]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
[S390] qdio: 2nd stage retry on SIGA-W busy conditions
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76
77 #include <trace/events/sched.h>
78
79 /*
80 * Protected counters by write_lock_irq(&tasklist_lock)
81 */
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
84
85 int max_threads; /* tunable limit on nr_threads */
86
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98
99 int nr_processes(void)
100 {
101 int cpu;
102 int total = 0;
103
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
106
107 return total;
108 }
109
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
117
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 int node)
121 {
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125 gfp_t mask = GFP_KERNEL;
126 #endif
127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
128
129 return page ? page_address(page) : NULL;
130 }
131
132 static inline void free_thread_info(struct thread_info *ti)
133 {
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
135 }
136 #endif
137
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
140
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
143
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
146
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
149
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
152
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
155
156 static void account_kernel_stack(struct thread_info *ti, int account)
157 {
158 struct zone *zone = page_zone(virt_to_page(ti));
159
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
161 }
162
163 void free_task(struct task_struct *tsk)
164 {
165 prop_local_destroy_single(&tsk->dirties);
166 account_kernel_stack(tsk->stack, -1);
167 free_thread_info(tsk->stack);
168 rt_mutex_debug_task_free(tsk);
169 ftrace_graph_exit_task(tsk);
170 free_task_struct(tsk);
171 }
172 EXPORT_SYMBOL(free_task);
173
174 static inline void free_signal_struct(struct signal_struct *sig)
175 {
176 taskstats_tgid_free(sig);
177 sched_autogroup_exit(sig);
178 kmem_cache_free(signal_cachep, sig);
179 }
180
181 static inline void put_signal_struct(struct signal_struct *sig)
182 {
183 if (atomic_dec_and_test(&sig->sigcnt))
184 free_signal_struct(sig);
185 }
186
187 void __put_task_struct(struct task_struct *tsk)
188 {
189 WARN_ON(!tsk->exit_state);
190 WARN_ON(atomic_read(&tsk->usage));
191 WARN_ON(tsk == current);
192
193 exit_creds(tsk);
194 delayacct_tsk_free(tsk);
195 put_signal_struct(tsk->signal);
196
197 if (!profile_handoff_task(tsk))
198 free_task(tsk);
199 }
200 EXPORT_SYMBOL_GPL(__put_task_struct);
201
202 /*
203 * macro override instead of weak attribute alias, to workaround
204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
205 */
206 #ifndef arch_task_cache_init
207 #define arch_task_cache_init()
208 #endif
209
210 void __init fork_init(unsigned long mempages)
211 {
212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213 #ifndef ARCH_MIN_TASKALIGN
214 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
215 #endif
216 /* create a slab on which task_structs can be allocated */
217 task_struct_cachep =
218 kmem_cache_create("task_struct", sizeof(struct task_struct),
219 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
220 #endif
221
222 /* do the arch specific task caches init */
223 arch_task_cache_init();
224
225 /*
226 * The default maximum number of threads is set to a safe
227 * value: the thread structures can take up at most half
228 * of memory.
229 */
230 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
231
232 /*
233 * we need to allow at least 20 threads to boot a system
234 */
235 if (max_threads < 20)
236 max_threads = 20;
237
238 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
239 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
240 init_task.signal->rlim[RLIMIT_SIGPENDING] =
241 init_task.signal->rlim[RLIMIT_NPROC];
242 }
243
244 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
245 struct task_struct *src)
246 {
247 *dst = *src;
248 return 0;
249 }
250
251 static struct task_struct *dup_task_struct(struct task_struct *orig)
252 {
253 struct task_struct *tsk;
254 struct thread_info *ti;
255 unsigned long *stackend;
256 int node = tsk_fork_get_node(orig);
257 int err;
258
259 prepare_to_copy(orig);
260
261 tsk = alloc_task_struct_node(node);
262 if (!tsk)
263 return NULL;
264
265 ti = alloc_thread_info_node(tsk, node);
266 if (!ti) {
267 free_task_struct(tsk);
268 return NULL;
269 }
270
271 err = arch_dup_task_struct(tsk, orig);
272 if (err)
273 goto out;
274
275 tsk->stack = ti;
276
277 err = prop_local_init_single(&tsk->dirties);
278 if (err)
279 goto out;
280
281 setup_thread_stack(tsk, orig);
282 clear_user_return_notifier(tsk);
283 clear_tsk_need_resched(tsk);
284 stackend = end_of_stack(tsk);
285 *stackend = STACK_END_MAGIC; /* for overflow detection */
286
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 tsk->stack_canary = get_random_int();
289 #endif
290
291 /*
292 * One for us, one for whoever does the "release_task()" (usually
293 * parent)
294 */
295 atomic_set(&tsk->usage, 2);
296 #ifdef CONFIG_BLK_DEV_IO_TRACE
297 tsk->btrace_seq = 0;
298 #endif
299 tsk->splice_pipe = NULL;
300
301 account_kernel_stack(ti, 1);
302
303 return tsk;
304
305 out:
306 free_thread_info(ti);
307 free_task_struct(tsk);
308 return NULL;
309 }
310
311 #ifdef CONFIG_MMU
312 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
313 {
314 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
315 struct rb_node **rb_link, *rb_parent;
316 int retval;
317 unsigned long charge;
318 struct mempolicy *pol;
319
320 down_write(&oldmm->mmap_sem);
321 flush_cache_dup_mm(oldmm);
322 /*
323 * Not linked in yet - no deadlock potential:
324 */
325 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
326
327 mm->locked_vm = 0;
328 mm->mmap = NULL;
329 mm->mmap_cache = NULL;
330 mm->free_area_cache = oldmm->mmap_base;
331 mm->cached_hole_size = ~0UL;
332 mm->map_count = 0;
333 cpumask_clear(mm_cpumask(mm));
334 mm->mm_rb = RB_ROOT;
335 rb_link = &mm->mm_rb.rb_node;
336 rb_parent = NULL;
337 pprev = &mm->mmap;
338 retval = ksm_fork(mm, oldmm);
339 if (retval)
340 goto out;
341 retval = khugepaged_fork(mm, oldmm);
342 if (retval)
343 goto out;
344
345 prev = NULL;
346 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
347 struct file *file;
348
349 if (mpnt->vm_flags & VM_DONTCOPY) {
350 long pages = vma_pages(mpnt);
351 mm->total_vm -= pages;
352 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
353 -pages);
354 continue;
355 }
356 charge = 0;
357 if (mpnt->vm_flags & VM_ACCOUNT) {
358 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
359 if (security_vm_enough_memory(len))
360 goto fail_nomem;
361 charge = len;
362 }
363 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
364 if (!tmp)
365 goto fail_nomem;
366 *tmp = *mpnt;
367 INIT_LIST_HEAD(&tmp->anon_vma_chain);
368 pol = mpol_dup(vma_policy(mpnt));
369 retval = PTR_ERR(pol);
370 if (IS_ERR(pol))
371 goto fail_nomem_policy;
372 vma_set_policy(tmp, pol);
373 tmp->vm_mm = mm;
374 if (anon_vma_fork(tmp, mpnt))
375 goto fail_nomem_anon_vma_fork;
376 tmp->vm_flags &= ~VM_LOCKED;
377 tmp->vm_next = tmp->vm_prev = NULL;
378 file = tmp->vm_file;
379 if (file) {
380 struct inode *inode = file->f_path.dentry->d_inode;
381 struct address_space *mapping = file->f_mapping;
382
383 get_file(file);
384 if (tmp->vm_flags & VM_DENYWRITE)
385 atomic_dec(&inode->i_writecount);
386 mutex_lock(&mapping->i_mmap_mutex);
387 if (tmp->vm_flags & VM_SHARED)
388 mapping->i_mmap_writable++;
389 flush_dcache_mmap_lock(mapping);
390 /* insert tmp into the share list, just after mpnt */
391 vma_prio_tree_add(tmp, mpnt);
392 flush_dcache_mmap_unlock(mapping);
393 mutex_unlock(&mapping->i_mmap_mutex);
394 }
395
396 /*
397 * Clear hugetlb-related page reserves for children. This only
398 * affects MAP_PRIVATE mappings. Faults generated by the child
399 * are not guaranteed to succeed, even if read-only
400 */
401 if (is_vm_hugetlb_page(tmp))
402 reset_vma_resv_huge_pages(tmp);
403
404 /*
405 * Link in the new vma and copy the page table entries.
406 */
407 *pprev = tmp;
408 pprev = &tmp->vm_next;
409 tmp->vm_prev = prev;
410 prev = tmp;
411
412 __vma_link_rb(mm, tmp, rb_link, rb_parent);
413 rb_link = &tmp->vm_rb.rb_right;
414 rb_parent = &tmp->vm_rb;
415
416 mm->map_count++;
417 retval = copy_page_range(mm, oldmm, mpnt);
418
419 if (tmp->vm_ops && tmp->vm_ops->open)
420 tmp->vm_ops->open(tmp);
421
422 if (retval)
423 goto out;
424 }
425 /* a new mm has just been created */
426 arch_dup_mmap(oldmm, mm);
427 retval = 0;
428 out:
429 up_write(&mm->mmap_sem);
430 flush_tlb_mm(oldmm);
431 up_write(&oldmm->mmap_sem);
432 return retval;
433 fail_nomem_anon_vma_fork:
434 mpol_put(pol);
435 fail_nomem_policy:
436 kmem_cache_free(vm_area_cachep, tmp);
437 fail_nomem:
438 retval = -ENOMEM;
439 vm_unacct_memory(charge);
440 goto out;
441 }
442
443 static inline int mm_alloc_pgd(struct mm_struct *mm)
444 {
445 mm->pgd = pgd_alloc(mm);
446 if (unlikely(!mm->pgd))
447 return -ENOMEM;
448 return 0;
449 }
450
451 static inline void mm_free_pgd(struct mm_struct *mm)
452 {
453 pgd_free(mm, mm->pgd);
454 }
455 #else
456 #define dup_mmap(mm, oldmm) (0)
457 #define mm_alloc_pgd(mm) (0)
458 #define mm_free_pgd(mm)
459 #endif /* CONFIG_MMU */
460
461 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
462
463 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
464 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
465
466 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
467
468 static int __init coredump_filter_setup(char *s)
469 {
470 default_dump_filter =
471 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
472 MMF_DUMP_FILTER_MASK;
473 return 1;
474 }
475
476 __setup("coredump_filter=", coredump_filter_setup);
477
478 #include <linux/init_task.h>
479
480 static void mm_init_aio(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_AIO
483 spin_lock_init(&mm->ioctx_lock);
484 INIT_HLIST_HEAD(&mm->ioctx_list);
485 #endif
486 }
487
488 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
489 {
490 atomic_set(&mm->mm_users, 1);
491 atomic_set(&mm->mm_count, 1);
492 init_rwsem(&mm->mmap_sem);
493 INIT_LIST_HEAD(&mm->mmlist);
494 mm->flags = (current->mm) ?
495 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
496 mm->core_state = NULL;
497 mm->nr_ptes = 0;
498 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
499 spin_lock_init(&mm->page_table_lock);
500 mm->free_area_cache = TASK_UNMAPPED_BASE;
501 mm->cached_hole_size = ~0UL;
502 mm_init_aio(mm);
503 mm_init_owner(mm, p);
504 atomic_set(&mm->oom_disable_count, 0);
505
506 if (likely(!mm_alloc_pgd(mm))) {
507 mm->def_flags = 0;
508 mmu_notifier_mm_init(mm);
509 return mm;
510 }
511
512 free_mm(mm);
513 return NULL;
514 }
515
516 /*
517 * Allocate and initialize an mm_struct.
518 */
519 struct mm_struct *mm_alloc(void)
520 {
521 struct mm_struct *mm;
522
523 mm = allocate_mm();
524 if (!mm)
525 return NULL;
526
527 memset(mm, 0, sizeof(*mm));
528 mm_init_cpumask(mm);
529 return mm_init(mm, current);
530 }
531
532 /*
533 * Called when the last reference to the mm
534 * is dropped: either by a lazy thread or by
535 * mmput. Free the page directory and the mm.
536 */
537 void __mmdrop(struct mm_struct *mm)
538 {
539 BUG_ON(mm == &init_mm);
540 mm_free_pgd(mm);
541 destroy_context(mm);
542 mmu_notifier_mm_destroy(mm);
543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
544 VM_BUG_ON(mm->pmd_huge_pte);
545 #endif
546 free_mm(mm);
547 }
548 EXPORT_SYMBOL_GPL(__mmdrop);
549
550 /*
551 * Decrement the use count and release all resources for an mm.
552 */
553 void mmput(struct mm_struct *mm)
554 {
555 might_sleep();
556
557 if (atomic_dec_and_test(&mm->mm_users)) {
558 exit_aio(mm);
559 ksm_exit(mm);
560 khugepaged_exit(mm); /* must run before exit_mmap */
561 exit_mmap(mm);
562 set_mm_exe_file(mm, NULL);
563 if (!list_empty(&mm->mmlist)) {
564 spin_lock(&mmlist_lock);
565 list_del(&mm->mmlist);
566 spin_unlock(&mmlist_lock);
567 }
568 put_swap_token(mm);
569 if (mm->binfmt)
570 module_put(mm->binfmt->module);
571 mmdrop(mm);
572 }
573 }
574 EXPORT_SYMBOL_GPL(mmput);
575
576 /*
577 * We added or removed a vma mapping the executable. The vmas are only mapped
578 * during exec and are not mapped with the mmap system call.
579 * Callers must hold down_write() on the mm's mmap_sem for these
580 */
581 void added_exe_file_vma(struct mm_struct *mm)
582 {
583 mm->num_exe_file_vmas++;
584 }
585
586 void removed_exe_file_vma(struct mm_struct *mm)
587 {
588 mm->num_exe_file_vmas--;
589 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
590 fput(mm->exe_file);
591 mm->exe_file = NULL;
592 }
593
594 }
595
596 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
597 {
598 if (new_exe_file)
599 get_file(new_exe_file);
600 if (mm->exe_file)
601 fput(mm->exe_file);
602 mm->exe_file = new_exe_file;
603 mm->num_exe_file_vmas = 0;
604 }
605
606 struct file *get_mm_exe_file(struct mm_struct *mm)
607 {
608 struct file *exe_file;
609
610 /* We need mmap_sem to protect against races with removal of
611 * VM_EXECUTABLE vmas */
612 down_read(&mm->mmap_sem);
613 exe_file = mm->exe_file;
614 if (exe_file)
615 get_file(exe_file);
616 up_read(&mm->mmap_sem);
617 return exe_file;
618 }
619
620 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
621 {
622 /* It's safe to write the exe_file pointer without exe_file_lock because
623 * this is called during fork when the task is not yet in /proc */
624 newmm->exe_file = get_mm_exe_file(oldmm);
625 }
626
627 /**
628 * get_task_mm - acquire a reference to the task's mm
629 *
630 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
631 * this kernel workthread has transiently adopted a user mm with use_mm,
632 * to do its AIO) is not set and if so returns a reference to it, after
633 * bumping up the use count. User must release the mm via mmput()
634 * after use. Typically used by /proc and ptrace.
635 */
636 struct mm_struct *get_task_mm(struct task_struct *task)
637 {
638 struct mm_struct *mm;
639
640 task_lock(task);
641 mm = task->mm;
642 if (mm) {
643 if (task->flags & PF_KTHREAD)
644 mm = NULL;
645 else
646 atomic_inc(&mm->mm_users);
647 }
648 task_unlock(task);
649 return mm;
650 }
651 EXPORT_SYMBOL_GPL(get_task_mm);
652
653 /* Please note the differences between mmput and mm_release.
654 * mmput is called whenever we stop holding onto a mm_struct,
655 * error success whatever.
656 *
657 * mm_release is called after a mm_struct has been removed
658 * from the current process.
659 *
660 * This difference is important for error handling, when we
661 * only half set up a mm_struct for a new process and need to restore
662 * the old one. Because we mmput the new mm_struct before
663 * restoring the old one. . .
664 * Eric Biederman 10 January 1998
665 */
666 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
667 {
668 struct completion *vfork_done = tsk->vfork_done;
669
670 /* Get rid of any futexes when releasing the mm */
671 #ifdef CONFIG_FUTEX
672 if (unlikely(tsk->robust_list)) {
673 exit_robust_list(tsk);
674 tsk->robust_list = NULL;
675 }
676 #ifdef CONFIG_COMPAT
677 if (unlikely(tsk->compat_robust_list)) {
678 compat_exit_robust_list(tsk);
679 tsk->compat_robust_list = NULL;
680 }
681 #endif
682 if (unlikely(!list_empty(&tsk->pi_state_list)))
683 exit_pi_state_list(tsk);
684 #endif
685
686 /* Get rid of any cached register state */
687 deactivate_mm(tsk, mm);
688
689 /* notify parent sleeping on vfork() */
690 if (vfork_done) {
691 tsk->vfork_done = NULL;
692 complete(vfork_done);
693 }
694
695 /*
696 * If we're exiting normally, clear a user-space tid field if
697 * requested. We leave this alone when dying by signal, to leave
698 * the value intact in a core dump, and to save the unnecessary
699 * trouble otherwise. Userland only wants this done for a sys_exit.
700 */
701 if (tsk->clear_child_tid) {
702 if (!(tsk->flags & PF_SIGNALED) &&
703 atomic_read(&mm->mm_users) > 1) {
704 /*
705 * We don't check the error code - if userspace has
706 * not set up a proper pointer then tough luck.
707 */
708 put_user(0, tsk->clear_child_tid);
709 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
710 1, NULL, NULL, 0);
711 }
712 tsk->clear_child_tid = NULL;
713 }
714 }
715
716 /*
717 * Allocate a new mm structure and copy contents from the
718 * mm structure of the passed in task structure.
719 */
720 struct mm_struct *dup_mm(struct task_struct *tsk)
721 {
722 struct mm_struct *mm, *oldmm = current->mm;
723 int err;
724
725 if (!oldmm)
726 return NULL;
727
728 mm = allocate_mm();
729 if (!mm)
730 goto fail_nomem;
731
732 memcpy(mm, oldmm, sizeof(*mm));
733 mm_init_cpumask(mm);
734
735 /* Initializing for Swap token stuff */
736 mm->token_priority = 0;
737 mm->last_interval = 0;
738
739 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
740 mm->pmd_huge_pte = NULL;
741 #endif
742
743 if (!mm_init(mm, tsk))
744 goto fail_nomem;
745
746 if (init_new_context(tsk, mm))
747 goto fail_nocontext;
748
749 dup_mm_exe_file(oldmm, mm);
750
751 err = dup_mmap(mm, oldmm);
752 if (err)
753 goto free_pt;
754
755 mm->hiwater_rss = get_mm_rss(mm);
756 mm->hiwater_vm = mm->total_vm;
757
758 if (mm->binfmt && !try_module_get(mm->binfmt->module))
759 goto free_pt;
760
761 return mm;
762
763 free_pt:
764 /* don't put binfmt in mmput, we haven't got module yet */
765 mm->binfmt = NULL;
766 mmput(mm);
767
768 fail_nomem:
769 return NULL;
770
771 fail_nocontext:
772 /*
773 * If init_new_context() failed, we cannot use mmput() to free the mm
774 * because it calls destroy_context()
775 */
776 mm_free_pgd(mm);
777 free_mm(mm);
778 return NULL;
779 }
780
781 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
782 {
783 struct mm_struct *mm, *oldmm;
784 int retval;
785
786 tsk->min_flt = tsk->maj_flt = 0;
787 tsk->nvcsw = tsk->nivcsw = 0;
788 #ifdef CONFIG_DETECT_HUNG_TASK
789 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
790 #endif
791
792 tsk->mm = NULL;
793 tsk->active_mm = NULL;
794
795 /*
796 * Are we cloning a kernel thread?
797 *
798 * We need to steal a active VM for that..
799 */
800 oldmm = current->mm;
801 if (!oldmm)
802 return 0;
803
804 if (clone_flags & CLONE_VM) {
805 atomic_inc(&oldmm->mm_users);
806 mm = oldmm;
807 goto good_mm;
808 }
809
810 retval = -ENOMEM;
811 mm = dup_mm(tsk);
812 if (!mm)
813 goto fail_nomem;
814
815 good_mm:
816 /* Initializing for Swap token stuff */
817 mm->token_priority = 0;
818 mm->last_interval = 0;
819 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
820 atomic_inc(&mm->oom_disable_count);
821
822 tsk->mm = mm;
823 tsk->active_mm = mm;
824 return 0;
825
826 fail_nomem:
827 return retval;
828 }
829
830 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
831 {
832 struct fs_struct *fs = current->fs;
833 if (clone_flags & CLONE_FS) {
834 /* tsk->fs is already what we want */
835 spin_lock(&fs->lock);
836 if (fs->in_exec) {
837 spin_unlock(&fs->lock);
838 return -EAGAIN;
839 }
840 fs->users++;
841 spin_unlock(&fs->lock);
842 return 0;
843 }
844 tsk->fs = copy_fs_struct(fs);
845 if (!tsk->fs)
846 return -ENOMEM;
847 return 0;
848 }
849
850 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
851 {
852 struct files_struct *oldf, *newf;
853 int error = 0;
854
855 /*
856 * A background process may not have any files ...
857 */
858 oldf = current->files;
859 if (!oldf)
860 goto out;
861
862 if (clone_flags & CLONE_FILES) {
863 atomic_inc(&oldf->count);
864 goto out;
865 }
866
867 newf = dup_fd(oldf, &error);
868 if (!newf)
869 goto out;
870
871 tsk->files = newf;
872 error = 0;
873 out:
874 return error;
875 }
876
877 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
878 {
879 #ifdef CONFIG_BLOCK
880 struct io_context *ioc = current->io_context;
881
882 if (!ioc)
883 return 0;
884 /*
885 * Share io context with parent, if CLONE_IO is set
886 */
887 if (clone_flags & CLONE_IO) {
888 tsk->io_context = ioc_task_link(ioc);
889 if (unlikely(!tsk->io_context))
890 return -ENOMEM;
891 } else if (ioprio_valid(ioc->ioprio)) {
892 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
893 if (unlikely(!tsk->io_context))
894 return -ENOMEM;
895
896 tsk->io_context->ioprio = ioc->ioprio;
897 }
898 #endif
899 return 0;
900 }
901
902 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
903 {
904 struct sighand_struct *sig;
905
906 if (clone_flags & CLONE_SIGHAND) {
907 atomic_inc(&current->sighand->count);
908 return 0;
909 }
910 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
911 rcu_assign_pointer(tsk->sighand, sig);
912 if (!sig)
913 return -ENOMEM;
914 atomic_set(&sig->count, 1);
915 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
916 return 0;
917 }
918
919 void __cleanup_sighand(struct sighand_struct *sighand)
920 {
921 if (atomic_dec_and_test(&sighand->count))
922 kmem_cache_free(sighand_cachep, sighand);
923 }
924
925
926 /*
927 * Initialize POSIX timer handling for a thread group.
928 */
929 static void posix_cpu_timers_init_group(struct signal_struct *sig)
930 {
931 unsigned long cpu_limit;
932
933 /* Thread group counters. */
934 thread_group_cputime_init(sig);
935
936 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
937 if (cpu_limit != RLIM_INFINITY) {
938 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
939 sig->cputimer.running = 1;
940 }
941
942 /* The timer lists. */
943 INIT_LIST_HEAD(&sig->cpu_timers[0]);
944 INIT_LIST_HEAD(&sig->cpu_timers[1]);
945 INIT_LIST_HEAD(&sig->cpu_timers[2]);
946 }
947
948 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
949 {
950 struct signal_struct *sig;
951
952 if (clone_flags & CLONE_THREAD)
953 return 0;
954
955 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
956 tsk->signal = sig;
957 if (!sig)
958 return -ENOMEM;
959
960 sig->nr_threads = 1;
961 atomic_set(&sig->live, 1);
962 atomic_set(&sig->sigcnt, 1);
963 init_waitqueue_head(&sig->wait_chldexit);
964 if (clone_flags & CLONE_NEWPID)
965 sig->flags |= SIGNAL_UNKILLABLE;
966 sig->curr_target = tsk;
967 init_sigpending(&sig->shared_pending);
968 INIT_LIST_HEAD(&sig->posix_timers);
969
970 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
971 sig->real_timer.function = it_real_fn;
972
973 task_lock(current->group_leader);
974 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
975 task_unlock(current->group_leader);
976
977 posix_cpu_timers_init_group(sig);
978
979 tty_audit_fork(sig);
980 sched_autogroup_fork(sig);
981
982 #ifdef CONFIG_CGROUPS
983 init_rwsem(&sig->threadgroup_fork_lock);
984 #endif
985
986 sig->oom_adj = current->signal->oom_adj;
987 sig->oom_score_adj = current->signal->oom_score_adj;
988 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
989
990 mutex_init(&sig->cred_guard_mutex);
991
992 return 0;
993 }
994
995 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
996 {
997 unsigned long new_flags = p->flags;
998
999 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1000 new_flags |= PF_FORKNOEXEC;
1001 new_flags |= PF_STARTING;
1002 p->flags = new_flags;
1003 clear_freeze_flag(p);
1004 }
1005
1006 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1007 {
1008 current->clear_child_tid = tidptr;
1009
1010 return task_pid_vnr(current);
1011 }
1012
1013 static void rt_mutex_init_task(struct task_struct *p)
1014 {
1015 raw_spin_lock_init(&p->pi_lock);
1016 #ifdef CONFIG_RT_MUTEXES
1017 plist_head_init(&p->pi_waiters);
1018 p->pi_blocked_on = NULL;
1019 #endif
1020 }
1021
1022 #ifdef CONFIG_MM_OWNER
1023 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1024 {
1025 mm->owner = p;
1026 }
1027 #endif /* CONFIG_MM_OWNER */
1028
1029 /*
1030 * Initialize POSIX timer handling for a single task.
1031 */
1032 static void posix_cpu_timers_init(struct task_struct *tsk)
1033 {
1034 tsk->cputime_expires.prof_exp = cputime_zero;
1035 tsk->cputime_expires.virt_exp = cputime_zero;
1036 tsk->cputime_expires.sched_exp = 0;
1037 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1038 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1039 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1040 }
1041
1042 /*
1043 * This creates a new process as a copy of the old one,
1044 * but does not actually start it yet.
1045 *
1046 * It copies the registers, and all the appropriate
1047 * parts of the process environment (as per the clone
1048 * flags). The actual kick-off is left to the caller.
1049 */
1050 static struct task_struct *copy_process(unsigned long clone_flags,
1051 unsigned long stack_start,
1052 struct pt_regs *regs,
1053 unsigned long stack_size,
1054 int __user *child_tidptr,
1055 struct pid *pid,
1056 int trace)
1057 {
1058 int retval;
1059 struct task_struct *p;
1060 int cgroup_callbacks_done = 0;
1061
1062 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1063 return ERR_PTR(-EINVAL);
1064
1065 /*
1066 * Thread groups must share signals as well, and detached threads
1067 * can only be started up within the thread group.
1068 */
1069 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1070 return ERR_PTR(-EINVAL);
1071
1072 /*
1073 * Shared signal handlers imply shared VM. By way of the above,
1074 * thread groups also imply shared VM. Blocking this case allows
1075 * for various simplifications in other code.
1076 */
1077 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1078 return ERR_PTR(-EINVAL);
1079
1080 /*
1081 * Siblings of global init remain as zombies on exit since they are
1082 * not reaped by their parent (swapper). To solve this and to avoid
1083 * multi-rooted process trees, prevent global and container-inits
1084 * from creating siblings.
1085 */
1086 if ((clone_flags & CLONE_PARENT) &&
1087 current->signal->flags & SIGNAL_UNKILLABLE)
1088 return ERR_PTR(-EINVAL);
1089
1090 retval = security_task_create(clone_flags);
1091 if (retval)
1092 goto fork_out;
1093
1094 retval = -ENOMEM;
1095 p = dup_task_struct(current);
1096 if (!p)
1097 goto fork_out;
1098
1099 ftrace_graph_init_task(p);
1100
1101 rt_mutex_init_task(p);
1102
1103 #ifdef CONFIG_PROVE_LOCKING
1104 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1105 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1106 #endif
1107 retval = -EAGAIN;
1108 if (atomic_read(&p->real_cred->user->processes) >=
1109 task_rlimit(p, RLIMIT_NPROC)) {
1110 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1111 p->real_cred->user != INIT_USER)
1112 goto bad_fork_free;
1113 }
1114
1115 retval = copy_creds(p, clone_flags);
1116 if (retval < 0)
1117 goto bad_fork_free;
1118
1119 /*
1120 * If multiple threads are within copy_process(), then this check
1121 * triggers too late. This doesn't hurt, the check is only there
1122 * to stop root fork bombs.
1123 */
1124 retval = -EAGAIN;
1125 if (nr_threads >= max_threads)
1126 goto bad_fork_cleanup_count;
1127
1128 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1129 goto bad_fork_cleanup_count;
1130
1131 p->did_exec = 0;
1132 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1133 copy_flags(clone_flags, p);
1134 INIT_LIST_HEAD(&p->children);
1135 INIT_LIST_HEAD(&p->sibling);
1136 rcu_copy_process(p);
1137 p->vfork_done = NULL;
1138 spin_lock_init(&p->alloc_lock);
1139
1140 init_sigpending(&p->pending);
1141
1142 p->utime = cputime_zero;
1143 p->stime = cputime_zero;
1144 p->gtime = cputime_zero;
1145 p->utimescaled = cputime_zero;
1146 p->stimescaled = cputime_zero;
1147 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1148 p->prev_utime = cputime_zero;
1149 p->prev_stime = cputime_zero;
1150 #endif
1151 #if defined(SPLIT_RSS_COUNTING)
1152 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1153 #endif
1154
1155 p->default_timer_slack_ns = current->timer_slack_ns;
1156
1157 task_io_accounting_init(&p->ioac);
1158 acct_clear_integrals(p);
1159
1160 posix_cpu_timers_init(p);
1161
1162 do_posix_clock_monotonic_gettime(&p->start_time);
1163 p->real_start_time = p->start_time;
1164 monotonic_to_bootbased(&p->real_start_time);
1165 p->io_context = NULL;
1166 p->audit_context = NULL;
1167 if (clone_flags & CLONE_THREAD)
1168 threadgroup_fork_read_lock(current);
1169 cgroup_fork(p);
1170 #ifdef CONFIG_NUMA
1171 p->mempolicy = mpol_dup(p->mempolicy);
1172 if (IS_ERR(p->mempolicy)) {
1173 retval = PTR_ERR(p->mempolicy);
1174 p->mempolicy = NULL;
1175 goto bad_fork_cleanup_cgroup;
1176 }
1177 mpol_fix_fork_child_flag(p);
1178 #endif
1179 #ifdef CONFIG_CPUSETS
1180 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1181 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1182 #endif
1183 #ifdef CONFIG_TRACE_IRQFLAGS
1184 p->irq_events = 0;
1185 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1186 p->hardirqs_enabled = 1;
1187 #else
1188 p->hardirqs_enabled = 0;
1189 #endif
1190 p->hardirq_enable_ip = 0;
1191 p->hardirq_enable_event = 0;
1192 p->hardirq_disable_ip = _THIS_IP_;
1193 p->hardirq_disable_event = 0;
1194 p->softirqs_enabled = 1;
1195 p->softirq_enable_ip = _THIS_IP_;
1196 p->softirq_enable_event = 0;
1197 p->softirq_disable_ip = 0;
1198 p->softirq_disable_event = 0;
1199 p->hardirq_context = 0;
1200 p->softirq_context = 0;
1201 #endif
1202 #ifdef CONFIG_LOCKDEP
1203 p->lockdep_depth = 0; /* no locks held yet */
1204 p->curr_chain_key = 0;
1205 p->lockdep_recursion = 0;
1206 #endif
1207
1208 #ifdef CONFIG_DEBUG_MUTEXES
1209 p->blocked_on = NULL; /* not blocked yet */
1210 #endif
1211 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1212 p->memcg_batch.do_batch = 0;
1213 p->memcg_batch.memcg = NULL;
1214 #endif
1215
1216 /* Perform scheduler related setup. Assign this task to a CPU. */
1217 sched_fork(p);
1218
1219 retval = perf_event_init_task(p);
1220 if (retval)
1221 goto bad_fork_cleanup_policy;
1222 retval = audit_alloc(p);
1223 if (retval)
1224 goto bad_fork_cleanup_policy;
1225 /* copy all the process information */
1226 retval = copy_semundo(clone_flags, p);
1227 if (retval)
1228 goto bad_fork_cleanup_audit;
1229 retval = copy_files(clone_flags, p);
1230 if (retval)
1231 goto bad_fork_cleanup_semundo;
1232 retval = copy_fs(clone_flags, p);
1233 if (retval)
1234 goto bad_fork_cleanup_files;
1235 retval = copy_sighand(clone_flags, p);
1236 if (retval)
1237 goto bad_fork_cleanup_fs;
1238 retval = copy_signal(clone_flags, p);
1239 if (retval)
1240 goto bad_fork_cleanup_sighand;
1241 retval = copy_mm(clone_flags, p);
1242 if (retval)
1243 goto bad_fork_cleanup_signal;
1244 retval = copy_namespaces(clone_flags, p);
1245 if (retval)
1246 goto bad_fork_cleanup_mm;
1247 retval = copy_io(clone_flags, p);
1248 if (retval)
1249 goto bad_fork_cleanup_namespaces;
1250 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1251 if (retval)
1252 goto bad_fork_cleanup_io;
1253
1254 if (pid != &init_struct_pid) {
1255 retval = -ENOMEM;
1256 pid = alloc_pid(p->nsproxy->pid_ns);
1257 if (!pid)
1258 goto bad_fork_cleanup_io;
1259 }
1260
1261 p->pid = pid_nr(pid);
1262 p->tgid = p->pid;
1263 if (clone_flags & CLONE_THREAD)
1264 p->tgid = current->tgid;
1265
1266 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1267 /*
1268 * Clear TID on mm_release()?
1269 */
1270 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1271 #ifdef CONFIG_BLOCK
1272 p->plug = NULL;
1273 #endif
1274 #ifdef CONFIG_FUTEX
1275 p->robust_list = NULL;
1276 #ifdef CONFIG_COMPAT
1277 p->compat_robust_list = NULL;
1278 #endif
1279 INIT_LIST_HEAD(&p->pi_state_list);
1280 p->pi_state_cache = NULL;
1281 #endif
1282 /*
1283 * sigaltstack should be cleared when sharing the same VM
1284 */
1285 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1286 p->sas_ss_sp = p->sas_ss_size = 0;
1287
1288 /*
1289 * Syscall tracing and stepping should be turned off in the
1290 * child regardless of CLONE_PTRACE.
1291 */
1292 user_disable_single_step(p);
1293 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1294 #ifdef TIF_SYSCALL_EMU
1295 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1296 #endif
1297 clear_all_latency_tracing(p);
1298
1299 /* ok, now we should be set up.. */
1300 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1301 p->pdeath_signal = 0;
1302 p->exit_state = 0;
1303
1304 /*
1305 * Ok, make it visible to the rest of the system.
1306 * We dont wake it up yet.
1307 */
1308 p->group_leader = p;
1309 INIT_LIST_HEAD(&p->thread_group);
1310
1311 /* Now that the task is set up, run cgroup callbacks if
1312 * necessary. We need to run them before the task is visible
1313 * on the tasklist. */
1314 cgroup_fork_callbacks(p);
1315 cgroup_callbacks_done = 1;
1316
1317 /* Need tasklist lock for parent etc handling! */
1318 write_lock_irq(&tasklist_lock);
1319
1320 /* CLONE_PARENT re-uses the old parent */
1321 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1322 p->real_parent = current->real_parent;
1323 p->parent_exec_id = current->parent_exec_id;
1324 } else {
1325 p->real_parent = current;
1326 p->parent_exec_id = current->self_exec_id;
1327 }
1328
1329 spin_lock(&current->sighand->siglock);
1330
1331 /*
1332 * Process group and session signals need to be delivered to just the
1333 * parent before the fork or both the parent and the child after the
1334 * fork. Restart if a signal comes in before we add the new process to
1335 * it's process group.
1336 * A fatal signal pending means that current will exit, so the new
1337 * thread can't slip out of an OOM kill (or normal SIGKILL).
1338 */
1339 recalc_sigpending();
1340 if (signal_pending(current)) {
1341 spin_unlock(&current->sighand->siglock);
1342 write_unlock_irq(&tasklist_lock);
1343 retval = -ERESTARTNOINTR;
1344 goto bad_fork_free_pid;
1345 }
1346
1347 if (clone_flags & CLONE_THREAD) {
1348 current->signal->nr_threads++;
1349 atomic_inc(&current->signal->live);
1350 atomic_inc(&current->signal->sigcnt);
1351 p->group_leader = current->group_leader;
1352 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1353 }
1354
1355 if (likely(p->pid)) {
1356 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1357
1358 if (thread_group_leader(p)) {
1359 if (is_child_reaper(pid))
1360 p->nsproxy->pid_ns->child_reaper = p;
1361
1362 p->signal->leader_pid = pid;
1363 p->signal->tty = tty_kref_get(current->signal->tty);
1364 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1365 attach_pid(p, PIDTYPE_SID, task_session(current));
1366 list_add_tail(&p->sibling, &p->real_parent->children);
1367 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1368 __this_cpu_inc(process_counts);
1369 }
1370 attach_pid(p, PIDTYPE_PID, pid);
1371 nr_threads++;
1372 }
1373
1374 total_forks++;
1375 spin_unlock(&current->sighand->siglock);
1376 write_unlock_irq(&tasklist_lock);
1377 proc_fork_connector(p);
1378 cgroup_post_fork(p);
1379 if (clone_flags & CLONE_THREAD)
1380 threadgroup_fork_read_unlock(current);
1381 perf_event_fork(p);
1382 return p;
1383
1384 bad_fork_free_pid:
1385 if (pid != &init_struct_pid)
1386 free_pid(pid);
1387 bad_fork_cleanup_io:
1388 if (p->io_context)
1389 exit_io_context(p);
1390 bad_fork_cleanup_namespaces:
1391 exit_task_namespaces(p);
1392 bad_fork_cleanup_mm:
1393 if (p->mm) {
1394 task_lock(p);
1395 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1396 atomic_dec(&p->mm->oom_disable_count);
1397 task_unlock(p);
1398 mmput(p->mm);
1399 }
1400 bad_fork_cleanup_signal:
1401 if (!(clone_flags & CLONE_THREAD))
1402 free_signal_struct(p->signal);
1403 bad_fork_cleanup_sighand:
1404 __cleanup_sighand(p->sighand);
1405 bad_fork_cleanup_fs:
1406 exit_fs(p); /* blocking */
1407 bad_fork_cleanup_files:
1408 exit_files(p); /* blocking */
1409 bad_fork_cleanup_semundo:
1410 exit_sem(p);
1411 bad_fork_cleanup_audit:
1412 audit_free(p);
1413 bad_fork_cleanup_policy:
1414 perf_event_free_task(p);
1415 #ifdef CONFIG_NUMA
1416 mpol_put(p->mempolicy);
1417 bad_fork_cleanup_cgroup:
1418 #endif
1419 if (clone_flags & CLONE_THREAD)
1420 threadgroup_fork_read_unlock(current);
1421 cgroup_exit(p, cgroup_callbacks_done);
1422 delayacct_tsk_free(p);
1423 module_put(task_thread_info(p)->exec_domain->module);
1424 bad_fork_cleanup_count:
1425 atomic_dec(&p->cred->user->processes);
1426 exit_creds(p);
1427 bad_fork_free:
1428 free_task(p);
1429 fork_out:
1430 return ERR_PTR(retval);
1431 }
1432
1433 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1434 {
1435 memset(regs, 0, sizeof(struct pt_regs));
1436 return regs;
1437 }
1438
1439 static inline void init_idle_pids(struct pid_link *links)
1440 {
1441 enum pid_type type;
1442
1443 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1444 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1445 links[type].pid = &init_struct_pid;
1446 }
1447 }
1448
1449 struct task_struct * __cpuinit fork_idle(int cpu)
1450 {
1451 struct task_struct *task;
1452 struct pt_regs regs;
1453
1454 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1455 &init_struct_pid, 0);
1456 if (!IS_ERR(task)) {
1457 init_idle_pids(task->pids);
1458 init_idle(task, cpu);
1459 }
1460
1461 return task;
1462 }
1463
1464 /*
1465 * Ok, this is the main fork-routine.
1466 *
1467 * It copies the process, and if successful kick-starts
1468 * it and waits for it to finish using the VM if required.
1469 */
1470 long do_fork(unsigned long clone_flags,
1471 unsigned long stack_start,
1472 struct pt_regs *regs,
1473 unsigned long stack_size,
1474 int __user *parent_tidptr,
1475 int __user *child_tidptr)
1476 {
1477 struct task_struct *p;
1478 int trace = 0;
1479 long nr;
1480
1481 /*
1482 * Do some preliminary argument and permissions checking before we
1483 * actually start allocating stuff
1484 */
1485 if (clone_flags & CLONE_NEWUSER) {
1486 if (clone_flags & CLONE_THREAD)
1487 return -EINVAL;
1488 /* hopefully this check will go away when userns support is
1489 * complete
1490 */
1491 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1492 !capable(CAP_SETGID))
1493 return -EPERM;
1494 }
1495
1496 /*
1497 * Determine whether and which event to report to ptracer. When
1498 * called from kernel_thread or CLONE_UNTRACED is explicitly
1499 * requested, no event is reported; otherwise, report if the event
1500 * for the type of forking is enabled.
1501 */
1502 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1503 if (clone_flags & CLONE_VFORK)
1504 trace = PTRACE_EVENT_VFORK;
1505 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1506 trace = PTRACE_EVENT_CLONE;
1507 else
1508 trace = PTRACE_EVENT_FORK;
1509
1510 if (likely(!ptrace_event_enabled(current, trace)))
1511 trace = 0;
1512 }
1513
1514 p = copy_process(clone_flags, stack_start, regs, stack_size,
1515 child_tidptr, NULL, trace);
1516 /*
1517 * Do this prior waking up the new thread - the thread pointer
1518 * might get invalid after that point, if the thread exits quickly.
1519 */
1520 if (!IS_ERR(p)) {
1521 struct completion vfork;
1522
1523 trace_sched_process_fork(current, p);
1524
1525 nr = task_pid_vnr(p);
1526
1527 if (clone_flags & CLONE_PARENT_SETTID)
1528 put_user(nr, parent_tidptr);
1529
1530 if (clone_flags & CLONE_VFORK) {
1531 p->vfork_done = &vfork;
1532 init_completion(&vfork);
1533 }
1534
1535 audit_finish_fork(p);
1536
1537 /*
1538 * We set PF_STARTING at creation in case tracing wants to
1539 * use this to distinguish a fully live task from one that
1540 * hasn't finished SIGSTOP raising yet. Now we clear it
1541 * and set the child going.
1542 */
1543 p->flags &= ~PF_STARTING;
1544
1545 wake_up_new_task(p);
1546
1547 /* forking complete and child started to run, tell ptracer */
1548 if (unlikely(trace))
1549 ptrace_event(trace, nr);
1550
1551 if (clone_flags & CLONE_VFORK) {
1552 freezer_do_not_count();
1553 wait_for_completion(&vfork);
1554 freezer_count();
1555 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1556 }
1557 } else {
1558 nr = PTR_ERR(p);
1559 }
1560 return nr;
1561 }
1562
1563 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1564 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1565 #endif
1566
1567 static void sighand_ctor(void *data)
1568 {
1569 struct sighand_struct *sighand = data;
1570
1571 spin_lock_init(&sighand->siglock);
1572 init_waitqueue_head(&sighand->signalfd_wqh);
1573 }
1574
1575 void __init proc_caches_init(void)
1576 {
1577 sighand_cachep = kmem_cache_create("sighand_cache",
1578 sizeof(struct sighand_struct), 0,
1579 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1580 SLAB_NOTRACK, sighand_ctor);
1581 signal_cachep = kmem_cache_create("signal_cache",
1582 sizeof(struct signal_struct), 0,
1583 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1584 files_cachep = kmem_cache_create("files_cache",
1585 sizeof(struct files_struct), 0,
1586 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1587 fs_cachep = kmem_cache_create("fs_cache",
1588 sizeof(struct fs_struct), 0,
1589 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1590 /*
1591 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1592 * whole struct cpumask for the OFFSTACK case. We could change
1593 * this to *only* allocate as much of it as required by the
1594 * maximum number of CPU's we can ever have. The cpumask_allocation
1595 * is at the end of the structure, exactly for that reason.
1596 */
1597 mm_cachep = kmem_cache_create("mm_struct",
1598 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1599 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1600 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1601 mmap_init();
1602 nsproxy_cache_init();
1603 }
1604
1605 /*
1606 * Check constraints on flags passed to the unshare system call.
1607 */
1608 static int check_unshare_flags(unsigned long unshare_flags)
1609 {
1610 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1611 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1612 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1613 return -EINVAL;
1614 /*
1615 * Not implemented, but pretend it works if there is nothing to
1616 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1617 * needs to unshare vm.
1618 */
1619 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1620 /* FIXME: get_task_mm() increments ->mm_users */
1621 if (atomic_read(&current->mm->mm_users) > 1)
1622 return -EINVAL;
1623 }
1624
1625 return 0;
1626 }
1627
1628 /*
1629 * Unshare the filesystem structure if it is being shared
1630 */
1631 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1632 {
1633 struct fs_struct *fs = current->fs;
1634
1635 if (!(unshare_flags & CLONE_FS) || !fs)
1636 return 0;
1637
1638 /* don't need lock here; in the worst case we'll do useless copy */
1639 if (fs->users == 1)
1640 return 0;
1641
1642 *new_fsp = copy_fs_struct(fs);
1643 if (!*new_fsp)
1644 return -ENOMEM;
1645
1646 return 0;
1647 }
1648
1649 /*
1650 * Unshare file descriptor table if it is being shared
1651 */
1652 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1653 {
1654 struct files_struct *fd = current->files;
1655 int error = 0;
1656
1657 if ((unshare_flags & CLONE_FILES) &&
1658 (fd && atomic_read(&fd->count) > 1)) {
1659 *new_fdp = dup_fd(fd, &error);
1660 if (!*new_fdp)
1661 return error;
1662 }
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * unshare allows a process to 'unshare' part of the process
1669 * context which was originally shared using clone. copy_*
1670 * functions used by do_fork() cannot be used here directly
1671 * because they modify an inactive task_struct that is being
1672 * constructed. Here we are modifying the current, active,
1673 * task_struct.
1674 */
1675 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1676 {
1677 struct fs_struct *fs, *new_fs = NULL;
1678 struct files_struct *fd, *new_fd = NULL;
1679 struct nsproxy *new_nsproxy = NULL;
1680 int do_sysvsem = 0;
1681 int err;
1682
1683 err = check_unshare_flags(unshare_flags);
1684 if (err)
1685 goto bad_unshare_out;
1686
1687 /*
1688 * If unsharing namespace, must also unshare filesystem information.
1689 */
1690 if (unshare_flags & CLONE_NEWNS)
1691 unshare_flags |= CLONE_FS;
1692 /*
1693 * CLONE_NEWIPC must also detach from the undolist: after switching
1694 * to a new ipc namespace, the semaphore arrays from the old
1695 * namespace are unreachable.
1696 */
1697 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1698 do_sysvsem = 1;
1699 err = unshare_fs(unshare_flags, &new_fs);
1700 if (err)
1701 goto bad_unshare_out;
1702 err = unshare_fd(unshare_flags, &new_fd);
1703 if (err)
1704 goto bad_unshare_cleanup_fs;
1705 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1706 if (err)
1707 goto bad_unshare_cleanup_fd;
1708
1709 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1710 if (do_sysvsem) {
1711 /*
1712 * CLONE_SYSVSEM is equivalent to sys_exit().
1713 */
1714 exit_sem(current);
1715 }
1716
1717 if (new_nsproxy) {
1718 switch_task_namespaces(current, new_nsproxy);
1719 new_nsproxy = NULL;
1720 }
1721
1722 task_lock(current);
1723
1724 if (new_fs) {
1725 fs = current->fs;
1726 spin_lock(&fs->lock);
1727 current->fs = new_fs;
1728 if (--fs->users)
1729 new_fs = NULL;
1730 else
1731 new_fs = fs;
1732 spin_unlock(&fs->lock);
1733 }
1734
1735 if (new_fd) {
1736 fd = current->files;
1737 current->files = new_fd;
1738 new_fd = fd;
1739 }
1740
1741 task_unlock(current);
1742 }
1743
1744 if (new_nsproxy)
1745 put_nsproxy(new_nsproxy);
1746
1747 bad_unshare_cleanup_fd:
1748 if (new_fd)
1749 put_files_struct(new_fd);
1750
1751 bad_unshare_cleanup_fs:
1752 if (new_fs)
1753 free_fs_struct(new_fs);
1754
1755 bad_unshare_out:
1756 return err;
1757 }
1758
1759 /*
1760 * Helper to unshare the files of the current task.
1761 * We don't want to expose copy_files internals to
1762 * the exec layer of the kernel.
1763 */
1764
1765 int unshare_files(struct files_struct **displaced)
1766 {
1767 struct task_struct *task = current;
1768 struct files_struct *copy = NULL;
1769 int error;
1770
1771 error = unshare_fd(CLONE_FILES, &copy);
1772 if (error || !copy) {
1773 *displaced = NULL;
1774 return error;
1775 }
1776 *displaced = task->files;
1777 task_lock(task);
1778 task->files = copy;
1779 task_unlock(task);
1780 return 0;
1781 }