 #elif defined(CONFIG_CLONE_BACKWARDS2)
1660 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1661 int __user *, parent_tidptr,
1662 int __user *, child_tidptr,
1663 int, tls_val)
1664 #else
1665 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1666 int __user *, parent_tidptr,
1667 int __user *, child_tidptr,
1668 int, tls_val)
1669 #endif
1670 {
1671 long ret = do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1672 asmlinkage_protect(5, ret, clone_flags, newsp,
1673 parent_tidptr, child_tidptr, tls_val);
1674 return ret;
1675 }
1676 #endif
1677
1678 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1679 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1680 #endif
1681
1682 static void sighand_ctor(void *data)
1683 {
1684 struct sighand_struct *sighand = data;
1685
1686 spin_lock_init(&sighand->siglock);
1687 init_waitqueue_head(&sighand->signalfd_wqh);
1688 }
1689
1690 void __init proc_caches_init(void)
1691 {
1692 sighand_cachep = kmem_cache_create("sighand_cache",
1693 sizeof(struct sighand_struct), 0,
1694 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1695 SLAB_NOTRACK, sighand_ctor);
1696 signal_cachep = kmem_cache_create("signal_cache",
1697 sizeof(struct signal_struct), 0,
1698 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1699 files_cachep = kmem_cache_create("files_cache",
1700 sizeof(struct files_struct), 0,
1701 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1702 fs_cachep = kmem_cache_create("fs_cache",
1703 sizeof(struct fs_struct), 0,
1704 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1705 /*
1706 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1707 * whole struct cpumask for the OFFSTACK case. We could change
1708 * this to *only* allocate as much of it as required by the
1709 * maximum number of CPU's we can ever have. The cpumask_allocation
1710 * is at the end of the structure, exactly for that reason.
1711 */
1712 mm_cachep = kmem_cache_create("mm_struct",
1713 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1714 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1715 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1716 mmap_init();
1717 nsproxy_cache_init();
1718 }
1719
1720 /*
1721 * Check constraints on flags passed to the unshare system call.
1722 */
1723 static int check_unshare_flags(unsigned long unshare_flags)
1724 {
1725 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1726 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1727 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1728 CLONE_NEWUSER|CLONE_NEWPID))
1729 return -EINVAL;
1730 /*
1731 * Not implemented, but pretend it works if there is nothing to
1732 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1733 * needs to unshare vm.
1734 */
1735 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1736 /* FIXME: get_task_mm() increments ->mm_users */
1737 if (atomic_read(&current->mm->mm_users) > 1)
1738 return -EINVAL;
1739 }
1740
1741 return 0;
1742 }
1743
1744 /*
1745 * Unshare the filesystem structure if it is being shared
1746 */
1747 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1748 {
1749 struct fs_struct *fs = current->fs;
1750
1751 if (!(unshare_flags & CLONE_FS) || !fs)
1752 return 0;
1753
1754 /* don't need lock here; in the worst case we'll do useless copy */
1755 if (fs->users == 1)
1756 return 0;
1757
1758 *new_fsp = copy_fs_struct(fs);
1759 if (!*new_fsp)
1760 return -ENOMEM;
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Unshare file descriptor table if it is being shared
1767 */
1768 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1769 {
1770 struct files_struct *fd = current->files;
1771 int error = 0;
1772
1773 if ((unshare_flags & CLONE_FILES) &&
1774 (fd && atomic_read(&fd->count) > 1)) {
1775 *new_fdp = dup_fd(fd, &error);
1776 if (!*new_fdp)
1777 return error;
1778 }
1779
1780 return 0;
1781 }
1782
1783 /*
1784 * unshare allows a process to 'unshare' part of the process
1785 * context which was originally shared using clone. copy_*
1786 * functions used by do_fork() cannot be used here directly
1787 * because they modify an inactive task_struct that is being
1788 * constructed. Here we are modifying the current, active,
1789 * task_struct.
1790 */
1791 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1792 {
1793 struct fs_struct *fs, *new_fs = NULL;
1794 struct files_struct *fd, *new_fd = NULL;
1795 struct cred *new_cred = NULL;
1796 struct nsproxy *new_nsproxy = NULL;
1797 int do_sysvsem = 0;
1798 int err;
1799
1800 /*
1801 * If unsharing a user namespace must also unshare the thread.
1802 */
1803 if (unshare_flags & CLONE_NEWUSER)
1804 unshare_flags |= CLONE_THREAD;
1805 /*
1806 * If unsharing a pid namespace must also unshare the thread.
1807 */
1808 if (unshare_flags & CLONE_NEWPID)
1809 unshare_flags |= CLONE_THREAD;
1810 /*
1811 * If unsharing a thread from a thread group, must also unshare vm.
1812 */
1813 if (unshare_flags & CLONE_THREAD)
1814 unshare_flags |= CLONE_VM;
1815 /*
1816 * If unsharing vm, must also unshare signal handlers.
1817 */
1818 if (unshare_flags & CLONE_VM)
1819 unshare_flags |= CLONE_SIGHAND;
1820 /*
1821 * If unsharing namespace, must also unshare filesystem information.
1822 */
1823 if (unshare_flags & CLONE_NEWNS)
1824 unshare_flags |= CLONE_FS;
1825
1826 err = check_unshare_flags(unshare_flags);
1827 if (err)
1828 goto bad_unshare_out;
1829 /*
1830 * CLONE_NEWIPC must also detach from the undolist: after switching
1831 * to a new ipc namespace, the semaphore arrays from the old
1832 * namespace are unreachable.
1833 */
1834 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1835 do_sysvsem = 1;
1836 err = unshare_fs(unshare_flags, &new_fs);
1837 if (err)
1838 goto bad_unshare_out;
1839 err = unshare_fd(unshare_flags, &new_fd);
1840 if (err)
1841 goto bad_unshare_cleanup_fs;
1842 err = unshare_userns(unshare_flags, &new_cred);
1843 if (err)
1844 goto bad_unshare_cleanup_fd;
1845 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1846 new_cred, new_fs);
1847 if (err)
1848 goto bad_unshare_cleanup_cred;
1849
1850 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1851 if (do_sysvsem) {
1852 /*
1853 * CLONE_SYSVSEM is equivalent to sys_exit().
1854 */
1855 exit_sem(current);
1856 }
1857
1858 if (new_nsproxy) {
1859 switch_task_namespaces(current, new_nsproxy);
1860 new_nsproxy = NULL;
1861 }
1862
1863 task_lock(current);
1864
1865 if (new_fs) {
1866 fs = current->fs;
1867 spin_lock(&fs->lock);
1868 current->fs = new_fs;
1869 if (--fs->users)
1870 new_fs = NULL;
1871 else
1872 new_fs = fs;
1873 spin_unlock(&fs->lock);
1874 }
1875
1876 if (new_fd) {
1877 fd = current->files;
1878 current->files = new_fd;
1879 new_fd = fd;
1880 }
1881
1882 task_unlock(current);
1883
1884 if (new_cred) {
1885 /* Install the new user namespace */
1886 commit_creds(new_cred);
1887 new_cred = NULL;
1888 }
1889 }
1890
1891 if (new_nsproxy)
1892 put_nsproxy(new_nsproxy);
1893
1894 bad_unshare_cleanup_cred:
1895 if (new_cred)
1896 put_cred(new_cred);
1897 bad_unshare_cleanup_fd:
1898 if (new_fd)
1899 put_files_struct(new_fd);
1900
1901 bad_unshare_cleanup_fs:
1902 if (new_fs)
1903 free_fs_struct(new_fs);
1904
1905 bad_unshare_out:
1906 return err;
1907 }
1908
1909 /*
1910 * Helper to unshare the files of the current task.
1911 * We don't want to expose copy_files internals to
1912 * the exec layer of the kernel.
1913 */
1914
1915 int unshare_files(struct files_struct **displaced)
1916 {
1917 struct task_struct *task = current;
1918 struct files_struct *copy = NULL;
1919 int error;
1920
1921 error = unshare_fd(CLONE_FILES, &copy);
1922 if (error || !copy) {
1923 *displaced = NULL;
1924 return error;
1925 }
1926 *displaced = task->files;
1927 task_lock(task);
1928 task->files = copy;
1929 task_unlock(task);
1930 return 0;
1931 }