]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
sched/headers: Prepare for the removal of <linux/rtmutex.h> from <linux/sched.h>
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/rtmutex.h>
21 #include <linux/init.h>
22 #include <linux/unistd.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/completion.h>
26 #include <linux/personality.h>
27 #include <linux/mempolicy.h>
28 #include <linux/sem.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/iocontext.h>
32 #include <linux/key.h>
33 #include <linux/binfmts.h>
34 #include <linux/mman.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/fs.h>
37 #include <linux/mm.h>
38 #include <linux/vmacache.h>
39 #include <linux/nsproxy.h>
40 #include <linux/capability.h>
41 #include <linux/cpu.h>
42 #include <linux/cgroup.h>
43 #include <linux/security.h>
44 #include <linux/hugetlb.h>
45 #include <linux/seccomp.h>
46 #include <linux/swap.h>
47 #include <linux/syscalls.h>
48 #include <linux/jiffies.h>
49 #include <linux/futex.h>
50 #include <linux/compat.h>
51 #include <linux/kthread.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/rcupdate.h>
54 #include <linux/ptrace.h>
55 #include <linux/mount.h>
56 #include <linux/audit.h>
57 #include <linux/memcontrol.h>
58 #include <linux/ftrace.h>
59 #include <linux/proc_fs.h>
60 #include <linux/profile.h>
61 #include <linux/rmap.h>
62 #include <linux/ksm.h>
63 #include <linux/acct.h>
64 #include <linux/userfaultfd_k.h>
65 #include <linux/tsacct_kern.h>
66 #include <linux/cn_proc.h>
67 #include <linux/freezer.h>
68 #include <linux/delayacct.h>
69 #include <linux/taskstats_kern.h>
70 #include <linux/random.h>
71 #include <linux/tty.h>
72 #include <linux/blkdev.h>
73 #include <linux/fs_struct.h>
74 #include <linux/magic.h>
75 #include <linux/perf_event.h>
76 #include <linux/posix-timers.h>
77 #include <linux/user-return-notifier.h>
78 #include <linux/oom.h>
79 #include <linux/khugepaged.h>
80 #include <linux/signalfd.h>
81 #include <linux/uprobes.h>
82 #include <linux/aio.h>
83 #include <linux/compiler.h>
84 #include <linux/sysctl.h>
85 #include <linux/kcov.h>
86
87 #include <asm/pgtable.h>
88 #include <asm/pgalloc.h>
89 #include <linux/uaccess.h>
90 #include <asm/mmu_context.h>
91 #include <asm/cacheflush.h>
92 #include <asm/tlbflush.h>
93
94 #include <trace/events/sched.h>
95
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/task.h>
98
99 /*
100 * Minimum number of threads to boot the kernel
101 */
102 #define MIN_THREADS 20
103
104 /*
105 * Maximum number of threads
106 */
107 #define MAX_THREADS FUTEX_TID_MASK
108
109 /*
110 * Protected counters by write_lock_irq(&tasklist_lock)
111 */
112 unsigned long total_forks; /* Handle normal Linux uptimes. */
113 int nr_threads; /* The idle threads do not count.. */
114
115 int max_threads; /* tunable limit on nr_threads */
116
117 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
118
119 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
120
121 #ifdef CONFIG_PROVE_RCU
122 int lockdep_tasklist_lock_is_held(void)
123 {
124 return lockdep_is_held(&tasklist_lock);
125 }
126 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
127 #endif /* #ifdef CONFIG_PROVE_RCU */
128
129 int nr_processes(void)
130 {
131 int cpu;
132 int total = 0;
133
134 for_each_possible_cpu(cpu)
135 total += per_cpu(process_counts, cpu);
136
137 return total;
138 }
139
140 void __weak arch_release_task_struct(struct task_struct *tsk)
141 {
142 }
143
144 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
145 static struct kmem_cache *task_struct_cachep;
146
147 static inline struct task_struct *alloc_task_struct_node(int node)
148 {
149 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
150 }
151
152 static inline void free_task_struct(struct task_struct *tsk)
153 {
154 kmem_cache_free(task_struct_cachep, tsk);
155 }
156 #endif
157
158 void __weak arch_release_thread_stack(unsigned long *stack)
159 {
160 }
161
162 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
163
164 /*
165 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
166 * kmemcache based allocator.
167 */
168 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
169
170 #ifdef CONFIG_VMAP_STACK
171 /*
172 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
173 * flush. Try to minimize the number of calls by caching stacks.
174 */
175 #define NR_CACHED_STACKS 2
176 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
177 #endif
178
179 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
180 {
181 #ifdef CONFIG_VMAP_STACK
182 void *stack;
183 int i;
184
185 local_irq_disable();
186 for (i = 0; i < NR_CACHED_STACKS; i++) {
187 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
188
189 if (!s)
190 continue;
191 this_cpu_write(cached_stacks[i], NULL);
192
193 tsk->stack_vm_area = s;
194 local_irq_enable();
195 return s->addr;
196 }
197 local_irq_enable();
198
199 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
200 VMALLOC_START, VMALLOC_END,
201 THREADINFO_GFP | __GFP_HIGHMEM,
202 PAGE_KERNEL,
203 0, node, __builtin_return_address(0));
204
205 /*
206 * We can't call find_vm_area() in interrupt context, and
207 * free_thread_stack() can be called in interrupt context,
208 * so cache the vm_struct.
209 */
210 if (stack)
211 tsk->stack_vm_area = find_vm_area(stack);
212 return stack;
213 #else
214 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
215 THREAD_SIZE_ORDER);
216
217 return page ? page_address(page) : NULL;
218 #endif
219 }
220
221 static inline void free_thread_stack(struct task_struct *tsk)
222 {
223 #ifdef CONFIG_VMAP_STACK
224 if (task_stack_vm_area(tsk)) {
225 unsigned long flags;
226 int i;
227
228 local_irq_save(flags);
229 for (i = 0; i < NR_CACHED_STACKS; i++) {
230 if (this_cpu_read(cached_stacks[i]))
231 continue;
232
233 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
234 local_irq_restore(flags);
235 return;
236 }
237 local_irq_restore(flags);
238
239 vfree_atomic(tsk->stack);
240 return;
241 }
242 #endif
243
244 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
245 }
246 # else
247 static struct kmem_cache *thread_stack_cache;
248
249 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
250 int node)
251 {
252 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
253 }
254
255 static void free_thread_stack(struct task_struct *tsk)
256 {
257 kmem_cache_free(thread_stack_cache, tsk->stack);
258 }
259
260 void thread_stack_cache_init(void)
261 {
262 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
263 THREAD_SIZE, 0, NULL);
264 BUG_ON(thread_stack_cache == NULL);
265 }
266 # endif
267 #endif
268
269 /* SLAB cache for signal_struct structures (tsk->signal) */
270 static struct kmem_cache *signal_cachep;
271
272 /* SLAB cache for sighand_struct structures (tsk->sighand) */
273 struct kmem_cache *sighand_cachep;
274
275 /* SLAB cache for files_struct structures (tsk->files) */
276 struct kmem_cache *files_cachep;
277
278 /* SLAB cache for fs_struct structures (tsk->fs) */
279 struct kmem_cache *fs_cachep;
280
281 /* SLAB cache for vm_area_struct structures */
282 struct kmem_cache *vm_area_cachep;
283
284 /* SLAB cache for mm_struct structures (tsk->mm) */
285 static struct kmem_cache *mm_cachep;
286
287 static void account_kernel_stack(struct task_struct *tsk, int account)
288 {
289 void *stack = task_stack_page(tsk);
290 struct vm_struct *vm = task_stack_vm_area(tsk);
291
292 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
293
294 if (vm) {
295 int i;
296
297 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
298
299 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
300 mod_zone_page_state(page_zone(vm->pages[i]),
301 NR_KERNEL_STACK_KB,
302 PAGE_SIZE / 1024 * account);
303 }
304
305 /* All stack pages belong to the same memcg. */
306 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
307 account * (THREAD_SIZE / 1024));
308 } else {
309 /*
310 * All stack pages are in the same zone and belong to the
311 * same memcg.
312 */
313 struct page *first_page = virt_to_page(stack);
314
315 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
316 THREAD_SIZE / 1024 * account);
317
318 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
319 account * (THREAD_SIZE / 1024));
320 }
321 }
322
323 static void release_task_stack(struct task_struct *tsk)
324 {
325 if (WARN_ON(tsk->state != TASK_DEAD))
326 return; /* Better to leak the stack than to free prematurely */
327
328 account_kernel_stack(tsk, -1);
329 arch_release_thread_stack(tsk->stack);
330 free_thread_stack(tsk);
331 tsk->stack = NULL;
332 #ifdef CONFIG_VMAP_STACK
333 tsk->stack_vm_area = NULL;
334 #endif
335 }
336
337 #ifdef CONFIG_THREAD_INFO_IN_TASK
338 void put_task_stack(struct task_struct *tsk)
339 {
340 if (atomic_dec_and_test(&tsk->stack_refcount))
341 release_task_stack(tsk);
342 }
343 #endif
344
345 void free_task(struct task_struct *tsk)
346 {
347 #ifndef CONFIG_THREAD_INFO_IN_TASK
348 /*
349 * The task is finally done with both the stack and thread_info,
350 * so free both.
351 */
352 release_task_stack(tsk);
353 #else
354 /*
355 * If the task had a separate stack allocation, it should be gone
356 * by now.
357 */
358 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
359 #endif
360 rt_mutex_debug_task_free(tsk);
361 ftrace_graph_exit_task(tsk);
362 put_seccomp_filter(tsk);
363 arch_release_task_struct(tsk);
364 if (tsk->flags & PF_KTHREAD)
365 free_kthread_struct(tsk);
366 free_task_struct(tsk);
367 }
368 EXPORT_SYMBOL(free_task);
369
370 static inline void free_signal_struct(struct signal_struct *sig)
371 {
372 taskstats_tgid_free(sig);
373 sched_autogroup_exit(sig);
374 /*
375 * __mmdrop is not safe to call from softirq context on x86 due to
376 * pgd_dtor so postpone it to the async context
377 */
378 if (sig->oom_mm)
379 mmdrop_async(sig->oom_mm);
380 kmem_cache_free(signal_cachep, sig);
381 }
382
383 static inline void put_signal_struct(struct signal_struct *sig)
384 {
385 if (atomic_dec_and_test(&sig->sigcnt))
386 free_signal_struct(sig);
387 }
388
389 void __put_task_struct(struct task_struct *tsk)
390 {
391 WARN_ON(!tsk->exit_state);
392 WARN_ON(atomic_read(&tsk->usage));
393 WARN_ON(tsk == current);
394
395 cgroup_free(tsk);
396 task_numa_free(tsk);
397 security_task_free(tsk);
398 exit_creds(tsk);
399 delayacct_tsk_free(tsk);
400 put_signal_struct(tsk->signal);
401
402 if (!profile_handoff_task(tsk))
403 free_task(tsk);
404 }
405 EXPORT_SYMBOL_GPL(__put_task_struct);
406
407 void __init __weak arch_task_cache_init(void) { }
408
409 /*
410 * set_max_threads
411 */
412 static void set_max_threads(unsigned int max_threads_suggested)
413 {
414 u64 threads;
415
416 /*
417 * The number of threads shall be limited such that the thread
418 * structures may only consume a small part of the available memory.
419 */
420 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
421 threads = MAX_THREADS;
422 else
423 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
424 (u64) THREAD_SIZE * 8UL);
425
426 if (threads > max_threads_suggested)
427 threads = max_threads_suggested;
428
429 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
430 }
431
432 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
433 /* Initialized by the architecture: */
434 int arch_task_struct_size __read_mostly;
435 #endif
436
437 void __init fork_init(void)
438 {
439 int i;
440 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
441 #ifndef ARCH_MIN_TASKALIGN
442 #define ARCH_MIN_TASKALIGN 0
443 #endif
444 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
445
446 /* create a slab on which task_structs can be allocated */
447 task_struct_cachep = kmem_cache_create("task_struct",
448 arch_task_struct_size, align,
449 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
450 #endif
451
452 /* do the arch specific task caches init */
453 arch_task_cache_init();
454
455 set_max_threads(MAX_THREADS);
456
457 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
458 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
459 init_task.signal->rlim[RLIMIT_SIGPENDING] =
460 init_task.signal->rlim[RLIMIT_NPROC];
461
462 for (i = 0; i < UCOUNT_COUNTS; i++) {
463 init_user_ns.ucount_max[i] = max_threads/2;
464 }
465 }
466
467 int __weak arch_dup_task_struct(struct task_struct *dst,
468 struct task_struct *src)
469 {
470 *dst = *src;
471 return 0;
472 }
473
474 void set_task_stack_end_magic(struct task_struct *tsk)
475 {
476 unsigned long *stackend;
477
478 stackend = end_of_stack(tsk);
479 *stackend = STACK_END_MAGIC; /* for overflow detection */
480 }
481
482 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
483 {
484 struct task_struct *tsk;
485 unsigned long *stack;
486 struct vm_struct *stack_vm_area;
487 int err;
488
489 if (node == NUMA_NO_NODE)
490 node = tsk_fork_get_node(orig);
491 tsk = alloc_task_struct_node(node);
492 if (!tsk)
493 return NULL;
494
495 stack = alloc_thread_stack_node(tsk, node);
496 if (!stack)
497 goto free_tsk;
498
499 stack_vm_area = task_stack_vm_area(tsk);
500
501 err = arch_dup_task_struct(tsk, orig);
502
503 /*
504 * arch_dup_task_struct() clobbers the stack-related fields. Make
505 * sure they're properly initialized before using any stack-related
506 * functions again.
507 */
508 tsk->stack = stack;
509 #ifdef CONFIG_VMAP_STACK
510 tsk->stack_vm_area = stack_vm_area;
511 #endif
512 #ifdef CONFIG_THREAD_INFO_IN_TASK
513 atomic_set(&tsk->stack_refcount, 1);
514 #endif
515
516 if (err)
517 goto free_stack;
518
519 #ifdef CONFIG_SECCOMP
520 /*
521 * We must handle setting up seccomp filters once we're under
522 * the sighand lock in case orig has changed between now and
523 * then. Until then, filter must be NULL to avoid messing up
524 * the usage counts on the error path calling free_task.
525 */
526 tsk->seccomp.filter = NULL;
527 #endif
528
529 setup_thread_stack(tsk, orig);
530 clear_user_return_notifier(tsk);
531 clear_tsk_need_resched(tsk);
532 set_task_stack_end_magic(tsk);
533
534 #ifdef CONFIG_CC_STACKPROTECTOR
535 tsk->stack_canary = get_random_int();
536 #endif
537
538 /*
539 * One for us, one for whoever does the "release_task()" (usually
540 * parent)
541 */
542 atomic_set(&tsk->usage, 2);
543 #ifdef CONFIG_BLK_DEV_IO_TRACE
544 tsk->btrace_seq = 0;
545 #endif
546 tsk->splice_pipe = NULL;
547 tsk->task_frag.page = NULL;
548 tsk->wake_q.next = NULL;
549
550 account_kernel_stack(tsk, 1);
551
552 kcov_task_init(tsk);
553
554 return tsk;
555
556 free_stack:
557 free_thread_stack(tsk);
558 free_tsk:
559 free_task_struct(tsk);
560 return NULL;
561 }
562
563 #ifdef CONFIG_MMU
564 static __latent_entropy int dup_mmap(struct mm_struct *mm,
565 struct mm_struct *oldmm)
566 {
567 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
568 struct rb_node **rb_link, *rb_parent;
569 int retval;
570 unsigned long charge;
571 LIST_HEAD(uf);
572
573 uprobe_start_dup_mmap();
574 if (down_write_killable(&oldmm->mmap_sem)) {
575 retval = -EINTR;
576 goto fail_uprobe_end;
577 }
578 flush_cache_dup_mm(oldmm);
579 uprobe_dup_mmap(oldmm, mm);
580 /*
581 * Not linked in yet - no deadlock potential:
582 */
583 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
584
585 /* No ordering required: file already has been exposed. */
586 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
587
588 mm->total_vm = oldmm->total_vm;
589 mm->data_vm = oldmm->data_vm;
590 mm->exec_vm = oldmm->exec_vm;
591 mm->stack_vm = oldmm->stack_vm;
592
593 rb_link = &mm->mm_rb.rb_node;
594 rb_parent = NULL;
595 pprev = &mm->mmap;
596 retval = ksm_fork(mm, oldmm);
597 if (retval)
598 goto out;
599 retval = khugepaged_fork(mm, oldmm);
600 if (retval)
601 goto out;
602
603 prev = NULL;
604 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
605 struct file *file;
606
607 if (mpnt->vm_flags & VM_DONTCOPY) {
608 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
609 continue;
610 }
611 charge = 0;
612 if (mpnt->vm_flags & VM_ACCOUNT) {
613 unsigned long len = vma_pages(mpnt);
614
615 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
616 goto fail_nomem;
617 charge = len;
618 }
619 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
620 if (!tmp)
621 goto fail_nomem;
622 *tmp = *mpnt;
623 INIT_LIST_HEAD(&tmp->anon_vma_chain);
624 retval = vma_dup_policy(mpnt, tmp);
625 if (retval)
626 goto fail_nomem_policy;
627 tmp->vm_mm = mm;
628 retval = dup_userfaultfd(tmp, &uf);
629 if (retval)
630 goto fail_nomem_anon_vma_fork;
631 if (anon_vma_fork(tmp, mpnt))
632 goto fail_nomem_anon_vma_fork;
633 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
634 tmp->vm_next = tmp->vm_prev = NULL;
635 file = tmp->vm_file;
636 if (file) {
637 struct inode *inode = file_inode(file);
638 struct address_space *mapping = file->f_mapping;
639
640 get_file(file);
641 if (tmp->vm_flags & VM_DENYWRITE)
642 atomic_dec(&inode->i_writecount);
643 i_mmap_lock_write(mapping);
644 if (tmp->vm_flags & VM_SHARED)
645 atomic_inc(&mapping->i_mmap_writable);
646 flush_dcache_mmap_lock(mapping);
647 /* insert tmp into the share list, just after mpnt */
648 vma_interval_tree_insert_after(tmp, mpnt,
649 &mapping->i_mmap);
650 flush_dcache_mmap_unlock(mapping);
651 i_mmap_unlock_write(mapping);
652 }
653
654 /*
655 * Clear hugetlb-related page reserves for children. This only
656 * affects MAP_PRIVATE mappings. Faults generated by the child
657 * are not guaranteed to succeed, even if read-only
658 */
659 if (is_vm_hugetlb_page(tmp))
660 reset_vma_resv_huge_pages(tmp);
661
662 /*
663 * Link in the new vma and copy the page table entries.
664 */
665 *pprev = tmp;
666 pprev = &tmp->vm_next;
667 tmp->vm_prev = prev;
668 prev = tmp;
669
670 __vma_link_rb(mm, tmp, rb_link, rb_parent);
671 rb_link = &tmp->vm_rb.rb_right;
672 rb_parent = &tmp->vm_rb;
673
674 mm->map_count++;
675 retval = copy_page_range(mm, oldmm, mpnt);
676
677 if (tmp->vm_ops && tmp->vm_ops->open)
678 tmp->vm_ops->open(tmp);
679
680 if (retval)
681 goto out;
682 }
683 /* a new mm has just been created */
684 arch_dup_mmap(oldmm, mm);
685 retval = 0;
686 out:
687 up_write(&mm->mmap_sem);
688 flush_tlb_mm(oldmm);
689 up_write(&oldmm->mmap_sem);
690 dup_userfaultfd_complete(&uf);
691 fail_uprobe_end:
692 uprobe_end_dup_mmap();
693 return retval;
694 fail_nomem_anon_vma_fork:
695 mpol_put(vma_policy(tmp));
696 fail_nomem_policy:
697 kmem_cache_free(vm_area_cachep, tmp);
698 fail_nomem:
699 retval = -ENOMEM;
700 vm_unacct_memory(charge);
701 goto out;
702 }
703
704 static inline int mm_alloc_pgd(struct mm_struct *mm)
705 {
706 mm->pgd = pgd_alloc(mm);
707 if (unlikely(!mm->pgd))
708 return -ENOMEM;
709 return 0;
710 }
711
712 static inline void mm_free_pgd(struct mm_struct *mm)
713 {
714 pgd_free(mm, mm->pgd);
715 }
716 #else
717 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
718 {
719 down_write(&oldmm->mmap_sem);
720 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
721 up_write(&oldmm->mmap_sem);
722 return 0;
723 }
724 #define mm_alloc_pgd(mm) (0)
725 #define mm_free_pgd(mm)
726 #endif /* CONFIG_MMU */
727
728 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
729
730 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
731 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
732
733 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
734
735 static int __init coredump_filter_setup(char *s)
736 {
737 default_dump_filter =
738 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
739 MMF_DUMP_FILTER_MASK;
740 return 1;
741 }
742
743 __setup("coredump_filter=", coredump_filter_setup);
744
745 #include <linux/init_task.h>
746
747 static void mm_init_aio(struct mm_struct *mm)
748 {
749 #ifdef CONFIG_AIO
750 spin_lock_init(&mm->ioctx_lock);
751 mm->ioctx_table = NULL;
752 #endif
753 }
754
755 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
756 {
757 #ifdef CONFIG_MEMCG
758 mm->owner = p;
759 #endif
760 }
761
762 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
763 struct user_namespace *user_ns)
764 {
765 mm->mmap = NULL;
766 mm->mm_rb = RB_ROOT;
767 mm->vmacache_seqnum = 0;
768 atomic_set(&mm->mm_users, 1);
769 atomic_set(&mm->mm_count, 1);
770 init_rwsem(&mm->mmap_sem);
771 INIT_LIST_HEAD(&mm->mmlist);
772 mm->core_state = NULL;
773 atomic_long_set(&mm->nr_ptes, 0);
774 mm_nr_pmds_init(mm);
775 mm->map_count = 0;
776 mm->locked_vm = 0;
777 mm->pinned_vm = 0;
778 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
779 spin_lock_init(&mm->page_table_lock);
780 mm_init_cpumask(mm);
781 mm_init_aio(mm);
782 mm_init_owner(mm, p);
783 mmu_notifier_mm_init(mm);
784 clear_tlb_flush_pending(mm);
785 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
786 mm->pmd_huge_pte = NULL;
787 #endif
788
789 if (current->mm) {
790 mm->flags = current->mm->flags & MMF_INIT_MASK;
791 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
792 } else {
793 mm->flags = default_dump_filter;
794 mm->def_flags = 0;
795 }
796
797 if (mm_alloc_pgd(mm))
798 goto fail_nopgd;
799
800 if (init_new_context(p, mm))
801 goto fail_nocontext;
802
803 mm->user_ns = get_user_ns(user_ns);
804 return mm;
805
806 fail_nocontext:
807 mm_free_pgd(mm);
808 fail_nopgd:
809 free_mm(mm);
810 return NULL;
811 }
812
813 static void check_mm(struct mm_struct *mm)
814 {
815 int i;
816
817 for (i = 0; i < NR_MM_COUNTERS; i++) {
818 long x = atomic_long_read(&mm->rss_stat.count[i]);
819
820 if (unlikely(x))
821 printk(KERN_ALERT "BUG: Bad rss-counter state "
822 "mm:%p idx:%d val:%ld\n", mm, i, x);
823 }
824
825 if (atomic_long_read(&mm->nr_ptes))
826 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
827 atomic_long_read(&mm->nr_ptes));
828 if (mm_nr_pmds(mm))
829 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
830 mm_nr_pmds(mm));
831
832 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
833 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
834 #endif
835 }
836
837 /*
838 * Allocate and initialize an mm_struct.
839 */
840 struct mm_struct *mm_alloc(void)
841 {
842 struct mm_struct *mm;
843
844 mm = allocate_mm();
845 if (!mm)
846 return NULL;
847
848 memset(mm, 0, sizeof(*mm));
849 return mm_init(mm, current, current_user_ns());
850 }
851
852 /*
853 * Called when the last reference to the mm
854 * is dropped: either by a lazy thread or by
855 * mmput. Free the page directory and the mm.
856 */
857 void __mmdrop(struct mm_struct *mm)
858 {
859 BUG_ON(mm == &init_mm);
860 mm_free_pgd(mm);
861 destroy_context(mm);
862 mmu_notifier_mm_destroy(mm);
863 check_mm(mm);
864 put_user_ns(mm->user_ns);
865 free_mm(mm);
866 }
867 EXPORT_SYMBOL_GPL(__mmdrop);
868
869 static inline void __mmput(struct mm_struct *mm)
870 {
871 VM_BUG_ON(atomic_read(&mm->mm_users));
872
873 uprobe_clear_state(mm);
874 exit_aio(mm);
875 ksm_exit(mm);
876 khugepaged_exit(mm); /* must run before exit_mmap */
877 exit_mmap(mm);
878 mm_put_huge_zero_page(mm);
879 set_mm_exe_file(mm, NULL);
880 if (!list_empty(&mm->mmlist)) {
881 spin_lock(&mmlist_lock);
882 list_del(&mm->mmlist);
883 spin_unlock(&mmlist_lock);
884 }
885 if (mm->binfmt)
886 module_put(mm->binfmt->module);
887 set_bit(MMF_OOM_SKIP, &mm->flags);
888 mmdrop(mm);
889 }
890
891 /*
892 * Decrement the use count and release all resources for an mm.
893 */
894 void mmput(struct mm_struct *mm)
895 {
896 might_sleep();
897
898 if (atomic_dec_and_test(&mm->mm_users))
899 __mmput(mm);
900 }
901 EXPORT_SYMBOL_GPL(mmput);
902
903 #ifdef CONFIG_MMU
904 static void mmput_async_fn(struct work_struct *work)
905 {
906 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
907 __mmput(mm);
908 }
909
910 void mmput_async(struct mm_struct *mm)
911 {
912 if (atomic_dec_and_test(&mm->mm_users)) {
913 INIT_WORK(&mm->async_put_work, mmput_async_fn);
914 schedule_work(&mm->async_put_work);
915 }
916 }
917 #endif
918
919 /**
920 * set_mm_exe_file - change a reference to the mm's executable file
921 *
922 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
923 *
924 * Main users are mmput() and sys_execve(). Callers prevent concurrent
925 * invocations: in mmput() nobody alive left, in execve task is single
926 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
927 * mm->exe_file, but does so without using set_mm_exe_file() in order
928 * to do avoid the need for any locks.
929 */
930 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
931 {
932 struct file *old_exe_file;
933
934 /*
935 * It is safe to dereference the exe_file without RCU as
936 * this function is only called if nobody else can access
937 * this mm -- see comment above for justification.
938 */
939 old_exe_file = rcu_dereference_raw(mm->exe_file);
940
941 if (new_exe_file)
942 get_file(new_exe_file);
943 rcu_assign_pointer(mm->exe_file, new_exe_file);
944 if (old_exe_file)
945 fput(old_exe_file);
946 }
947
948 /**
949 * get_mm_exe_file - acquire a reference to the mm's executable file
950 *
951 * Returns %NULL if mm has no associated executable file.
952 * User must release file via fput().
953 */
954 struct file *get_mm_exe_file(struct mm_struct *mm)
955 {
956 struct file *exe_file;
957
958 rcu_read_lock();
959 exe_file = rcu_dereference(mm->exe_file);
960 if (exe_file && !get_file_rcu(exe_file))
961 exe_file = NULL;
962 rcu_read_unlock();
963 return exe_file;
964 }
965 EXPORT_SYMBOL(get_mm_exe_file);
966
967 /**
968 * get_task_exe_file - acquire a reference to the task's executable file
969 *
970 * Returns %NULL if task's mm (if any) has no associated executable file or
971 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
972 * User must release file via fput().
973 */
974 struct file *get_task_exe_file(struct task_struct *task)
975 {
976 struct file *exe_file = NULL;
977 struct mm_struct *mm;
978
979 task_lock(task);
980 mm = task->mm;
981 if (mm) {
982 if (!(task->flags & PF_KTHREAD))
983 exe_file = get_mm_exe_file(mm);
984 }
985 task_unlock(task);
986 return exe_file;
987 }
988 EXPORT_SYMBOL(get_task_exe_file);
989
990 /**
991 * get_task_mm - acquire a reference to the task's mm
992 *
993 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
994 * this kernel workthread has transiently adopted a user mm with use_mm,
995 * to do its AIO) is not set and if so returns a reference to it, after
996 * bumping up the use count. User must release the mm via mmput()
997 * after use. Typically used by /proc and ptrace.
998 */
999 struct mm_struct *get_task_mm(struct task_struct *task)
1000 {
1001 struct mm_struct *mm;
1002
1003 task_lock(task);
1004 mm = task->mm;
1005 if (mm) {
1006 if (task->flags & PF_KTHREAD)
1007 mm = NULL;
1008 else
1009 mmget(mm);
1010 }
1011 task_unlock(task);
1012 return mm;
1013 }
1014 EXPORT_SYMBOL_GPL(get_task_mm);
1015
1016 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1017 {
1018 struct mm_struct *mm;
1019 int err;
1020
1021 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1022 if (err)
1023 return ERR_PTR(err);
1024
1025 mm = get_task_mm(task);
1026 if (mm && mm != current->mm &&
1027 !ptrace_may_access(task, mode)) {
1028 mmput(mm);
1029 mm = ERR_PTR(-EACCES);
1030 }
1031 mutex_unlock(&task->signal->cred_guard_mutex);
1032
1033 return mm;
1034 }
1035
1036 static void complete_vfork_done(struct task_struct *tsk)
1037 {
1038 struct completion *vfork;
1039
1040 task_lock(tsk);
1041 vfork = tsk->vfork_done;
1042 if (likely(vfork)) {
1043 tsk->vfork_done = NULL;
1044 complete(vfork);
1045 }
1046 task_unlock(tsk);
1047 }
1048
1049 static int wait_for_vfork_done(struct task_struct *child,
1050 struct completion *vfork)
1051 {
1052 int killed;
1053
1054 freezer_do_not_count();
1055 killed = wait_for_completion_killable(vfork);
1056 freezer_count();
1057
1058 if (killed) {
1059 task_lock(child);
1060 child->vfork_done = NULL;
1061 task_unlock(child);
1062 }
1063
1064 put_task_struct(child);
1065 return killed;
1066 }
1067
1068 /* Please note the differences between mmput and mm_release.
1069 * mmput is called whenever we stop holding onto a mm_struct,
1070 * error success whatever.
1071 *
1072 * mm_release is called after a mm_struct has been removed
1073 * from the current process.
1074 *
1075 * This difference is important for error handling, when we
1076 * only half set up a mm_struct for a new process and need to restore
1077 * the old one. Because we mmput the new mm_struct before
1078 * restoring the old one. . .
1079 * Eric Biederman 10 January 1998
1080 */
1081 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1082 {
1083 /* Get rid of any futexes when releasing the mm */
1084 #ifdef CONFIG_FUTEX
1085 if (unlikely(tsk->robust_list)) {
1086 exit_robust_list(tsk);
1087 tsk->robust_list = NULL;
1088 }
1089 #ifdef CONFIG_COMPAT
1090 if (unlikely(tsk->compat_robust_list)) {
1091 compat_exit_robust_list(tsk);
1092 tsk->compat_robust_list = NULL;
1093 }
1094 #endif
1095 if (unlikely(!list_empty(&tsk->pi_state_list)))
1096 exit_pi_state_list(tsk);
1097 #endif
1098
1099 uprobe_free_utask(tsk);
1100
1101 /* Get rid of any cached register state */
1102 deactivate_mm(tsk, mm);
1103
1104 /*
1105 * Signal userspace if we're not exiting with a core dump
1106 * because we want to leave the value intact for debugging
1107 * purposes.
1108 */
1109 if (tsk->clear_child_tid) {
1110 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1111 atomic_read(&mm->mm_users) > 1) {
1112 /*
1113 * We don't check the error code - if userspace has
1114 * not set up a proper pointer then tough luck.
1115 */
1116 put_user(0, tsk->clear_child_tid);
1117 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1118 1, NULL, NULL, 0);
1119 }
1120 tsk->clear_child_tid = NULL;
1121 }
1122
1123 /*
1124 * All done, finally we can wake up parent and return this mm to him.
1125 * Also kthread_stop() uses this completion for synchronization.
1126 */
1127 if (tsk->vfork_done)
1128 complete_vfork_done(tsk);
1129 }
1130
1131 /*
1132 * Allocate a new mm structure and copy contents from the
1133 * mm structure of the passed in task structure.
1134 */
1135 static struct mm_struct *dup_mm(struct task_struct *tsk)
1136 {
1137 struct mm_struct *mm, *oldmm = current->mm;
1138 int err;
1139
1140 mm = allocate_mm();
1141 if (!mm)
1142 goto fail_nomem;
1143
1144 memcpy(mm, oldmm, sizeof(*mm));
1145
1146 if (!mm_init(mm, tsk, mm->user_ns))
1147 goto fail_nomem;
1148
1149 err = dup_mmap(mm, oldmm);
1150 if (err)
1151 goto free_pt;
1152
1153 mm->hiwater_rss = get_mm_rss(mm);
1154 mm->hiwater_vm = mm->total_vm;
1155
1156 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1157 goto free_pt;
1158
1159 return mm;
1160
1161 free_pt:
1162 /* don't put binfmt in mmput, we haven't got module yet */
1163 mm->binfmt = NULL;
1164 mmput(mm);
1165
1166 fail_nomem:
1167 return NULL;
1168 }
1169
1170 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1171 {
1172 struct mm_struct *mm, *oldmm;
1173 int retval;
1174
1175 tsk->min_flt = tsk->maj_flt = 0;
1176 tsk->nvcsw = tsk->nivcsw = 0;
1177 #ifdef CONFIG_DETECT_HUNG_TASK
1178 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1179 #endif
1180
1181 tsk->mm = NULL;
1182 tsk->active_mm = NULL;
1183
1184 /*
1185 * Are we cloning a kernel thread?
1186 *
1187 * We need to steal a active VM for that..
1188 */
1189 oldmm = current->mm;
1190 if (!oldmm)
1191 return 0;
1192
1193 /* initialize the new vmacache entries */
1194 vmacache_flush(tsk);
1195
1196 if (clone_flags & CLONE_VM) {
1197 mmget(oldmm);
1198 mm = oldmm;
1199 goto good_mm;
1200 }
1201
1202 retval = -ENOMEM;
1203 mm = dup_mm(tsk);
1204 if (!mm)
1205 goto fail_nomem;
1206
1207 good_mm:
1208 tsk->mm = mm;
1209 tsk->active_mm = mm;
1210 return 0;
1211
1212 fail_nomem:
1213 return retval;
1214 }
1215
1216 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1217 {
1218 struct fs_struct *fs = current->fs;
1219 if (clone_flags & CLONE_FS) {
1220 /* tsk->fs is already what we want */
1221 spin_lock(&fs->lock);
1222 if (fs->in_exec) {
1223 spin_unlock(&fs->lock);
1224 return -EAGAIN;
1225 }
1226 fs->users++;
1227 spin_unlock(&fs->lock);
1228 return 0;
1229 }
1230 tsk->fs = copy_fs_struct(fs);
1231 if (!tsk->fs)
1232 return -ENOMEM;
1233 return 0;
1234 }
1235
1236 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1237 {
1238 struct files_struct *oldf, *newf;
1239 int error = 0;
1240
1241 /*
1242 * A background process may not have any files ...
1243 */
1244 oldf = current->files;
1245 if (!oldf)
1246 goto out;
1247
1248 if (clone_flags & CLONE_FILES) {
1249 atomic_inc(&oldf->count);
1250 goto out;
1251 }
1252
1253 newf = dup_fd(oldf, &error);
1254 if (!newf)
1255 goto out;
1256
1257 tsk->files = newf;
1258 error = 0;
1259 out:
1260 return error;
1261 }
1262
1263 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1264 {
1265 #ifdef CONFIG_BLOCK
1266 struct io_context *ioc = current->io_context;
1267 struct io_context *new_ioc;
1268
1269 if (!ioc)
1270 return 0;
1271 /*
1272 * Share io context with parent, if CLONE_IO is set
1273 */
1274 if (clone_flags & CLONE_IO) {
1275 ioc_task_link(ioc);
1276 tsk->io_context = ioc;
1277 } else if (ioprio_valid(ioc->ioprio)) {
1278 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1279 if (unlikely(!new_ioc))
1280 return -ENOMEM;
1281
1282 new_ioc->ioprio = ioc->ioprio;
1283 put_io_context(new_ioc);
1284 }
1285 #endif
1286 return 0;
1287 }
1288
1289 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1290 {
1291 struct sighand_struct *sig;
1292
1293 if (clone_flags & CLONE_SIGHAND) {
1294 atomic_inc(&current->sighand->count);
1295 return 0;
1296 }
1297 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1298 rcu_assign_pointer(tsk->sighand, sig);
1299 if (!sig)
1300 return -ENOMEM;
1301
1302 atomic_set(&sig->count, 1);
1303 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1304 return 0;
1305 }
1306
1307 void __cleanup_sighand(struct sighand_struct *sighand)
1308 {
1309 if (atomic_dec_and_test(&sighand->count)) {
1310 signalfd_cleanup(sighand);
1311 /*
1312 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1313 * without an RCU grace period, see __lock_task_sighand().
1314 */
1315 kmem_cache_free(sighand_cachep, sighand);
1316 }
1317 }
1318
1319 #ifdef CONFIG_POSIX_TIMERS
1320 /*
1321 * Initialize POSIX timer handling for a thread group.
1322 */
1323 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1324 {
1325 unsigned long cpu_limit;
1326
1327 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1328 if (cpu_limit != RLIM_INFINITY) {
1329 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1330 sig->cputimer.running = true;
1331 }
1332
1333 /* The timer lists. */
1334 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1335 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1336 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1337 }
1338 #else
1339 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1340 #endif
1341
1342 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1343 {
1344 struct signal_struct *sig;
1345
1346 if (clone_flags & CLONE_THREAD)
1347 return 0;
1348
1349 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1350 tsk->signal = sig;
1351 if (!sig)
1352 return -ENOMEM;
1353
1354 sig->nr_threads = 1;
1355 atomic_set(&sig->live, 1);
1356 atomic_set(&sig->sigcnt, 1);
1357
1358 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1359 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1360 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1361
1362 init_waitqueue_head(&sig->wait_chldexit);
1363 sig->curr_target = tsk;
1364 init_sigpending(&sig->shared_pending);
1365 seqlock_init(&sig->stats_lock);
1366 prev_cputime_init(&sig->prev_cputime);
1367
1368 #ifdef CONFIG_POSIX_TIMERS
1369 INIT_LIST_HEAD(&sig->posix_timers);
1370 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1371 sig->real_timer.function = it_real_fn;
1372 #endif
1373
1374 task_lock(current->group_leader);
1375 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1376 task_unlock(current->group_leader);
1377
1378 posix_cpu_timers_init_group(sig);
1379
1380 tty_audit_fork(sig);
1381 sched_autogroup_fork(sig);
1382
1383 sig->oom_score_adj = current->signal->oom_score_adj;
1384 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1385
1386 mutex_init(&sig->cred_guard_mutex);
1387
1388 return 0;
1389 }
1390
1391 static void copy_seccomp(struct task_struct *p)
1392 {
1393 #ifdef CONFIG_SECCOMP
1394 /*
1395 * Must be called with sighand->lock held, which is common to
1396 * all threads in the group. Holding cred_guard_mutex is not
1397 * needed because this new task is not yet running and cannot
1398 * be racing exec.
1399 */
1400 assert_spin_locked(&current->sighand->siglock);
1401
1402 /* Ref-count the new filter user, and assign it. */
1403 get_seccomp_filter(current);
1404 p->seccomp = current->seccomp;
1405
1406 /*
1407 * Explicitly enable no_new_privs here in case it got set
1408 * between the task_struct being duplicated and holding the
1409 * sighand lock. The seccomp state and nnp must be in sync.
1410 */
1411 if (task_no_new_privs(current))
1412 task_set_no_new_privs(p);
1413
1414 /*
1415 * If the parent gained a seccomp mode after copying thread
1416 * flags and between before we held the sighand lock, we have
1417 * to manually enable the seccomp thread flag here.
1418 */
1419 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1420 set_tsk_thread_flag(p, TIF_SECCOMP);
1421 #endif
1422 }
1423
1424 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1425 {
1426 current->clear_child_tid = tidptr;
1427
1428 return task_pid_vnr(current);
1429 }
1430
1431 static void rt_mutex_init_task(struct task_struct *p)
1432 {
1433 raw_spin_lock_init(&p->pi_lock);
1434 #ifdef CONFIG_RT_MUTEXES
1435 p->pi_waiters = RB_ROOT;
1436 p->pi_waiters_leftmost = NULL;
1437 p->pi_blocked_on = NULL;
1438 #endif
1439 }
1440
1441 #ifdef CONFIG_POSIX_TIMERS
1442 /*
1443 * Initialize POSIX timer handling for a single task.
1444 */
1445 static void posix_cpu_timers_init(struct task_struct *tsk)
1446 {
1447 tsk->cputime_expires.prof_exp = 0;
1448 tsk->cputime_expires.virt_exp = 0;
1449 tsk->cputime_expires.sched_exp = 0;
1450 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1451 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1452 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1453 }
1454 #else
1455 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1456 #endif
1457
1458 static inline void
1459 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1460 {
1461 task->pids[type].pid = pid;
1462 }
1463
1464 /*
1465 * This creates a new process as a copy of the old one,
1466 * but does not actually start it yet.
1467 *
1468 * It copies the registers, and all the appropriate
1469 * parts of the process environment (as per the clone
1470 * flags). The actual kick-off is left to the caller.
1471 */
1472 static __latent_entropy struct task_struct *copy_process(
1473 unsigned long clone_flags,
1474 unsigned long stack_start,
1475 unsigned long stack_size,
1476 int __user *child_tidptr,
1477 struct pid *pid,
1478 int trace,
1479 unsigned long tls,
1480 int node)
1481 {
1482 int retval;
1483 struct task_struct *p;
1484
1485 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1486 return ERR_PTR(-EINVAL);
1487
1488 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1489 return ERR_PTR(-EINVAL);
1490
1491 /*
1492 * Thread groups must share signals as well, and detached threads
1493 * can only be started up within the thread group.
1494 */
1495 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1496 return ERR_PTR(-EINVAL);
1497
1498 /*
1499 * Shared signal handlers imply shared VM. By way of the above,
1500 * thread groups also imply shared VM. Blocking this case allows
1501 * for various simplifications in other code.
1502 */
1503 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1504 return ERR_PTR(-EINVAL);
1505
1506 /*
1507 * Siblings of global init remain as zombies on exit since they are
1508 * not reaped by their parent (swapper). To solve this and to avoid
1509 * multi-rooted process trees, prevent global and container-inits
1510 * from creating siblings.
1511 */
1512 if ((clone_flags & CLONE_PARENT) &&
1513 current->signal->flags & SIGNAL_UNKILLABLE)
1514 return ERR_PTR(-EINVAL);
1515
1516 /*
1517 * If the new process will be in a different pid or user namespace
1518 * do not allow it to share a thread group with the forking task.
1519 */
1520 if (clone_flags & CLONE_THREAD) {
1521 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1522 (task_active_pid_ns(current) !=
1523 current->nsproxy->pid_ns_for_children))
1524 return ERR_PTR(-EINVAL);
1525 }
1526
1527 retval = security_task_create(clone_flags);
1528 if (retval)
1529 goto fork_out;
1530
1531 retval = -ENOMEM;
1532 p = dup_task_struct(current, node);
1533 if (!p)
1534 goto fork_out;
1535
1536 ftrace_graph_init_task(p);
1537
1538 rt_mutex_init_task(p);
1539
1540 #ifdef CONFIG_PROVE_LOCKING
1541 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1542 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1543 #endif
1544 retval = -EAGAIN;
1545 if (atomic_read(&p->real_cred->user->processes) >=
1546 task_rlimit(p, RLIMIT_NPROC)) {
1547 if (p->real_cred->user != INIT_USER &&
1548 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1549 goto bad_fork_free;
1550 }
1551 current->flags &= ~PF_NPROC_EXCEEDED;
1552
1553 retval = copy_creds(p, clone_flags);
1554 if (retval < 0)
1555 goto bad_fork_free;
1556
1557 /*
1558 * If multiple threads are within copy_process(), then this check
1559 * triggers too late. This doesn't hurt, the check is only there
1560 * to stop root fork bombs.
1561 */
1562 retval = -EAGAIN;
1563 if (nr_threads >= max_threads)
1564 goto bad_fork_cleanup_count;
1565
1566 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1567 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1568 p->flags |= PF_FORKNOEXEC;
1569 INIT_LIST_HEAD(&p->children);
1570 INIT_LIST_HEAD(&p->sibling);
1571 rcu_copy_process(p);
1572 p->vfork_done = NULL;
1573 spin_lock_init(&p->alloc_lock);
1574
1575 init_sigpending(&p->pending);
1576
1577 p->utime = p->stime = p->gtime = 0;
1578 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1579 p->utimescaled = p->stimescaled = 0;
1580 #endif
1581 prev_cputime_init(&p->prev_cputime);
1582
1583 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1584 seqcount_init(&p->vtime_seqcount);
1585 p->vtime_snap = 0;
1586 p->vtime_snap_whence = VTIME_INACTIVE;
1587 #endif
1588
1589 #if defined(SPLIT_RSS_COUNTING)
1590 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1591 #endif
1592
1593 p->default_timer_slack_ns = current->timer_slack_ns;
1594
1595 task_io_accounting_init(&p->ioac);
1596 acct_clear_integrals(p);
1597
1598 posix_cpu_timers_init(p);
1599
1600 p->start_time = ktime_get_ns();
1601 p->real_start_time = ktime_get_boot_ns();
1602 p->io_context = NULL;
1603 p->audit_context = NULL;
1604 cgroup_fork(p);
1605 #ifdef CONFIG_NUMA
1606 p->mempolicy = mpol_dup(p->mempolicy);
1607 if (IS_ERR(p->mempolicy)) {
1608 retval = PTR_ERR(p->mempolicy);
1609 p->mempolicy = NULL;
1610 goto bad_fork_cleanup_threadgroup_lock;
1611 }
1612 #endif
1613 #ifdef CONFIG_CPUSETS
1614 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1615 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1616 seqcount_init(&p->mems_allowed_seq);
1617 #endif
1618 #ifdef CONFIG_TRACE_IRQFLAGS
1619 p->irq_events = 0;
1620 p->hardirqs_enabled = 0;
1621 p->hardirq_enable_ip = 0;
1622 p->hardirq_enable_event = 0;
1623 p->hardirq_disable_ip = _THIS_IP_;
1624 p->hardirq_disable_event = 0;
1625 p->softirqs_enabled = 1;
1626 p->softirq_enable_ip = _THIS_IP_;
1627 p->softirq_enable_event = 0;
1628 p->softirq_disable_ip = 0;
1629 p->softirq_disable_event = 0;
1630 p->hardirq_context = 0;
1631 p->softirq_context = 0;
1632 #endif
1633
1634 p->pagefault_disabled = 0;
1635
1636 #ifdef CONFIG_LOCKDEP
1637 p->lockdep_depth = 0; /* no locks held yet */
1638 p->curr_chain_key = 0;
1639 p->lockdep_recursion = 0;
1640 #endif
1641
1642 #ifdef CONFIG_DEBUG_MUTEXES
1643 p->blocked_on = NULL; /* not blocked yet */
1644 #endif
1645 #ifdef CONFIG_BCACHE
1646 p->sequential_io = 0;
1647 p->sequential_io_avg = 0;
1648 #endif
1649
1650 /* Perform scheduler related setup. Assign this task to a CPU. */
1651 retval = sched_fork(clone_flags, p);
1652 if (retval)
1653 goto bad_fork_cleanup_policy;
1654
1655 retval = perf_event_init_task(p);
1656 if (retval)
1657 goto bad_fork_cleanup_policy;
1658 retval = audit_alloc(p);
1659 if (retval)
1660 goto bad_fork_cleanup_perf;
1661 /* copy all the process information */
1662 shm_init_task(p);
1663 retval = copy_semundo(clone_flags, p);
1664 if (retval)
1665 goto bad_fork_cleanup_audit;
1666 retval = copy_files(clone_flags, p);
1667 if (retval)
1668 goto bad_fork_cleanup_semundo;
1669 retval = copy_fs(clone_flags, p);
1670 if (retval)
1671 goto bad_fork_cleanup_files;
1672 retval = copy_sighand(clone_flags, p);
1673 if (retval)
1674 goto bad_fork_cleanup_fs;
1675 retval = copy_signal(clone_flags, p);
1676 if (retval)
1677 goto bad_fork_cleanup_sighand;
1678 retval = copy_mm(clone_flags, p);
1679 if (retval)
1680 goto bad_fork_cleanup_signal;
1681 retval = copy_namespaces(clone_flags, p);
1682 if (retval)
1683 goto bad_fork_cleanup_mm;
1684 retval = copy_io(clone_flags, p);
1685 if (retval)
1686 goto bad_fork_cleanup_namespaces;
1687 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1688 if (retval)
1689 goto bad_fork_cleanup_io;
1690
1691 if (pid != &init_struct_pid) {
1692 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1693 if (IS_ERR(pid)) {
1694 retval = PTR_ERR(pid);
1695 goto bad_fork_cleanup_thread;
1696 }
1697 }
1698
1699 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1700 /*
1701 * Clear TID on mm_release()?
1702 */
1703 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1704 #ifdef CONFIG_BLOCK
1705 p->plug = NULL;
1706 #endif
1707 #ifdef CONFIG_FUTEX
1708 p->robust_list = NULL;
1709 #ifdef CONFIG_COMPAT
1710 p->compat_robust_list = NULL;
1711 #endif
1712 INIT_LIST_HEAD(&p->pi_state_list);
1713 p->pi_state_cache = NULL;
1714 #endif
1715 /*
1716 * sigaltstack should be cleared when sharing the same VM
1717 */
1718 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1719 sas_ss_reset(p);
1720
1721 /*
1722 * Syscall tracing and stepping should be turned off in the
1723 * child regardless of CLONE_PTRACE.
1724 */
1725 user_disable_single_step(p);
1726 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1727 #ifdef TIF_SYSCALL_EMU
1728 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1729 #endif
1730 clear_all_latency_tracing(p);
1731
1732 /* ok, now we should be set up.. */
1733 p->pid = pid_nr(pid);
1734 if (clone_flags & CLONE_THREAD) {
1735 p->exit_signal = -1;
1736 p->group_leader = current->group_leader;
1737 p->tgid = current->tgid;
1738 } else {
1739 if (clone_flags & CLONE_PARENT)
1740 p->exit_signal = current->group_leader->exit_signal;
1741 else
1742 p->exit_signal = (clone_flags & CSIGNAL);
1743 p->group_leader = p;
1744 p->tgid = p->pid;
1745 }
1746
1747 p->nr_dirtied = 0;
1748 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1749 p->dirty_paused_when = 0;
1750
1751 p->pdeath_signal = 0;
1752 INIT_LIST_HEAD(&p->thread_group);
1753 p->task_works = NULL;
1754
1755 cgroup_threadgroup_change_begin(current);
1756 /*
1757 * Ensure that the cgroup subsystem policies allow the new process to be
1758 * forked. It should be noted the the new process's css_set can be changed
1759 * between here and cgroup_post_fork() if an organisation operation is in
1760 * progress.
1761 */
1762 retval = cgroup_can_fork(p);
1763 if (retval)
1764 goto bad_fork_free_pid;
1765
1766 /*
1767 * Make it visible to the rest of the system, but dont wake it up yet.
1768 * Need tasklist lock for parent etc handling!
1769 */
1770 write_lock_irq(&tasklist_lock);
1771
1772 /* CLONE_PARENT re-uses the old parent */
1773 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1774 p->real_parent = current->real_parent;
1775 p->parent_exec_id = current->parent_exec_id;
1776 } else {
1777 p->real_parent = current;
1778 p->parent_exec_id = current->self_exec_id;
1779 }
1780
1781 spin_lock(&current->sighand->siglock);
1782
1783 /*
1784 * Copy seccomp details explicitly here, in case they were changed
1785 * before holding sighand lock.
1786 */
1787 copy_seccomp(p);
1788
1789 /*
1790 * Process group and session signals need to be delivered to just the
1791 * parent before the fork or both the parent and the child after the
1792 * fork. Restart if a signal comes in before we add the new process to
1793 * it's process group.
1794 * A fatal signal pending means that current will exit, so the new
1795 * thread can't slip out of an OOM kill (or normal SIGKILL).
1796 */
1797 recalc_sigpending();
1798 if (signal_pending(current)) {
1799 spin_unlock(&current->sighand->siglock);
1800 write_unlock_irq(&tasklist_lock);
1801 retval = -ERESTARTNOINTR;
1802 goto bad_fork_cancel_cgroup;
1803 }
1804
1805 if (likely(p->pid)) {
1806 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1807
1808 init_task_pid(p, PIDTYPE_PID, pid);
1809 if (thread_group_leader(p)) {
1810 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1811 init_task_pid(p, PIDTYPE_SID, task_session(current));
1812
1813 if (is_child_reaper(pid)) {
1814 ns_of_pid(pid)->child_reaper = p;
1815 p->signal->flags |= SIGNAL_UNKILLABLE;
1816 }
1817
1818 p->signal->leader_pid = pid;
1819 p->signal->tty = tty_kref_get(current->signal->tty);
1820 /*
1821 * Inherit has_child_subreaper flag under the same
1822 * tasklist_lock with adding child to the process tree
1823 * for propagate_has_child_subreaper optimization.
1824 */
1825 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1826 p->real_parent->signal->is_child_subreaper;
1827 list_add_tail(&p->sibling, &p->real_parent->children);
1828 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1829 attach_pid(p, PIDTYPE_PGID);
1830 attach_pid(p, PIDTYPE_SID);
1831 __this_cpu_inc(process_counts);
1832 } else {
1833 current->signal->nr_threads++;
1834 atomic_inc(&current->signal->live);
1835 atomic_inc(&current->signal->sigcnt);
1836 list_add_tail_rcu(&p->thread_group,
1837 &p->group_leader->thread_group);
1838 list_add_tail_rcu(&p->thread_node,
1839 &p->signal->thread_head);
1840 }
1841 attach_pid(p, PIDTYPE_PID);
1842 nr_threads++;
1843 }
1844
1845 total_forks++;
1846 spin_unlock(&current->sighand->siglock);
1847 syscall_tracepoint_update(p);
1848 write_unlock_irq(&tasklist_lock);
1849
1850 proc_fork_connector(p);
1851 cgroup_post_fork(p);
1852 cgroup_threadgroup_change_end(current);
1853 perf_event_fork(p);
1854
1855 trace_task_newtask(p, clone_flags);
1856 uprobe_copy_process(p, clone_flags);
1857
1858 return p;
1859
1860 bad_fork_cancel_cgroup:
1861 cgroup_cancel_fork(p);
1862 bad_fork_free_pid:
1863 cgroup_threadgroup_change_end(current);
1864 if (pid != &init_struct_pid)
1865 free_pid(pid);
1866 bad_fork_cleanup_thread:
1867 exit_thread(p);
1868 bad_fork_cleanup_io:
1869 if (p->io_context)
1870 exit_io_context(p);
1871 bad_fork_cleanup_namespaces:
1872 exit_task_namespaces(p);
1873 bad_fork_cleanup_mm:
1874 if (p->mm)
1875 mmput(p->mm);
1876 bad_fork_cleanup_signal:
1877 if (!(clone_flags & CLONE_THREAD))
1878 free_signal_struct(p->signal);
1879 bad_fork_cleanup_sighand:
1880 __cleanup_sighand(p->sighand);
1881 bad_fork_cleanup_fs:
1882 exit_fs(p); /* blocking */
1883 bad_fork_cleanup_files:
1884 exit_files(p); /* blocking */
1885 bad_fork_cleanup_semundo:
1886 exit_sem(p);
1887 bad_fork_cleanup_audit:
1888 audit_free(p);
1889 bad_fork_cleanup_perf:
1890 perf_event_free_task(p);
1891 bad_fork_cleanup_policy:
1892 #ifdef CONFIG_NUMA
1893 mpol_put(p->mempolicy);
1894 bad_fork_cleanup_threadgroup_lock:
1895 #endif
1896 delayacct_tsk_free(p);
1897 bad_fork_cleanup_count:
1898 atomic_dec(&p->cred->user->processes);
1899 exit_creds(p);
1900 bad_fork_free:
1901 p->state = TASK_DEAD;
1902 put_task_stack(p);
1903 free_task(p);
1904 fork_out:
1905 return ERR_PTR(retval);
1906 }
1907
1908 static inline void init_idle_pids(struct pid_link *links)
1909 {
1910 enum pid_type type;
1911
1912 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1913 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1914 links[type].pid = &init_struct_pid;
1915 }
1916 }
1917
1918 struct task_struct *fork_idle(int cpu)
1919 {
1920 struct task_struct *task;
1921 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1922 cpu_to_node(cpu));
1923 if (!IS_ERR(task)) {
1924 init_idle_pids(task->pids);
1925 init_idle(task, cpu);
1926 }
1927
1928 return task;
1929 }
1930
1931 /*
1932 * Ok, this is the main fork-routine.
1933 *
1934 * It copies the process, and if successful kick-starts
1935 * it and waits for it to finish using the VM if required.
1936 */
1937 long _do_fork(unsigned long clone_flags,
1938 unsigned long stack_start,
1939 unsigned long stack_size,
1940 int __user *parent_tidptr,
1941 int __user *child_tidptr,
1942 unsigned long tls)
1943 {
1944 struct task_struct *p;
1945 int trace = 0;
1946 long nr;
1947
1948 /*
1949 * Determine whether and which event to report to ptracer. When
1950 * called from kernel_thread or CLONE_UNTRACED is explicitly
1951 * requested, no event is reported; otherwise, report if the event
1952 * for the type of forking is enabled.
1953 */
1954 if (!(clone_flags & CLONE_UNTRACED)) {
1955 if (clone_flags & CLONE_VFORK)
1956 trace = PTRACE_EVENT_VFORK;
1957 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1958 trace = PTRACE_EVENT_CLONE;
1959 else
1960 trace = PTRACE_EVENT_FORK;
1961
1962 if (likely(!ptrace_event_enabled(current, trace)))
1963 trace = 0;
1964 }
1965
1966 p = copy_process(clone_flags, stack_start, stack_size,
1967 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1968 add_latent_entropy();
1969 /*
1970 * Do this prior waking up the new thread - the thread pointer
1971 * might get invalid after that point, if the thread exits quickly.
1972 */
1973 if (!IS_ERR(p)) {
1974 struct completion vfork;
1975 struct pid *pid;
1976
1977 trace_sched_process_fork(current, p);
1978
1979 pid = get_task_pid(p, PIDTYPE_PID);
1980 nr = pid_vnr(pid);
1981
1982 if (clone_flags & CLONE_PARENT_SETTID)
1983 put_user(nr, parent_tidptr);
1984
1985 if (clone_flags & CLONE_VFORK) {
1986 p->vfork_done = &vfork;
1987 init_completion(&vfork);
1988 get_task_struct(p);
1989 }
1990
1991 wake_up_new_task(p);
1992
1993 /* forking complete and child started to run, tell ptracer */
1994 if (unlikely(trace))
1995 ptrace_event_pid(trace, pid);
1996
1997 if (clone_flags & CLONE_VFORK) {
1998 if (!wait_for_vfork_done(p, &vfork))
1999 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2000 }
2001
2002 put_pid(pid);
2003 } else {
2004 nr = PTR_ERR(p);
2005 }
2006 return nr;
2007 }
2008
2009 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2010 /* For compatibility with architectures that call do_fork directly rather than
2011 * using the syscall entry points below. */
2012 long do_fork(unsigned long clone_flags,
2013 unsigned long stack_start,
2014 unsigned long stack_size,
2015 int __user *parent_tidptr,
2016 int __user *child_tidptr)
2017 {
2018 return _do_fork(clone_flags, stack_start, stack_size,
2019 parent_tidptr, child_tidptr, 0);
2020 }
2021 #endif
2022
2023 /*
2024 * Create a kernel thread.
2025 */
2026 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2027 {
2028 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2029 (unsigned long)arg, NULL, NULL, 0);
2030 }
2031
2032 #ifdef __ARCH_WANT_SYS_FORK
2033 SYSCALL_DEFINE0(fork)
2034 {
2035 #ifdef CONFIG_MMU
2036 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2037 #else
2038 /* can not support in nommu mode */
2039 return -EINVAL;
2040 #endif
2041 }
2042 #endif
2043
2044 #ifdef __ARCH_WANT_SYS_VFORK
2045 SYSCALL_DEFINE0(vfork)
2046 {
2047 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2048 0, NULL, NULL, 0);
2049 }
2050 #endif
2051
2052 #ifdef __ARCH_WANT_SYS_CLONE
2053 #ifdef CONFIG_CLONE_BACKWARDS
2054 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2055 int __user *, parent_tidptr,
2056 unsigned long, tls,
2057 int __user *, child_tidptr)
2058 #elif defined(CONFIG_CLONE_BACKWARDS2)
2059 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2060 int __user *, parent_tidptr,
2061 int __user *, child_tidptr,
2062 unsigned long, tls)
2063 #elif defined(CONFIG_CLONE_BACKWARDS3)
2064 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2065 int, stack_size,
2066 int __user *, parent_tidptr,
2067 int __user *, child_tidptr,
2068 unsigned long, tls)
2069 #else
2070 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2071 int __user *, parent_tidptr,
2072 int __user *, child_tidptr,
2073 unsigned long, tls)
2074 #endif
2075 {
2076 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2077 }
2078 #endif
2079
2080 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2081 {
2082 struct task_struct *leader, *parent, *child;
2083 int res;
2084
2085 read_lock(&tasklist_lock);
2086 leader = top = top->group_leader;
2087 down:
2088 for_each_thread(leader, parent) {
2089 list_for_each_entry(child, &parent->children, sibling) {
2090 res = visitor(child, data);
2091 if (res) {
2092 if (res < 0)
2093 goto out;
2094 leader = child;
2095 goto down;
2096 }
2097 up:
2098 ;
2099 }
2100 }
2101
2102 if (leader != top) {
2103 child = leader;
2104 parent = child->real_parent;
2105 leader = parent->group_leader;
2106 goto up;
2107 }
2108 out:
2109 read_unlock(&tasklist_lock);
2110 }
2111
2112 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2113 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2114 #endif
2115
2116 static void sighand_ctor(void *data)
2117 {
2118 struct sighand_struct *sighand = data;
2119
2120 spin_lock_init(&sighand->siglock);
2121 init_waitqueue_head(&sighand->signalfd_wqh);
2122 }
2123
2124 void __init proc_caches_init(void)
2125 {
2126 sighand_cachep = kmem_cache_create("sighand_cache",
2127 sizeof(struct sighand_struct), 0,
2128 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2129 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2130 signal_cachep = kmem_cache_create("signal_cache",
2131 sizeof(struct signal_struct), 0,
2132 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2133 NULL);
2134 files_cachep = kmem_cache_create("files_cache",
2135 sizeof(struct files_struct), 0,
2136 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2137 NULL);
2138 fs_cachep = kmem_cache_create("fs_cache",
2139 sizeof(struct fs_struct), 0,
2140 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2141 NULL);
2142 /*
2143 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2144 * whole struct cpumask for the OFFSTACK case. We could change
2145 * this to *only* allocate as much of it as required by the
2146 * maximum number of CPU's we can ever have. The cpumask_allocation
2147 * is at the end of the structure, exactly for that reason.
2148 */
2149 mm_cachep = kmem_cache_create("mm_struct",
2150 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2151 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2152 NULL);
2153 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2154 mmap_init();
2155 nsproxy_cache_init();
2156 }
2157
2158 /*
2159 * Check constraints on flags passed to the unshare system call.
2160 */
2161 static int check_unshare_flags(unsigned long unshare_flags)
2162 {
2163 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2164 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2165 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2166 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2167 return -EINVAL;
2168 /*
2169 * Not implemented, but pretend it works if there is nothing
2170 * to unshare. Note that unsharing the address space or the
2171 * signal handlers also need to unshare the signal queues (aka
2172 * CLONE_THREAD).
2173 */
2174 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2175 if (!thread_group_empty(current))
2176 return -EINVAL;
2177 }
2178 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2179 if (atomic_read(&current->sighand->count) > 1)
2180 return -EINVAL;
2181 }
2182 if (unshare_flags & CLONE_VM) {
2183 if (!current_is_single_threaded())
2184 return -EINVAL;
2185 }
2186
2187 return 0;
2188 }
2189
2190 /*
2191 * Unshare the filesystem structure if it is being shared
2192 */
2193 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2194 {
2195 struct fs_struct *fs = current->fs;
2196
2197 if (!(unshare_flags & CLONE_FS) || !fs)
2198 return 0;
2199
2200 /* don't need lock here; in the worst case we'll do useless copy */
2201 if (fs->users == 1)
2202 return 0;
2203
2204 *new_fsp = copy_fs_struct(fs);
2205 if (!*new_fsp)
2206 return -ENOMEM;
2207
2208 return 0;
2209 }
2210
2211 /*
2212 * Unshare file descriptor table if it is being shared
2213 */
2214 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2215 {
2216 struct files_struct *fd = current->files;
2217 int error = 0;
2218
2219 if ((unshare_flags & CLONE_FILES) &&
2220 (fd && atomic_read(&fd->count) > 1)) {
2221 *new_fdp = dup_fd(fd, &error);
2222 if (!*new_fdp)
2223 return error;
2224 }
2225
2226 return 0;
2227 }
2228
2229 /*
2230 * unshare allows a process to 'unshare' part of the process
2231 * context which was originally shared using clone. copy_*
2232 * functions used by do_fork() cannot be used here directly
2233 * because they modify an inactive task_struct that is being
2234 * constructed. Here we are modifying the current, active,
2235 * task_struct.
2236 */
2237 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2238 {
2239 struct fs_struct *fs, *new_fs = NULL;
2240 struct files_struct *fd, *new_fd = NULL;
2241 struct cred *new_cred = NULL;
2242 struct nsproxy *new_nsproxy = NULL;
2243 int do_sysvsem = 0;
2244 int err;
2245
2246 /*
2247 * If unsharing a user namespace must also unshare the thread group
2248 * and unshare the filesystem root and working directories.
2249 */
2250 if (unshare_flags & CLONE_NEWUSER)
2251 unshare_flags |= CLONE_THREAD | CLONE_FS;
2252 /*
2253 * If unsharing vm, must also unshare signal handlers.
2254 */
2255 if (unshare_flags & CLONE_VM)
2256 unshare_flags |= CLONE_SIGHAND;
2257 /*
2258 * If unsharing a signal handlers, must also unshare the signal queues.
2259 */
2260 if (unshare_flags & CLONE_SIGHAND)
2261 unshare_flags |= CLONE_THREAD;
2262 /*
2263 * If unsharing namespace, must also unshare filesystem information.
2264 */
2265 if (unshare_flags & CLONE_NEWNS)
2266 unshare_flags |= CLONE_FS;
2267
2268 err = check_unshare_flags(unshare_flags);
2269 if (err)
2270 goto bad_unshare_out;
2271 /*
2272 * CLONE_NEWIPC must also detach from the undolist: after switching
2273 * to a new ipc namespace, the semaphore arrays from the old
2274 * namespace are unreachable.
2275 */
2276 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2277 do_sysvsem = 1;
2278 err = unshare_fs(unshare_flags, &new_fs);
2279 if (err)
2280 goto bad_unshare_out;
2281 err = unshare_fd(unshare_flags, &new_fd);
2282 if (err)
2283 goto bad_unshare_cleanup_fs;
2284 err = unshare_userns(unshare_flags, &new_cred);
2285 if (err)
2286 goto bad_unshare_cleanup_fd;
2287 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2288 new_cred, new_fs);
2289 if (err)
2290 goto bad_unshare_cleanup_cred;
2291
2292 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2293 if (do_sysvsem) {
2294 /*
2295 * CLONE_SYSVSEM is equivalent to sys_exit().
2296 */
2297 exit_sem(current);
2298 }
2299 if (unshare_flags & CLONE_NEWIPC) {
2300 /* Orphan segments in old ns (see sem above). */
2301 exit_shm(current);
2302 shm_init_task(current);
2303 }
2304
2305 if (new_nsproxy)
2306 switch_task_namespaces(current, new_nsproxy);
2307
2308 task_lock(current);
2309
2310 if (new_fs) {
2311 fs = current->fs;
2312 spin_lock(&fs->lock);
2313 current->fs = new_fs;
2314 if (--fs->users)
2315 new_fs = NULL;
2316 else
2317 new_fs = fs;
2318 spin_unlock(&fs->lock);
2319 }
2320
2321 if (new_fd) {
2322 fd = current->files;
2323 current->files = new_fd;
2324 new_fd = fd;
2325 }
2326
2327 task_unlock(current);
2328
2329 if (new_cred) {
2330 /* Install the new user namespace */
2331 commit_creds(new_cred);
2332 new_cred = NULL;
2333 }
2334 }
2335
2336 bad_unshare_cleanup_cred:
2337 if (new_cred)
2338 put_cred(new_cred);
2339 bad_unshare_cleanup_fd:
2340 if (new_fd)
2341 put_files_struct(new_fd);
2342
2343 bad_unshare_cleanup_fs:
2344 if (new_fs)
2345 free_fs_struct(new_fs);
2346
2347 bad_unshare_out:
2348 return err;
2349 }
2350
2351 /*
2352 * Helper to unshare the files of the current task.
2353 * We don't want to expose copy_files internals to
2354 * the exec layer of the kernel.
2355 */
2356
2357 int unshare_files(struct files_struct **displaced)
2358 {
2359 struct task_struct *task = current;
2360 struct files_struct *copy = NULL;
2361 int error;
2362
2363 error = unshare_fd(CLONE_FILES, &copy);
2364 if (error || !copy) {
2365 *displaced = NULL;
2366 return error;
2367 }
2368 *displaced = task->files;
2369 task_lock(task);
2370 task->files = copy;
2371 task_unlock(task);
2372 return 0;
2373 }
2374
2375 int sysctl_max_threads(struct ctl_table *table, int write,
2376 void __user *buffer, size_t *lenp, loff_t *ppos)
2377 {
2378 struct ctl_table t;
2379 int ret;
2380 int threads = max_threads;
2381 int min = MIN_THREADS;
2382 int max = MAX_THREADS;
2383
2384 t = *table;
2385 t.data = &threads;
2386 t.extra1 = &min;
2387 t.extra2 = &max;
2388
2389 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2390 if (ret || !write)
2391 return ret;
2392
2393 set_max_threads(threads);
2394
2395 return 0;
2396 }