]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162
163 #ifdef CONFIG_VMAP_STACK
164 /*
165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166 * flush. Try to minimize the number of calls by caching stacks.
167 */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 void *stack;
176 int i;
177
178 local_irq_disable();
179 for (i = 0; i < NR_CACHED_STACKS; i++) {
180 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181
182 if (!s)
183 continue;
184 this_cpu_write(cached_stacks[i], NULL);
185
186 tsk->stack_vm_area = s;
187 local_irq_enable();
188 return s->addr;
189 }
190 local_irq_enable();
191
192 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 VMALLOC_START, VMALLOC_END,
194 THREADINFO_GFP | __GFP_HIGHMEM,
195 PAGE_KERNEL,
196 0, node, __builtin_return_address(0));
197
198 /*
199 * We can't call find_vm_area() in interrupt context, and
200 * free_thread_stack() can be called in interrupt context,
201 * so cache the vm_struct.
202 */
203 if (stack)
204 tsk->stack_vm_area = find_vm_area(stack);
205 return stack;
206 #else
207 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 THREAD_SIZE_ORDER);
209
210 return page ? page_address(page) : NULL;
211 #endif
212 }
213
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 if (task_stack_vm_area(tsk)) {
218 unsigned long flags;
219 int i;
220
221 local_irq_save(flags);
222 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 if (this_cpu_read(cached_stacks[i]))
224 continue;
225
226 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 local_irq_restore(flags);
228 return;
229 }
230 local_irq_restore(flags);
231
232 vfree_atomic(tsk->stack);
233 return;
234 }
235 #endif
236
237 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 int node)
244 {
245 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252
253 void thread_stack_cache_init(void)
254 {
255 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 THREAD_SIZE, 0, NULL);
257 BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 void *stack = task_stack_page(tsk);
283 struct vm_struct *vm = task_stack_vm_area(tsk);
284
285 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286
287 if (vm) {
288 int i;
289
290 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291
292 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 mod_zone_page_state(page_zone(vm->pages[i]),
294 NR_KERNEL_STACK_KB,
295 PAGE_SIZE / 1024 * account);
296 }
297
298 /* All stack pages belong to the same memcg. */
299 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 account * (THREAD_SIZE / 1024));
301 } else {
302 /*
303 * All stack pages are in the same zone and belong to the
304 * same memcg.
305 */
306 struct page *first_page = virt_to_page(stack);
307
308 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 THREAD_SIZE / 1024 * account);
310
311 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 account * (THREAD_SIZE / 1024));
313 }
314 }
315
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 if (WARN_ON(tsk->state != TASK_DEAD))
319 return; /* Better to leak the stack than to free prematurely */
320
321 account_kernel_stack(tsk, -1);
322 arch_release_thread_stack(tsk->stack);
323 free_thread_stack(tsk);
324 tsk->stack = NULL;
325 #ifdef CONFIG_VMAP_STACK
326 tsk->stack_vm_area = NULL;
327 #endif
328 }
329
330 #ifdef CONFIG_THREAD_INFO_IN_TASK
331 void put_task_stack(struct task_struct *tsk)
332 {
333 if (atomic_dec_and_test(&tsk->stack_refcount))
334 release_task_stack(tsk);
335 }
336 #endif
337
338 void free_task(struct task_struct *tsk)
339 {
340 #ifndef CONFIG_THREAD_INFO_IN_TASK
341 /*
342 * The task is finally done with both the stack and thread_info,
343 * so free both.
344 */
345 release_task_stack(tsk);
346 #else
347 /*
348 * If the task had a separate stack allocation, it should be gone
349 * by now.
350 */
351 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
352 #endif
353 rt_mutex_debug_task_free(tsk);
354 ftrace_graph_exit_task(tsk);
355 put_seccomp_filter(tsk);
356 arch_release_task_struct(tsk);
357 if (tsk->flags & PF_KTHREAD)
358 free_kthread_struct(tsk);
359 free_task_struct(tsk);
360 }
361 EXPORT_SYMBOL(free_task);
362
363 static inline void free_signal_struct(struct signal_struct *sig)
364 {
365 taskstats_tgid_free(sig);
366 sched_autogroup_exit(sig);
367 /*
368 * __mmdrop is not safe to call from softirq context on x86 due to
369 * pgd_dtor so postpone it to the async context
370 */
371 if (sig->oom_mm)
372 mmdrop_async(sig->oom_mm);
373 kmem_cache_free(signal_cachep, sig);
374 }
375
376 static inline void put_signal_struct(struct signal_struct *sig)
377 {
378 if (atomic_dec_and_test(&sig->sigcnt))
379 free_signal_struct(sig);
380 }
381
382 void __put_task_struct(struct task_struct *tsk)
383 {
384 WARN_ON(!tsk->exit_state);
385 WARN_ON(atomic_read(&tsk->usage));
386 WARN_ON(tsk == current);
387
388 cgroup_free(tsk);
389 task_numa_free(tsk);
390 security_task_free(tsk);
391 exit_creds(tsk);
392 delayacct_tsk_free(tsk);
393 put_signal_struct(tsk->signal);
394
395 if (!profile_handoff_task(tsk))
396 free_task(tsk);
397 }
398 EXPORT_SYMBOL_GPL(__put_task_struct);
399
400 void __init __weak arch_task_cache_init(void) { }
401
402 /*
403 * set_max_threads
404 */
405 static void set_max_threads(unsigned int max_threads_suggested)
406 {
407 u64 threads;
408
409 /*
410 * The number of threads shall be limited such that the thread
411 * structures may only consume a small part of the available memory.
412 */
413 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
414 threads = MAX_THREADS;
415 else
416 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
417 (u64) THREAD_SIZE * 8UL);
418
419 if (threads > max_threads_suggested)
420 threads = max_threads_suggested;
421
422 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
423 }
424
425 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
426 /* Initialized by the architecture: */
427 int arch_task_struct_size __read_mostly;
428 #endif
429
430 void __init fork_init(void)
431 {
432 int i;
433 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
434 #ifndef ARCH_MIN_TASKALIGN
435 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
436 #endif
437 /* create a slab on which task_structs can be allocated */
438 task_struct_cachep = kmem_cache_create("task_struct",
439 arch_task_struct_size, ARCH_MIN_TASKALIGN,
440 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
441 #endif
442
443 /* do the arch specific task caches init */
444 arch_task_cache_init();
445
446 set_max_threads(MAX_THREADS);
447
448 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
449 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
450 init_task.signal->rlim[RLIMIT_SIGPENDING] =
451 init_task.signal->rlim[RLIMIT_NPROC];
452
453 for (i = 0; i < UCOUNT_COUNTS; i++) {
454 init_user_ns.ucount_max[i] = max_threads/2;
455 }
456 }
457
458 int __weak arch_dup_task_struct(struct task_struct *dst,
459 struct task_struct *src)
460 {
461 *dst = *src;
462 return 0;
463 }
464
465 void set_task_stack_end_magic(struct task_struct *tsk)
466 {
467 unsigned long *stackend;
468
469 stackend = end_of_stack(tsk);
470 *stackend = STACK_END_MAGIC; /* for overflow detection */
471 }
472
473 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
474 {
475 struct task_struct *tsk;
476 unsigned long *stack;
477 struct vm_struct *stack_vm_area;
478 int err;
479
480 if (node == NUMA_NO_NODE)
481 node = tsk_fork_get_node(orig);
482 tsk = alloc_task_struct_node(node);
483 if (!tsk)
484 return NULL;
485
486 stack = alloc_thread_stack_node(tsk, node);
487 if (!stack)
488 goto free_tsk;
489
490 stack_vm_area = task_stack_vm_area(tsk);
491
492 err = arch_dup_task_struct(tsk, orig);
493
494 /*
495 * arch_dup_task_struct() clobbers the stack-related fields. Make
496 * sure they're properly initialized before using any stack-related
497 * functions again.
498 */
499 tsk->stack = stack;
500 #ifdef CONFIG_VMAP_STACK
501 tsk->stack_vm_area = stack_vm_area;
502 #endif
503 #ifdef CONFIG_THREAD_INFO_IN_TASK
504 atomic_set(&tsk->stack_refcount, 1);
505 #endif
506
507 if (err)
508 goto free_stack;
509
510 #ifdef CONFIG_SECCOMP
511 /*
512 * We must handle setting up seccomp filters once we're under
513 * the sighand lock in case orig has changed between now and
514 * then. Until then, filter must be NULL to avoid messing up
515 * the usage counts on the error path calling free_task.
516 */
517 tsk->seccomp.filter = NULL;
518 #endif
519
520 setup_thread_stack(tsk, orig);
521 clear_user_return_notifier(tsk);
522 clear_tsk_need_resched(tsk);
523 set_task_stack_end_magic(tsk);
524
525 #ifdef CONFIG_CC_STACKPROTECTOR
526 tsk->stack_canary = get_random_int();
527 #endif
528
529 /*
530 * One for us, one for whoever does the "release_task()" (usually
531 * parent)
532 */
533 atomic_set(&tsk->usage, 2);
534 #ifdef CONFIG_BLK_DEV_IO_TRACE
535 tsk->btrace_seq = 0;
536 #endif
537 tsk->splice_pipe = NULL;
538 tsk->task_frag.page = NULL;
539 tsk->wake_q.next = NULL;
540
541 account_kernel_stack(tsk, 1);
542
543 kcov_task_init(tsk);
544
545 return tsk;
546
547 free_stack:
548 free_thread_stack(tsk);
549 free_tsk:
550 free_task_struct(tsk);
551 return NULL;
552 }
553
554 #ifdef CONFIG_MMU
555 static __latent_entropy int dup_mmap(struct mm_struct *mm,
556 struct mm_struct *oldmm)
557 {
558 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
559 struct rb_node **rb_link, *rb_parent;
560 int retval;
561 unsigned long charge;
562
563 uprobe_start_dup_mmap();
564 if (down_write_killable(&oldmm->mmap_sem)) {
565 retval = -EINTR;
566 goto fail_uprobe_end;
567 }
568 flush_cache_dup_mm(oldmm);
569 uprobe_dup_mmap(oldmm, mm);
570 /*
571 * Not linked in yet - no deadlock potential:
572 */
573 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
574
575 /* No ordering required: file already has been exposed. */
576 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
577
578 mm->total_vm = oldmm->total_vm;
579 mm->data_vm = oldmm->data_vm;
580 mm->exec_vm = oldmm->exec_vm;
581 mm->stack_vm = oldmm->stack_vm;
582
583 rb_link = &mm->mm_rb.rb_node;
584 rb_parent = NULL;
585 pprev = &mm->mmap;
586 retval = ksm_fork(mm, oldmm);
587 if (retval)
588 goto out;
589 retval = khugepaged_fork(mm, oldmm);
590 if (retval)
591 goto out;
592
593 prev = NULL;
594 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
595 struct file *file;
596
597 if (mpnt->vm_flags & VM_DONTCOPY) {
598 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
599 continue;
600 }
601 charge = 0;
602 if (mpnt->vm_flags & VM_ACCOUNT) {
603 unsigned long len = vma_pages(mpnt);
604
605 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
606 goto fail_nomem;
607 charge = len;
608 }
609 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
610 if (!tmp)
611 goto fail_nomem;
612 *tmp = *mpnt;
613 INIT_LIST_HEAD(&tmp->anon_vma_chain);
614 retval = vma_dup_policy(mpnt, tmp);
615 if (retval)
616 goto fail_nomem_policy;
617 tmp->vm_mm = mm;
618 if (anon_vma_fork(tmp, mpnt))
619 goto fail_nomem_anon_vma_fork;
620 tmp->vm_flags &=
621 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
622 tmp->vm_next = tmp->vm_prev = NULL;
623 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
624 file = tmp->vm_file;
625 if (file) {
626 struct inode *inode = file_inode(file);
627 struct address_space *mapping = file->f_mapping;
628
629 get_file(file);
630 if (tmp->vm_flags & VM_DENYWRITE)
631 atomic_dec(&inode->i_writecount);
632 i_mmap_lock_write(mapping);
633 if (tmp->vm_flags & VM_SHARED)
634 atomic_inc(&mapping->i_mmap_writable);
635 flush_dcache_mmap_lock(mapping);
636 /* insert tmp into the share list, just after mpnt */
637 vma_interval_tree_insert_after(tmp, mpnt,
638 &mapping->i_mmap);
639 flush_dcache_mmap_unlock(mapping);
640 i_mmap_unlock_write(mapping);
641 }
642
643 /*
644 * Clear hugetlb-related page reserves for children. This only
645 * affects MAP_PRIVATE mappings. Faults generated by the child
646 * are not guaranteed to succeed, even if read-only
647 */
648 if (is_vm_hugetlb_page(tmp))
649 reset_vma_resv_huge_pages(tmp);
650
651 /*
652 * Link in the new vma and copy the page table entries.
653 */
654 *pprev = tmp;
655 pprev = &tmp->vm_next;
656 tmp->vm_prev = prev;
657 prev = tmp;
658
659 __vma_link_rb(mm, tmp, rb_link, rb_parent);
660 rb_link = &tmp->vm_rb.rb_right;
661 rb_parent = &tmp->vm_rb;
662
663 mm->map_count++;
664 retval = copy_page_range(mm, oldmm, mpnt);
665
666 if (tmp->vm_ops && tmp->vm_ops->open)
667 tmp->vm_ops->open(tmp);
668
669 if (retval)
670 goto out;
671 }
672 /* a new mm has just been created */
673 arch_dup_mmap(oldmm, mm);
674 retval = 0;
675 out:
676 up_write(&mm->mmap_sem);
677 flush_tlb_mm(oldmm);
678 up_write(&oldmm->mmap_sem);
679 fail_uprobe_end:
680 uprobe_end_dup_mmap();
681 return retval;
682 fail_nomem_anon_vma_fork:
683 mpol_put(vma_policy(tmp));
684 fail_nomem_policy:
685 kmem_cache_free(vm_area_cachep, tmp);
686 fail_nomem:
687 retval = -ENOMEM;
688 vm_unacct_memory(charge);
689 goto out;
690 }
691
692 static inline int mm_alloc_pgd(struct mm_struct *mm)
693 {
694 mm->pgd = pgd_alloc(mm);
695 if (unlikely(!mm->pgd))
696 return -ENOMEM;
697 return 0;
698 }
699
700 static inline void mm_free_pgd(struct mm_struct *mm)
701 {
702 pgd_free(mm, mm->pgd);
703 }
704 #else
705 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
706 {
707 down_write(&oldmm->mmap_sem);
708 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
709 up_write(&oldmm->mmap_sem);
710 return 0;
711 }
712 #define mm_alloc_pgd(mm) (0)
713 #define mm_free_pgd(mm)
714 #endif /* CONFIG_MMU */
715
716 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
717
718 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
719 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
720
721 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
722
723 static int __init coredump_filter_setup(char *s)
724 {
725 default_dump_filter =
726 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
727 MMF_DUMP_FILTER_MASK;
728 return 1;
729 }
730
731 __setup("coredump_filter=", coredump_filter_setup);
732
733 #include <linux/init_task.h>
734
735 static void mm_init_aio(struct mm_struct *mm)
736 {
737 #ifdef CONFIG_AIO
738 spin_lock_init(&mm->ioctx_lock);
739 mm->ioctx_table = NULL;
740 #endif
741 }
742
743 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
744 {
745 #ifdef CONFIG_MEMCG
746 mm->owner = p;
747 #endif
748 }
749
750 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
751 struct user_namespace *user_ns)
752 {
753 mm->mmap = NULL;
754 mm->mm_rb = RB_ROOT;
755 mm->vmacache_seqnum = 0;
756 atomic_set(&mm->mm_users, 1);
757 atomic_set(&mm->mm_count, 1);
758 init_rwsem(&mm->mmap_sem);
759 INIT_LIST_HEAD(&mm->mmlist);
760 mm->core_state = NULL;
761 atomic_long_set(&mm->nr_ptes, 0);
762 mm_nr_pmds_init(mm);
763 mm->map_count = 0;
764 mm->locked_vm = 0;
765 mm->pinned_vm = 0;
766 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
767 spin_lock_init(&mm->page_table_lock);
768 mm_init_cpumask(mm);
769 mm_init_aio(mm);
770 mm_init_owner(mm, p);
771 mmu_notifier_mm_init(mm);
772 clear_tlb_flush_pending(mm);
773 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
774 mm->pmd_huge_pte = NULL;
775 #endif
776
777 if (current->mm) {
778 mm->flags = current->mm->flags & MMF_INIT_MASK;
779 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
780 } else {
781 mm->flags = default_dump_filter;
782 mm->def_flags = 0;
783 }
784
785 if (mm_alloc_pgd(mm))
786 goto fail_nopgd;
787
788 if (init_new_context(p, mm))
789 goto fail_nocontext;
790
791 mm->user_ns = get_user_ns(user_ns);
792 return mm;
793
794 fail_nocontext:
795 mm_free_pgd(mm);
796 fail_nopgd:
797 free_mm(mm);
798 return NULL;
799 }
800
801 static void check_mm(struct mm_struct *mm)
802 {
803 int i;
804
805 for (i = 0; i < NR_MM_COUNTERS; i++) {
806 long x = atomic_long_read(&mm->rss_stat.count[i]);
807
808 if (unlikely(x))
809 printk(KERN_ALERT "BUG: Bad rss-counter state "
810 "mm:%p idx:%d val:%ld\n", mm, i, x);
811 }
812
813 if (atomic_long_read(&mm->nr_ptes))
814 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
815 atomic_long_read(&mm->nr_ptes));
816 if (mm_nr_pmds(mm))
817 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
818 mm_nr_pmds(mm));
819
820 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
821 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
822 #endif
823 }
824
825 /*
826 * Allocate and initialize an mm_struct.
827 */
828 struct mm_struct *mm_alloc(void)
829 {
830 struct mm_struct *mm;
831
832 mm = allocate_mm();
833 if (!mm)
834 return NULL;
835
836 memset(mm, 0, sizeof(*mm));
837 return mm_init(mm, current, current_user_ns());
838 }
839
840 /*
841 * Called when the last reference to the mm
842 * is dropped: either by a lazy thread or by
843 * mmput. Free the page directory and the mm.
844 */
845 void __mmdrop(struct mm_struct *mm)
846 {
847 BUG_ON(mm == &init_mm);
848 mm_free_pgd(mm);
849 destroy_context(mm);
850 mmu_notifier_mm_destroy(mm);
851 check_mm(mm);
852 put_user_ns(mm->user_ns);
853 free_mm(mm);
854 }
855 EXPORT_SYMBOL_GPL(__mmdrop);
856
857 static inline void __mmput(struct mm_struct *mm)
858 {
859 VM_BUG_ON(atomic_read(&mm->mm_users));
860
861 uprobe_clear_state(mm);
862 exit_aio(mm);
863 ksm_exit(mm);
864 khugepaged_exit(mm); /* must run before exit_mmap */
865 exit_mmap(mm);
866 mm_put_huge_zero_page(mm);
867 set_mm_exe_file(mm, NULL);
868 if (!list_empty(&mm->mmlist)) {
869 spin_lock(&mmlist_lock);
870 list_del(&mm->mmlist);
871 spin_unlock(&mmlist_lock);
872 }
873 if (mm->binfmt)
874 module_put(mm->binfmt->module);
875 set_bit(MMF_OOM_SKIP, &mm->flags);
876 mmdrop(mm);
877 }
878
879 /*
880 * Decrement the use count and release all resources for an mm.
881 */
882 void mmput(struct mm_struct *mm)
883 {
884 might_sleep();
885
886 if (atomic_dec_and_test(&mm->mm_users))
887 __mmput(mm);
888 }
889 EXPORT_SYMBOL_GPL(mmput);
890
891 #ifdef CONFIG_MMU
892 static void mmput_async_fn(struct work_struct *work)
893 {
894 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
895 __mmput(mm);
896 }
897
898 void mmput_async(struct mm_struct *mm)
899 {
900 if (atomic_dec_and_test(&mm->mm_users)) {
901 INIT_WORK(&mm->async_put_work, mmput_async_fn);
902 schedule_work(&mm->async_put_work);
903 }
904 }
905 #endif
906
907 /**
908 * set_mm_exe_file - change a reference to the mm's executable file
909 *
910 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
911 *
912 * Main users are mmput() and sys_execve(). Callers prevent concurrent
913 * invocations: in mmput() nobody alive left, in execve task is single
914 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
915 * mm->exe_file, but does so without using set_mm_exe_file() in order
916 * to do avoid the need for any locks.
917 */
918 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
919 {
920 struct file *old_exe_file;
921
922 /*
923 * It is safe to dereference the exe_file without RCU as
924 * this function is only called if nobody else can access
925 * this mm -- see comment above for justification.
926 */
927 old_exe_file = rcu_dereference_raw(mm->exe_file);
928
929 if (new_exe_file)
930 get_file(new_exe_file);
931 rcu_assign_pointer(mm->exe_file, new_exe_file);
932 if (old_exe_file)
933 fput(old_exe_file);
934 }
935
936 /**
937 * get_mm_exe_file - acquire a reference to the mm's executable file
938 *
939 * Returns %NULL if mm has no associated executable file.
940 * User must release file via fput().
941 */
942 struct file *get_mm_exe_file(struct mm_struct *mm)
943 {
944 struct file *exe_file;
945
946 rcu_read_lock();
947 exe_file = rcu_dereference(mm->exe_file);
948 if (exe_file && !get_file_rcu(exe_file))
949 exe_file = NULL;
950 rcu_read_unlock();
951 return exe_file;
952 }
953 EXPORT_SYMBOL(get_mm_exe_file);
954
955 /**
956 * get_task_exe_file - acquire a reference to the task's executable file
957 *
958 * Returns %NULL if task's mm (if any) has no associated executable file or
959 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
960 * User must release file via fput().
961 */
962 struct file *get_task_exe_file(struct task_struct *task)
963 {
964 struct file *exe_file = NULL;
965 struct mm_struct *mm;
966
967 task_lock(task);
968 mm = task->mm;
969 if (mm) {
970 if (!(task->flags & PF_KTHREAD))
971 exe_file = get_mm_exe_file(mm);
972 }
973 task_unlock(task);
974 return exe_file;
975 }
976 EXPORT_SYMBOL(get_task_exe_file);
977
978 /**
979 * get_task_mm - acquire a reference to the task's mm
980 *
981 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
982 * this kernel workthread has transiently adopted a user mm with use_mm,
983 * to do its AIO) is not set and if so returns a reference to it, after
984 * bumping up the use count. User must release the mm via mmput()
985 * after use. Typically used by /proc and ptrace.
986 */
987 struct mm_struct *get_task_mm(struct task_struct *task)
988 {
989 struct mm_struct *mm;
990
991 task_lock(task);
992 mm = task->mm;
993 if (mm) {
994 if (task->flags & PF_KTHREAD)
995 mm = NULL;
996 else
997 atomic_inc(&mm->mm_users);
998 }
999 task_unlock(task);
1000 return mm;
1001 }
1002 EXPORT_SYMBOL_GPL(get_task_mm);
1003
1004 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1005 {
1006 struct mm_struct *mm;
1007 int err;
1008
1009 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1010 if (err)
1011 return ERR_PTR(err);
1012
1013 mm = get_task_mm(task);
1014 if (mm && mm != current->mm &&
1015 !ptrace_may_access(task, mode)) {
1016 mmput(mm);
1017 mm = ERR_PTR(-EACCES);
1018 }
1019 mutex_unlock(&task->signal->cred_guard_mutex);
1020
1021 return mm;
1022 }
1023
1024 static void complete_vfork_done(struct task_struct *tsk)
1025 {
1026 struct completion *vfork;
1027
1028 task_lock(tsk);
1029 vfork = tsk->vfork_done;
1030 if (likely(vfork)) {
1031 tsk->vfork_done = NULL;
1032 complete(vfork);
1033 }
1034 task_unlock(tsk);
1035 }
1036
1037 static int wait_for_vfork_done(struct task_struct *child,
1038 struct completion *vfork)
1039 {
1040 int killed;
1041
1042 freezer_do_not_count();
1043 killed = wait_for_completion_killable(vfork);
1044 freezer_count();
1045
1046 if (killed) {
1047 task_lock(child);
1048 child->vfork_done = NULL;
1049 task_unlock(child);
1050 }
1051
1052 put_task_struct(child);
1053 return killed;
1054 }
1055
1056 /* Please note the differences between mmput and mm_release.
1057 * mmput is called whenever we stop holding onto a mm_struct,
1058 * error success whatever.
1059 *
1060 * mm_release is called after a mm_struct has been removed
1061 * from the current process.
1062 *
1063 * This difference is important for error handling, when we
1064 * only half set up a mm_struct for a new process and need to restore
1065 * the old one. Because we mmput the new mm_struct before
1066 * restoring the old one. . .
1067 * Eric Biederman 10 January 1998
1068 */
1069 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1070 {
1071 /* Get rid of any futexes when releasing the mm */
1072 #ifdef CONFIG_FUTEX
1073 if (unlikely(tsk->robust_list)) {
1074 exit_robust_list(tsk);
1075 tsk->robust_list = NULL;
1076 }
1077 #ifdef CONFIG_COMPAT
1078 if (unlikely(tsk->compat_robust_list)) {
1079 compat_exit_robust_list(tsk);
1080 tsk->compat_robust_list = NULL;
1081 }
1082 #endif
1083 if (unlikely(!list_empty(&tsk->pi_state_list)))
1084 exit_pi_state_list(tsk);
1085 #endif
1086
1087 uprobe_free_utask(tsk);
1088
1089 /* Get rid of any cached register state */
1090 deactivate_mm(tsk, mm);
1091
1092 /*
1093 * Signal userspace if we're not exiting with a core dump
1094 * because we want to leave the value intact for debugging
1095 * purposes.
1096 */
1097 if (tsk->clear_child_tid) {
1098 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1099 atomic_read(&mm->mm_users) > 1) {
1100 /*
1101 * We don't check the error code - if userspace has
1102 * not set up a proper pointer then tough luck.
1103 */
1104 put_user(0, tsk->clear_child_tid);
1105 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1106 1, NULL, NULL, 0);
1107 }
1108 tsk->clear_child_tid = NULL;
1109 }
1110
1111 /*
1112 * All done, finally we can wake up parent and return this mm to him.
1113 * Also kthread_stop() uses this completion for synchronization.
1114 */
1115 if (tsk->vfork_done)
1116 complete_vfork_done(tsk);
1117 }
1118
1119 /*
1120 * Allocate a new mm structure and copy contents from the
1121 * mm structure of the passed in task structure.
1122 */
1123 static struct mm_struct *dup_mm(struct task_struct *tsk)
1124 {
1125 struct mm_struct *mm, *oldmm = current->mm;
1126 int err;
1127
1128 mm = allocate_mm();
1129 if (!mm)
1130 goto fail_nomem;
1131
1132 memcpy(mm, oldmm, sizeof(*mm));
1133
1134 if (!mm_init(mm, tsk, mm->user_ns))
1135 goto fail_nomem;
1136
1137 err = dup_mmap(mm, oldmm);
1138 if (err)
1139 goto free_pt;
1140
1141 mm->hiwater_rss = get_mm_rss(mm);
1142 mm->hiwater_vm = mm->total_vm;
1143
1144 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1145 goto free_pt;
1146
1147 return mm;
1148
1149 free_pt:
1150 /* don't put binfmt in mmput, we haven't got module yet */
1151 mm->binfmt = NULL;
1152 mmput(mm);
1153
1154 fail_nomem:
1155 return NULL;
1156 }
1157
1158 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1159 {
1160 struct mm_struct *mm, *oldmm;
1161 int retval;
1162
1163 tsk->min_flt = tsk->maj_flt = 0;
1164 tsk->nvcsw = tsk->nivcsw = 0;
1165 #ifdef CONFIG_DETECT_HUNG_TASK
1166 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1167 #endif
1168
1169 tsk->mm = NULL;
1170 tsk->active_mm = NULL;
1171
1172 /*
1173 * Are we cloning a kernel thread?
1174 *
1175 * We need to steal a active VM for that..
1176 */
1177 oldmm = current->mm;
1178 if (!oldmm)
1179 return 0;
1180
1181 /* initialize the new vmacache entries */
1182 vmacache_flush(tsk);
1183
1184 if (clone_flags & CLONE_VM) {
1185 atomic_inc(&oldmm->mm_users);
1186 mm = oldmm;
1187 goto good_mm;
1188 }
1189
1190 retval = -ENOMEM;
1191 mm = dup_mm(tsk);
1192 if (!mm)
1193 goto fail_nomem;
1194
1195 good_mm:
1196 tsk->mm = mm;
1197 tsk->active_mm = mm;
1198 return 0;
1199
1200 fail_nomem:
1201 return retval;
1202 }
1203
1204 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1205 {
1206 struct fs_struct *fs = current->fs;
1207 if (clone_flags & CLONE_FS) {
1208 /* tsk->fs is already what we want */
1209 spin_lock(&fs->lock);
1210 if (fs->in_exec) {
1211 spin_unlock(&fs->lock);
1212 return -EAGAIN;
1213 }
1214 fs->users++;
1215 spin_unlock(&fs->lock);
1216 return 0;
1217 }
1218 tsk->fs = copy_fs_struct(fs);
1219 if (!tsk->fs)
1220 return -ENOMEM;
1221 return 0;
1222 }
1223
1224 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1225 {
1226 struct files_struct *oldf, *newf;
1227 int error = 0;
1228
1229 /*
1230 * A background process may not have any files ...
1231 */
1232 oldf = current->files;
1233 if (!oldf)
1234 goto out;
1235
1236 if (clone_flags & CLONE_FILES) {
1237 atomic_inc(&oldf->count);
1238 goto out;
1239 }
1240
1241 newf = dup_fd(oldf, &error);
1242 if (!newf)
1243 goto out;
1244
1245 tsk->files = newf;
1246 error = 0;
1247 out:
1248 return error;
1249 }
1250
1251 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1252 {
1253 #ifdef CONFIG_BLOCK
1254 struct io_context *ioc = current->io_context;
1255 struct io_context *new_ioc;
1256
1257 if (!ioc)
1258 return 0;
1259 /*
1260 * Share io context with parent, if CLONE_IO is set
1261 */
1262 if (clone_flags & CLONE_IO) {
1263 ioc_task_link(ioc);
1264 tsk->io_context = ioc;
1265 } else if (ioprio_valid(ioc->ioprio)) {
1266 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1267 if (unlikely(!new_ioc))
1268 return -ENOMEM;
1269
1270 new_ioc->ioprio = ioc->ioprio;
1271 put_io_context(new_ioc);
1272 }
1273 #endif
1274 return 0;
1275 }
1276
1277 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1278 {
1279 struct sighand_struct *sig;
1280
1281 if (clone_flags & CLONE_SIGHAND) {
1282 atomic_inc(&current->sighand->count);
1283 return 0;
1284 }
1285 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1286 rcu_assign_pointer(tsk->sighand, sig);
1287 if (!sig)
1288 return -ENOMEM;
1289
1290 atomic_set(&sig->count, 1);
1291 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1292 return 0;
1293 }
1294
1295 void __cleanup_sighand(struct sighand_struct *sighand)
1296 {
1297 if (atomic_dec_and_test(&sighand->count)) {
1298 signalfd_cleanup(sighand);
1299 /*
1300 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1301 * without an RCU grace period, see __lock_task_sighand().
1302 */
1303 kmem_cache_free(sighand_cachep, sighand);
1304 }
1305 }
1306
1307 #ifdef CONFIG_POSIX_TIMERS
1308 /*
1309 * Initialize POSIX timer handling for a thread group.
1310 */
1311 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1312 {
1313 unsigned long cpu_limit;
1314
1315 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1316 if (cpu_limit != RLIM_INFINITY) {
1317 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1318 sig->cputimer.running = true;
1319 }
1320
1321 /* The timer lists. */
1322 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1323 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1324 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1325 }
1326 #else
1327 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1328 #endif
1329
1330 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1331 {
1332 struct signal_struct *sig;
1333
1334 if (clone_flags & CLONE_THREAD)
1335 return 0;
1336
1337 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1338 tsk->signal = sig;
1339 if (!sig)
1340 return -ENOMEM;
1341
1342 sig->nr_threads = 1;
1343 atomic_set(&sig->live, 1);
1344 atomic_set(&sig->sigcnt, 1);
1345
1346 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1347 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1348 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1349
1350 init_waitqueue_head(&sig->wait_chldexit);
1351 sig->curr_target = tsk;
1352 init_sigpending(&sig->shared_pending);
1353 seqlock_init(&sig->stats_lock);
1354 prev_cputime_init(&sig->prev_cputime);
1355
1356 #ifdef CONFIG_POSIX_TIMERS
1357 INIT_LIST_HEAD(&sig->posix_timers);
1358 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1359 sig->real_timer.function = it_real_fn;
1360 #endif
1361
1362 task_lock(current->group_leader);
1363 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1364 task_unlock(current->group_leader);
1365
1366 posix_cpu_timers_init_group(sig);
1367
1368 tty_audit_fork(sig);
1369 sched_autogroup_fork(sig);
1370
1371 sig->oom_score_adj = current->signal->oom_score_adj;
1372 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1373
1374 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1375 current->signal->is_child_subreaper;
1376
1377 mutex_init(&sig->cred_guard_mutex);
1378
1379 return 0;
1380 }
1381
1382 static void copy_seccomp(struct task_struct *p)
1383 {
1384 #ifdef CONFIG_SECCOMP
1385 /*
1386 * Must be called with sighand->lock held, which is common to
1387 * all threads in the group. Holding cred_guard_mutex is not
1388 * needed because this new task is not yet running and cannot
1389 * be racing exec.
1390 */
1391 assert_spin_locked(&current->sighand->siglock);
1392
1393 /* Ref-count the new filter user, and assign it. */
1394 get_seccomp_filter(current);
1395 p->seccomp = current->seccomp;
1396
1397 /*
1398 * Explicitly enable no_new_privs here in case it got set
1399 * between the task_struct being duplicated and holding the
1400 * sighand lock. The seccomp state and nnp must be in sync.
1401 */
1402 if (task_no_new_privs(current))
1403 task_set_no_new_privs(p);
1404
1405 /*
1406 * If the parent gained a seccomp mode after copying thread
1407 * flags and between before we held the sighand lock, we have
1408 * to manually enable the seccomp thread flag here.
1409 */
1410 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1411 set_tsk_thread_flag(p, TIF_SECCOMP);
1412 #endif
1413 }
1414
1415 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1416 {
1417 current->clear_child_tid = tidptr;
1418
1419 return task_pid_vnr(current);
1420 }
1421
1422 static void rt_mutex_init_task(struct task_struct *p)
1423 {
1424 raw_spin_lock_init(&p->pi_lock);
1425 #ifdef CONFIG_RT_MUTEXES
1426 p->pi_waiters = RB_ROOT;
1427 p->pi_waiters_leftmost = NULL;
1428 p->pi_blocked_on = NULL;
1429 #endif
1430 }
1431
1432 #ifdef CONFIG_POSIX_TIMERS
1433 /*
1434 * Initialize POSIX timer handling for a single task.
1435 */
1436 static void posix_cpu_timers_init(struct task_struct *tsk)
1437 {
1438 tsk->cputime_expires.prof_exp = 0;
1439 tsk->cputime_expires.virt_exp = 0;
1440 tsk->cputime_expires.sched_exp = 0;
1441 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1442 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1443 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1444 }
1445 #else
1446 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1447 #endif
1448
1449 static inline void
1450 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1451 {
1452 task->pids[type].pid = pid;
1453 }
1454
1455 /*
1456 * This creates a new process as a copy of the old one,
1457 * but does not actually start it yet.
1458 *
1459 * It copies the registers, and all the appropriate
1460 * parts of the process environment (as per the clone
1461 * flags). The actual kick-off is left to the caller.
1462 */
1463 static __latent_entropy struct task_struct *copy_process(
1464 unsigned long clone_flags,
1465 unsigned long stack_start,
1466 unsigned long stack_size,
1467 int __user *child_tidptr,
1468 struct pid *pid,
1469 int trace,
1470 unsigned long tls,
1471 int node)
1472 {
1473 int retval;
1474 struct task_struct *p;
1475
1476 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1477 return ERR_PTR(-EINVAL);
1478
1479 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1480 return ERR_PTR(-EINVAL);
1481
1482 /*
1483 * Thread groups must share signals as well, and detached threads
1484 * can only be started up within the thread group.
1485 */
1486 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1487 return ERR_PTR(-EINVAL);
1488
1489 /*
1490 * Shared signal handlers imply shared VM. By way of the above,
1491 * thread groups also imply shared VM. Blocking this case allows
1492 * for various simplifications in other code.
1493 */
1494 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1495 return ERR_PTR(-EINVAL);
1496
1497 /*
1498 * Siblings of global init remain as zombies on exit since they are
1499 * not reaped by their parent (swapper). To solve this and to avoid
1500 * multi-rooted process trees, prevent global and container-inits
1501 * from creating siblings.
1502 */
1503 if ((clone_flags & CLONE_PARENT) &&
1504 current->signal->flags & SIGNAL_UNKILLABLE)
1505 return ERR_PTR(-EINVAL);
1506
1507 /*
1508 * If the new process will be in a different pid or user namespace
1509 * do not allow it to share a thread group with the forking task.
1510 */
1511 if (clone_flags & CLONE_THREAD) {
1512 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1513 (task_active_pid_ns(current) !=
1514 current->nsproxy->pid_ns_for_children))
1515 return ERR_PTR(-EINVAL);
1516 }
1517
1518 retval = security_task_create(clone_flags);
1519 if (retval)
1520 goto fork_out;
1521
1522 retval = -ENOMEM;
1523 p = dup_task_struct(current, node);
1524 if (!p)
1525 goto fork_out;
1526
1527 ftrace_graph_init_task(p);
1528
1529 rt_mutex_init_task(p);
1530
1531 #ifdef CONFIG_PROVE_LOCKING
1532 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1533 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1534 #endif
1535 retval = -EAGAIN;
1536 if (atomic_read(&p->real_cred->user->processes) >=
1537 task_rlimit(p, RLIMIT_NPROC)) {
1538 if (p->real_cred->user != INIT_USER &&
1539 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1540 goto bad_fork_free;
1541 }
1542 current->flags &= ~PF_NPROC_EXCEEDED;
1543
1544 retval = copy_creds(p, clone_flags);
1545 if (retval < 0)
1546 goto bad_fork_free;
1547
1548 /*
1549 * If multiple threads are within copy_process(), then this check
1550 * triggers too late. This doesn't hurt, the check is only there
1551 * to stop root fork bombs.
1552 */
1553 retval = -EAGAIN;
1554 if (nr_threads >= max_threads)
1555 goto bad_fork_cleanup_count;
1556
1557 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1558 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1559 p->flags |= PF_FORKNOEXEC;
1560 INIT_LIST_HEAD(&p->children);
1561 INIT_LIST_HEAD(&p->sibling);
1562 rcu_copy_process(p);
1563 p->vfork_done = NULL;
1564 spin_lock_init(&p->alloc_lock);
1565
1566 init_sigpending(&p->pending);
1567
1568 p->utime = p->stime = p->gtime = 0;
1569 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1570 p->utimescaled = p->stimescaled = 0;
1571 #endif
1572 prev_cputime_init(&p->prev_cputime);
1573
1574 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1575 seqcount_init(&p->vtime_seqcount);
1576 p->vtime_snap = 0;
1577 p->vtime_snap_whence = VTIME_INACTIVE;
1578 #endif
1579
1580 #if defined(SPLIT_RSS_COUNTING)
1581 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1582 #endif
1583
1584 p->default_timer_slack_ns = current->timer_slack_ns;
1585
1586 task_io_accounting_init(&p->ioac);
1587 acct_clear_integrals(p);
1588
1589 posix_cpu_timers_init(p);
1590
1591 p->start_time = ktime_get_ns();
1592 p->real_start_time = ktime_get_boot_ns();
1593 p->io_context = NULL;
1594 p->audit_context = NULL;
1595 cgroup_fork(p);
1596 #ifdef CONFIG_NUMA
1597 p->mempolicy = mpol_dup(p->mempolicy);
1598 if (IS_ERR(p->mempolicy)) {
1599 retval = PTR_ERR(p->mempolicy);
1600 p->mempolicy = NULL;
1601 goto bad_fork_cleanup_threadgroup_lock;
1602 }
1603 #endif
1604 #ifdef CONFIG_CPUSETS
1605 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1606 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1607 seqcount_init(&p->mems_allowed_seq);
1608 #endif
1609 #ifdef CONFIG_TRACE_IRQFLAGS
1610 p->irq_events = 0;
1611 p->hardirqs_enabled = 0;
1612 p->hardirq_enable_ip = 0;
1613 p->hardirq_enable_event = 0;
1614 p->hardirq_disable_ip = _THIS_IP_;
1615 p->hardirq_disable_event = 0;
1616 p->softirqs_enabled = 1;
1617 p->softirq_enable_ip = _THIS_IP_;
1618 p->softirq_enable_event = 0;
1619 p->softirq_disable_ip = 0;
1620 p->softirq_disable_event = 0;
1621 p->hardirq_context = 0;
1622 p->softirq_context = 0;
1623 #endif
1624
1625 p->pagefault_disabled = 0;
1626
1627 #ifdef CONFIG_LOCKDEP
1628 p->lockdep_depth = 0; /* no locks held yet */
1629 p->curr_chain_key = 0;
1630 p->lockdep_recursion = 0;
1631 #endif
1632
1633 #ifdef CONFIG_DEBUG_MUTEXES
1634 p->blocked_on = NULL; /* not blocked yet */
1635 #endif
1636 #ifdef CONFIG_BCACHE
1637 p->sequential_io = 0;
1638 p->sequential_io_avg = 0;
1639 #endif
1640
1641 /* Perform scheduler related setup. Assign this task to a CPU. */
1642 retval = sched_fork(clone_flags, p);
1643 if (retval)
1644 goto bad_fork_cleanup_policy;
1645
1646 retval = perf_event_init_task(p);
1647 if (retval)
1648 goto bad_fork_cleanup_policy;
1649 retval = audit_alloc(p);
1650 if (retval)
1651 goto bad_fork_cleanup_perf;
1652 /* copy all the process information */
1653 shm_init_task(p);
1654 retval = copy_semundo(clone_flags, p);
1655 if (retval)
1656 goto bad_fork_cleanup_audit;
1657 retval = copy_files(clone_flags, p);
1658 if (retval)
1659 goto bad_fork_cleanup_semundo;
1660 retval = copy_fs(clone_flags, p);
1661 if (retval)
1662 goto bad_fork_cleanup_files;
1663 retval = copy_sighand(clone_flags, p);
1664 if (retval)
1665 goto bad_fork_cleanup_fs;
1666 retval = copy_signal(clone_flags, p);
1667 if (retval)
1668 goto bad_fork_cleanup_sighand;
1669 retval = copy_mm(clone_flags, p);
1670 if (retval)
1671 goto bad_fork_cleanup_signal;
1672 retval = copy_namespaces(clone_flags, p);
1673 if (retval)
1674 goto bad_fork_cleanup_mm;
1675 retval = copy_io(clone_flags, p);
1676 if (retval)
1677 goto bad_fork_cleanup_namespaces;
1678 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1679 if (retval)
1680 goto bad_fork_cleanup_io;
1681
1682 if (pid != &init_struct_pid) {
1683 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1684 if (IS_ERR(pid)) {
1685 retval = PTR_ERR(pid);
1686 goto bad_fork_cleanup_thread;
1687 }
1688 }
1689
1690 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1691 /*
1692 * Clear TID on mm_release()?
1693 */
1694 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1695 #ifdef CONFIG_BLOCK
1696 p->plug = NULL;
1697 #endif
1698 #ifdef CONFIG_FUTEX
1699 p->robust_list = NULL;
1700 #ifdef CONFIG_COMPAT
1701 p->compat_robust_list = NULL;
1702 #endif
1703 INIT_LIST_HEAD(&p->pi_state_list);
1704 p->pi_state_cache = NULL;
1705 #endif
1706 /*
1707 * sigaltstack should be cleared when sharing the same VM
1708 */
1709 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1710 sas_ss_reset(p);
1711
1712 /*
1713 * Syscall tracing and stepping should be turned off in the
1714 * child regardless of CLONE_PTRACE.
1715 */
1716 user_disable_single_step(p);
1717 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1718 #ifdef TIF_SYSCALL_EMU
1719 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1720 #endif
1721 clear_all_latency_tracing(p);
1722
1723 /* ok, now we should be set up.. */
1724 p->pid = pid_nr(pid);
1725 if (clone_flags & CLONE_THREAD) {
1726 p->exit_signal = -1;
1727 p->group_leader = current->group_leader;
1728 p->tgid = current->tgid;
1729 } else {
1730 if (clone_flags & CLONE_PARENT)
1731 p->exit_signal = current->group_leader->exit_signal;
1732 else
1733 p->exit_signal = (clone_flags & CSIGNAL);
1734 p->group_leader = p;
1735 p->tgid = p->pid;
1736 }
1737
1738 p->nr_dirtied = 0;
1739 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1740 p->dirty_paused_when = 0;
1741
1742 p->pdeath_signal = 0;
1743 INIT_LIST_HEAD(&p->thread_group);
1744 p->task_works = NULL;
1745
1746 threadgroup_change_begin(current);
1747 /*
1748 * Ensure that the cgroup subsystem policies allow the new process to be
1749 * forked. It should be noted the the new process's css_set can be changed
1750 * between here and cgroup_post_fork() if an organisation operation is in
1751 * progress.
1752 */
1753 retval = cgroup_can_fork(p);
1754 if (retval)
1755 goto bad_fork_free_pid;
1756
1757 /*
1758 * Make it visible to the rest of the system, but dont wake it up yet.
1759 * Need tasklist lock for parent etc handling!
1760 */
1761 write_lock_irq(&tasklist_lock);
1762
1763 /* CLONE_PARENT re-uses the old parent */
1764 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1765 p->real_parent = current->real_parent;
1766 p->parent_exec_id = current->parent_exec_id;
1767 } else {
1768 p->real_parent = current;
1769 p->parent_exec_id = current->self_exec_id;
1770 }
1771
1772 spin_lock(&current->sighand->siglock);
1773
1774 /*
1775 * Copy seccomp details explicitly here, in case they were changed
1776 * before holding sighand lock.
1777 */
1778 copy_seccomp(p);
1779
1780 /*
1781 * Process group and session signals need to be delivered to just the
1782 * parent before the fork or both the parent and the child after the
1783 * fork. Restart if a signal comes in before we add the new process to
1784 * it's process group.
1785 * A fatal signal pending means that current will exit, so the new
1786 * thread can't slip out of an OOM kill (or normal SIGKILL).
1787 */
1788 recalc_sigpending();
1789 if (signal_pending(current)) {
1790 spin_unlock(&current->sighand->siglock);
1791 write_unlock_irq(&tasklist_lock);
1792 retval = -ERESTARTNOINTR;
1793 goto bad_fork_cancel_cgroup;
1794 }
1795
1796 if (likely(p->pid)) {
1797 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1798
1799 init_task_pid(p, PIDTYPE_PID, pid);
1800 if (thread_group_leader(p)) {
1801 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1802 init_task_pid(p, PIDTYPE_SID, task_session(current));
1803
1804 if (is_child_reaper(pid)) {
1805 ns_of_pid(pid)->child_reaper = p;
1806 p->signal->flags |= SIGNAL_UNKILLABLE;
1807 }
1808
1809 p->signal->leader_pid = pid;
1810 p->signal->tty = tty_kref_get(current->signal->tty);
1811 list_add_tail(&p->sibling, &p->real_parent->children);
1812 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1813 attach_pid(p, PIDTYPE_PGID);
1814 attach_pid(p, PIDTYPE_SID);
1815 __this_cpu_inc(process_counts);
1816 } else {
1817 current->signal->nr_threads++;
1818 atomic_inc(&current->signal->live);
1819 atomic_inc(&current->signal->sigcnt);
1820 list_add_tail_rcu(&p->thread_group,
1821 &p->group_leader->thread_group);
1822 list_add_tail_rcu(&p->thread_node,
1823 &p->signal->thread_head);
1824 }
1825 attach_pid(p, PIDTYPE_PID);
1826 nr_threads++;
1827 }
1828
1829 total_forks++;
1830 spin_unlock(&current->sighand->siglock);
1831 syscall_tracepoint_update(p);
1832 write_unlock_irq(&tasklist_lock);
1833
1834 proc_fork_connector(p);
1835 cgroup_post_fork(p);
1836 threadgroup_change_end(current);
1837 perf_event_fork(p);
1838
1839 trace_task_newtask(p, clone_flags);
1840 uprobe_copy_process(p, clone_flags);
1841
1842 return p;
1843
1844 bad_fork_cancel_cgroup:
1845 cgroup_cancel_fork(p);
1846 bad_fork_free_pid:
1847 threadgroup_change_end(current);
1848 if (pid != &init_struct_pid)
1849 free_pid(pid);
1850 bad_fork_cleanup_thread:
1851 exit_thread(p);
1852 bad_fork_cleanup_io:
1853 if (p->io_context)
1854 exit_io_context(p);
1855 bad_fork_cleanup_namespaces:
1856 exit_task_namespaces(p);
1857 bad_fork_cleanup_mm:
1858 if (p->mm)
1859 mmput(p->mm);
1860 bad_fork_cleanup_signal:
1861 if (!(clone_flags & CLONE_THREAD))
1862 free_signal_struct(p->signal);
1863 bad_fork_cleanup_sighand:
1864 __cleanup_sighand(p->sighand);
1865 bad_fork_cleanup_fs:
1866 exit_fs(p); /* blocking */
1867 bad_fork_cleanup_files:
1868 exit_files(p); /* blocking */
1869 bad_fork_cleanup_semundo:
1870 exit_sem(p);
1871 bad_fork_cleanup_audit:
1872 audit_free(p);
1873 bad_fork_cleanup_perf:
1874 perf_event_free_task(p);
1875 bad_fork_cleanup_policy:
1876 #ifdef CONFIG_NUMA
1877 mpol_put(p->mempolicy);
1878 bad_fork_cleanup_threadgroup_lock:
1879 #endif
1880 delayacct_tsk_free(p);
1881 bad_fork_cleanup_count:
1882 atomic_dec(&p->cred->user->processes);
1883 exit_creds(p);
1884 bad_fork_free:
1885 p->state = TASK_DEAD;
1886 put_task_stack(p);
1887 free_task(p);
1888 fork_out:
1889 return ERR_PTR(retval);
1890 }
1891
1892 static inline void init_idle_pids(struct pid_link *links)
1893 {
1894 enum pid_type type;
1895
1896 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1897 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1898 links[type].pid = &init_struct_pid;
1899 }
1900 }
1901
1902 struct task_struct *fork_idle(int cpu)
1903 {
1904 struct task_struct *task;
1905 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1906 cpu_to_node(cpu));
1907 if (!IS_ERR(task)) {
1908 init_idle_pids(task->pids);
1909 init_idle(task, cpu);
1910 }
1911
1912 return task;
1913 }
1914
1915 /*
1916 * Ok, this is the main fork-routine.
1917 *
1918 * It copies the process, and if successful kick-starts
1919 * it and waits for it to finish using the VM if required.
1920 */
1921 long _do_fork(unsigned long clone_flags,
1922 unsigned long stack_start,
1923 unsigned long stack_size,
1924 int __user *parent_tidptr,
1925 int __user *child_tidptr,
1926 unsigned long tls)
1927 {
1928 struct task_struct *p;
1929 int trace = 0;
1930 long nr;
1931
1932 /*
1933 * Determine whether and which event to report to ptracer. When
1934 * called from kernel_thread or CLONE_UNTRACED is explicitly
1935 * requested, no event is reported; otherwise, report if the event
1936 * for the type of forking is enabled.
1937 */
1938 if (!(clone_flags & CLONE_UNTRACED)) {
1939 if (clone_flags & CLONE_VFORK)
1940 trace = PTRACE_EVENT_VFORK;
1941 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1942 trace = PTRACE_EVENT_CLONE;
1943 else
1944 trace = PTRACE_EVENT_FORK;
1945
1946 if (likely(!ptrace_event_enabled(current, trace)))
1947 trace = 0;
1948 }
1949
1950 p = copy_process(clone_flags, stack_start, stack_size,
1951 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1952 add_latent_entropy();
1953 /*
1954 * Do this prior waking up the new thread - the thread pointer
1955 * might get invalid after that point, if the thread exits quickly.
1956 */
1957 if (!IS_ERR(p)) {
1958 struct completion vfork;
1959 struct pid *pid;
1960
1961 trace_sched_process_fork(current, p);
1962
1963 pid = get_task_pid(p, PIDTYPE_PID);
1964 nr = pid_vnr(pid);
1965
1966 if (clone_flags & CLONE_PARENT_SETTID)
1967 put_user(nr, parent_tidptr);
1968
1969 if (clone_flags & CLONE_VFORK) {
1970 p->vfork_done = &vfork;
1971 init_completion(&vfork);
1972 get_task_struct(p);
1973 }
1974
1975 wake_up_new_task(p);
1976
1977 /* forking complete and child started to run, tell ptracer */
1978 if (unlikely(trace))
1979 ptrace_event_pid(trace, pid);
1980
1981 if (clone_flags & CLONE_VFORK) {
1982 if (!wait_for_vfork_done(p, &vfork))
1983 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1984 }
1985
1986 put_pid(pid);
1987 } else {
1988 nr = PTR_ERR(p);
1989 }
1990 return nr;
1991 }
1992
1993 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1994 /* For compatibility with architectures that call do_fork directly rather than
1995 * using the syscall entry points below. */
1996 long do_fork(unsigned long clone_flags,
1997 unsigned long stack_start,
1998 unsigned long stack_size,
1999 int __user *parent_tidptr,
2000 int __user *child_tidptr)
2001 {
2002 return _do_fork(clone_flags, stack_start, stack_size,
2003 parent_tidptr, child_tidptr, 0);
2004 }
2005 #endif
2006
2007 /*
2008 * Create a kernel thread.
2009 */
2010 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2011 {
2012 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2013 (unsigned long)arg, NULL, NULL, 0);
2014 }
2015
2016 #ifdef __ARCH_WANT_SYS_FORK
2017 SYSCALL_DEFINE0(fork)
2018 {
2019 #ifdef CONFIG_MMU
2020 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2021 #else
2022 /* can not support in nommu mode */
2023 return -EINVAL;
2024 #endif
2025 }
2026 #endif
2027
2028 #ifdef __ARCH_WANT_SYS_VFORK
2029 SYSCALL_DEFINE0(vfork)
2030 {
2031 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2032 0, NULL, NULL, 0);
2033 }
2034 #endif
2035
2036 #ifdef __ARCH_WANT_SYS_CLONE
2037 #ifdef CONFIG_CLONE_BACKWARDS
2038 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2039 int __user *, parent_tidptr,
2040 unsigned long, tls,
2041 int __user *, child_tidptr)
2042 #elif defined(CONFIG_CLONE_BACKWARDS2)
2043 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2044 int __user *, parent_tidptr,
2045 int __user *, child_tidptr,
2046 unsigned long, tls)
2047 #elif defined(CONFIG_CLONE_BACKWARDS3)
2048 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2049 int, stack_size,
2050 int __user *, parent_tidptr,
2051 int __user *, child_tidptr,
2052 unsigned long, tls)
2053 #else
2054 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2055 int __user *, parent_tidptr,
2056 int __user *, child_tidptr,
2057 unsigned long, tls)
2058 #endif
2059 {
2060 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2061 }
2062 #endif
2063
2064 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2065 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2066 #endif
2067
2068 static void sighand_ctor(void *data)
2069 {
2070 struct sighand_struct *sighand = data;
2071
2072 spin_lock_init(&sighand->siglock);
2073 init_waitqueue_head(&sighand->signalfd_wqh);
2074 }
2075
2076 void __init proc_caches_init(void)
2077 {
2078 sighand_cachep = kmem_cache_create("sighand_cache",
2079 sizeof(struct sighand_struct), 0,
2080 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2081 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2082 signal_cachep = kmem_cache_create("signal_cache",
2083 sizeof(struct signal_struct), 0,
2084 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2085 NULL);
2086 files_cachep = kmem_cache_create("files_cache",
2087 sizeof(struct files_struct), 0,
2088 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2089 NULL);
2090 fs_cachep = kmem_cache_create("fs_cache",
2091 sizeof(struct fs_struct), 0,
2092 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2093 NULL);
2094 /*
2095 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2096 * whole struct cpumask for the OFFSTACK case. We could change
2097 * this to *only* allocate as much of it as required by the
2098 * maximum number of CPU's we can ever have. The cpumask_allocation
2099 * is at the end of the structure, exactly for that reason.
2100 */
2101 mm_cachep = kmem_cache_create("mm_struct",
2102 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2103 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2104 NULL);
2105 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2106 mmap_init();
2107 nsproxy_cache_init();
2108 }
2109
2110 /*
2111 * Check constraints on flags passed to the unshare system call.
2112 */
2113 static int check_unshare_flags(unsigned long unshare_flags)
2114 {
2115 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2116 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2117 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2118 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2119 return -EINVAL;
2120 /*
2121 * Not implemented, but pretend it works if there is nothing
2122 * to unshare. Note that unsharing the address space or the
2123 * signal handlers also need to unshare the signal queues (aka
2124 * CLONE_THREAD).
2125 */
2126 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2127 if (!thread_group_empty(current))
2128 return -EINVAL;
2129 }
2130 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2131 if (atomic_read(&current->sighand->count) > 1)
2132 return -EINVAL;
2133 }
2134 if (unshare_flags & CLONE_VM) {
2135 if (!current_is_single_threaded())
2136 return -EINVAL;
2137 }
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * Unshare the filesystem structure if it is being shared
2144 */
2145 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2146 {
2147 struct fs_struct *fs = current->fs;
2148
2149 if (!(unshare_flags & CLONE_FS) || !fs)
2150 return 0;
2151
2152 /* don't need lock here; in the worst case we'll do useless copy */
2153 if (fs->users == 1)
2154 return 0;
2155
2156 *new_fsp = copy_fs_struct(fs);
2157 if (!*new_fsp)
2158 return -ENOMEM;
2159
2160 return 0;
2161 }
2162
2163 /*
2164 * Unshare file descriptor table if it is being shared
2165 */
2166 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2167 {
2168 struct files_struct *fd = current->files;
2169 int error = 0;
2170
2171 if ((unshare_flags & CLONE_FILES) &&
2172 (fd && atomic_read(&fd->count) > 1)) {
2173 *new_fdp = dup_fd(fd, &error);
2174 if (!*new_fdp)
2175 return error;
2176 }
2177
2178 return 0;
2179 }
2180
2181 /*
2182 * unshare allows a process to 'unshare' part of the process
2183 * context which was originally shared using clone. copy_*
2184 * functions used by do_fork() cannot be used here directly
2185 * because they modify an inactive task_struct that is being
2186 * constructed. Here we are modifying the current, active,
2187 * task_struct.
2188 */
2189 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2190 {
2191 struct fs_struct *fs, *new_fs = NULL;
2192 struct files_struct *fd, *new_fd = NULL;
2193 struct cred *new_cred = NULL;
2194 struct nsproxy *new_nsproxy = NULL;
2195 int do_sysvsem = 0;
2196 int err;
2197
2198 /*
2199 * If unsharing a user namespace must also unshare the thread group
2200 * and unshare the filesystem root and working directories.
2201 */
2202 if (unshare_flags & CLONE_NEWUSER)
2203 unshare_flags |= CLONE_THREAD | CLONE_FS;
2204 /*
2205 * If unsharing vm, must also unshare signal handlers.
2206 */
2207 if (unshare_flags & CLONE_VM)
2208 unshare_flags |= CLONE_SIGHAND;
2209 /*
2210 * If unsharing a signal handlers, must also unshare the signal queues.
2211 */
2212 if (unshare_flags & CLONE_SIGHAND)
2213 unshare_flags |= CLONE_THREAD;
2214 /*
2215 * If unsharing namespace, must also unshare filesystem information.
2216 */
2217 if (unshare_flags & CLONE_NEWNS)
2218 unshare_flags |= CLONE_FS;
2219
2220 err = check_unshare_flags(unshare_flags);
2221 if (err)
2222 goto bad_unshare_out;
2223 /*
2224 * CLONE_NEWIPC must also detach from the undolist: after switching
2225 * to a new ipc namespace, the semaphore arrays from the old
2226 * namespace are unreachable.
2227 */
2228 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2229 do_sysvsem = 1;
2230 err = unshare_fs(unshare_flags, &new_fs);
2231 if (err)
2232 goto bad_unshare_out;
2233 err = unshare_fd(unshare_flags, &new_fd);
2234 if (err)
2235 goto bad_unshare_cleanup_fs;
2236 err = unshare_userns(unshare_flags, &new_cred);
2237 if (err)
2238 goto bad_unshare_cleanup_fd;
2239 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2240 new_cred, new_fs);
2241 if (err)
2242 goto bad_unshare_cleanup_cred;
2243
2244 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2245 if (do_sysvsem) {
2246 /*
2247 * CLONE_SYSVSEM is equivalent to sys_exit().
2248 */
2249 exit_sem(current);
2250 }
2251 if (unshare_flags & CLONE_NEWIPC) {
2252 /* Orphan segments in old ns (see sem above). */
2253 exit_shm(current);
2254 shm_init_task(current);
2255 }
2256
2257 if (new_nsproxy)
2258 switch_task_namespaces(current, new_nsproxy);
2259
2260 task_lock(current);
2261
2262 if (new_fs) {
2263 fs = current->fs;
2264 spin_lock(&fs->lock);
2265 current->fs = new_fs;
2266 if (--fs->users)
2267 new_fs = NULL;
2268 else
2269 new_fs = fs;
2270 spin_unlock(&fs->lock);
2271 }
2272
2273 if (new_fd) {
2274 fd = current->files;
2275 current->files = new_fd;
2276 new_fd = fd;
2277 }
2278
2279 task_unlock(current);
2280
2281 if (new_cred) {
2282 /* Install the new user namespace */
2283 commit_creds(new_cred);
2284 new_cred = NULL;
2285 }
2286 }
2287
2288 bad_unshare_cleanup_cred:
2289 if (new_cred)
2290 put_cred(new_cred);
2291 bad_unshare_cleanup_fd:
2292 if (new_fd)
2293 put_files_struct(new_fd);
2294
2295 bad_unshare_cleanup_fs:
2296 if (new_fs)
2297 free_fs_struct(new_fs);
2298
2299 bad_unshare_out:
2300 return err;
2301 }
2302
2303 /*
2304 * Helper to unshare the files of the current task.
2305 * We don't want to expose copy_files internals to
2306 * the exec layer of the kernel.
2307 */
2308
2309 int unshare_files(struct files_struct **displaced)
2310 {
2311 struct task_struct *task = current;
2312 struct files_struct *copy = NULL;
2313 int error;
2314
2315 error = unshare_fd(CLONE_FILES, &copy);
2316 if (error || !copy) {
2317 *displaced = NULL;
2318 return error;
2319 }
2320 *displaced = task->files;
2321 task_lock(task);
2322 task->files = copy;
2323 task_unlock(task);
2324 return 0;
2325 }
2326
2327 int sysctl_max_threads(struct ctl_table *table, int write,
2328 void __user *buffer, size_t *lenp, loff_t *ppos)
2329 {
2330 struct ctl_table t;
2331 int ret;
2332 int threads = max_threads;
2333 int min = MIN_THREADS;
2334 int max = MAX_THREADS;
2335
2336 t = *table;
2337 t.data = &threads;
2338 t.extra1 = &min;
2339 t.extra2 = &max;
2340
2341 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2342 if (ret || !write)
2343 return ret;
2344
2345 set_max_threads(threads);
2346
2347 return 0;
2348 }