]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/fork.c
Merge tag 'pci-v6.1-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-kernels.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/sched/mm.h>
101
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
107
108 #include <trace/events/sched.h>
109
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
112
113 /*
114 * Minimum number of threads to boot the kernel
115 */
116 #define MIN_THREADS 20
117
118 /*
119 * Maximum number of threads
120 */
121 #define MAX_THREADS FUTEX_TID_MASK
122
123 /*
124 * Protected counters by write_lock_irq(&tasklist_lock)
125 */
126 unsigned long total_forks; /* Handle normal Linux uptimes. */
127 int nr_threads; /* The idle threads do not count.. */
128
129 static int max_threads; /* tunable limit on nr_threads */
130
131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
132
133 static const char * const resident_page_types[] = {
134 NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
138 };
139
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
141
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
143
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
146 {
147 return lockdep_is_held(&tasklist_lock);
148 }
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
151
152 int nr_processes(void)
153 {
154 int cpu;
155 int total = 0;
156
157 for_each_possible_cpu(cpu)
158 total += per_cpu(process_counts, cpu);
159
160 return total;
161 }
162
163 void __weak arch_release_task_struct(struct task_struct *tsk)
164 {
165 }
166
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
169
170 static inline struct task_struct *alloc_task_struct_node(int node)
171 {
172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
173 }
174
175 static inline void free_task_struct(struct task_struct *tsk)
176 {
177 kmem_cache_free(task_struct_cachep, tsk);
178 }
179 #endif
180
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
182
183 /*
184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185 * kmemcache based allocator.
186 */
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
188
189 # ifdef CONFIG_VMAP_STACK
190 /*
191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192 * flush. Try to minimize the number of calls by caching stacks.
193 */
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
196
197 struct vm_stack {
198 struct rcu_head rcu;
199 struct vm_struct *stack_vm_area;
200 };
201
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
203 {
204 unsigned int i;
205
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
208 continue;
209 return true;
210 }
211 return false;
212 }
213
214 static void thread_stack_free_rcu(struct rcu_head *rh)
215 {
216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
217
218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
219 return;
220
221 vfree(vm_stack);
222 }
223
224 static void thread_stack_delayed_free(struct task_struct *tsk)
225 {
226 struct vm_stack *vm_stack = tsk->stack;
227
228 vm_stack->stack_vm_area = tsk->stack_vm_area;
229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
230 }
231
232 static int free_vm_stack_cache(unsigned int cpu)
233 {
234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
235 int i;
236
237 for (i = 0; i < NR_CACHED_STACKS; i++) {
238 struct vm_struct *vm_stack = cached_vm_stacks[i];
239
240 if (!vm_stack)
241 continue;
242
243 vfree(vm_stack->addr);
244 cached_vm_stacks[i] = NULL;
245 }
246
247 return 0;
248 }
249
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
251 {
252 int i;
253 int ret;
254
255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
257
258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
260 if (ret)
261 goto err;
262 }
263 return 0;
264 err:
265 /*
266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
268 * ignore this page.
269 */
270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 memcg_kmem_uncharge_page(vm->pages[i], 0);
272 return ret;
273 }
274
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
276 {
277 struct vm_struct *vm;
278 void *stack;
279 int i;
280
281 for (i = 0; i < NR_CACHED_STACKS; i++) {
282 struct vm_struct *s;
283
284 s = this_cpu_xchg(cached_stacks[i], NULL);
285
286 if (!s)
287 continue;
288
289 /* Reset stack metadata. */
290 kasan_unpoison_range(s->addr, THREAD_SIZE);
291
292 stack = kasan_reset_tag(s->addr);
293
294 /* Clear stale pointers from reused stack. */
295 memset(stack, 0, THREAD_SIZE);
296
297 if (memcg_charge_kernel_stack(s)) {
298 vfree(s->addr);
299 return -ENOMEM;
300 }
301
302 tsk->stack_vm_area = s;
303 tsk->stack = stack;
304 return 0;
305 }
306
307 /*
308 * Allocated stacks are cached and later reused by new threads,
309 * so memcg accounting is performed manually on assigning/releasing
310 * stacks to tasks. Drop __GFP_ACCOUNT.
311 */
312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313 VMALLOC_START, VMALLOC_END,
314 THREADINFO_GFP & ~__GFP_ACCOUNT,
315 PAGE_KERNEL,
316 0, node, __builtin_return_address(0));
317 if (!stack)
318 return -ENOMEM;
319
320 vm = find_vm_area(stack);
321 if (memcg_charge_kernel_stack(vm)) {
322 vfree(stack);
323 return -ENOMEM;
324 }
325 /*
326 * We can't call find_vm_area() in interrupt context, and
327 * free_thread_stack() can be called in interrupt context,
328 * so cache the vm_struct.
329 */
330 tsk->stack_vm_area = vm;
331 stack = kasan_reset_tag(stack);
332 tsk->stack = stack;
333 return 0;
334 }
335
336 static void free_thread_stack(struct task_struct *tsk)
337 {
338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 thread_stack_delayed_free(tsk);
340
341 tsk->stack = NULL;
342 tsk->stack_vm_area = NULL;
343 }
344
345 # else /* !CONFIG_VMAP_STACK */
346
347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351
352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354 struct rcu_head *rh = tsk->stack;
355
356 call_rcu(rh, thread_stack_free_rcu);
357 }
358
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362 THREAD_SIZE_ORDER);
363
364 if (likely(page)) {
365 tsk->stack = kasan_reset_tag(page_address(page));
366 return 0;
367 }
368 return -ENOMEM;
369 }
370
371 static void free_thread_stack(struct task_struct *tsk)
372 {
373 thread_stack_delayed_free(tsk);
374 tsk->stack = NULL;
375 }
376
377 # endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379
380 static struct kmem_cache *thread_stack_cache;
381
382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384 kmem_cache_free(thread_stack_cache, rh);
385 }
386
387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389 struct rcu_head *rh = tsk->stack;
390
391 call_rcu(rh, thread_stack_free_rcu);
392 }
393
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396 unsigned long *stack;
397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 stack = kasan_reset_tag(stack);
399 tsk->stack = stack;
400 return stack ? 0 : -ENOMEM;
401 }
402
403 static void free_thread_stack(struct task_struct *tsk)
404 {
405 thread_stack_delayed_free(tsk);
406 tsk->stack = NULL;
407 }
408
409 void thread_stack_cache_init(void)
410 {
411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 THREAD_SIZE, THREAD_SIZE, 0, 0,
413 THREAD_SIZE, NULL);
414 BUG_ON(thread_stack_cache == NULL);
415 }
416
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
419
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
421 {
422 unsigned long *stack;
423
424 stack = arch_alloc_thread_stack_node(tsk, node);
425 tsk->stack = stack;
426 return stack ? 0 : -ENOMEM;
427 }
428
429 static void free_thread_stack(struct task_struct *tsk)
430 {
431 arch_free_thread_stack(tsk);
432 tsk->stack = NULL;
433 }
434
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
436
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
439
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
442
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
445
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
448
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
451
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
454
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
456 {
457 struct vm_area_struct *vma;
458
459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
460 if (vma)
461 vma_init(vma, mm);
462 return vma;
463 }
464
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
466 {
467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468
469 if (new) {
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
472 /*
473 * orig->shared.rb may be modified concurrently, but the clone
474 * will be reinitialized.
475 */
476 *new = data_race(*orig);
477 INIT_LIST_HEAD(&new->anon_vma_chain);
478 dup_anon_vma_name(orig, new);
479 }
480 return new;
481 }
482
483 void vm_area_free(struct vm_area_struct *vma)
484 {
485 free_anon_vma_name(vma);
486 kmem_cache_free(vm_area_cachep, vma);
487 }
488
489 static void account_kernel_stack(struct task_struct *tsk, int account)
490 {
491 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
492 struct vm_struct *vm = task_stack_vm_area(tsk);
493 int i;
494
495 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
496 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
497 account * (PAGE_SIZE / 1024));
498 } else {
499 void *stack = task_stack_page(tsk);
500
501 /* All stack pages are in the same node. */
502 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
503 account * (THREAD_SIZE / 1024));
504 }
505 }
506
507 void exit_task_stack_account(struct task_struct *tsk)
508 {
509 account_kernel_stack(tsk, -1);
510
511 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
512 struct vm_struct *vm;
513 int i;
514
515 vm = task_stack_vm_area(tsk);
516 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
517 memcg_kmem_uncharge_page(vm->pages[i], 0);
518 }
519 }
520
521 static void release_task_stack(struct task_struct *tsk)
522 {
523 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
524 return; /* Better to leak the stack than to free prematurely */
525
526 free_thread_stack(tsk);
527 }
528
529 #ifdef CONFIG_THREAD_INFO_IN_TASK
530 void put_task_stack(struct task_struct *tsk)
531 {
532 if (refcount_dec_and_test(&tsk->stack_refcount))
533 release_task_stack(tsk);
534 }
535 #endif
536
537 void free_task(struct task_struct *tsk)
538 {
539 release_user_cpus_ptr(tsk);
540 scs_release(tsk);
541
542 #ifndef CONFIG_THREAD_INFO_IN_TASK
543 /*
544 * The task is finally done with both the stack and thread_info,
545 * so free both.
546 */
547 release_task_stack(tsk);
548 #else
549 /*
550 * If the task had a separate stack allocation, it should be gone
551 * by now.
552 */
553 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
554 #endif
555 rt_mutex_debug_task_free(tsk);
556 ftrace_graph_exit_task(tsk);
557 arch_release_task_struct(tsk);
558 if (tsk->flags & PF_KTHREAD)
559 free_kthread_struct(tsk);
560 free_task_struct(tsk);
561 }
562 EXPORT_SYMBOL(free_task);
563
564 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
565 {
566 struct file *exe_file;
567
568 exe_file = get_mm_exe_file(oldmm);
569 RCU_INIT_POINTER(mm->exe_file, exe_file);
570 /*
571 * We depend on the oldmm having properly denied write access to the
572 * exe_file already.
573 */
574 if (exe_file && deny_write_access(exe_file))
575 pr_warn_once("deny_write_access() failed in %s\n", __func__);
576 }
577
578 #ifdef CONFIG_MMU
579 static __latent_entropy int dup_mmap(struct mm_struct *mm,
580 struct mm_struct *oldmm)
581 {
582 struct vm_area_struct *mpnt, *tmp;
583 int retval;
584 unsigned long charge = 0;
585 LIST_HEAD(uf);
586 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
587 MA_STATE(mas, &mm->mm_mt, 0, 0);
588
589 uprobe_start_dup_mmap();
590 if (mmap_write_lock_killable(oldmm)) {
591 retval = -EINTR;
592 goto fail_uprobe_end;
593 }
594 flush_cache_dup_mm(oldmm);
595 uprobe_dup_mmap(oldmm, mm);
596 /*
597 * Not linked in yet - no deadlock potential:
598 */
599 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
600
601 /* No ordering required: file already has been exposed. */
602 dup_mm_exe_file(mm, oldmm);
603
604 mm->total_vm = oldmm->total_vm;
605 mm->data_vm = oldmm->data_vm;
606 mm->exec_vm = oldmm->exec_vm;
607 mm->stack_vm = oldmm->stack_vm;
608
609 retval = ksm_fork(mm, oldmm);
610 if (retval)
611 goto out;
612 khugepaged_fork(mm, oldmm);
613
614 retval = mas_expected_entries(&mas, oldmm->map_count);
615 if (retval)
616 goto out;
617
618 mas_for_each(&old_mas, mpnt, ULONG_MAX) {
619 struct file *file;
620
621 if (mpnt->vm_flags & VM_DONTCOPY) {
622 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
623 continue;
624 }
625 charge = 0;
626 /*
627 * Don't duplicate many vmas if we've been oom-killed (for
628 * example)
629 */
630 if (fatal_signal_pending(current)) {
631 retval = -EINTR;
632 goto loop_out;
633 }
634 if (mpnt->vm_flags & VM_ACCOUNT) {
635 unsigned long len = vma_pages(mpnt);
636
637 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
638 goto fail_nomem;
639 charge = len;
640 }
641 tmp = vm_area_dup(mpnt);
642 if (!tmp)
643 goto fail_nomem;
644 retval = vma_dup_policy(mpnt, tmp);
645 if (retval)
646 goto fail_nomem_policy;
647 tmp->vm_mm = mm;
648 retval = dup_userfaultfd(tmp, &uf);
649 if (retval)
650 goto fail_nomem_anon_vma_fork;
651 if (tmp->vm_flags & VM_WIPEONFORK) {
652 /*
653 * VM_WIPEONFORK gets a clean slate in the child.
654 * Don't prepare anon_vma until fault since we don't
655 * copy page for current vma.
656 */
657 tmp->anon_vma = NULL;
658 } else if (anon_vma_fork(tmp, mpnt))
659 goto fail_nomem_anon_vma_fork;
660 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
661 file = tmp->vm_file;
662 if (file) {
663 struct address_space *mapping = file->f_mapping;
664
665 get_file(file);
666 i_mmap_lock_write(mapping);
667 if (tmp->vm_flags & VM_SHARED)
668 mapping_allow_writable(mapping);
669 flush_dcache_mmap_lock(mapping);
670 /* insert tmp into the share list, just after mpnt */
671 vma_interval_tree_insert_after(tmp, mpnt,
672 &mapping->i_mmap);
673 flush_dcache_mmap_unlock(mapping);
674 i_mmap_unlock_write(mapping);
675 }
676
677 /*
678 * Copy/update hugetlb private vma information.
679 */
680 if (is_vm_hugetlb_page(tmp))
681 hugetlb_dup_vma_private(tmp);
682
683 /* Link the vma into the MT */
684 mas.index = tmp->vm_start;
685 mas.last = tmp->vm_end - 1;
686 mas_store(&mas, tmp);
687 if (mas_is_err(&mas))
688 goto fail_nomem_mas_store;
689
690 mm->map_count++;
691 if (!(tmp->vm_flags & VM_WIPEONFORK))
692 retval = copy_page_range(tmp, mpnt);
693
694 if (tmp->vm_ops && tmp->vm_ops->open)
695 tmp->vm_ops->open(tmp);
696
697 if (retval)
698 goto loop_out;
699 }
700 /* a new mm has just been created */
701 retval = arch_dup_mmap(oldmm, mm);
702 loop_out:
703 mas_destroy(&mas);
704 out:
705 mmap_write_unlock(mm);
706 flush_tlb_mm(oldmm);
707 mmap_write_unlock(oldmm);
708 dup_userfaultfd_complete(&uf);
709 fail_uprobe_end:
710 uprobe_end_dup_mmap();
711 return retval;
712
713 fail_nomem_mas_store:
714 unlink_anon_vmas(tmp);
715 fail_nomem_anon_vma_fork:
716 mpol_put(vma_policy(tmp));
717 fail_nomem_policy:
718 vm_area_free(tmp);
719 fail_nomem:
720 retval = -ENOMEM;
721 vm_unacct_memory(charge);
722 goto loop_out;
723 }
724
725 static inline int mm_alloc_pgd(struct mm_struct *mm)
726 {
727 mm->pgd = pgd_alloc(mm);
728 if (unlikely(!mm->pgd))
729 return -ENOMEM;
730 return 0;
731 }
732
733 static inline void mm_free_pgd(struct mm_struct *mm)
734 {
735 pgd_free(mm, mm->pgd);
736 }
737 #else
738 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
739 {
740 mmap_write_lock(oldmm);
741 dup_mm_exe_file(mm, oldmm);
742 mmap_write_unlock(oldmm);
743 return 0;
744 }
745 #define mm_alloc_pgd(mm) (0)
746 #define mm_free_pgd(mm)
747 #endif /* CONFIG_MMU */
748
749 static void check_mm(struct mm_struct *mm)
750 {
751 int i;
752
753 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
754 "Please make sure 'struct resident_page_types[]' is updated as well");
755
756 for (i = 0; i < NR_MM_COUNTERS; i++) {
757 long x = atomic_long_read(&mm->rss_stat.count[i]);
758
759 if (unlikely(x))
760 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
761 mm, resident_page_types[i], x);
762 }
763
764 if (mm_pgtables_bytes(mm))
765 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
766 mm_pgtables_bytes(mm));
767
768 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
769 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
770 #endif
771 }
772
773 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
774 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
775
776 /*
777 * Called when the last reference to the mm
778 * is dropped: either by a lazy thread or by
779 * mmput. Free the page directory and the mm.
780 */
781 void __mmdrop(struct mm_struct *mm)
782 {
783 BUG_ON(mm == &init_mm);
784 WARN_ON_ONCE(mm == current->mm);
785 WARN_ON_ONCE(mm == current->active_mm);
786 mm_free_pgd(mm);
787 destroy_context(mm);
788 mmu_notifier_subscriptions_destroy(mm);
789 check_mm(mm);
790 put_user_ns(mm->user_ns);
791 mm_pasid_drop(mm);
792 free_mm(mm);
793 }
794 EXPORT_SYMBOL_GPL(__mmdrop);
795
796 static void mmdrop_async_fn(struct work_struct *work)
797 {
798 struct mm_struct *mm;
799
800 mm = container_of(work, struct mm_struct, async_put_work);
801 __mmdrop(mm);
802 }
803
804 static void mmdrop_async(struct mm_struct *mm)
805 {
806 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
807 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
808 schedule_work(&mm->async_put_work);
809 }
810 }
811
812 static inline void free_signal_struct(struct signal_struct *sig)
813 {
814 taskstats_tgid_free(sig);
815 sched_autogroup_exit(sig);
816 /*
817 * __mmdrop is not safe to call from softirq context on x86 due to
818 * pgd_dtor so postpone it to the async context
819 */
820 if (sig->oom_mm)
821 mmdrop_async(sig->oom_mm);
822 kmem_cache_free(signal_cachep, sig);
823 }
824
825 static inline void put_signal_struct(struct signal_struct *sig)
826 {
827 if (refcount_dec_and_test(&sig->sigcnt))
828 free_signal_struct(sig);
829 }
830
831 void __put_task_struct(struct task_struct *tsk)
832 {
833 WARN_ON(!tsk->exit_state);
834 WARN_ON(refcount_read(&tsk->usage));
835 WARN_ON(tsk == current);
836
837 io_uring_free(tsk);
838 cgroup_free(tsk);
839 task_numa_free(tsk, true);
840 security_task_free(tsk);
841 bpf_task_storage_free(tsk);
842 exit_creds(tsk);
843 delayacct_tsk_free(tsk);
844 put_signal_struct(tsk->signal);
845 sched_core_free(tsk);
846 free_task(tsk);
847 }
848 EXPORT_SYMBOL_GPL(__put_task_struct);
849
850 void __init __weak arch_task_cache_init(void) { }
851
852 /*
853 * set_max_threads
854 */
855 static void set_max_threads(unsigned int max_threads_suggested)
856 {
857 u64 threads;
858 unsigned long nr_pages = totalram_pages();
859
860 /*
861 * The number of threads shall be limited such that the thread
862 * structures may only consume a small part of the available memory.
863 */
864 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
865 threads = MAX_THREADS;
866 else
867 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
868 (u64) THREAD_SIZE * 8UL);
869
870 if (threads > max_threads_suggested)
871 threads = max_threads_suggested;
872
873 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
874 }
875
876 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
877 /* Initialized by the architecture: */
878 int arch_task_struct_size __read_mostly;
879 #endif
880
881 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
882 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
883 {
884 /* Fetch thread_struct whitelist for the architecture. */
885 arch_thread_struct_whitelist(offset, size);
886
887 /*
888 * Handle zero-sized whitelist or empty thread_struct, otherwise
889 * adjust offset to position of thread_struct in task_struct.
890 */
891 if (unlikely(*size == 0))
892 *offset = 0;
893 else
894 *offset += offsetof(struct task_struct, thread);
895 }
896 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
897
898 void __init fork_init(void)
899 {
900 int i;
901 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
902 #ifndef ARCH_MIN_TASKALIGN
903 #define ARCH_MIN_TASKALIGN 0
904 #endif
905 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
906 unsigned long useroffset, usersize;
907
908 /* create a slab on which task_structs can be allocated */
909 task_struct_whitelist(&useroffset, &usersize);
910 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
911 arch_task_struct_size, align,
912 SLAB_PANIC|SLAB_ACCOUNT,
913 useroffset, usersize, NULL);
914 #endif
915
916 /* do the arch specific task caches init */
917 arch_task_cache_init();
918
919 set_max_threads(MAX_THREADS);
920
921 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
922 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
923 init_task.signal->rlim[RLIMIT_SIGPENDING] =
924 init_task.signal->rlim[RLIMIT_NPROC];
925
926 for (i = 0; i < UCOUNT_COUNTS; i++)
927 init_user_ns.ucount_max[i] = max_threads/2;
928
929 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
930 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
931 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
932 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
933
934 #ifdef CONFIG_VMAP_STACK
935 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
936 NULL, free_vm_stack_cache);
937 #endif
938
939 scs_init();
940
941 lockdep_init_task(&init_task);
942 uprobes_init();
943 }
944
945 int __weak arch_dup_task_struct(struct task_struct *dst,
946 struct task_struct *src)
947 {
948 *dst = *src;
949 return 0;
950 }
951
952 void set_task_stack_end_magic(struct task_struct *tsk)
953 {
954 unsigned long *stackend;
955
956 stackend = end_of_stack(tsk);
957 *stackend = STACK_END_MAGIC; /* for overflow detection */
958 }
959
960 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
961 {
962 struct task_struct *tsk;
963 int err;
964
965 if (node == NUMA_NO_NODE)
966 node = tsk_fork_get_node(orig);
967 tsk = alloc_task_struct_node(node);
968 if (!tsk)
969 return NULL;
970
971 err = arch_dup_task_struct(tsk, orig);
972 if (err)
973 goto free_tsk;
974
975 err = alloc_thread_stack_node(tsk, node);
976 if (err)
977 goto free_tsk;
978
979 #ifdef CONFIG_THREAD_INFO_IN_TASK
980 refcount_set(&tsk->stack_refcount, 1);
981 #endif
982 account_kernel_stack(tsk, 1);
983
984 err = scs_prepare(tsk, node);
985 if (err)
986 goto free_stack;
987
988 #ifdef CONFIG_SECCOMP
989 /*
990 * We must handle setting up seccomp filters once we're under
991 * the sighand lock in case orig has changed between now and
992 * then. Until then, filter must be NULL to avoid messing up
993 * the usage counts on the error path calling free_task.
994 */
995 tsk->seccomp.filter = NULL;
996 #endif
997
998 setup_thread_stack(tsk, orig);
999 clear_user_return_notifier(tsk);
1000 clear_tsk_need_resched(tsk);
1001 set_task_stack_end_magic(tsk);
1002 clear_syscall_work_syscall_user_dispatch(tsk);
1003
1004 #ifdef CONFIG_STACKPROTECTOR
1005 tsk->stack_canary = get_random_canary();
1006 #endif
1007 if (orig->cpus_ptr == &orig->cpus_mask)
1008 tsk->cpus_ptr = &tsk->cpus_mask;
1009 dup_user_cpus_ptr(tsk, orig, node);
1010
1011 /*
1012 * One for the user space visible state that goes away when reaped.
1013 * One for the scheduler.
1014 */
1015 refcount_set(&tsk->rcu_users, 2);
1016 /* One for the rcu users */
1017 refcount_set(&tsk->usage, 1);
1018 #ifdef CONFIG_BLK_DEV_IO_TRACE
1019 tsk->btrace_seq = 0;
1020 #endif
1021 tsk->splice_pipe = NULL;
1022 tsk->task_frag.page = NULL;
1023 tsk->wake_q.next = NULL;
1024 tsk->worker_private = NULL;
1025
1026 kcov_task_init(tsk);
1027 kmsan_task_create(tsk);
1028 kmap_local_fork(tsk);
1029
1030 #ifdef CONFIG_FAULT_INJECTION
1031 tsk->fail_nth = 0;
1032 #endif
1033
1034 #ifdef CONFIG_BLK_CGROUP
1035 tsk->throttle_queue = NULL;
1036 tsk->use_memdelay = 0;
1037 #endif
1038
1039 #ifdef CONFIG_IOMMU_SVA
1040 tsk->pasid_activated = 0;
1041 #endif
1042
1043 #ifdef CONFIG_MEMCG
1044 tsk->active_memcg = NULL;
1045 #endif
1046
1047 #ifdef CONFIG_CPU_SUP_INTEL
1048 tsk->reported_split_lock = 0;
1049 #endif
1050
1051 return tsk;
1052
1053 free_stack:
1054 exit_task_stack_account(tsk);
1055 free_thread_stack(tsk);
1056 free_tsk:
1057 free_task_struct(tsk);
1058 return NULL;
1059 }
1060
1061 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1062
1063 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1064
1065 static int __init coredump_filter_setup(char *s)
1066 {
1067 default_dump_filter =
1068 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1069 MMF_DUMP_FILTER_MASK;
1070 return 1;
1071 }
1072
1073 __setup("coredump_filter=", coredump_filter_setup);
1074
1075 #include <linux/init_task.h>
1076
1077 static void mm_init_aio(struct mm_struct *mm)
1078 {
1079 #ifdef CONFIG_AIO
1080 spin_lock_init(&mm->ioctx_lock);
1081 mm->ioctx_table = NULL;
1082 #endif
1083 }
1084
1085 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1086 struct task_struct *p)
1087 {
1088 #ifdef CONFIG_MEMCG
1089 if (mm->owner == p)
1090 WRITE_ONCE(mm->owner, NULL);
1091 #endif
1092 }
1093
1094 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1095 {
1096 #ifdef CONFIG_MEMCG
1097 mm->owner = p;
1098 #endif
1099 }
1100
1101 static void mm_init_uprobes_state(struct mm_struct *mm)
1102 {
1103 #ifdef CONFIG_UPROBES
1104 mm->uprobes_state.xol_area = NULL;
1105 #endif
1106 }
1107
1108 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1109 struct user_namespace *user_ns)
1110 {
1111 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1112 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1113 atomic_set(&mm->mm_users, 1);
1114 atomic_set(&mm->mm_count, 1);
1115 seqcount_init(&mm->write_protect_seq);
1116 mmap_init_lock(mm);
1117 INIT_LIST_HEAD(&mm->mmlist);
1118 mm_pgtables_bytes_init(mm);
1119 mm->map_count = 0;
1120 mm->locked_vm = 0;
1121 atomic64_set(&mm->pinned_vm, 0);
1122 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1123 spin_lock_init(&mm->page_table_lock);
1124 spin_lock_init(&mm->arg_lock);
1125 mm_init_cpumask(mm);
1126 mm_init_aio(mm);
1127 mm_init_owner(mm, p);
1128 mm_pasid_init(mm);
1129 RCU_INIT_POINTER(mm->exe_file, NULL);
1130 mmu_notifier_subscriptions_init(mm);
1131 init_tlb_flush_pending(mm);
1132 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1133 mm->pmd_huge_pte = NULL;
1134 #endif
1135 mm_init_uprobes_state(mm);
1136 hugetlb_count_init(mm);
1137
1138 if (current->mm) {
1139 mm->flags = current->mm->flags & MMF_INIT_MASK;
1140 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1141 } else {
1142 mm->flags = default_dump_filter;
1143 mm->def_flags = 0;
1144 }
1145
1146 if (mm_alloc_pgd(mm))
1147 goto fail_nopgd;
1148
1149 if (init_new_context(p, mm))
1150 goto fail_nocontext;
1151
1152 mm->user_ns = get_user_ns(user_ns);
1153 lru_gen_init_mm(mm);
1154 return mm;
1155
1156 fail_nocontext:
1157 mm_free_pgd(mm);
1158 fail_nopgd:
1159 free_mm(mm);
1160 return NULL;
1161 }
1162
1163 /*
1164 * Allocate and initialize an mm_struct.
1165 */
1166 struct mm_struct *mm_alloc(void)
1167 {
1168 struct mm_struct *mm;
1169
1170 mm = allocate_mm();
1171 if (!mm)
1172 return NULL;
1173
1174 memset(mm, 0, sizeof(*mm));
1175 return mm_init(mm, current, current_user_ns());
1176 }
1177
1178 static inline void __mmput(struct mm_struct *mm)
1179 {
1180 VM_BUG_ON(atomic_read(&mm->mm_users));
1181
1182 uprobe_clear_state(mm);
1183 exit_aio(mm);
1184 ksm_exit(mm);
1185 khugepaged_exit(mm); /* must run before exit_mmap */
1186 exit_mmap(mm);
1187 mm_put_huge_zero_page(mm);
1188 set_mm_exe_file(mm, NULL);
1189 if (!list_empty(&mm->mmlist)) {
1190 spin_lock(&mmlist_lock);
1191 list_del(&mm->mmlist);
1192 spin_unlock(&mmlist_lock);
1193 }
1194 if (mm->binfmt)
1195 module_put(mm->binfmt->module);
1196 lru_gen_del_mm(mm);
1197 mmdrop(mm);
1198 }
1199
1200 /*
1201 * Decrement the use count and release all resources for an mm.
1202 */
1203 void mmput(struct mm_struct *mm)
1204 {
1205 might_sleep();
1206
1207 if (atomic_dec_and_test(&mm->mm_users))
1208 __mmput(mm);
1209 }
1210 EXPORT_SYMBOL_GPL(mmput);
1211
1212 #ifdef CONFIG_MMU
1213 static void mmput_async_fn(struct work_struct *work)
1214 {
1215 struct mm_struct *mm = container_of(work, struct mm_struct,
1216 async_put_work);
1217
1218 __mmput(mm);
1219 }
1220
1221 void mmput_async(struct mm_struct *mm)
1222 {
1223 if (atomic_dec_and_test(&mm->mm_users)) {
1224 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1225 schedule_work(&mm->async_put_work);
1226 }
1227 }
1228 EXPORT_SYMBOL_GPL(mmput_async);
1229 #endif
1230
1231 /**
1232 * set_mm_exe_file - change a reference to the mm's executable file
1233 *
1234 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1235 *
1236 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1237 * invocations: in mmput() nobody alive left, in execve task is single
1238 * threaded.
1239 *
1240 * Can only fail if new_exe_file != NULL.
1241 */
1242 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1243 {
1244 struct file *old_exe_file;
1245
1246 /*
1247 * It is safe to dereference the exe_file without RCU as
1248 * this function is only called if nobody else can access
1249 * this mm -- see comment above for justification.
1250 */
1251 old_exe_file = rcu_dereference_raw(mm->exe_file);
1252
1253 if (new_exe_file) {
1254 /*
1255 * We expect the caller (i.e., sys_execve) to already denied
1256 * write access, so this is unlikely to fail.
1257 */
1258 if (unlikely(deny_write_access(new_exe_file)))
1259 return -EACCES;
1260 get_file(new_exe_file);
1261 }
1262 rcu_assign_pointer(mm->exe_file, new_exe_file);
1263 if (old_exe_file) {
1264 allow_write_access(old_exe_file);
1265 fput(old_exe_file);
1266 }
1267 return 0;
1268 }
1269
1270 /**
1271 * replace_mm_exe_file - replace a reference to the mm's executable file
1272 *
1273 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1274 * dealing with concurrent invocation and without grabbing the mmap lock in
1275 * write mode.
1276 *
1277 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1278 */
1279 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1280 {
1281 struct vm_area_struct *vma;
1282 struct file *old_exe_file;
1283 int ret = 0;
1284
1285 /* Forbid mm->exe_file change if old file still mapped. */
1286 old_exe_file = get_mm_exe_file(mm);
1287 if (old_exe_file) {
1288 VMA_ITERATOR(vmi, mm, 0);
1289 mmap_read_lock(mm);
1290 for_each_vma(vmi, vma) {
1291 if (!vma->vm_file)
1292 continue;
1293 if (path_equal(&vma->vm_file->f_path,
1294 &old_exe_file->f_path)) {
1295 ret = -EBUSY;
1296 break;
1297 }
1298 }
1299 mmap_read_unlock(mm);
1300 fput(old_exe_file);
1301 if (ret)
1302 return ret;
1303 }
1304
1305 /* set the new file, lockless */
1306 ret = deny_write_access(new_exe_file);
1307 if (ret)
1308 return -EACCES;
1309 get_file(new_exe_file);
1310
1311 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1312 if (old_exe_file) {
1313 /*
1314 * Don't race with dup_mmap() getting the file and disallowing
1315 * write access while someone might open the file writable.
1316 */
1317 mmap_read_lock(mm);
1318 allow_write_access(old_exe_file);
1319 fput(old_exe_file);
1320 mmap_read_unlock(mm);
1321 }
1322 return 0;
1323 }
1324
1325 /**
1326 * get_mm_exe_file - acquire a reference to the mm's executable file
1327 *
1328 * Returns %NULL if mm has no associated executable file.
1329 * User must release file via fput().
1330 */
1331 struct file *get_mm_exe_file(struct mm_struct *mm)
1332 {
1333 struct file *exe_file;
1334
1335 rcu_read_lock();
1336 exe_file = rcu_dereference(mm->exe_file);
1337 if (exe_file && !get_file_rcu(exe_file))
1338 exe_file = NULL;
1339 rcu_read_unlock();
1340 return exe_file;
1341 }
1342
1343 /**
1344 * get_task_exe_file - acquire a reference to the task's executable file
1345 *
1346 * Returns %NULL if task's mm (if any) has no associated executable file or
1347 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1348 * User must release file via fput().
1349 */
1350 struct file *get_task_exe_file(struct task_struct *task)
1351 {
1352 struct file *exe_file = NULL;
1353 struct mm_struct *mm;
1354
1355 task_lock(task);
1356 mm = task->mm;
1357 if (mm) {
1358 if (!(task->flags & PF_KTHREAD))
1359 exe_file = get_mm_exe_file(mm);
1360 }
1361 task_unlock(task);
1362 return exe_file;
1363 }
1364
1365 /**
1366 * get_task_mm - acquire a reference to the task's mm
1367 *
1368 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1369 * this kernel workthread has transiently adopted a user mm with use_mm,
1370 * to do its AIO) is not set and if so returns a reference to it, after
1371 * bumping up the use count. User must release the mm via mmput()
1372 * after use. Typically used by /proc and ptrace.
1373 */
1374 struct mm_struct *get_task_mm(struct task_struct *task)
1375 {
1376 struct mm_struct *mm;
1377
1378 task_lock(task);
1379 mm = task->mm;
1380 if (mm) {
1381 if (task->flags & PF_KTHREAD)
1382 mm = NULL;
1383 else
1384 mmget(mm);
1385 }
1386 task_unlock(task);
1387 return mm;
1388 }
1389 EXPORT_SYMBOL_GPL(get_task_mm);
1390
1391 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1392 {
1393 struct mm_struct *mm;
1394 int err;
1395
1396 err = down_read_killable(&task->signal->exec_update_lock);
1397 if (err)
1398 return ERR_PTR(err);
1399
1400 mm = get_task_mm(task);
1401 if (mm && mm != current->mm &&
1402 !ptrace_may_access(task, mode)) {
1403 mmput(mm);
1404 mm = ERR_PTR(-EACCES);
1405 }
1406 up_read(&task->signal->exec_update_lock);
1407
1408 return mm;
1409 }
1410
1411 static void complete_vfork_done(struct task_struct *tsk)
1412 {
1413 struct completion *vfork;
1414
1415 task_lock(tsk);
1416 vfork = tsk->vfork_done;
1417 if (likely(vfork)) {
1418 tsk->vfork_done = NULL;
1419 complete(vfork);
1420 }
1421 task_unlock(tsk);
1422 }
1423
1424 static int wait_for_vfork_done(struct task_struct *child,
1425 struct completion *vfork)
1426 {
1427 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1428 int killed;
1429
1430 cgroup_enter_frozen();
1431 killed = wait_for_completion_state(vfork, state);
1432 cgroup_leave_frozen(false);
1433
1434 if (killed) {
1435 task_lock(child);
1436 child->vfork_done = NULL;
1437 task_unlock(child);
1438 }
1439
1440 put_task_struct(child);
1441 return killed;
1442 }
1443
1444 /* Please note the differences between mmput and mm_release.
1445 * mmput is called whenever we stop holding onto a mm_struct,
1446 * error success whatever.
1447 *
1448 * mm_release is called after a mm_struct has been removed
1449 * from the current process.
1450 *
1451 * This difference is important for error handling, when we
1452 * only half set up a mm_struct for a new process and need to restore
1453 * the old one. Because we mmput the new mm_struct before
1454 * restoring the old one. . .
1455 * Eric Biederman 10 January 1998
1456 */
1457 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1458 {
1459 uprobe_free_utask(tsk);
1460
1461 /* Get rid of any cached register state */
1462 deactivate_mm(tsk, mm);
1463
1464 /*
1465 * Signal userspace if we're not exiting with a core dump
1466 * because we want to leave the value intact for debugging
1467 * purposes.
1468 */
1469 if (tsk->clear_child_tid) {
1470 if (atomic_read(&mm->mm_users) > 1) {
1471 /*
1472 * We don't check the error code - if userspace has
1473 * not set up a proper pointer then tough luck.
1474 */
1475 put_user(0, tsk->clear_child_tid);
1476 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1477 1, NULL, NULL, 0, 0);
1478 }
1479 tsk->clear_child_tid = NULL;
1480 }
1481
1482 /*
1483 * All done, finally we can wake up parent and return this mm to him.
1484 * Also kthread_stop() uses this completion for synchronization.
1485 */
1486 if (tsk->vfork_done)
1487 complete_vfork_done(tsk);
1488 }
1489
1490 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1491 {
1492 futex_exit_release(tsk);
1493 mm_release(tsk, mm);
1494 }
1495
1496 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1497 {
1498 futex_exec_release(tsk);
1499 mm_release(tsk, mm);
1500 }
1501
1502 /**
1503 * dup_mm() - duplicates an existing mm structure
1504 * @tsk: the task_struct with which the new mm will be associated.
1505 * @oldmm: the mm to duplicate.
1506 *
1507 * Allocates a new mm structure and duplicates the provided @oldmm structure
1508 * content into it.
1509 *
1510 * Return: the duplicated mm or NULL on failure.
1511 */
1512 static struct mm_struct *dup_mm(struct task_struct *tsk,
1513 struct mm_struct *oldmm)
1514 {
1515 struct mm_struct *mm;
1516 int err;
1517
1518 mm = allocate_mm();
1519 if (!mm)
1520 goto fail_nomem;
1521
1522 memcpy(mm, oldmm, sizeof(*mm));
1523
1524 if (!mm_init(mm, tsk, mm->user_ns))
1525 goto fail_nomem;
1526
1527 err = dup_mmap(mm, oldmm);
1528 if (err)
1529 goto free_pt;
1530
1531 mm->hiwater_rss = get_mm_rss(mm);
1532 mm->hiwater_vm = mm->total_vm;
1533
1534 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1535 goto free_pt;
1536
1537 return mm;
1538
1539 free_pt:
1540 /* don't put binfmt in mmput, we haven't got module yet */
1541 mm->binfmt = NULL;
1542 mm_init_owner(mm, NULL);
1543 mmput(mm);
1544
1545 fail_nomem:
1546 return NULL;
1547 }
1548
1549 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1550 {
1551 struct mm_struct *mm, *oldmm;
1552
1553 tsk->min_flt = tsk->maj_flt = 0;
1554 tsk->nvcsw = tsk->nivcsw = 0;
1555 #ifdef CONFIG_DETECT_HUNG_TASK
1556 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1557 tsk->last_switch_time = 0;
1558 #endif
1559
1560 tsk->mm = NULL;
1561 tsk->active_mm = NULL;
1562
1563 /*
1564 * Are we cloning a kernel thread?
1565 *
1566 * We need to steal a active VM for that..
1567 */
1568 oldmm = current->mm;
1569 if (!oldmm)
1570 return 0;
1571
1572 if (clone_flags & CLONE_VM) {
1573 mmget(oldmm);
1574 mm = oldmm;
1575 } else {
1576 mm = dup_mm(tsk, current->mm);
1577 if (!mm)
1578 return -ENOMEM;
1579 }
1580
1581 tsk->mm = mm;
1582 tsk->active_mm = mm;
1583 return 0;
1584 }
1585
1586 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1587 {
1588 struct fs_struct *fs = current->fs;
1589 if (clone_flags & CLONE_FS) {
1590 /* tsk->fs is already what we want */
1591 spin_lock(&fs->lock);
1592 if (fs->in_exec) {
1593 spin_unlock(&fs->lock);
1594 return -EAGAIN;
1595 }
1596 fs->users++;
1597 spin_unlock(&fs->lock);
1598 return 0;
1599 }
1600 tsk->fs = copy_fs_struct(fs);
1601 if (!tsk->fs)
1602 return -ENOMEM;
1603 return 0;
1604 }
1605
1606 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1607 {
1608 struct files_struct *oldf, *newf;
1609 int error = 0;
1610
1611 /*
1612 * A background process may not have any files ...
1613 */
1614 oldf = current->files;
1615 if (!oldf)
1616 goto out;
1617
1618 if (clone_flags & CLONE_FILES) {
1619 atomic_inc(&oldf->count);
1620 goto out;
1621 }
1622
1623 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1624 if (!newf)
1625 goto out;
1626
1627 tsk->files = newf;
1628 error = 0;
1629 out:
1630 return error;
1631 }
1632
1633 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1634 {
1635 struct sighand_struct *sig;
1636
1637 if (clone_flags & CLONE_SIGHAND) {
1638 refcount_inc(&current->sighand->count);
1639 return 0;
1640 }
1641 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1642 RCU_INIT_POINTER(tsk->sighand, sig);
1643 if (!sig)
1644 return -ENOMEM;
1645
1646 refcount_set(&sig->count, 1);
1647 spin_lock_irq(&current->sighand->siglock);
1648 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1649 spin_unlock_irq(&current->sighand->siglock);
1650
1651 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1652 if (clone_flags & CLONE_CLEAR_SIGHAND)
1653 flush_signal_handlers(tsk, 0);
1654
1655 return 0;
1656 }
1657
1658 void __cleanup_sighand(struct sighand_struct *sighand)
1659 {
1660 if (refcount_dec_and_test(&sighand->count)) {
1661 signalfd_cleanup(sighand);
1662 /*
1663 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1664 * without an RCU grace period, see __lock_task_sighand().
1665 */
1666 kmem_cache_free(sighand_cachep, sighand);
1667 }
1668 }
1669
1670 /*
1671 * Initialize POSIX timer handling for a thread group.
1672 */
1673 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1674 {
1675 struct posix_cputimers *pct = &sig->posix_cputimers;
1676 unsigned long cpu_limit;
1677
1678 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1679 posix_cputimers_group_init(pct, cpu_limit);
1680 }
1681
1682 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1683 {
1684 struct signal_struct *sig;
1685
1686 if (clone_flags & CLONE_THREAD)
1687 return 0;
1688
1689 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1690 tsk->signal = sig;
1691 if (!sig)
1692 return -ENOMEM;
1693
1694 sig->nr_threads = 1;
1695 sig->quick_threads = 1;
1696 atomic_set(&sig->live, 1);
1697 refcount_set(&sig->sigcnt, 1);
1698
1699 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1700 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1701 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1702
1703 init_waitqueue_head(&sig->wait_chldexit);
1704 sig->curr_target = tsk;
1705 init_sigpending(&sig->shared_pending);
1706 INIT_HLIST_HEAD(&sig->multiprocess);
1707 seqlock_init(&sig->stats_lock);
1708 prev_cputime_init(&sig->prev_cputime);
1709
1710 #ifdef CONFIG_POSIX_TIMERS
1711 INIT_LIST_HEAD(&sig->posix_timers);
1712 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1713 sig->real_timer.function = it_real_fn;
1714 #endif
1715
1716 task_lock(current->group_leader);
1717 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1718 task_unlock(current->group_leader);
1719
1720 posix_cpu_timers_init_group(sig);
1721
1722 tty_audit_fork(sig);
1723 sched_autogroup_fork(sig);
1724
1725 sig->oom_score_adj = current->signal->oom_score_adj;
1726 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1727
1728 mutex_init(&sig->cred_guard_mutex);
1729 init_rwsem(&sig->exec_update_lock);
1730
1731 return 0;
1732 }
1733
1734 static void copy_seccomp(struct task_struct *p)
1735 {
1736 #ifdef CONFIG_SECCOMP
1737 /*
1738 * Must be called with sighand->lock held, which is common to
1739 * all threads in the group. Holding cred_guard_mutex is not
1740 * needed because this new task is not yet running and cannot
1741 * be racing exec.
1742 */
1743 assert_spin_locked(&current->sighand->siglock);
1744
1745 /* Ref-count the new filter user, and assign it. */
1746 get_seccomp_filter(current);
1747 p->seccomp = current->seccomp;
1748
1749 /*
1750 * Explicitly enable no_new_privs here in case it got set
1751 * between the task_struct being duplicated and holding the
1752 * sighand lock. The seccomp state and nnp must be in sync.
1753 */
1754 if (task_no_new_privs(current))
1755 task_set_no_new_privs(p);
1756
1757 /*
1758 * If the parent gained a seccomp mode after copying thread
1759 * flags and between before we held the sighand lock, we have
1760 * to manually enable the seccomp thread flag here.
1761 */
1762 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1763 set_task_syscall_work(p, SECCOMP);
1764 #endif
1765 }
1766
1767 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1768 {
1769 current->clear_child_tid = tidptr;
1770
1771 return task_pid_vnr(current);
1772 }
1773
1774 static void rt_mutex_init_task(struct task_struct *p)
1775 {
1776 raw_spin_lock_init(&p->pi_lock);
1777 #ifdef CONFIG_RT_MUTEXES
1778 p->pi_waiters = RB_ROOT_CACHED;
1779 p->pi_top_task = NULL;
1780 p->pi_blocked_on = NULL;
1781 #endif
1782 }
1783
1784 static inline void init_task_pid_links(struct task_struct *task)
1785 {
1786 enum pid_type type;
1787
1788 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1789 INIT_HLIST_NODE(&task->pid_links[type]);
1790 }
1791
1792 static inline void
1793 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1794 {
1795 if (type == PIDTYPE_PID)
1796 task->thread_pid = pid;
1797 else
1798 task->signal->pids[type] = pid;
1799 }
1800
1801 static inline void rcu_copy_process(struct task_struct *p)
1802 {
1803 #ifdef CONFIG_PREEMPT_RCU
1804 p->rcu_read_lock_nesting = 0;
1805 p->rcu_read_unlock_special.s = 0;
1806 p->rcu_blocked_node = NULL;
1807 INIT_LIST_HEAD(&p->rcu_node_entry);
1808 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1809 #ifdef CONFIG_TASKS_RCU
1810 p->rcu_tasks_holdout = false;
1811 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1812 p->rcu_tasks_idle_cpu = -1;
1813 #endif /* #ifdef CONFIG_TASKS_RCU */
1814 #ifdef CONFIG_TASKS_TRACE_RCU
1815 p->trc_reader_nesting = 0;
1816 p->trc_reader_special.s = 0;
1817 INIT_LIST_HEAD(&p->trc_holdout_list);
1818 INIT_LIST_HEAD(&p->trc_blkd_node);
1819 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1820 }
1821
1822 struct pid *pidfd_pid(const struct file *file)
1823 {
1824 if (file->f_op == &pidfd_fops)
1825 return file->private_data;
1826
1827 return ERR_PTR(-EBADF);
1828 }
1829
1830 static int pidfd_release(struct inode *inode, struct file *file)
1831 {
1832 struct pid *pid = file->private_data;
1833
1834 file->private_data = NULL;
1835 put_pid(pid);
1836 return 0;
1837 }
1838
1839 #ifdef CONFIG_PROC_FS
1840 /**
1841 * pidfd_show_fdinfo - print information about a pidfd
1842 * @m: proc fdinfo file
1843 * @f: file referencing a pidfd
1844 *
1845 * Pid:
1846 * This function will print the pid that a given pidfd refers to in the
1847 * pid namespace of the procfs instance.
1848 * If the pid namespace of the process is not a descendant of the pid
1849 * namespace of the procfs instance 0 will be shown as its pid. This is
1850 * similar to calling getppid() on a process whose parent is outside of
1851 * its pid namespace.
1852 *
1853 * NSpid:
1854 * If pid namespaces are supported then this function will also print
1855 * the pid of a given pidfd refers to for all descendant pid namespaces
1856 * starting from the current pid namespace of the instance, i.e. the
1857 * Pid field and the first entry in the NSpid field will be identical.
1858 * If the pid namespace of the process is not a descendant of the pid
1859 * namespace of the procfs instance 0 will be shown as its first NSpid
1860 * entry and no others will be shown.
1861 * Note that this differs from the Pid and NSpid fields in
1862 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1863 * the pid namespace of the procfs instance. The difference becomes
1864 * obvious when sending around a pidfd between pid namespaces from a
1865 * different branch of the tree, i.e. where no ancestral relation is
1866 * present between the pid namespaces:
1867 * - create two new pid namespaces ns1 and ns2 in the initial pid
1868 * namespace (also take care to create new mount namespaces in the
1869 * new pid namespace and mount procfs)
1870 * - create a process with a pidfd in ns1
1871 * - send pidfd from ns1 to ns2
1872 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1873 * have exactly one entry, which is 0
1874 */
1875 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1876 {
1877 struct pid *pid = f->private_data;
1878 struct pid_namespace *ns;
1879 pid_t nr = -1;
1880
1881 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1882 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1883 nr = pid_nr_ns(pid, ns);
1884 }
1885
1886 seq_put_decimal_ll(m, "Pid:\t", nr);
1887
1888 #ifdef CONFIG_PID_NS
1889 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1890 if (nr > 0) {
1891 int i;
1892
1893 /* If nr is non-zero it means that 'pid' is valid and that
1894 * ns, i.e. the pid namespace associated with the procfs
1895 * instance, is in the pid namespace hierarchy of pid.
1896 * Start at one below the already printed level.
1897 */
1898 for (i = ns->level + 1; i <= pid->level; i++)
1899 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1900 }
1901 #endif
1902 seq_putc(m, '\n');
1903 }
1904 #endif
1905
1906 /*
1907 * Poll support for process exit notification.
1908 */
1909 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1910 {
1911 struct pid *pid = file->private_data;
1912 __poll_t poll_flags = 0;
1913
1914 poll_wait(file, &pid->wait_pidfd, pts);
1915
1916 /*
1917 * Inform pollers only when the whole thread group exits.
1918 * If the thread group leader exits before all other threads in the
1919 * group, then poll(2) should block, similar to the wait(2) family.
1920 */
1921 if (thread_group_exited(pid))
1922 poll_flags = EPOLLIN | EPOLLRDNORM;
1923
1924 return poll_flags;
1925 }
1926
1927 const struct file_operations pidfd_fops = {
1928 .release = pidfd_release,
1929 .poll = pidfd_poll,
1930 #ifdef CONFIG_PROC_FS
1931 .show_fdinfo = pidfd_show_fdinfo,
1932 #endif
1933 };
1934
1935 static void __delayed_free_task(struct rcu_head *rhp)
1936 {
1937 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1938
1939 free_task(tsk);
1940 }
1941
1942 static __always_inline void delayed_free_task(struct task_struct *tsk)
1943 {
1944 if (IS_ENABLED(CONFIG_MEMCG))
1945 call_rcu(&tsk->rcu, __delayed_free_task);
1946 else
1947 free_task(tsk);
1948 }
1949
1950 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1951 {
1952 /* Skip if kernel thread */
1953 if (!tsk->mm)
1954 return;
1955
1956 /* Skip if spawning a thread or using vfork */
1957 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1958 return;
1959
1960 /* We need to synchronize with __set_oom_adj */
1961 mutex_lock(&oom_adj_mutex);
1962 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1963 /* Update the values in case they were changed after copy_signal */
1964 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1965 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1966 mutex_unlock(&oom_adj_mutex);
1967 }
1968
1969 #ifdef CONFIG_RV
1970 static void rv_task_fork(struct task_struct *p)
1971 {
1972 int i;
1973
1974 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1975 p->rv[i].da_mon.monitoring = false;
1976 }
1977 #else
1978 #define rv_task_fork(p) do {} while (0)
1979 #endif
1980
1981 /*
1982 * This creates a new process as a copy of the old one,
1983 * but does not actually start it yet.
1984 *
1985 * It copies the registers, and all the appropriate
1986 * parts of the process environment (as per the clone
1987 * flags). The actual kick-off is left to the caller.
1988 */
1989 static __latent_entropy struct task_struct *copy_process(
1990 struct pid *pid,
1991 int trace,
1992 int node,
1993 struct kernel_clone_args *args)
1994 {
1995 int pidfd = -1, retval;
1996 struct task_struct *p;
1997 struct multiprocess_signals delayed;
1998 struct file *pidfile = NULL;
1999 const u64 clone_flags = args->flags;
2000 struct nsproxy *nsp = current->nsproxy;
2001
2002 /*
2003 * Don't allow sharing the root directory with processes in a different
2004 * namespace
2005 */
2006 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2007 return ERR_PTR(-EINVAL);
2008
2009 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2010 return ERR_PTR(-EINVAL);
2011
2012 /*
2013 * Thread groups must share signals as well, and detached threads
2014 * can only be started up within the thread group.
2015 */
2016 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2017 return ERR_PTR(-EINVAL);
2018
2019 /*
2020 * Shared signal handlers imply shared VM. By way of the above,
2021 * thread groups also imply shared VM. Blocking this case allows
2022 * for various simplifications in other code.
2023 */
2024 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2025 return ERR_PTR(-EINVAL);
2026
2027 /*
2028 * Siblings of global init remain as zombies on exit since they are
2029 * not reaped by their parent (swapper). To solve this and to avoid
2030 * multi-rooted process trees, prevent global and container-inits
2031 * from creating siblings.
2032 */
2033 if ((clone_flags & CLONE_PARENT) &&
2034 current->signal->flags & SIGNAL_UNKILLABLE)
2035 return ERR_PTR(-EINVAL);
2036
2037 /*
2038 * If the new process will be in a different pid or user namespace
2039 * do not allow it to share a thread group with the forking task.
2040 */
2041 if (clone_flags & CLONE_THREAD) {
2042 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2043 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2044 return ERR_PTR(-EINVAL);
2045 }
2046
2047 /*
2048 * If the new process will be in a different time namespace
2049 * do not allow it to share VM or a thread group with the forking task.
2050 */
2051 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2052 if (nsp->time_ns != nsp->time_ns_for_children)
2053 return ERR_PTR(-EINVAL);
2054 }
2055
2056 if (clone_flags & CLONE_PIDFD) {
2057 /*
2058 * - CLONE_DETACHED is blocked so that we can potentially
2059 * reuse it later for CLONE_PIDFD.
2060 * - CLONE_THREAD is blocked until someone really needs it.
2061 */
2062 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2063 return ERR_PTR(-EINVAL);
2064 }
2065
2066 /*
2067 * Force any signals received before this point to be delivered
2068 * before the fork happens. Collect up signals sent to multiple
2069 * processes that happen during the fork and delay them so that
2070 * they appear to happen after the fork.
2071 */
2072 sigemptyset(&delayed.signal);
2073 INIT_HLIST_NODE(&delayed.node);
2074
2075 spin_lock_irq(&current->sighand->siglock);
2076 if (!(clone_flags & CLONE_THREAD))
2077 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2078 recalc_sigpending();
2079 spin_unlock_irq(&current->sighand->siglock);
2080 retval = -ERESTARTNOINTR;
2081 if (task_sigpending(current))
2082 goto fork_out;
2083
2084 retval = -ENOMEM;
2085 p = dup_task_struct(current, node);
2086 if (!p)
2087 goto fork_out;
2088 p->flags &= ~PF_KTHREAD;
2089 if (args->kthread)
2090 p->flags |= PF_KTHREAD;
2091 if (args->io_thread) {
2092 /*
2093 * Mark us an IO worker, and block any signal that isn't
2094 * fatal or STOP
2095 */
2096 p->flags |= PF_IO_WORKER;
2097 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2098 }
2099
2100 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2101 /*
2102 * Clear TID on mm_release()?
2103 */
2104 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2105
2106 ftrace_graph_init_task(p);
2107
2108 rt_mutex_init_task(p);
2109
2110 lockdep_assert_irqs_enabled();
2111 #ifdef CONFIG_PROVE_LOCKING
2112 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2113 #endif
2114 retval = copy_creds(p, clone_flags);
2115 if (retval < 0)
2116 goto bad_fork_free;
2117
2118 retval = -EAGAIN;
2119 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2120 if (p->real_cred->user != INIT_USER &&
2121 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2122 goto bad_fork_cleanup_count;
2123 }
2124 current->flags &= ~PF_NPROC_EXCEEDED;
2125
2126 /*
2127 * If multiple threads are within copy_process(), then this check
2128 * triggers too late. This doesn't hurt, the check is only there
2129 * to stop root fork bombs.
2130 */
2131 retval = -EAGAIN;
2132 if (data_race(nr_threads >= max_threads))
2133 goto bad_fork_cleanup_count;
2134
2135 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2136 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2137 p->flags |= PF_FORKNOEXEC;
2138 INIT_LIST_HEAD(&p->children);
2139 INIT_LIST_HEAD(&p->sibling);
2140 rcu_copy_process(p);
2141 p->vfork_done = NULL;
2142 spin_lock_init(&p->alloc_lock);
2143
2144 init_sigpending(&p->pending);
2145
2146 p->utime = p->stime = p->gtime = 0;
2147 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2148 p->utimescaled = p->stimescaled = 0;
2149 #endif
2150 prev_cputime_init(&p->prev_cputime);
2151
2152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2153 seqcount_init(&p->vtime.seqcount);
2154 p->vtime.starttime = 0;
2155 p->vtime.state = VTIME_INACTIVE;
2156 #endif
2157
2158 #ifdef CONFIG_IO_URING
2159 p->io_uring = NULL;
2160 #endif
2161
2162 #if defined(SPLIT_RSS_COUNTING)
2163 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2164 #endif
2165
2166 p->default_timer_slack_ns = current->timer_slack_ns;
2167
2168 #ifdef CONFIG_PSI
2169 p->psi_flags = 0;
2170 #endif
2171
2172 task_io_accounting_init(&p->ioac);
2173 acct_clear_integrals(p);
2174
2175 posix_cputimers_init(&p->posix_cputimers);
2176
2177 p->io_context = NULL;
2178 audit_set_context(p, NULL);
2179 cgroup_fork(p);
2180 if (args->kthread) {
2181 if (!set_kthread_struct(p))
2182 goto bad_fork_cleanup_delayacct;
2183 }
2184 #ifdef CONFIG_NUMA
2185 p->mempolicy = mpol_dup(p->mempolicy);
2186 if (IS_ERR(p->mempolicy)) {
2187 retval = PTR_ERR(p->mempolicy);
2188 p->mempolicy = NULL;
2189 goto bad_fork_cleanup_delayacct;
2190 }
2191 #endif
2192 #ifdef CONFIG_CPUSETS
2193 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2194 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2195 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2196 #endif
2197 #ifdef CONFIG_TRACE_IRQFLAGS
2198 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2199 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2200 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2201 p->softirqs_enabled = 1;
2202 p->softirq_context = 0;
2203 #endif
2204
2205 p->pagefault_disabled = 0;
2206
2207 #ifdef CONFIG_LOCKDEP
2208 lockdep_init_task(p);
2209 #endif
2210
2211 #ifdef CONFIG_DEBUG_MUTEXES
2212 p->blocked_on = NULL; /* not blocked yet */
2213 #endif
2214 #ifdef CONFIG_BCACHE
2215 p->sequential_io = 0;
2216 p->sequential_io_avg = 0;
2217 #endif
2218 #ifdef CONFIG_BPF_SYSCALL
2219 RCU_INIT_POINTER(p->bpf_storage, NULL);
2220 p->bpf_ctx = NULL;
2221 #endif
2222
2223 /* Perform scheduler related setup. Assign this task to a CPU. */
2224 retval = sched_fork(clone_flags, p);
2225 if (retval)
2226 goto bad_fork_cleanup_policy;
2227
2228 retval = perf_event_init_task(p, clone_flags);
2229 if (retval)
2230 goto bad_fork_cleanup_policy;
2231 retval = audit_alloc(p);
2232 if (retval)
2233 goto bad_fork_cleanup_perf;
2234 /* copy all the process information */
2235 shm_init_task(p);
2236 retval = security_task_alloc(p, clone_flags);
2237 if (retval)
2238 goto bad_fork_cleanup_audit;
2239 retval = copy_semundo(clone_flags, p);
2240 if (retval)
2241 goto bad_fork_cleanup_security;
2242 retval = copy_files(clone_flags, p);
2243 if (retval)
2244 goto bad_fork_cleanup_semundo;
2245 retval = copy_fs(clone_flags, p);
2246 if (retval)
2247 goto bad_fork_cleanup_files;
2248 retval = copy_sighand(clone_flags, p);
2249 if (retval)
2250 goto bad_fork_cleanup_fs;
2251 retval = copy_signal(clone_flags, p);
2252 if (retval)
2253 goto bad_fork_cleanup_sighand;
2254 retval = copy_mm(clone_flags, p);
2255 if (retval)
2256 goto bad_fork_cleanup_signal;
2257 retval = copy_namespaces(clone_flags, p);
2258 if (retval)
2259 goto bad_fork_cleanup_mm;
2260 retval = copy_io(clone_flags, p);
2261 if (retval)
2262 goto bad_fork_cleanup_namespaces;
2263 retval = copy_thread(p, args);
2264 if (retval)
2265 goto bad_fork_cleanup_io;
2266
2267 stackleak_task_init(p);
2268
2269 if (pid != &init_struct_pid) {
2270 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2271 args->set_tid_size);
2272 if (IS_ERR(pid)) {
2273 retval = PTR_ERR(pid);
2274 goto bad_fork_cleanup_thread;
2275 }
2276 }
2277
2278 /*
2279 * This has to happen after we've potentially unshared the file
2280 * descriptor table (so that the pidfd doesn't leak into the child
2281 * if the fd table isn't shared).
2282 */
2283 if (clone_flags & CLONE_PIDFD) {
2284 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2285 if (retval < 0)
2286 goto bad_fork_free_pid;
2287
2288 pidfd = retval;
2289
2290 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2291 O_RDWR | O_CLOEXEC);
2292 if (IS_ERR(pidfile)) {
2293 put_unused_fd(pidfd);
2294 retval = PTR_ERR(pidfile);
2295 goto bad_fork_free_pid;
2296 }
2297 get_pid(pid); /* held by pidfile now */
2298
2299 retval = put_user(pidfd, args->pidfd);
2300 if (retval)
2301 goto bad_fork_put_pidfd;
2302 }
2303
2304 #ifdef CONFIG_BLOCK
2305 p->plug = NULL;
2306 #endif
2307 futex_init_task(p);
2308
2309 /*
2310 * sigaltstack should be cleared when sharing the same VM
2311 */
2312 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2313 sas_ss_reset(p);
2314
2315 /*
2316 * Syscall tracing and stepping should be turned off in the
2317 * child regardless of CLONE_PTRACE.
2318 */
2319 user_disable_single_step(p);
2320 clear_task_syscall_work(p, SYSCALL_TRACE);
2321 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2322 clear_task_syscall_work(p, SYSCALL_EMU);
2323 #endif
2324 clear_tsk_latency_tracing(p);
2325
2326 /* ok, now we should be set up.. */
2327 p->pid = pid_nr(pid);
2328 if (clone_flags & CLONE_THREAD) {
2329 p->group_leader = current->group_leader;
2330 p->tgid = current->tgid;
2331 } else {
2332 p->group_leader = p;
2333 p->tgid = p->pid;
2334 }
2335
2336 p->nr_dirtied = 0;
2337 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2338 p->dirty_paused_when = 0;
2339
2340 p->pdeath_signal = 0;
2341 INIT_LIST_HEAD(&p->thread_group);
2342 p->task_works = NULL;
2343 clear_posix_cputimers_work(p);
2344
2345 #ifdef CONFIG_KRETPROBES
2346 p->kretprobe_instances.first = NULL;
2347 #endif
2348 #ifdef CONFIG_RETHOOK
2349 p->rethooks.first = NULL;
2350 #endif
2351
2352 /*
2353 * Ensure that the cgroup subsystem policies allow the new process to be
2354 * forked. It should be noted that the new process's css_set can be changed
2355 * between here and cgroup_post_fork() if an organisation operation is in
2356 * progress.
2357 */
2358 retval = cgroup_can_fork(p, args);
2359 if (retval)
2360 goto bad_fork_put_pidfd;
2361
2362 /*
2363 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2364 * the new task on the correct runqueue. All this *before* the task
2365 * becomes visible.
2366 *
2367 * This isn't part of ->can_fork() because while the re-cloning is
2368 * cgroup specific, it unconditionally needs to place the task on a
2369 * runqueue.
2370 */
2371 sched_cgroup_fork(p, args);
2372
2373 /*
2374 * From this point on we must avoid any synchronous user-space
2375 * communication until we take the tasklist-lock. In particular, we do
2376 * not want user-space to be able to predict the process start-time by
2377 * stalling fork(2) after we recorded the start_time but before it is
2378 * visible to the system.
2379 */
2380
2381 p->start_time = ktime_get_ns();
2382 p->start_boottime = ktime_get_boottime_ns();
2383
2384 /*
2385 * Make it visible to the rest of the system, but dont wake it up yet.
2386 * Need tasklist lock for parent etc handling!
2387 */
2388 write_lock_irq(&tasklist_lock);
2389
2390 /* CLONE_PARENT re-uses the old parent */
2391 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2392 p->real_parent = current->real_parent;
2393 p->parent_exec_id = current->parent_exec_id;
2394 if (clone_flags & CLONE_THREAD)
2395 p->exit_signal = -1;
2396 else
2397 p->exit_signal = current->group_leader->exit_signal;
2398 } else {
2399 p->real_parent = current;
2400 p->parent_exec_id = current->self_exec_id;
2401 p->exit_signal = args->exit_signal;
2402 }
2403
2404 klp_copy_process(p);
2405
2406 sched_core_fork(p);
2407
2408 spin_lock(&current->sighand->siglock);
2409
2410 /*
2411 * Copy seccomp details explicitly here, in case they were changed
2412 * before holding sighand lock.
2413 */
2414 copy_seccomp(p);
2415
2416 rv_task_fork(p);
2417
2418 rseq_fork(p, clone_flags);
2419
2420 /* Don't start children in a dying pid namespace */
2421 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2422 retval = -ENOMEM;
2423 goto bad_fork_cancel_cgroup;
2424 }
2425
2426 /* Let kill terminate clone/fork in the middle */
2427 if (fatal_signal_pending(current)) {
2428 retval = -EINTR;
2429 goto bad_fork_cancel_cgroup;
2430 }
2431
2432 init_task_pid_links(p);
2433 if (likely(p->pid)) {
2434 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2435
2436 init_task_pid(p, PIDTYPE_PID, pid);
2437 if (thread_group_leader(p)) {
2438 init_task_pid(p, PIDTYPE_TGID, pid);
2439 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2440 init_task_pid(p, PIDTYPE_SID, task_session(current));
2441
2442 if (is_child_reaper(pid)) {
2443 ns_of_pid(pid)->child_reaper = p;
2444 p->signal->flags |= SIGNAL_UNKILLABLE;
2445 }
2446 p->signal->shared_pending.signal = delayed.signal;
2447 p->signal->tty = tty_kref_get(current->signal->tty);
2448 /*
2449 * Inherit has_child_subreaper flag under the same
2450 * tasklist_lock with adding child to the process tree
2451 * for propagate_has_child_subreaper optimization.
2452 */
2453 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2454 p->real_parent->signal->is_child_subreaper;
2455 list_add_tail(&p->sibling, &p->real_parent->children);
2456 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2457 attach_pid(p, PIDTYPE_TGID);
2458 attach_pid(p, PIDTYPE_PGID);
2459 attach_pid(p, PIDTYPE_SID);
2460 __this_cpu_inc(process_counts);
2461 } else {
2462 current->signal->nr_threads++;
2463 current->signal->quick_threads++;
2464 atomic_inc(&current->signal->live);
2465 refcount_inc(&current->signal->sigcnt);
2466 task_join_group_stop(p);
2467 list_add_tail_rcu(&p->thread_group,
2468 &p->group_leader->thread_group);
2469 list_add_tail_rcu(&p->thread_node,
2470 &p->signal->thread_head);
2471 }
2472 attach_pid(p, PIDTYPE_PID);
2473 nr_threads++;
2474 }
2475 total_forks++;
2476 hlist_del_init(&delayed.node);
2477 spin_unlock(&current->sighand->siglock);
2478 syscall_tracepoint_update(p);
2479 write_unlock_irq(&tasklist_lock);
2480
2481 if (pidfile)
2482 fd_install(pidfd, pidfile);
2483
2484 proc_fork_connector(p);
2485 sched_post_fork(p);
2486 cgroup_post_fork(p, args);
2487 perf_event_fork(p);
2488
2489 trace_task_newtask(p, clone_flags);
2490 uprobe_copy_process(p, clone_flags);
2491
2492 copy_oom_score_adj(clone_flags, p);
2493
2494 return p;
2495
2496 bad_fork_cancel_cgroup:
2497 sched_core_free(p);
2498 spin_unlock(&current->sighand->siglock);
2499 write_unlock_irq(&tasklist_lock);
2500 cgroup_cancel_fork(p, args);
2501 bad_fork_put_pidfd:
2502 if (clone_flags & CLONE_PIDFD) {
2503 fput(pidfile);
2504 put_unused_fd(pidfd);
2505 }
2506 bad_fork_free_pid:
2507 if (pid != &init_struct_pid)
2508 free_pid(pid);
2509 bad_fork_cleanup_thread:
2510 exit_thread(p);
2511 bad_fork_cleanup_io:
2512 if (p->io_context)
2513 exit_io_context(p);
2514 bad_fork_cleanup_namespaces:
2515 exit_task_namespaces(p);
2516 bad_fork_cleanup_mm:
2517 if (p->mm) {
2518 mm_clear_owner(p->mm, p);
2519 mmput(p->mm);
2520 }
2521 bad_fork_cleanup_signal:
2522 if (!(clone_flags & CLONE_THREAD))
2523 free_signal_struct(p->signal);
2524 bad_fork_cleanup_sighand:
2525 __cleanup_sighand(p->sighand);
2526 bad_fork_cleanup_fs:
2527 exit_fs(p); /* blocking */
2528 bad_fork_cleanup_files:
2529 exit_files(p); /* blocking */
2530 bad_fork_cleanup_semundo:
2531 exit_sem(p);
2532 bad_fork_cleanup_security:
2533 security_task_free(p);
2534 bad_fork_cleanup_audit:
2535 audit_free(p);
2536 bad_fork_cleanup_perf:
2537 perf_event_free_task(p);
2538 bad_fork_cleanup_policy:
2539 lockdep_free_task(p);
2540 #ifdef CONFIG_NUMA
2541 mpol_put(p->mempolicy);
2542 #endif
2543 bad_fork_cleanup_delayacct:
2544 delayacct_tsk_free(p);
2545 bad_fork_cleanup_count:
2546 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2547 exit_creds(p);
2548 bad_fork_free:
2549 WRITE_ONCE(p->__state, TASK_DEAD);
2550 exit_task_stack_account(p);
2551 put_task_stack(p);
2552 delayed_free_task(p);
2553 fork_out:
2554 spin_lock_irq(&current->sighand->siglock);
2555 hlist_del_init(&delayed.node);
2556 spin_unlock_irq(&current->sighand->siglock);
2557 return ERR_PTR(retval);
2558 }
2559
2560 static inline void init_idle_pids(struct task_struct *idle)
2561 {
2562 enum pid_type type;
2563
2564 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2565 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2566 init_task_pid(idle, type, &init_struct_pid);
2567 }
2568 }
2569
2570 static int idle_dummy(void *dummy)
2571 {
2572 /* This function is never called */
2573 return 0;
2574 }
2575
2576 struct task_struct * __init fork_idle(int cpu)
2577 {
2578 struct task_struct *task;
2579 struct kernel_clone_args args = {
2580 .flags = CLONE_VM,
2581 .fn = &idle_dummy,
2582 .fn_arg = NULL,
2583 .kthread = 1,
2584 .idle = 1,
2585 };
2586
2587 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2588 if (!IS_ERR(task)) {
2589 init_idle_pids(task);
2590 init_idle(task, cpu);
2591 }
2592
2593 return task;
2594 }
2595
2596 struct mm_struct *copy_init_mm(void)
2597 {
2598 return dup_mm(NULL, &init_mm);
2599 }
2600
2601 /*
2602 * This is like kernel_clone(), but shaved down and tailored to just
2603 * creating io_uring workers. It returns a created task, or an error pointer.
2604 * The returned task is inactive, and the caller must fire it up through
2605 * wake_up_new_task(p). All signals are blocked in the created task.
2606 */
2607 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2608 {
2609 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2610 CLONE_IO;
2611 struct kernel_clone_args args = {
2612 .flags = ((lower_32_bits(flags) | CLONE_VM |
2613 CLONE_UNTRACED) & ~CSIGNAL),
2614 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2615 .fn = fn,
2616 .fn_arg = arg,
2617 .io_thread = 1,
2618 };
2619
2620 return copy_process(NULL, 0, node, &args);
2621 }
2622
2623 /*
2624 * Ok, this is the main fork-routine.
2625 *
2626 * It copies the process, and if successful kick-starts
2627 * it and waits for it to finish using the VM if required.
2628 *
2629 * args->exit_signal is expected to be checked for sanity by the caller.
2630 */
2631 pid_t kernel_clone(struct kernel_clone_args *args)
2632 {
2633 u64 clone_flags = args->flags;
2634 struct completion vfork;
2635 struct pid *pid;
2636 struct task_struct *p;
2637 int trace = 0;
2638 pid_t nr;
2639
2640 /*
2641 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2642 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2643 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2644 * field in struct clone_args and it still doesn't make sense to have
2645 * them both point at the same memory location. Performing this check
2646 * here has the advantage that we don't need to have a separate helper
2647 * to check for legacy clone().
2648 */
2649 if ((args->flags & CLONE_PIDFD) &&
2650 (args->flags & CLONE_PARENT_SETTID) &&
2651 (args->pidfd == args->parent_tid))
2652 return -EINVAL;
2653
2654 /*
2655 * Determine whether and which event to report to ptracer. When
2656 * called from kernel_thread or CLONE_UNTRACED is explicitly
2657 * requested, no event is reported; otherwise, report if the event
2658 * for the type of forking is enabled.
2659 */
2660 if (!(clone_flags & CLONE_UNTRACED)) {
2661 if (clone_flags & CLONE_VFORK)
2662 trace = PTRACE_EVENT_VFORK;
2663 else if (args->exit_signal != SIGCHLD)
2664 trace = PTRACE_EVENT_CLONE;
2665 else
2666 trace = PTRACE_EVENT_FORK;
2667
2668 if (likely(!ptrace_event_enabled(current, trace)))
2669 trace = 0;
2670 }
2671
2672 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2673 add_latent_entropy();
2674
2675 if (IS_ERR(p))
2676 return PTR_ERR(p);
2677
2678 /*
2679 * Do this prior waking up the new thread - the thread pointer
2680 * might get invalid after that point, if the thread exits quickly.
2681 */
2682 trace_sched_process_fork(current, p);
2683
2684 pid = get_task_pid(p, PIDTYPE_PID);
2685 nr = pid_vnr(pid);
2686
2687 if (clone_flags & CLONE_PARENT_SETTID)
2688 put_user(nr, args->parent_tid);
2689
2690 if (clone_flags & CLONE_VFORK) {
2691 p->vfork_done = &vfork;
2692 init_completion(&vfork);
2693 get_task_struct(p);
2694 }
2695
2696 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2697 /* lock the task to synchronize with memcg migration */
2698 task_lock(p);
2699 lru_gen_add_mm(p->mm);
2700 task_unlock(p);
2701 }
2702
2703 wake_up_new_task(p);
2704
2705 /* forking complete and child started to run, tell ptracer */
2706 if (unlikely(trace))
2707 ptrace_event_pid(trace, pid);
2708
2709 if (clone_flags & CLONE_VFORK) {
2710 if (!wait_for_vfork_done(p, &vfork))
2711 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2712 }
2713
2714 put_pid(pid);
2715 return nr;
2716 }
2717
2718 /*
2719 * Create a kernel thread.
2720 */
2721 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2722 {
2723 struct kernel_clone_args args = {
2724 .flags = ((lower_32_bits(flags) | CLONE_VM |
2725 CLONE_UNTRACED) & ~CSIGNAL),
2726 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2727 .fn = fn,
2728 .fn_arg = arg,
2729 .kthread = 1,
2730 };
2731
2732 return kernel_clone(&args);
2733 }
2734
2735 /*
2736 * Create a user mode thread.
2737 */
2738 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2739 {
2740 struct kernel_clone_args args = {
2741 .flags = ((lower_32_bits(flags) | CLONE_VM |
2742 CLONE_UNTRACED) & ~CSIGNAL),
2743 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2744 .fn = fn,
2745 .fn_arg = arg,
2746 };
2747
2748 return kernel_clone(&args);
2749 }
2750
2751 #ifdef __ARCH_WANT_SYS_FORK
2752 SYSCALL_DEFINE0(fork)
2753 {
2754 #ifdef CONFIG_MMU
2755 struct kernel_clone_args args = {
2756 .exit_signal = SIGCHLD,
2757 };
2758
2759 return kernel_clone(&args);
2760 #else
2761 /* can not support in nommu mode */
2762 return -EINVAL;
2763 #endif
2764 }
2765 #endif
2766
2767 #ifdef __ARCH_WANT_SYS_VFORK
2768 SYSCALL_DEFINE0(vfork)
2769 {
2770 struct kernel_clone_args args = {
2771 .flags = CLONE_VFORK | CLONE_VM,
2772 .exit_signal = SIGCHLD,
2773 };
2774
2775 return kernel_clone(&args);
2776 }
2777 #endif
2778
2779 #ifdef __ARCH_WANT_SYS_CLONE
2780 #ifdef CONFIG_CLONE_BACKWARDS
2781 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2782 int __user *, parent_tidptr,
2783 unsigned long, tls,
2784 int __user *, child_tidptr)
2785 #elif defined(CONFIG_CLONE_BACKWARDS2)
2786 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2787 int __user *, parent_tidptr,
2788 int __user *, child_tidptr,
2789 unsigned long, tls)
2790 #elif defined(CONFIG_CLONE_BACKWARDS3)
2791 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2792 int, stack_size,
2793 int __user *, parent_tidptr,
2794 int __user *, child_tidptr,
2795 unsigned long, tls)
2796 #else
2797 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2798 int __user *, parent_tidptr,
2799 int __user *, child_tidptr,
2800 unsigned long, tls)
2801 #endif
2802 {
2803 struct kernel_clone_args args = {
2804 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2805 .pidfd = parent_tidptr,
2806 .child_tid = child_tidptr,
2807 .parent_tid = parent_tidptr,
2808 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2809 .stack = newsp,
2810 .tls = tls,
2811 };
2812
2813 return kernel_clone(&args);
2814 }
2815 #endif
2816
2817 #ifdef __ARCH_WANT_SYS_CLONE3
2818
2819 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2820 struct clone_args __user *uargs,
2821 size_t usize)
2822 {
2823 int err;
2824 struct clone_args args;
2825 pid_t *kset_tid = kargs->set_tid;
2826
2827 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2828 CLONE_ARGS_SIZE_VER0);
2829 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2830 CLONE_ARGS_SIZE_VER1);
2831 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2832 CLONE_ARGS_SIZE_VER2);
2833 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2834
2835 if (unlikely(usize > PAGE_SIZE))
2836 return -E2BIG;
2837 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2838 return -EINVAL;
2839
2840 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2841 if (err)
2842 return err;
2843
2844 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2845 return -EINVAL;
2846
2847 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2848 return -EINVAL;
2849
2850 if (unlikely(args.set_tid && args.set_tid_size == 0))
2851 return -EINVAL;
2852
2853 /*
2854 * Verify that higher 32bits of exit_signal are unset and that
2855 * it is a valid signal
2856 */
2857 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2858 !valid_signal(args.exit_signal)))
2859 return -EINVAL;
2860
2861 if ((args.flags & CLONE_INTO_CGROUP) &&
2862 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2863 return -EINVAL;
2864
2865 *kargs = (struct kernel_clone_args){
2866 .flags = args.flags,
2867 .pidfd = u64_to_user_ptr(args.pidfd),
2868 .child_tid = u64_to_user_ptr(args.child_tid),
2869 .parent_tid = u64_to_user_ptr(args.parent_tid),
2870 .exit_signal = args.exit_signal,
2871 .stack = args.stack,
2872 .stack_size = args.stack_size,
2873 .tls = args.tls,
2874 .set_tid_size = args.set_tid_size,
2875 .cgroup = args.cgroup,
2876 };
2877
2878 if (args.set_tid &&
2879 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2880 (kargs->set_tid_size * sizeof(pid_t))))
2881 return -EFAULT;
2882
2883 kargs->set_tid = kset_tid;
2884
2885 return 0;
2886 }
2887
2888 /**
2889 * clone3_stack_valid - check and prepare stack
2890 * @kargs: kernel clone args
2891 *
2892 * Verify that the stack arguments userspace gave us are sane.
2893 * In addition, set the stack direction for userspace since it's easy for us to
2894 * determine.
2895 */
2896 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2897 {
2898 if (kargs->stack == 0) {
2899 if (kargs->stack_size > 0)
2900 return false;
2901 } else {
2902 if (kargs->stack_size == 0)
2903 return false;
2904
2905 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2906 return false;
2907
2908 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2909 kargs->stack += kargs->stack_size;
2910 #endif
2911 }
2912
2913 return true;
2914 }
2915
2916 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2917 {
2918 /* Verify that no unknown flags are passed along. */
2919 if (kargs->flags &
2920 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2921 return false;
2922
2923 /*
2924 * - make the CLONE_DETACHED bit reusable for clone3
2925 * - make the CSIGNAL bits reusable for clone3
2926 */
2927 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2928 return false;
2929
2930 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2931 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2932 return false;
2933
2934 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2935 kargs->exit_signal)
2936 return false;
2937
2938 if (!clone3_stack_valid(kargs))
2939 return false;
2940
2941 return true;
2942 }
2943
2944 /**
2945 * clone3 - create a new process with specific properties
2946 * @uargs: argument structure
2947 * @size: size of @uargs
2948 *
2949 * clone3() is the extensible successor to clone()/clone2().
2950 * It takes a struct as argument that is versioned by its size.
2951 *
2952 * Return: On success, a positive PID for the child process.
2953 * On error, a negative errno number.
2954 */
2955 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2956 {
2957 int err;
2958
2959 struct kernel_clone_args kargs;
2960 pid_t set_tid[MAX_PID_NS_LEVEL];
2961
2962 kargs.set_tid = set_tid;
2963
2964 err = copy_clone_args_from_user(&kargs, uargs, size);
2965 if (err)
2966 return err;
2967
2968 if (!clone3_args_valid(&kargs))
2969 return -EINVAL;
2970
2971 return kernel_clone(&kargs);
2972 }
2973 #endif
2974
2975 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2976 {
2977 struct task_struct *leader, *parent, *child;
2978 int res;
2979
2980 read_lock(&tasklist_lock);
2981 leader = top = top->group_leader;
2982 down:
2983 for_each_thread(leader, parent) {
2984 list_for_each_entry(child, &parent->children, sibling) {
2985 res = visitor(child, data);
2986 if (res) {
2987 if (res < 0)
2988 goto out;
2989 leader = child;
2990 goto down;
2991 }
2992 up:
2993 ;
2994 }
2995 }
2996
2997 if (leader != top) {
2998 child = leader;
2999 parent = child->real_parent;
3000 leader = parent->group_leader;
3001 goto up;
3002 }
3003 out:
3004 read_unlock(&tasklist_lock);
3005 }
3006
3007 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3008 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3009 #endif
3010
3011 static void sighand_ctor(void *data)
3012 {
3013 struct sighand_struct *sighand = data;
3014
3015 spin_lock_init(&sighand->siglock);
3016 init_waitqueue_head(&sighand->signalfd_wqh);
3017 }
3018
3019 void __init proc_caches_init(void)
3020 {
3021 unsigned int mm_size;
3022
3023 sighand_cachep = kmem_cache_create("sighand_cache",
3024 sizeof(struct sighand_struct), 0,
3025 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3026 SLAB_ACCOUNT, sighand_ctor);
3027 signal_cachep = kmem_cache_create("signal_cache",
3028 sizeof(struct signal_struct), 0,
3029 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3030 NULL);
3031 files_cachep = kmem_cache_create("files_cache",
3032 sizeof(struct files_struct), 0,
3033 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3034 NULL);
3035 fs_cachep = kmem_cache_create("fs_cache",
3036 sizeof(struct fs_struct), 0,
3037 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3038 NULL);
3039
3040 /*
3041 * The mm_cpumask is located at the end of mm_struct, and is
3042 * dynamically sized based on the maximum CPU number this system
3043 * can have, taking hotplug into account (nr_cpu_ids).
3044 */
3045 mm_size = sizeof(struct mm_struct) + cpumask_size();
3046
3047 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3048 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3049 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3050 offsetof(struct mm_struct, saved_auxv),
3051 sizeof_field(struct mm_struct, saved_auxv),
3052 NULL);
3053 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3054 mmap_init();
3055 nsproxy_cache_init();
3056 }
3057
3058 /*
3059 * Check constraints on flags passed to the unshare system call.
3060 */
3061 static int check_unshare_flags(unsigned long unshare_flags)
3062 {
3063 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3064 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3065 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3066 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3067 CLONE_NEWTIME))
3068 return -EINVAL;
3069 /*
3070 * Not implemented, but pretend it works if there is nothing
3071 * to unshare. Note that unsharing the address space or the
3072 * signal handlers also need to unshare the signal queues (aka
3073 * CLONE_THREAD).
3074 */
3075 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3076 if (!thread_group_empty(current))
3077 return -EINVAL;
3078 }
3079 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3080 if (refcount_read(&current->sighand->count) > 1)
3081 return -EINVAL;
3082 }
3083 if (unshare_flags & CLONE_VM) {
3084 if (!current_is_single_threaded())
3085 return -EINVAL;
3086 }
3087
3088 return 0;
3089 }
3090
3091 /*
3092 * Unshare the filesystem structure if it is being shared
3093 */
3094 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3095 {
3096 struct fs_struct *fs = current->fs;
3097
3098 if (!(unshare_flags & CLONE_FS) || !fs)
3099 return 0;
3100
3101 /* don't need lock here; in the worst case we'll do useless copy */
3102 if (fs->users == 1)
3103 return 0;
3104
3105 *new_fsp = copy_fs_struct(fs);
3106 if (!*new_fsp)
3107 return -ENOMEM;
3108
3109 return 0;
3110 }
3111
3112 /*
3113 * Unshare file descriptor table if it is being shared
3114 */
3115 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3116 struct files_struct **new_fdp)
3117 {
3118 struct files_struct *fd = current->files;
3119 int error = 0;
3120
3121 if ((unshare_flags & CLONE_FILES) &&
3122 (fd && atomic_read(&fd->count) > 1)) {
3123 *new_fdp = dup_fd(fd, max_fds, &error);
3124 if (!*new_fdp)
3125 return error;
3126 }
3127
3128 return 0;
3129 }
3130
3131 /*
3132 * unshare allows a process to 'unshare' part of the process
3133 * context which was originally shared using clone. copy_*
3134 * functions used by kernel_clone() cannot be used here directly
3135 * because they modify an inactive task_struct that is being
3136 * constructed. Here we are modifying the current, active,
3137 * task_struct.
3138 */
3139 int ksys_unshare(unsigned long unshare_flags)
3140 {
3141 struct fs_struct *fs, *new_fs = NULL;
3142 struct files_struct *new_fd = NULL;
3143 struct cred *new_cred = NULL;
3144 struct nsproxy *new_nsproxy = NULL;
3145 int do_sysvsem = 0;
3146 int err;
3147
3148 /*
3149 * If unsharing a user namespace must also unshare the thread group
3150 * and unshare the filesystem root and working directories.
3151 */
3152 if (unshare_flags & CLONE_NEWUSER)
3153 unshare_flags |= CLONE_THREAD | CLONE_FS;
3154 /*
3155 * If unsharing vm, must also unshare signal handlers.
3156 */
3157 if (unshare_flags & CLONE_VM)
3158 unshare_flags |= CLONE_SIGHAND;
3159 /*
3160 * If unsharing a signal handlers, must also unshare the signal queues.
3161 */
3162 if (unshare_flags & CLONE_SIGHAND)
3163 unshare_flags |= CLONE_THREAD;
3164 /*
3165 * If unsharing namespace, must also unshare filesystem information.
3166 */
3167 if (unshare_flags & CLONE_NEWNS)
3168 unshare_flags |= CLONE_FS;
3169
3170 err = check_unshare_flags(unshare_flags);
3171 if (err)
3172 goto bad_unshare_out;
3173 /*
3174 * CLONE_NEWIPC must also detach from the undolist: after switching
3175 * to a new ipc namespace, the semaphore arrays from the old
3176 * namespace are unreachable.
3177 */
3178 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3179 do_sysvsem = 1;
3180 err = unshare_fs(unshare_flags, &new_fs);
3181 if (err)
3182 goto bad_unshare_out;
3183 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3184 if (err)
3185 goto bad_unshare_cleanup_fs;
3186 err = unshare_userns(unshare_flags, &new_cred);
3187 if (err)
3188 goto bad_unshare_cleanup_fd;
3189 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3190 new_cred, new_fs);
3191 if (err)
3192 goto bad_unshare_cleanup_cred;
3193
3194 if (new_cred) {
3195 err = set_cred_ucounts(new_cred);
3196 if (err)
3197 goto bad_unshare_cleanup_cred;
3198 }
3199
3200 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3201 if (do_sysvsem) {
3202 /*
3203 * CLONE_SYSVSEM is equivalent to sys_exit().
3204 */
3205 exit_sem(current);
3206 }
3207 if (unshare_flags & CLONE_NEWIPC) {
3208 /* Orphan segments in old ns (see sem above). */
3209 exit_shm(current);
3210 shm_init_task(current);
3211 }
3212
3213 if (new_nsproxy)
3214 switch_task_namespaces(current, new_nsproxy);
3215
3216 task_lock(current);
3217
3218 if (new_fs) {
3219 fs = current->fs;
3220 spin_lock(&fs->lock);
3221 current->fs = new_fs;
3222 if (--fs->users)
3223 new_fs = NULL;
3224 else
3225 new_fs = fs;
3226 spin_unlock(&fs->lock);
3227 }
3228
3229 if (new_fd)
3230 swap(current->files, new_fd);
3231
3232 task_unlock(current);
3233
3234 if (new_cred) {
3235 /* Install the new user namespace */
3236 commit_creds(new_cred);
3237 new_cred = NULL;
3238 }
3239 }
3240
3241 perf_event_namespaces(current);
3242
3243 bad_unshare_cleanup_cred:
3244 if (new_cred)
3245 put_cred(new_cred);
3246 bad_unshare_cleanup_fd:
3247 if (new_fd)
3248 put_files_struct(new_fd);
3249
3250 bad_unshare_cleanup_fs:
3251 if (new_fs)
3252 free_fs_struct(new_fs);
3253
3254 bad_unshare_out:
3255 return err;
3256 }
3257
3258 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3259 {
3260 return ksys_unshare(unshare_flags);
3261 }
3262
3263 /*
3264 * Helper to unshare the files of the current task.
3265 * We don't want to expose copy_files internals to
3266 * the exec layer of the kernel.
3267 */
3268
3269 int unshare_files(void)
3270 {
3271 struct task_struct *task = current;
3272 struct files_struct *old, *copy = NULL;
3273 int error;
3274
3275 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3276 if (error || !copy)
3277 return error;
3278
3279 old = task->files;
3280 task_lock(task);
3281 task->files = copy;
3282 task_unlock(task);
3283 put_files_struct(old);
3284 return 0;
3285 }
3286
3287 int sysctl_max_threads(struct ctl_table *table, int write,
3288 void *buffer, size_t *lenp, loff_t *ppos)
3289 {
3290 struct ctl_table t;
3291 int ret;
3292 int threads = max_threads;
3293 int min = 1;
3294 int max = MAX_THREADS;
3295
3296 t = *table;
3297 t.data = &threads;
3298 t.extra1 = &min;
3299 t.extra2 = &max;
3300
3301 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3302 if (ret || !write)
3303 return ret;
3304
3305 max_threads = threads;
3306
3307 return 0;
3308 }