]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100
101 #include <trace/events/sched.h>
102
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
105 #ifdef CONFIG_USER_NS
106 extern int unprivileged_userns_clone;
107 #else
108 #define unprivileged_userns_clone 0
109 #endif
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 int max_threads; /* tunable limit on nr_threads */
128
129 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
130
131 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
132
133 #ifdef CONFIG_PROVE_RCU
134 int lockdep_tasklist_lock_is_held(void)
135 {
136 return lockdep_is_held(&tasklist_lock);
137 }
138 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
139 #endif /* #ifdef CONFIG_PROVE_RCU */
140
141 int nr_processes(void)
142 {
143 int cpu;
144 int total = 0;
145
146 for_each_possible_cpu(cpu)
147 total += per_cpu(process_counts, cpu);
148
149 return total;
150 }
151
152 void __weak arch_release_task_struct(struct task_struct *tsk)
153 {
154 }
155
156 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
157 static struct kmem_cache *task_struct_cachep;
158
159 static inline struct task_struct *alloc_task_struct_node(int node)
160 {
161 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
162 }
163
164 static inline void free_task_struct(struct task_struct *tsk)
165 {
166 kmem_cache_free(task_struct_cachep, tsk);
167 }
168 #endif
169
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171
172 /*
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
175 */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177
178 #ifdef CONFIG_VMAP_STACK
179 /*
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
182 */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
190
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194 if (!vm_stack)
195 continue;
196
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
199 }
200
201 return 0;
202 }
203 #endif
204
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 void *stack;
209 int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *s;
213
214 s = this_cpu_xchg(cached_stacks[i], NULL);
215
216 if (!s)
217 continue;
218
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
221
222 tsk->stack_vm_area = s;
223 tsk->stack = s->addr;
224 return s->addr;
225 }
226
227 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
228 VMALLOC_START, VMALLOC_END,
229 THREADINFO_GFP,
230 PAGE_KERNEL,
231 0, node, __builtin_return_address(0));
232
233 /*
234 * We can't call find_vm_area() in interrupt context, and
235 * free_thread_stack() can be called in interrupt context,
236 * so cache the vm_struct.
237 */
238 if (stack) {
239 tsk->stack_vm_area = find_vm_area(stack);
240 tsk->stack = stack;
241 }
242 return stack;
243 #else
244 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
245 THREAD_SIZE_ORDER);
246
247 if (likely(page)) {
248 tsk->stack = page_address(page);
249 return tsk->stack;
250 }
251 return NULL;
252 #endif
253 }
254
255 static inline void free_thread_stack(struct task_struct *tsk)
256 {
257 #ifdef CONFIG_VMAP_STACK
258 if (task_stack_vm_area(tsk)) {
259 int i;
260
261 for (i = 0; i < NR_CACHED_STACKS; i++) {
262 if (this_cpu_cmpxchg(cached_stacks[i],
263 NULL, tsk->stack_vm_area) != NULL)
264 continue;
265
266 return;
267 }
268
269 vfree_atomic(tsk->stack);
270 return;
271 }
272 #endif
273
274 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
275 }
276 # else
277 static struct kmem_cache *thread_stack_cache;
278
279 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
280 int node)
281 {
282 unsigned long *stack;
283 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
284 tsk->stack = stack;
285 return stack;
286 }
287
288 static void free_thread_stack(struct task_struct *tsk)
289 {
290 kmem_cache_free(thread_stack_cache, tsk->stack);
291 }
292
293 void thread_stack_cache_init(void)
294 {
295 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
296 THREAD_SIZE, 0, NULL);
297 BUG_ON(thread_stack_cache == NULL);
298 }
299 # endif
300 #endif
301
302 /* SLAB cache for signal_struct structures (tsk->signal) */
303 static struct kmem_cache *signal_cachep;
304
305 /* SLAB cache for sighand_struct structures (tsk->sighand) */
306 struct kmem_cache *sighand_cachep;
307
308 /* SLAB cache for files_struct structures (tsk->files) */
309 struct kmem_cache *files_cachep;
310
311 /* SLAB cache for fs_struct structures (tsk->fs) */
312 struct kmem_cache *fs_cachep;
313
314 /* SLAB cache for vm_area_struct structures */
315 static struct kmem_cache *vm_area_cachep;
316
317 /* SLAB cache for mm_struct structures (tsk->mm) */
318 static struct kmem_cache *mm_cachep;
319
320 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
321 {
322 struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
323
324 if (vma) {
325 vma->vm_mm = mm;
326 INIT_LIST_HEAD(&vma->anon_vma_chain);
327 }
328 return vma;
329 }
330
331 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
332 {
333 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
334
335 if (new) {
336 *new = *orig;
337 INIT_LIST_HEAD(&new->anon_vma_chain);
338 }
339 return new;
340 }
341
342 void vm_area_free(struct vm_area_struct *vma)
343 {
344 kmem_cache_free(vm_area_cachep, vma);
345 }
346
347 static void account_kernel_stack(struct task_struct *tsk, int account)
348 {
349 void *stack = task_stack_page(tsk);
350 struct vm_struct *vm = task_stack_vm_area(tsk);
351
352 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
353
354 if (vm) {
355 int i;
356
357 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
358
359 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
360 mod_zone_page_state(page_zone(vm->pages[i]),
361 NR_KERNEL_STACK_KB,
362 PAGE_SIZE / 1024 * account);
363 }
364
365 /* All stack pages belong to the same memcg. */
366 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
367 account * (THREAD_SIZE / 1024));
368 } else {
369 /*
370 * All stack pages are in the same zone and belong to the
371 * same memcg.
372 */
373 struct page *first_page = virt_to_page(stack);
374
375 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
376 THREAD_SIZE / 1024 * account);
377
378 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
379 account * (THREAD_SIZE / 1024));
380 }
381 }
382
383 static void release_task_stack(struct task_struct *tsk)
384 {
385 if (WARN_ON(tsk->state != TASK_DEAD))
386 return; /* Better to leak the stack than to free prematurely */
387
388 account_kernel_stack(tsk, -1);
389 free_thread_stack(tsk);
390 tsk->stack = NULL;
391 #ifdef CONFIG_VMAP_STACK
392 tsk->stack_vm_area = NULL;
393 #endif
394 }
395
396 #ifdef CONFIG_THREAD_INFO_IN_TASK
397 void put_task_stack(struct task_struct *tsk)
398 {
399 if (atomic_dec_and_test(&tsk->stack_refcount))
400 release_task_stack(tsk);
401 }
402 #endif
403
404 void free_task(struct task_struct *tsk)
405 {
406 #ifndef CONFIG_THREAD_INFO_IN_TASK
407 /*
408 * The task is finally done with both the stack and thread_info,
409 * so free both.
410 */
411 release_task_stack(tsk);
412 #else
413 /*
414 * If the task had a separate stack allocation, it should be gone
415 * by now.
416 */
417 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
418 #endif
419 rt_mutex_debug_task_free(tsk);
420 ftrace_graph_exit_task(tsk);
421 put_seccomp_filter(tsk);
422 arch_release_task_struct(tsk);
423 if (tsk->flags & PF_KTHREAD)
424 free_kthread_struct(tsk);
425 free_task_struct(tsk);
426 }
427 EXPORT_SYMBOL(free_task);
428
429 static inline void free_signal_struct(struct signal_struct *sig)
430 {
431 taskstats_tgid_free(sig);
432 sched_autogroup_exit(sig);
433 /*
434 * __mmdrop is not safe to call from softirq context on x86 due to
435 * pgd_dtor so postpone it to the async context
436 */
437 if (sig->oom_mm)
438 mmdrop_async(sig->oom_mm);
439 kmem_cache_free(signal_cachep, sig);
440 }
441
442 static inline void put_signal_struct(struct signal_struct *sig)
443 {
444 if (atomic_dec_and_test(&sig->sigcnt))
445 free_signal_struct(sig);
446 }
447
448 void __put_task_struct(struct task_struct *tsk)
449 {
450 WARN_ON(!tsk->exit_state);
451 WARN_ON(atomic_read(&tsk->usage));
452 WARN_ON(tsk == current);
453
454 cgroup_free(tsk);
455 task_numa_free(tsk, true);
456 security_task_free(tsk);
457 exit_creds(tsk);
458 delayacct_tsk_free(tsk);
459 put_signal_struct(tsk->signal);
460
461 if (!profile_handoff_task(tsk))
462 free_task(tsk);
463 }
464 EXPORT_SYMBOL_GPL(__put_task_struct);
465
466 void __init __weak arch_task_cache_init(void) { }
467
468 /*
469 * set_max_threads
470 */
471 static void set_max_threads(unsigned int max_threads_suggested)
472 {
473 u64 threads;
474
475 /*
476 * The number of threads shall be limited such that the thread
477 * structures may only consume a small part of the available memory.
478 */
479 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
480 threads = MAX_THREADS;
481 else
482 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
483 (u64) THREAD_SIZE * 8UL);
484
485 if (threads > max_threads_suggested)
486 threads = max_threads_suggested;
487
488 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
489 }
490
491 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
492 /* Initialized by the architecture: */
493 int arch_task_struct_size __read_mostly;
494 #endif
495
496 void __init fork_init(void)
497 {
498 int i;
499 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
500 #ifndef ARCH_MIN_TASKALIGN
501 #define ARCH_MIN_TASKALIGN 0
502 #endif
503 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
504
505 /* create a slab on which task_structs can be allocated */
506 task_struct_cachep = kmem_cache_create("task_struct",
507 arch_task_struct_size, align,
508 SLAB_PANIC|SLAB_ACCOUNT, NULL);
509 #endif
510
511 /* do the arch specific task caches init */
512 arch_task_cache_init();
513
514 set_max_threads(MAX_THREADS);
515
516 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
517 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
518 init_task.signal->rlim[RLIMIT_SIGPENDING] =
519 init_task.signal->rlim[RLIMIT_NPROC];
520
521 for (i = 0; i < UCOUNT_COUNTS; i++) {
522 init_user_ns.ucount_max[i] = max_threads/2;
523 }
524
525 #ifdef CONFIG_VMAP_STACK
526 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
527 NULL, free_vm_stack_cache);
528 #endif
529
530 lockdep_init_task(&init_task);
531 }
532
533 int __weak arch_dup_task_struct(struct task_struct *dst,
534 struct task_struct *src)
535 {
536 *dst = *src;
537 return 0;
538 }
539
540 void set_task_stack_end_magic(struct task_struct *tsk)
541 {
542 unsigned long *stackend;
543
544 stackend = end_of_stack(tsk);
545 *stackend = STACK_END_MAGIC; /* for overflow detection */
546 }
547
548 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
549 {
550 struct task_struct *tsk;
551 unsigned long *stack;
552 struct vm_struct *stack_vm_area;
553 int err;
554
555 if (node == NUMA_NO_NODE)
556 node = tsk_fork_get_node(orig);
557 tsk = alloc_task_struct_node(node);
558 if (!tsk)
559 return NULL;
560
561 stack = alloc_thread_stack_node(tsk, node);
562 if (!stack)
563 goto free_tsk;
564
565 stack_vm_area = task_stack_vm_area(tsk);
566
567 err = arch_dup_task_struct(tsk, orig);
568
569 /*
570 * arch_dup_task_struct() clobbers the stack-related fields. Make
571 * sure they're properly initialized before using any stack-related
572 * functions again.
573 */
574 tsk->stack = stack;
575 #ifdef CONFIG_VMAP_STACK
576 tsk->stack_vm_area = stack_vm_area;
577 #endif
578 #ifdef CONFIG_THREAD_INFO_IN_TASK
579 atomic_set(&tsk->stack_refcount, 1);
580 #endif
581
582 if (err)
583 goto free_stack;
584
585 #ifdef CONFIG_SECCOMP
586 /*
587 * We must handle setting up seccomp filters once we're under
588 * the sighand lock in case orig has changed between now and
589 * then. Until then, filter must be NULL to avoid messing up
590 * the usage counts on the error path calling free_task.
591 */
592 tsk->seccomp.filter = NULL;
593 #endif
594
595 setup_thread_stack(tsk, orig);
596 clear_user_return_notifier(tsk);
597 clear_tsk_need_resched(tsk);
598 set_task_stack_end_magic(tsk);
599
600 #ifdef CONFIG_CC_STACKPROTECTOR
601 tsk->stack_canary = get_random_canary();
602 #endif
603
604 /*
605 * One for us, one for whoever does the "release_task()" (usually
606 * parent)
607 */
608 atomic_set(&tsk->usage, 2);
609 #ifdef CONFIG_BLK_DEV_IO_TRACE
610 tsk->btrace_seq = 0;
611 #endif
612 tsk->splice_pipe = NULL;
613 tsk->task_frag.page = NULL;
614 tsk->wake_q.next = NULL;
615
616 account_kernel_stack(tsk, 1);
617
618 kcov_task_init(tsk);
619
620 #ifdef CONFIG_FAULT_INJECTION
621 tsk->fail_nth = 0;
622 #endif
623
624 return tsk;
625
626 free_stack:
627 free_thread_stack(tsk);
628 free_tsk:
629 free_task_struct(tsk);
630 return NULL;
631 }
632
633 #ifdef CONFIG_MMU
634 static __latent_entropy int dup_mmap(struct mm_struct *mm,
635 struct mm_struct *oldmm)
636 {
637 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
638 struct rb_node **rb_link, *rb_parent;
639 int retval;
640 unsigned long charge;
641 LIST_HEAD(uf);
642
643 uprobe_start_dup_mmap();
644 if (down_write_killable(&oldmm->mmap_sem)) {
645 retval = -EINTR;
646 goto fail_uprobe_end;
647 }
648 flush_cache_dup_mm(oldmm);
649 uprobe_dup_mmap(oldmm, mm);
650 /*
651 * Not linked in yet - no deadlock potential:
652 */
653 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
654
655 /* No ordering required: file already has been exposed. */
656 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
657
658 mm->total_vm = oldmm->total_vm;
659 mm->data_vm = oldmm->data_vm;
660 mm->exec_vm = oldmm->exec_vm;
661 mm->stack_vm = oldmm->stack_vm;
662
663 rb_link = &mm->mm_rb.rb_node;
664 rb_parent = NULL;
665 pprev = &mm->mmap;
666 retval = ksm_fork(mm, oldmm);
667 if (retval)
668 goto out;
669 retval = khugepaged_fork(mm, oldmm);
670 if (retval)
671 goto out;
672
673 prev = NULL;
674 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
675 struct file *file;
676
677 if (mpnt->vm_flags & VM_DONTCOPY) {
678 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679 continue;
680 }
681 charge = 0;
682 /*
683 * Don't duplicate many vmas if we've been oom-killed (for
684 * example)
685 */
686 if (fatal_signal_pending(current)) {
687 retval = -EINTR;
688 goto out;
689 }
690 if (mpnt->vm_flags & VM_ACCOUNT) {
691 unsigned long len = vma_pages(mpnt);
692
693 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694 goto fail_nomem;
695 charge = len;
696 }
697 tmp = vm_area_dup(mpnt);
698 if (!tmp)
699 goto fail_nomem;
700 retval = vma_dup_policy(mpnt, tmp);
701 if (retval)
702 goto fail_nomem_policy;
703 tmp->vm_mm = mm;
704 retval = dup_userfaultfd(tmp, &uf);
705 if (retval)
706 goto fail_nomem_anon_vma_fork;
707 if (tmp->vm_flags & VM_WIPEONFORK) {
708 /* VM_WIPEONFORK gets a clean slate in the child. */
709 tmp->anon_vma = NULL;
710 if (anon_vma_prepare(tmp))
711 goto fail_nomem_anon_vma_fork;
712 } else if (anon_vma_fork(tmp, mpnt))
713 goto fail_nomem_anon_vma_fork;
714 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
715 tmp->vm_next = tmp->vm_prev = NULL;
716 file = tmp->vm_file;
717 if (file) {
718 struct inode *inode = file_inode(file);
719 struct address_space *mapping = file->f_mapping;
720
721 vma_get_file(tmp);
722 if (tmp->vm_flags & VM_DENYWRITE)
723 atomic_dec(&inode->i_writecount);
724 i_mmap_lock_write(mapping);
725 if (tmp->vm_flags & VM_SHARED)
726 atomic_inc(&mapping->i_mmap_writable);
727 flush_dcache_mmap_lock(mapping);
728 /* insert tmp into the share list, just after mpnt */
729 vma_interval_tree_insert_after(tmp, mpnt,
730 &mapping->i_mmap);
731 flush_dcache_mmap_unlock(mapping);
732 i_mmap_unlock_write(mapping);
733 }
734
735 /*
736 * Clear hugetlb-related page reserves for children. This only
737 * affects MAP_PRIVATE mappings. Faults generated by the child
738 * are not guaranteed to succeed, even if read-only
739 */
740 if (is_vm_hugetlb_page(tmp))
741 reset_vma_resv_huge_pages(tmp);
742
743 /*
744 * Link in the new vma and copy the page table entries.
745 */
746 *pprev = tmp;
747 pprev = &tmp->vm_next;
748 tmp->vm_prev = prev;
749 prev = tmp;
750
751 __vma_link_rb(mm, tmp, rb_link, rb_parent);
752 rb_link = &tmp->vm_rb.rb_right;
753 rb_parent = &tmp->vm_rb;
754
755 mm->map_count++;
756 if (!(tmp->vm_flags & VM_WIPEONFORK))
757 retval = copy_page_range(mm, oldmm, mpnt);
758
759 if (tmp->vm_ops && tmp->vm_ops->open)
760 tmp->vm_ops->open(tmp);
761
762 if (retval)
763 goto out;
764 }
765 /* a new mm has just been created */
766 retval = arch_dup_mmap(oldmm, mm);
767 out:
768 up_write(&mm->mmap_sem);
769 flush_tlb_mm(oldmm);
770 up_write(&oldmm->mmap_sem);
771 dup_userfaultfd_complete(&uf);
772 fail_uprobe_end:
773 uprobe_end_dup_mmap();
774 return retval;
775 fail_nomem_anon_vma_fork:
776 mpol_put(vma_policy(tmp));
777 fail_nomem_policy:
778 vm_area_free(tmp);
779 fail_nomem:
780 retval = -ENOMEM;
781 vm_unacct_memory(charge);
782 goto out;
783 }
784
785 static inline int mm_alloc_pgd(struct mm_struct *mm)
786 {
787 mm->pgd = pgd_alloc(mm);
788 if (unlikely(!mm->pgd))
789 return -ENOMEM;
790 return 0;
791 }
792
793 static inline void mm_free_pgd(struct mm_struct *mm)
794 {
795 pgd_free(mm, mm->pgd);
796 }
797 #else
798 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
799 {
800 down_write(&oldmm->mmap_sem);
801 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
802 up_write(&oldmm->mmap_sem);
803 return 0;
804 }
805 #define mm_alloc_pgd(mm) (0)
806 #define mm_free_pgd(mm)
807 #endif /* CONFIG_MMU */
808
809 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
810
811 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
812 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
813
814 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
815
816 static int __init coredump_filter_setup(char *s)
817 {
818 default_dump_filter =
819 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
820 MMF_DUMP_FILTER_MASK;
821 return 1;
822 }
823
824 __setup("coredump_filter=", coredump_filter_setup);
825
826 #include <linux/init_task.h>
827
828 static void mm_init_aio(struct mm_struct *mm)
829 {
830 #ifdef CONFIG_AIO
831 spin_lock_init(&mm->ioctx_lock);
832 mm->ioctx_table = NULL;
833 #endif
834 }
835
836 static __always_inline void mm_clear_owner(struct mm_struct *mm,
837 struct task_struct *p)
838 {
839 #ifdef CONFIG_MEMCG
840 if (mm->owner == p)
841 WRITE_ONCE(mm->owner, NULL);
842 #endif
843 }
844
845 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
846 {
847 #ifdef CONFIG_MEMCG
848 mm->owner = p;
849 #endif
850 }
851
852 static void mm_init_uprobes_state(struct mm_struct *mm)
853 {
854 #ifdef CONFIG_UPROBES
855 mm->uprobes_state.xol_area = NULL;
856 #endif
857 }
858
859 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
860 struct user_namespace *user_ns)
861 {
862 mm->mmap = NULL;
863 mm->mm_rb = RB_ROOT;
864 mm->vmacache_seqnum = 0;
865 atomic_set(&mm->mm_users, 1);
866 atomic_set(&mm->mm_count, 1);
867 init_rwsem(&mm->mmap_sem);
868 INIT_LIST_HEAD(&mm->mmlist);
869 mm->core_state = NULL;
870 mm_pgtables_bytes_init(mm);
871 mm->map_count = 0;
872 mm->locked_vm = 0;
873 mm->pinned_vm = 0;
874 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
875 spin_lock_init(&mm->page_table_lock);
876 mm_init_cpumask(mm);
877 mm_init_aio(mm);
878 mm_init_owner(mm, p);
879 RCU_INIT_POINTER(mm->exe_file, NULL);
880 mmu_notifier_mm_init(mm);
881 hmm_mm_init(mm);
882 init_tlb_flush_pending(mm);
883 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
884 mm->pmd_huge_pte = NULL;
885 #endif
886 mm_init_uprobes_state(mm);
887
888 if (current->mm) {
889 mm->flags = current->mm->flags & MMF_INIT_MASK;
890 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
891 } else {
892 mm->flags = default_dump_filter;
893 mm->def_flags = 0;
894 }
895
896 if (mm_alloc_pgd(mm))
897 goto fail_nopgd;
898
899 if (init_new_context(p, mm))
900 goto fail_nocontext;
901
902 mm->user_ns = get_user_ns(user_ns);
903 return mm;
904
905 fail_nocontext:
906 mm_free_pgd(mm);
907 fail_nopgd:
908 free_mm(mm);
909 return NULL;
910 }
911
912 static void check_mm(struct mm_struct *mm)
913 {
914 int i;
915
916 for (i = 0; i < NR_MM_COUNTERS; i++) {
917 long x = atomic_long_read(&mm->rss_stat.count[i]);
918
919 if (unlikely(x))
920 printk(KERN_ALERT "BUG: Bad rss-counter state "
921 "mm:%p idx:%d val:%ld\n", mm, i, x);
922 }
923
924 if (mm_pgtables_bytes(mm))
925 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
926 mm_pgtables_bytes(mm));
927
928 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
929 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
930 #endif
931 }
932
933 /*
934 * Allocate and initialize an mm_struct.
935 */
936 struct mm_struct *mm_alloc(void)
937 {
938 struct mm_struct *mm;
939
940 mm = allocate_mm();
941 if (!mm)
942 return NULL;
943
944 memset(mm, 0, sizeof(*mm));
945 return mm_init(mm, current, current_user_ns());
946 }
947
948 /*
949 * Called when the last reference to the mm
950 * is dropped: either by a lazy thread or by
951 * mmput. Free the page directory and the mm.
952 */
953 void __mmdrop(struct mm_struct *mm)
954 {
955 BUG_ON(mm == &init_mm);
956 mm_free_pgd(mm);
957 destroy_context(mm);
958 hmm_mm_destroy(mm);
959 mmu_notifier_mm_destroy(mm);
960 check_mm(mm);
961 put_user_ns(mm->user_ns);
962 free_mm(mm);
963 }
964 EXPORT_SYMBOL_GPL(__mmdrop);
965
966 static inline void __mmput(struct mm_struct *mm)
967 {
968 VM_BUG_ON(atomic_read(&mm->mm_users));
969
970 uprobe_clear_state(mm);
971 exit_aio(mm);
972 ksm_exit(mm);
973 khugepaged_exit(mm); /* must run before exit_mmap */
974 exit_mmap(mm);
975 mm_put_huge_zero_page(mm);
976 set_mm_exe_file(mm, NULL);
977 if (!list_empty(&mm->mmlist)) {
978 spin_lock(&mmlist_lock);
979 list_del(&mm->mmlist);
980 spin_unlock(&mmlist_lock);
981 }
982 if (mm->binfmt)
983 module_put(mm->binfmt->module);
984 mmdrop(mm);
985 }
986
987 /*
988 * Decrement the use count and release all resources for an mm.
989 */
990 void mmput(struct mm_struct *mm)
991 {
992 might_sleep();
993
994 if (atomic_dec_and_test(&mm->mm_users))
995 __mmput(mm);
996 }
997 EXPORT_SYMBOL_GPL(mmput);
998
999 #ifdef CONFIG_MMU
1000 static void mmput_async_fn(struct work_struct *work)
1001 {
1002 struct mm_struct *mm = container_of(work, struct mm_struct,
1003 async_put_work);
1004
1005 __mmput(mm);
1006 }
1007
1008 void mmput_async(struct mm_struct *mm)
1009 {
1010 if (atomic_dec_and_test(&mm->mm_users)) {
1011 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1012 schedule_work(&mm->async_put_work);
1013 }
1014 }
1015 #endif
1016
1017 /**
1018 * set_mm_exe_file - change a reference to the mm's executable file
1019 *
1020 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1021 *
1022 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1023 * invocations: in mmput() nobody alive left, in execve task is single
1024 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1025 * mm->exe_file, but does so without using set_mm_exe_file() in order
1026 * to do avoid the need for any locks.
1027 */
1028 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1029 {
1030 struct file *old_exe_file;
1031
1032 /*
1033 * It is safe to dereference the exe_file without RCU as
1034 * this function is only called if nobody else can access
1035 * this mm -- see comment above for justification.
1036 */
1037 old_exe_file = rcu_dereference_raw(mm->exe_file);
1038
1039 if (new_exe_file)
1040 get_file(new_exe_file);
1041 rcu_assign_pointer(mm->exe_file, new_exe_file);
1042 if (old_exe_file)
1043 fput(old_exe_file);
1044 }
1045
1046 /**
1047 * get_mm_exe_file - acquire a reference to the mm's executable file
1048 *
1049 * Returns %NULL if mm has no associated executable file.
1050 * User must release file via fput().
1051 */
1052 struct file *get_mm_exe_file(struct mm_struct *mm)
1053 {
1054 struct file *exe_file;
1055
1056 rcu_read_lock();
1057 exe_file = rcu_dereference(mm->exe_file);
1058 if (exe_file && !get_file_rcu(exe_file))
1059 exe_file = NULL;
1060 rcu_read_unlock();
1061 return exe_file;
1062 }
1063 EXPORT_SYMBOL(get_mm_exe_file);
1064
1065 /**
1066 * get_task_exe_file - acquire a reference to the task's executable file
1067 *
1068 * Returns %NULL if task's mm (if any) has no associated executable file or
1069 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1070 * User must release file via fput().
1071 */
1072 struct file *get_task_exe_file(struct task_struct *task)
1073 {
1074 struct file *exe_file = NULL;
1075 struct mm_struct *mm;
1076
1077 task_lock(task);
1078 mm = task->mm;
1079 if (mm) {
1080 if (!(task->flags & PF_KTHREAD))
1081 exe_file = get_mm_exe_file(mm);
1082 }
1083 task_unlock(task);
1084 return exe_file;
1085 }
1086 EXPORT_SYMBOL(get_task_exe_file);
1087
1088 /**
1089 * get_task_mm - acquire a reference to the task's mm
1090 *
1091 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1092 * this kernel workthread has transiently adopted a user mm with use_mm,
1093 * to do its AIO) is not set and if so returns a reference to it, after
1094 * bumping up the use count. User must release the mm via mmput()
1095 * after use. Typically used by /proc and ptrace.
1096 */
1097 struct mm_struct *get_task_mm(struct task_struct *task)
1098 {
1099 struct mm_struct *mm;
1100
1101 task_lock(task);
1102 mm = task->mm;
1103 if (mm) {
1104 if (task->flags & PF_KTHREAD)
1105 mm = NULL;
1106 else
1107 mmget(mm);
1108 }
1109 task_unlock(task);
1110 return mm;
1111 }
1112 EXPORT_SYMBOL_GPL(get_task_mm);
1113
1114 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1115 {
1116 struct mm_struct *mm;
1117 int err;
1118
1119 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1120 if (err)
1121 return ERR_PTR(err);
1122
1123 mm = get_task_mm(task);
1124 if (mm && mm != current->mm &&
1125 !ptrace_may_access(task, mode)) {
1126 mmput(mm);
1127 mm = ERR_PTR(-EACCES);
1128 }
1129 mutex_unlock(&task->signal->cred_guard_mutex);
1130
1131 return mm;
1132 }
1133
1134 static void complete_vfork_done(struct task_struct *tsk)
1135 {
1136 struct completion *vfork;
1137
1138 task_lock(tsk);
1139 vfork = tsk->vfork_done;
1140 if (likely(vfork)) {
1141 tsk->vfork_done = NULL;
1142 complete(vfork);
1143 }
1144 task_unlock(tsk);
1145 }
1146
1147 static int wait_for_vfork_done(struct task_struct *child,
1148 struct completion *vfork)
1149 {
1150 int killed;
1151
1152 freezer_do_not_count();
1153 killed = wait_for_completion_killable(vfork);
1154 freezer_count();
1155
1156 if (killed) {
1157 task_lock(child);
1158 child->vfork_done = NULL;
1159 task_unlock(child);
1160 }
1161
1162 put_task_struct(child);
1163 return killed;
1164 }
1165
1166 /* Please note the differences between mmput and mm_release.
1167 * mmput is called whenever we stop holding onto a mm_struct,
1168 * error success whatever.
1169 *
1170 * mm_release is called after a mm_struct has been removed
1171 * from the current process.
1172 *
1173 * This difference is important for error handling, when we
1174 * only half set up a mm_struct for a new process and need to restore
1175 * the old one. Because we mmput the new mm_struct before
1176 * restoring the old one. . .
1177 * Eric Biederman 10 January 1998
1178 */
1179 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1180 {
1181 uprobe_free_utask(tsk);
1182
1183 /* Get rid of any cached register state */
1184 deactivate_mm(tsk, mm);
1185
1186 /*
1187 * Signal userspace if we're not exiting with a core dump
1188 * because we want to leave the value intact for debugging
1189 * purposes.
1190 */
1191 if (tsk->clear_child_tid) {
1192 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1193 atomic_read(&mm->mm_users) > 1) {
1194 /*
1195 * We don't check the error code - if userspace has
1196 * not set up a proper pointer then tough luck.
1197 */
1198 put_user(0, tsk->clear_child_tid);
1199 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1200 1, NULL, NULL, 0);
1201 }
1202 tsk->clear_child_tid = NULL;
1203 }
1204
1205 /*
1206 * All done, finally we can wake up parent and return this mm to him.
1207 * Also kthread_stop() uses this completion for synchronization.
1208 */
1209 if (tsk->vfork_done)
1210 complete_vfork_done(tsk);
1211 }
1212
1213 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1214 {
1215 futex_exit_release(tsk);
1216 mm_release(tsk, mm);
1217 }
1218
1219 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1220 {
1221 futex_exec_release(tsk);
1222 mm_release(tsk, mm);
1223 }
1224
1225 /*
1226 * Allocate a new mm structure and copy contents from the
1227 * mm structure of the passed in task structure.
1228 */
1229 static struct mm_struct *dup_mm(struct task_struct *tsk)
1230 {
1231 struct mm_struct *mm, *oldmm = current->mm;
1232 int err;
1233
1234 mm = allocate_mm();
1235 if (!mm)
1236 goto fail_nomem;
1237
1238 memcpy(mm, oldmm, sizeof(*mm));
1239
1240 if (!mm_init(mm, tsk, mm->user_ns))
1241 goto fail_nomem;
1242
1243 err = dup_mmap(mm, oldmm);
1244 if (err)
1245 goto free_pt;
1246
1247 mm->hiwater_rss = get_mm_rss(mm);
1248 mm->hiwater_vm = mm->total_vm;
1249
1250 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1251 goto free_pt;
1252
1253 return mm;
1254
1255 free_pt:
1256 /* don't put binfmt in mmput, we haven't got module yet */
1257 mm->binfmt = NULL;
1258 mm_init_owner(mm, NULL);
1259 mmput(mm);
1260
1261 fail_nomem:
1262 return NULL;
1263 }
1264
1265 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1266 {
1267 struct mm_struct *mm, *oldmm;
1268 int retval;
1269
1270 tsk->min_flt = tsk->maj_flt = 0;
1271 tsk->nvcsw = tsk->nivcsw = 0;
1272 #ifdef CONFIG_DETECT_HUNG_TASK
1273 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1274 #endif
1275
1276 tsk->mm = NULL;
1277 tsk->active_mm = NULL;
1278
1279 /*
1280 * Are we cloning a kernel thread?
1281 *
1282 * We need to steal a active VM for that..
1283 */
1284 oldmm = current->mm;
1285 if (!oldmm)
1286 return 0;
1287
1288 /* initialize the new vmacache entries */
1289 vmacache_flush(tsk);
1290
1291 if (clone_flags & CLONE_VM) {
1292 mmget(oldmm);
1293 mm = oldmm;
1294 goto good_mm;
1295 }
1296
1297 retval = -ENOMEM;
1298 mm = dup_mm(tsk);
1299 if (!mm)
1300 goto fail_nomem;
1301
1302 good_mm:
1303 tsk->mm = mm;
1304 tsk->active_mm = mm;
1305 return 0;
1306
1307 fail_nomem:
1308 return retval;
1309 }
1310
1311 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1312 {
1313 struct fs_struct *fs = current->fs;
1314 if (clone_flags & CLONE_FS) {
1315 /* tsk->fs is already what we want */
1316 spin_lock(&fs->lock);
1317 if (fs->in_exec) {
1318 spin_unlock(&fs->lock);
1319 return -EAGAIN;
1320 }
1321 fs->users++;
1322 spin_unlock(&fs->lock);
1323 return 0;
1324 }
1325 tsk->fs = copy_fs_struct(fs);
1326 if (!tsk->fs)
1327 return -ENOMEM;
1328 return 0;
1329 }
1330
1331 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1332 {
1333 struct files_struct *oldf, *newf;
1334 int error = 0;
1335
1336 /*
1337 * A background process may not have any files ...
1338 */
1339 oldf = current->files;
1340 if (!oldf)
1341 goto out;
1342
1343 if (clone_flags & CLONE_FILES) {
1344 atomic_inc(&oldf->count);
1345 goto out;
1346 }
1347
1348 newf = dup_fd(oldf, &error);
1349 if (!newf)
1350 goto out;
1351
1352 tsk->files = newf;
1353 error = 0;
1354 out:
1355 return error;
1356 }
1357
1358 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1359 {
1360 #ifdef CONFIG_BLOCK
1361 struct io_context *ioc = current->io_context;
1362 struct io_context *new_ioc;
1363
1364 if (!ioc)
1365 return 0;
1366 /*
1367 * Share io context with parent, if CLONE_IO is set
1368 */
1369 if (clone_flags & CLONE_IO) {
1370 ioc_task_link(ioc);
1371 tsk->io_context = ioc;
1372 } else if (ioprio_valid(ioc->ioprio)) {
1373 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1374 if (unlikely(!new_ioc))
1375 return -ENOMEM;
1376
1377 new_ioc->ioprio = ioc->ioprio;
1378 put_io_context(new_ioc);
1379 }
1380 #endif
1381 return 0;
1382 }
1383
1384 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1385 {
1386 struct sighand_struct *sig;
1387
1388 if (clone_flags & CLONE_SIGHAND) {
1389 atomic_inc(&current->sighand->count);
1390 return 0;
1391 }
1392 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1393 rcu_assign_pointer(tsk->sighand, sig);
1394 if (!sig)
1395 return -ENOMEM;
1396
1397 atomic_set(&sig->count, 1);
1398 spin_lock_irq(&current->sighand->siglock);
1399 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1400 spin_unlock_irq(&current->sighand->siglock);
1401 return 0;
1402 }
1403
1404 void __cleanup_sighand(struct sighand_struct *sighand)
1405 {
1406 if (atomic_dec_and_test(&sighand->count)) {
1407 signalfd_cleanup(sighand);
1408 /*
1409 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1410 * without an RCU grace period, see __lock_task_sighand().
1411 */
1412 kmem_cache_free(sighand_cachep, sighand);
1413 }
1414 }
1415
1416 #ifdef CONFIG_POSIX_TIMERS
1417 /*
1418 * Initialize POSIX timer handling for a thread group.
1419 */
1420 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1421 {
1422 unsigned long cpu_limit;
1423
1424 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1425 if (cpu_limit != RLIM_INFINITY) {
1426 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1427 sig->cputimer.running = true;
1428 }
1429
1430 /* The timer lists. */
1431 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1432 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1433 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1434 }
1435 #else
1436 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1437 #endif
1438
1439 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1440 {
1441 struct signal_struct *sig;
1442
1443 if (clone_flags & CLONE_THREAD)
1444 return 0;
1445
1446 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1447 tsk->signal = sig;
1448 if (!sig)
1449 return -ENOMEM;
1450
1451 sig->nr_threads = 1;
1452 atomic_set(&sig->live, 1);
1453 atomic_set(&sig->sigcnt, 1);
1454
1455 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1456 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1457 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1458
1459 init_waitqueue_head(&sig->wait_chldexit);
1460 sig->curr_target = tsk;
1461 init_sigpending(&sig->shared_pending);
1462 seqlock_init(&sig->stats_lock);
1463 prev_cputime_init(&sig->prev_cputime);
1464
1465 #ifdef CONFIG_POSIX_TIMERS
1466 INIT_LIST_HEAD(&sig->posix_timers);
1467 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1468 sig->real_timer.function = it_real_fn;
1469 #endif
1470
1471 task_lock(current->group_leader);
1472 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1473 task_unlock(current->group_leader);
1474
1475 posix_cpu_timers_init_group(sig);
1476
1477 tty_audit_fork(sig);
1478 sched_autogroup_fork(sig);
1479
1480 sig->oom_score_adj = current->signal->oom_score_adj;
1481 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1482
1483 mutex_init(&sig->cred_guard_mutex);
1484
1485 return 0;
1486 }
1487
1488 static void copy_seccomp(struct task_struct *p)
1489 {
1490 #ifdef CONFIG_SECCOMP
1491 /*
1492 * Must be called with sighand->lock held, which is common to
1493 * all threads in the group. Holding cred_guard_mutex is not
1494 * needed because this new task is not yet running and cannot
1495 * be racing exec.
1496 */
1497 assert_spin_locked(&current->sighand->siglock);
1498
1499 /* Ref-count the new filter user, and assign it. */
1500 get_seccomp_filter(current);
1501 p->seccomp = current->seccomp;
1502
1503 /*
1504 * Explicitly enable no_new_privs here in case it got set
1505 * between the task_struct being duplicated and holding the
1506 * sighand lock. The seccomp state and nnp must be in sync.
1507 */
1508 if (task_no_new_privs(current))
1509 task_set_no_new_privs(p);
1510
1511 /*
1512 * If the parent gained a seccomp mode after copying thread
1513 * flags and between before we held the sighand lock, we have
1514 * to manually enable the seccomp thread flag here.
1515 */
1516 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1517 set_tsk_thread_flag(p, TIF_SECCOMP);
1518 #endif
1519 }
1520
1521 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1522 {
1523 current->clear_child_tid = tidptr;
1524
1525 return task_pid_vnr(current);
1526 }
1527
1528 static void rt_mutex_init_task(struct task_struct *p)
1529 {
1530 raw_spin_lock_init(&p->pi_lock);
1531 #ifdef CONFIG_RT_MUTEXES
1532 p->pi_waiters = RB_ROOT_CACHED;
1533 p->pi_top_task = NULL;
1534 p->pi_blocked_on = NULL;
1535 #endif
1536 }
1537
1538 #ifdef CONFIG_POSIX_TIMERS
1539 /*
1540 * Initialize POSIX timer handling for a single task.
1541 */
1542 static void posix_cpu_timers_init(struct task_struct *tsk)
1543 {
1544 tsk->cputime_expires.prof_exp = 0;
1545 tsk->cputime_expires.virt_exp = 0;
1546 tsk->cputime_expires.sched_exp = 0;
1547 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1548 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1549 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1550 }
1551 #else
1552 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1553 #endif
1554
1555 static inline void
1556 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1557 {
1558 task->pids[type].pid = pid;
1559 }
1560
1561 static inline void rcu_copy_process(struct task_struct *p)
1562 {
1563 #ifdef CONFIG_PREEMPT_RCU
1564 p->rcu_read_lock_nesting = 0;
1565 p->rcu_read_unlock_special.s = 0;
1566 p->rcu_blocked_node = NULL;
1567 INIT_LIST_HEAD(&p->rcu_node_entry);
1568 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1569 #ifdef CONFIG_TASKS_RCU
1570 p->rcu_tasks_holdout = false;
1571 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1572 p->rcu_tasks_idle_cpu = -1;
1573 #endif /* #ifdef CONFIG_TASKS_RCU */
1574 }
1575
1576 static void __delayed_free_task(struct rcu_head *rhp)
1577 {
1578 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1579
1580 free_task(tsk);
1581 }
1582
1583 static __always_inline void delayed_free_task(struct task_struct *tsk)
1584 {
1585 if (IS_ENABLED(CONFIG_MEMCG))
1586 call_rcu(&tsk->rcu, __delayed_free_task);
1587 else
1588 free_task(tsk);
1589 }
1590
1591 /*
1592 * This creates a new process as a copy of the old one,
1593 * but does not actually start it yet.
1594 *
1595 * It copies the registers, and all the appropriate
1596 * parts of the process environment (as per the clone
1597 * flags). The actual kick-off is left to the caller.
1598 */
1599 static __latent_entropy struct task_struct *copy_process(
1600 unsigned long clone_flags,
1601 unsigned long stack_start,
1602 unsigned long stack_size,
1603 int __user *child_tidptr,
1604 struct pid *pid,
1605 int trace,
1606 unsigned long tls,
1607 int node)
1608 {
1609 int retval;
1610 struct task_struct *p;
1611
1612 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1613 return ERR_PTR(-EINVAL);
1614
1615 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1616 return ERR_PTR(-EINVAL);
1617
1618 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1619 if (!capable(CAP_SYS_ADMIN))
1620 return ERR_PTR(-EPERM);
1621
1622 /*
1623 * Thread groups must share signals as well, and detached threads
1624 * can only be started up within the thread group.
1625 */
1626 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1627 return ERR_PTR(-EINVAL);
1628
1629 /*
1630 * Shared signal handlers imply shared VM. By way of the above,
1631 * thread groups also imply shared VM. Blocking this case allows
1632 * for various simplifications in other code.
1633 */
1634 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1635 return ERR_PTR(-EINVAL);
1636
1637 /*
1638 * Siblings of global init remain as zombies on exit since they are
1639 * not reaped by their parent (swapper). To solve this and to avoid
1640 * multi-rooted process trees, prevent global and container-inits
1641 * from creating siblings.
1642 */
1643 if ((clone_flags & CLONE_PARENT) &&
1644 current->signal->flags & SIGNAL_UNKILLABLE)
1645 return ERR_PTR(-EINVAL);
1646
1647 /*
1648 * If the new process will be in a different pid or user namespace
1649 * do not allow it to share a thread group with the forking task.
1650 */
1651 if (clone_flags & CLONE_THREAD) {
1652 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1653 (task_active_pid_ns(current) !=
1654 current->nsproxy->pid_ns_for_children))
1655 return ERR_PTR(-EINVAL);
1656 }
1657
1658 retval = -ENOMEM;
1659 p = dup_task_struct(current, node);
1660 if (!p)
1661 goto fork_out;
1662
1663 /*
1664 * This _must_ happen before we call free_task(), i.e. before we jump
1665 * to any of the bad_fork_* labels. This is to avoid freeing
1666 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1667 * kernel threads (PF_KTHREAD).
1668 */
1669 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1670 /*
1671 * Clear TID on mm_release()?
1672 */
1673 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1674
1675 ftrace_graph_init_task(p);
1676
1677 rt_mutex_init_task(p);
1678
1679 #ifdef CONFIG_PROVE_LOCKING
1680 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1681 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1682 #endif
1683 retval = -EAGAIN;
1684 if (atomic_read(&p->real_cred->user->processes) >=
1685 task_rlimit(p, RLIMIT_NPROC)) {
1686 if (p->real_cred->user != INIT_USER &&
1687 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1688 goto bad_fork_free;
1689 }
1690 current->flags &= ~PF_NPROC_EXCEEDED;
1691
1692 retval = copy_creds(p, clone_flags);
1693 if (retval < 0)
1694 goto bad_fork_free;
1695
1696 /*
1697 * If multiple threads are within copy_process(), then this check
1698 * triggers too late. This doesn't hurt, the check is only there
1699 * to stop root fork bombs.
1700 */
1701 retval = -EAGAIN;
1702 if (nr_threads >= max_threads)
1703 goto bad_fork_cleanup_count;
1704
1705 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1706 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1707 p->flags |= PF_FORKNOEXEC;
1708 INIT_LIST_HEAD(&p->children);
1709 INIT_LIST_HEAD(&p->sibling);
1710 rcu_copy_process(p);
1711 p->vfork_done = NULL;
1712 spin_lock_init(&p->alloc_lock);
1713
1714 init_sigpending(&p->pending);
1715
1716 p->utime = p->stime = p->gtime = 0;
1717 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1718 p->utimescaled = p->stimescaled = 0;
1719 #endif
1720 prev_cputime_init(&p->prev_cputime);
1721
1722 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1723 seqcount_init(&p->vtime.seqcount);
1724 p->vtime.starttime = 0;
1725 p->vtime.state = VTIME_INACTIVE;
1726 #endif
1727
1728 #if defined(SPLIT_RSS_COUNTING)
1729 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1730 #endif
1731
1732 p->default_timer_slack_ns = current->timer_slack_ns;
1733
1734 task_io_accounting_init(&p->ioac);
1735 acct_clear_integrals(p);
1736
1737 posix_cpu_timers_init(p);
1738
1739 p->io_context = NULL;
1740 p->audit_context = NULL;
1741 cgroup_fork(p);
1742 #ifdef CONFIG_NUMA
1743 p->mempolicy = mpol_dup(p->mempolicy);
1744 if (IS_ERR(p->mempolicy)) {
1745 retval = PTR_ERR(p->mempolicy);
1746 p->mempolicy = NULL;
1747 goto bad_fork_cleanup_threadgroup_lock;
1748 }
1749 #endif
1750 #ifdef CONFIG_CPUSETS
1751 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1752 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1753 seqcount_init(&p->mems_allowed_seq);
1754 #endif
1755 #ifdef CONFIG_TRACE_IRQFLAGS
1756 p->irq_events = 0;
1757 p->hardirqs_enabled = 0;
1758 p->hardirq_enable_ip = 0;
1759 p->hardirq_enable_event = 0;
1760 p->hardirq_disable_ip = _THIS_IP_;
1761 p->hardirq_disable_event = 0;
1762 p->softirqs_enabled = 1;
1763 p->softirq_enable_ip = _THIS_IP_;
1764 p->softirq_enable_event = 0;
1765 p->softirq_disable_ip = 0;
1766 p->softirq_disable_event = 0;
1767 p->hardirq_context = 0;
1768 p->softirq_context = 0;
1769 #endif
1770
1771 p->pagefault_disabled = 0;
1772
1773 #ifdef CONFIG_LOCKDEP
1774 p->lockdep_depth = 0; /* no locks held yet */
1775 p->curr_chain_key = 0;
1776 p->lockdep_recursion = 0;
1777 lockdep_init_task(p);
1778 #endif
1779
1780 #ifdef CONFIG_DEBUG_MUTEXES
1781 p->blocked_on = NULL; /* not blocked yet */
1782 #endif
1783 #ifdef CONFIG_BCACHE
1784 p->sequential_io = 0;
1785 p->sequential_io_avg = 0;
1786 #endif
1787 #ifdef CONFIG_SECURITY
1788 p->security = NULL;
1789 #endif
1790
1791 /* Perform scheduler related setup. Assign this task to a CPU. */
1792 retval = sched_fork(clone_flags, p);
1793 if (retval)
1794 goto bad_fork_cleanup_policy;
1795
1796 retval = perf_event_init_task(p);
1797 if (retval)
1798 goto bad_fork_cleanup_policy;
1799 retval = audit_alloc(p);
1800 if (retval)
1801 goto bad_fork_cleanup_perf;
1802 /* copy all the process information */
1803 shm_init_task(p);
1804 retval = security_task_alloc(p, clone_flags);
1805 if (retval)
1806 goto bad_fork_cleanup_audit;
1807 retval = copy_semundo(clone_flags, p);
1808 if (retval)
1809 goto bad_fork_cleanup_security;
1810 retval = copy_files(clone_flags, p);
1811 if (retval)
1812 goto bad_fork_cleanup_semundo;
1813 retval = copy_fs(clone_flags, p);
1814 if (retval)
1815 goto bad_fork_cleanup_files;
1816 retval = copy_sighand(clone_flags, p);
1817 if (retval)
1818 goto bad_fork_cleanup_fs;
1819 retval = copy_signal(clone_flags, p);
1820 if (retval)
1821 goto bad_fork_cleanup_sighand;
1822 retval = copy_mm(clone_flags, p);
1823 if (retval)
1824 goto bad_fork_cleanup_signal;
1825 retval = copy_namespaces(clone_flags, p);
1826 if (retval)
1827 goto bad_fork_cleanup_mm;
1828 retval = copy_io(clone_flags, p);
1829 if (retval)
1830 goto bad_fork_cleanup_namespaces;
1831 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1832 if (retval)
1833 goto bad_fork_cleanup_io;
1834
1835 if (pid != &init_struct_pid) {
1836 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1837 if (IS_ERR(pid)) {
1838 retval = PTR_ERR(pid);
1839 goto bad_fork_cleanup_thread;
1840 }
1841 }
1842
1843 #ifdef CONFIG_BLOCK
1844 p->plug = NULL;
1845 #endif
1846 futex_init_task(p);
1847
1848 /*
1849 * sigaltstack should be cleared when sharing the same VM
1850 */
1851 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1852 sas_ss_reset(p);
1853
1854 /*
1855 * Syscall tracing and stepping should be turned off in the
1856 * child regardless of CLONE_PTRACE.
1857 */
1858 user_disable_single_step(p);
1859 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1860 #ifdef TIF_SYSCALL_EMU
1861 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1862 #endif
1863 clear_all_latency_tracing(p);
1864
1865 /* ok, now we should be set up.. */
1866 p->pid = pid_nr(pid);
1867 if (clone_flags & CLONE_THREAD) {
1868 p->exit_signal = -1;
1869 p->group_leader = current->group_leader;
1870 p->tgid = current->tgid;
1871 } else {
1872 if (clone_flags & CLONE_PARENT)
1873 p->exit_signal = current->group_leader->exit_signal;
1874 else
1875 p->exit_signal = (clone_flags & CSIGNAL);
1876 p->group_leader = p;
1877 p->tgid = p->pid;
1878 }
1879
1880 p->nr_dirtied = 0;
1881 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1882 p->dirty_paused_when = 0;
1883
1884 p->pdeath_signal = 0;
1885 INIT_LIST_HEAD(&p->thread_group);
1886 p->task_works = NULL;
1887
1888 cgroup_threadgroup_change_begin(current);
1889 /*
1890 * Ensure that the cgroup subsystem policies allow the new process to be
1891 * forked. It should be noted the the new process's css_set can be changed
1892 * between here and cgroup_post_fork() if an organisation operation is in
1893 * progress.
1894 */
1895 retval = cgroup_can_fork(p);
1896 if (retval)
1897 goto bad_fork_free_pid;
1898
1899 /*
1900 * From this point on we must avoid any synchronous user-space
1901 * communication until we take the tasklist-lock. In particular, we do
1902 * not want user-space to be able to predict the process start-time by
1903 * stalling fork(2) after we recorded the start_time but before it is
1904 * visible to the system.
1905 */
1906
1907 p->start_time = ktime_get_ns();
1908 p->real_start_time = ktime_get_boot_ns();
1909
1910 /*
1911 * Make it visible to the rest of the system, but dont wake it up yet.
1912 * Need tasklist lock for parent etc handling!
1913 */
1914 write_lock_irq(&tasklist_lock);
1915
1916 /* CLONE_PARENT re-uses the old parent */
1917 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1918 p->real_parent = current->real_parent;
1919 p->parent_exec_id = current->parent_exec_id;
1920 } else {
1921 p->real_parent = current;
1922 p->parent_exec_id = current->self_exec_id;
1923 }
1924
1925 klp_copy_process(p);
1926
1927 spin_lock(&current->sighand->siglock);
1928
1929 /*
1930 * Copy seccomp details explicitly here, in case they were changed
1931 * before holding sighand lock.
1932 */
1933 copy_seccomp(p);
1934
1935 /*
1936 * Process group and session signals need to be delivered to just the
1937 * parent before the fork or both the parent and the child after the
1938 * fork. Restart if a signal comes in before we add the new process to
1939 * it's process group.
1940 * A fatal signal pending means that current will exit, so the new
1941 * thread can't slip out of an OOM kill (or normal SIGKILL).
1942 */
1943 recalc_sigpending();
1944 if (signal_pending(current)) {
1945 retval = -ERESTARTNOINTR;
1946 goto bad_fork_cancel_cgroup;
1947 }
1948 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1949 retval = -ENOMEM;
1950 goto bad_fork_cancel_cgroup;
1951 }
1952
1953 if (likely(p->pid)) {
1954 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1955
1956 init_task_pid(p, PIDTYPE_PID, pid);
1957 if (thread_group_leader(p)) {
1958 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1959 init_task_pid(p, PIDTYPE_SID, task_session(current));
1960
1961 if (is_child_reaper(pid)) {
1962 ns_of_pid(pid)->child_reaper = p;
1963 p->signal->flags |= SIGNAL_UNKILLABLE;
1964 }
1965
1966 p->signal->leader_pid = pid;
1967 p->signal->tty = tty_kref_get(current->signal->tty);
1968 /*
1969 * Inherit has_child_subreaper flag under the same
1970 * tasklist_lock with adding child to the process tree
1971 * for propagate_has_child_subreaper optimization.
1972 */
1973 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1974 p->real_parent->signal->is_child_subreaper;
1975 list_add_tail(&p->sibling, &p->real_parent->children);
1976 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1977 attach_pid(p, PIDTYPE_PGID);
1978 attach_pid(p, PIDTYPE_SID);
1979 __this_cpu_inc(process_counts);
1980 } else {
1981 current->signal->nr_threads++;
1982 atomic_inc(&current->signal->live);
1983 atomic_inc(&current->signal->sigcnt);
1984 list_add_tail_rcu(&p->thread_group,
1985 &p->group_leader->thread_group);
1986 list_add_tail_rcu(&p->thread_node,
1987 &p->signal->thread_head);
1988 }
1989 attach_pid(p, PIDTYPE_PID);
1990 nr_threads++;
1991 }
1992
1993 total_forks++;
1994 spin_unlock(&current->sighand->siglock);
1995 syscall_tracepoint_update(p);
1996 write_unlock_irq(&tasklist_lock);
1997
1998 proc_fork_connector(p);
1999 cgroup_post_fork(p);
2000 cgroup_threadgroup_change_end(current);
2001 perf_event_fork(p);
2002
2003 trace_task_newtask(p, clone_flags);
2004 uprobe_copy_process(p, clone_flags);
2005
2006 return p;
2007
2008 bad_fork_cancel_cgroup:
2009 spin_unlock(&current->sighand->siglock);
2010 write_unlock_irq(&tasklist_lock);
2011 cgroup_cancel_fork(p);
2012 bad_fork_free_pid:
2013 cgroup_threadgroup_change_end(current);
2014 if (pid != &init_struct_pid)
2015 free_pid(pid);
2016 bad_fork_cleanup_thread:
2017 exit_thread(p);
2018 bad_fork_cleanup_io:
2019 if (p->io_context)
2020 exit_io_context(p);
2021 bad_fork_cleanup_namespaces:
2022 exit_task_namespaces(p);
2023 bad_fork_cleanup_mm:
2024 if (p->mm) {
2025 mm_clear_owner(p->mm, p);
2026 mmput(p->mm);
2027 }
2028 bad_fork_cleanup_signal:
2029 if (!(clone_flags & CLONE_THREAD))
2030 free_signal_struct(p->signal);
2031 bad_fork_cleanup_sighand:
2032 __cleanup_sighand(p->sighand);
2033 bad_fork_cleanup_fs:
2034 exit_fs(p); /* blocking */
2035 bad_fork_cleanup_files:
2036 exit_files(p); /* blocking */
2037 bad_fork_cleanup_semundo:
2038 exit_sem(p);
2039 bad_fork_cleanup_security:
2040 security_task_free(p);
2041 bad_fork_cleanup_audit:
2042 audit_free(p);
2043 bad_fork_cleanup_perf:
2044 perf_event_free_task(p);
2045 bad_fork_cleanup_policy:
2046 lockdep_free_task(p);
2047 #ifdef CONFIG_NUMA
2048 mpol_put(p->mempolicy);
2049 bad_fork_cleanup_threadgroup_lock:
2050 #endif
2051 delayacct_tsk_free(p);
2052 bad_fork_cleanup_count:
2053 atomic_dec(&p->cred->user->processes);
2054 exit_creds(p);
2055 bad_fork_free:
2056 p->state = TASK_DEAD;
2057 put_task_stack(p);
2058 delayed_free_task(p);
2059 fork_out:
2060 return ERR_PTR(retval);
2061 }
2062
2063 static inline void init_idle_pids(struct pid_link *links)
2064 {
2065 enum pid_type type;
2066
2067 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2068 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2069 links[type].pid = &init_struct_pid;
2070 }
2071 }
2072
2073 struct task_struct *fork_idle(int cpu)
2074 {
2075 struct task_struct *task;
2076 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2077 cpu_to_node(cpu));
2078 if (!IS_ERR(task)) {
2079 init_idle_pids(task->pids);
2080 init_idle(task, cpu);
2081 }
2082
2083 return task;
2084 }
2085
2086 /*
2087 * Ok, this is the main fork-routine.
2088 *
2089 * It copies the process, and if successful kick-starts
2090 * it and waits for it to finish using the VM if required.
2091 */
2092 long _do_fork(unsigned long clone_flags,
2093 unsigned long stack_start,
2094 unsigned long stack_size,
2095 int __user *parent_tidptr,
2096 int __user *child_tidptr,
2097 unsigned long tls)
2098 {
2099 struct task_struct *p;
2100 int trace = 0;
2101 long nr;
2102
2103 /*
2104 * Determine whether and which event to report to ptracer. When
2105 * called from kernel_thread or CLONE_UNTRACED is explicitly
2106 * requested, no event is reported; otherwise, report if the event
2107 * for the type of forking is enabled.
2108 */
2109 if (!(clone_flags & CLONE_UNTRACED)) {
2110 if (clone_flags & CLONE_VFORK)
2111 trace = PTRACE_EVENT_VFORK;
2112 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2113 trace = PTRACE_EVENT_CLONE;
2114 else
2115 trace = PTRACE_EVENT_FORK;
2116
2117 if (likely(!ptrace_event_enabled(current, trace)))
2118 trace = 0;
2119 }
2120
2121 p = copy_process(clone_flags, stack_start, stack_size,
2122 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2123 add_latent_entropy();
2124 /*
2125 * Do this prior waking up the new thread - the thread pointer
2126 * might get invalid after that point, if the thread exits quickly.
2127 */
2128 if (!IS_ERR(p)) {
2129 struct completion vfork;
2130 struct pid *pid;
2131
2132 trace_sched_process_fork(current, p);
2133
2134 pid = get_task_pid(p, PIDTYPE_PID);
2135 nr = pid_vnr(pid);
2136
2137 if (clone_flags & CLONE_PARENT_SETTID)
2138 put_user(nr, parent_tidptr);
2139
2140 if (clone_flags & CLONE_VFORK) {
2141 p->vfork_done = &vfork;
2142 init_completion(&vfork);
2143 get_task_struct(p);
2144 }
2145
2146 wake_up_new_task(p);
2147
2148 /* forking complete and child started to run, tell ptracer */
2149 if (unlikely(trace))
2150 ptrace_event_pid(trace, pid);
2151
2152 if (clone_flags & CLONE_VFORK) {
2153 if (!wait_for_vfork_done(p, &vfork))
2154 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2155 }
2156
2157 put_pid(pid);
2158 } else {
2159 nr = PTR_ERR(p);
2160 }
2161 return nr;
2162 }
2163
2164 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2165 /* For compatibility with architectures that call do_fork directly rather than
2166 * using the syscall entry points below. */
2167 long do_fork(unsigned long clone_flags,
2168 unsigned long stack_start,
2169 unsigned long stack_size,
2170 int __user *parent_tidptr,
2171 int __user *child_tidptr)
2172 {
2173 return _do_fork(clone_flags, stack_start, stack_size,
2174 parent_tidptr, child_tidptr, 0);
2175 }
2176 #endif
2177
2178 /*
2179 * Create a kernel thread.
2180 */
2181 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2182 {
2183 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2184 (unsigned long)arg, NULL, NULL, 0);
2185 }
2186
2187 #ifdef __ARCH_WANT_SYS_FORK
2188 SYSCALL_DEFINE0(fork)
2189 {
2190 #ifdef CONFIG_MMU
2191 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2192 #else
2193 /* can not support in nommu mode */
2194 return -EINVAL;
2195 #endif
2196 }
2197 #endif
2198
2199 #ifdef __ARCH_WANT_SYS_VFORK
2200 SYSCALL_DEFINE0(vfork)
2201 {
2202 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2203 0, NULL, NULL, 0);
2204 }
2205 #endif
2206
2207 #ifdef __ARCH_WANT_SYS_CLONE
2208 #ifdef CONFIG_CLONE_BACKWARDS
2209 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2210 int __user *, parent_tidptr,
2211 unsigned long, tls,
2212 int __user *, child_tidptr)
2213 #elif defined(CONFIG_CLONE_BACKWARDS2)
2214 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2215 int __user *, parent_tidptr,
2216 int __user *, child_tidptr,
2217 unsigned long, tls)
2218 #elif defined(CONFIG_CLONE_BACKWARDS3)
2219 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2220 int, stack_size,
2221 int __user *, parent_tidptr,
2222 int __user *, child_tidptr,
2223 unsigned long, tls)
2224 #else
2225 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2226 int __user *, parent_tidptr,
2227 int __user *, child_tidptr,
2228 unsigned long, tls)
2229 #endif
2230 {
2231 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2232 }
2233 #endif
2234
2235 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2236 {
2237 struct task_struct *leader, *parent, *child;
2238 int res;
2239
2240 read_lock(&tasklist_lock);
2241 leader = top = top->group_leader;
2242 down:
2243 for_each_thread(leader, parent) {
2244 list_for_each_entry(child, &parent->children, sibling) {
2245 res = visitor(child, data);
2246 if (res) {
2247 if (res < 0)
2248 goto out;
2249 leader = child;
2250 goto down;
2251 }
2252 up:
2253 ;
2254 }
2255 }
2256
2257 if (leader != top) {
2258 child = leader;
2259 parent = child->real_parent;
2260 leader = parent->group_leader;
2261 goto up;
2262 }
2263 out:
2264 read_unlock(&tasklist_lock);
2265 }
2266
2267 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2268 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2269 #endif
2270
2271 static void sighand_ctor(void *data)
2272 {
2273 struct sighand_struct *sighand = data;
2274
2275 spin_lock_init(&sighand->siglock);
2276 init_waitqueue_head(&sighand->signalfd_wqh);
2277 }
2278
2279 void __init proc_caches_init(void)
2280 {
2281 sighand_cachep = kmem_cache_create("sighand_cache",
2282 sizeof(struct sighand_struct), 0,
2283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2284 SLAB_ACCOUNT, sighand_ctor);
2285 signal_cachep = kmem_cache_create("signal_cache",
2286 sizeof(struct signal_struct), 0,
2287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2288 NULL);
2289 files_cachep = kmem_cache_create("files_cache",
2290 sizeof(struct files_struct), 0,
2291 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2292 NULL);
2293 fs_cachep = kmem_cache_create("fs_cache",
2294 sizeof(struct fs_struct), 0,
2295 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2296 NULL);
2297 /*
2298 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2299 * whole struct cpumask for the OFFSTACK case. We could change
2300 * this to *only* allocate as much of it as required by the
2301 * maximum number of CPU's we can ever have. The cpumask_allocation
2302 * is at the end of the structure, exactly for that reason.
2303 */
2304 mm_cachep = kmem_cache_create("mm_struct",
2305 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2306 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2307 NULL);
2308 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2309 mmap_init();
2310 nsproxy_cache_init();
2311 }
2312
2313 /*
2314 * Check constraints on flags passed to the unshare system call.
2315 */
2316 static int check_unshare_flags(unsigned long unshare_flags)
2317 {
2318 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2319 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2320 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2321 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2322 return -EINVAL;
2323 /*
2324 * Not implemented, but pretend it works if there is nothing
2325 * to unshare. Note that unsharing the address space or the
2326 * signal handlers also need to unshare the signal queues (aka
2327 * CLONE_THREAD).
2328 */
2329 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2330 if (!thread_group_empty(current))
2331 return -EINVAL;
2332 }
2333 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2334 if (atomic_read(&current->sighand->count) > 1)
2335 return -EINVAL;
2336 }
2337 if (unshare_flags & CLONE_VM) {
2338 if (!current_is_single_threaded())
2339 return -EINVAL;
2340 }
2341
2342 return 0;
2343 }
2344
2345 /*
2346 * Unshare the filesystem structure if it is being shared
2347 */
2348 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2349 {
2350 struct fs_struct *fs = current->fs;
2351
2352 if (!(unshare_flags & CLONE_FS) || !fs)
2353 return 0;
2354
2355 /* don't need lock here; in the worst case we'll do useless copy */
2356 if (fs->users == 1)
2357 return 0;
2358
2359 *new_fsp = copy_fs_struct(fs);
2360 if (!*new_fsp)
2361 return -ENOMEM;
2362
2363 return 0;
2364 }
2365
2366 /*
2367 * Unshare file descriptor table if it is being shared
2368 */
2369 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2370 {
2371 struct files_struct *fd = current->files;
2372 int error = 0;
2373
2374 if ((unshare_flags & CLONE_FILES) &&
2375 (fd && atomic_read(&fd->count) > 1)) {
2376 *new_fdp = dup_fd(fd, &error);
2377 if (!*new_fdp)
2378 return error;
2379 }
2380
2381 return 0;
2382 }
2383
2384 /*
2385 * unshare allows a process to 'unshare' part of the process
2386 * context which was originally shared using clone. copy_*
2387 * functions used by do_fork() cannot be used here directly
2388 * because they modify an inactive task_struct that is being
2389 * constructed. Here we are modifying the current, active,
2390 * task_struct.
2391 */
2392 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2393 {
2394 struct fs_struct *fs, *new_fs = NULL;
2395 struct files_struct *fd, *new_fd = NULL;
2396 struct cred *new_cred = NULL;
2397 struct nsproxy *new_nsproxy = NULL;
2398 int do_sysvsem = 0;
2399 int err;
2400
2401 /*
2402 * If unsharing a user namespace must also unshare the thread group
2403 * and unshare the filesystem root and working directories.
2404 */
2405 if (unshare_flags & CLONE_NEWUSER)
2406 unshare_flags |= CLONE_THREAD | CLONE_FS;
2407 /*
2408 * If unsharing vm, must also unshare signal handlers.
2409 */
2410 if (unshare_flags & CLONE_VM)
2411 unshare_flags |= CLONE_SIGHAND;
2412 /*
2413 * If unsharing a signal handlers, must also unshare the signal queues.
2414 */
2415 if (unshare_flags & CLONE_SIGHAND)
2416 unshare_flags |= CLONE_THREAD;
2417 /*
2418 * If unsharing namespace, must also unshare filesystem information.
2419 */
2420 if (unshare_flags & CLONE_NEWNS)
2421 unshare_flags |= CLONE_FS;
2422
2423 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2424 err = -EPERM;
2425 if (!capable(CAP_SYS_ADMIN))
2426 goto bad_unshare_out;
2427 }
2428
2429 err = check_unshare_flags(unshare_flags);
2430 if (err)
2431 goto bad_unshare_out;
2432 /*
2433 * CLONE_NEWIPC must also detach from the undolist: after switching
2434 * to a new ipc namespace, the semaphore arrays from the old
2435 * namespace are unreachable.
2436 */
2437 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2438 do_sysvsem = 1;
2439 err = unshare_fs(unshare_flags, &new_fs);
2440 if (err)
2441 goto bad_unshare_out;
2442 err = unshare_fd(unshare_flags, &new_fd);
2443 if (err)
2444 goto bad_unshare_cleanup_fs;
2445 err = unshare_userns(unshare_flags, &new_cred);
2446 if (err)
2447 goto bad_unshare_cleanup_fd;
2448 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2449 new_cred, new_fs);
2450 if (err)
2451 goto bad_unshare_cleanup_cred;
2452
2453 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2454 if (do_sysvsem) {
2455 /*
2456 * CLONE_SYSVSEM is equivalent to sys_exit().
2457 */
2458 exit_sem(current);
2459 }
2460 if (unshare_flags & CLONE_NEWIPC) {
2461 /* Orphan segments in old ns (see sem above). */
2462 exit_shm(current);
2463 shm_init_task(current);
2464 }
2465
2466 if (new_nsproxy)
2467 switch_task_namespaces(current, new_nsproxy);
2468
2469 task_lock(current);
2470
2471 if (new_fs) {
2472 fs = current->fs;
2473 spin_lock(&fs->lock);
2474 current->fs = new_fs;
2475 if (--fs->users)
2476 new_fs = NULL;
2477 else
2478 new_fs = fs;
2479 spin_unlock(&fs->lock);
2480 }
2481
2482 if (new_fd) {
2483 fd = current->files;
2484 current->files = new_fd;
2485 new_fd = fd;
2486 }
2487
2488 task_unlock(current);
2489
2490 if (new_cred) {
2491 /* Install the new user namespace */
2492 commit_creds(new_cred);
2493 new_cred = NULL;
2494 }
2495 }
2496
2497 perf_event_namespaces(current);
2498
2499 bad_unshare_cleanup_cred:
2500 if (new_cred)
2501 put_cred(new_cred);
2502 bad_unshare_cleanup_fd:
2503 if (new_fd)
2504 put_files_struct(new_fd);
2505
2506 bad_unshare_cleanup_fs:
2507 if (new_fs)
2508 free_fs_struct(new_fs);
2509
2510 bad_unshare_out:
2511 return err;
2512 }
2513
2514 /*
2515 * Helper to unshare the files of the current task.
2516 * We don't want to expose copy_files internals to
2517 * the exec layer of the kernel.
2518 */
2519
2520 int unshare_files(struct files_struct **displaced)
2521 {
2522 struct task_struct *task = current;
2523 struct files_struct *copy = NULL;
2524 int error;
2525
2526 error = unshare_fd(CLONE_FILES, &copy);
2527 if (error || !copy) {
2528 *displaced = NULL;
2529 return error;
2530 }
2531 *displaced = task->files;
2532 task_lock(task);
2533 task->files = copy;
2534 task_unlock(task);
2535 return 0;
2536 }
2537
2538 int sysctl_max_threads(struct ctl_table *table, int write,
2539 void __user *buffer, size_t *lenp, loff_t *ppos)
2540 {
2541 struct ctl_table t;
2542 int ret;
2543 int threads = max_threads;
2544 int min = 1;
2545 int max = MAX_THREADS;
2546
2547 t = *table;
2548 t.data = &threads;
2549 t.extra1 = &min;
2550 t.extra2 = &max;
2551
2552 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2553 if (ret || !write)
2554 return ret;
2555
2556 max_threads = threads;
2557
2558 return 0;
2559 }