]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge branch 'pm-cpuidle'
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
244
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
266
267 /*
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
271 */
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274 /*
275 * we need to allow at least 20 threads to boot a system
276 */
277 if (max_threads < 20)
278 max_threads = 20;
279
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
288 {
289 *dst = *src;
290 return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
300
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
304
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
308
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
312
313 tsk->stack = ti;
314
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
324
325 /*
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
328 */
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
335
336 account_kernel_stack(ti, 1);
337
338 return tsk;
339
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354
355 uprobe_start_dup_mmap();
356 down_write(&oldmm->mmap_sem);
357 flush_cache_dup_mm(oldmm);
358 uprobe_dup_mmap(oldmm, mm);
359 /*
360 * Not linked in yet - no deadlock potential:
361 */
362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363
364 mm->locked_vm = 0;
365 mm->mmap = NULL;
366 mm->mmap_cache = NULL;
367 mm->map_count = 0;
368 cpumask_clear(mm_cpumask(mm));
369 mm->mm_rb = RB_ROOT;
370 rb_link = &mm->mm_rb.rb_node;
371 rb_parent = NULL;
372 pprev = &mm->mmap;
373 retval = ksm_fork(mm, oldmm);
374 if (retval)
375 goto out;
376 retval = khugepaged_fork(mm, oldmm);
377 if (retval)
378 goto out;
379
380 prev = NULL;
381 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382 struct file *file;
383
384 if (mpnt->vm_flags & VM_DONTCOPY) {
385 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386 -vma_pages(mpnt));
387 continue;
388 }
389 charge = 0;
390 if (mpnt->vm_flags & VM_ACCOUNT) {
391 unsigned long len = vma_pages(mpnt);
392
393 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394 goto fail_nomem;
395 charge = len;
396 }
397 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398 if (!tmp)
399 goto fail_nomem;
400 *tmp = *mpnt;
401 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 retval = vma_dup_policy(mpnt, tmp);
403 if (retval)
404 goto fail_nomem_policy;
405 tmp->vm_mm = mm;
406 if (anon_vma_fork(tmp, mpnt))
407 goto fail_nomem_anon_vma_fork;
408 tmp->vm_flags &= ~VM_LOCKED;
409 tmp->vm_next = tmp->vm_prev = NULL;
410 file = tmp->vm_file;
411 if (file) {
412 struct inode *inode = file_inode(file);
413 struct address_space *mapping = file->f_mapping;
414
415 get_file(file);
416 if (tmp->vm_flags & VM_DENYWRITE)
417 atomic_dec(&inode->i_writecount);
418 mutex_lock(&mapping->i_mmap_mutex);
419 if (tmp->vm_flags & VM_SHARED)
420 mapping->i_mmap_writable++;
421 flush_dcache_mmap_lock(mapping);
422 /* insert tmp into the share list, just after mpnt */
423 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
424 vma_nonlinear_insert(tmp,
425 &mapping->i_mmap_nonlinear);
426 else
427 vma_interval_tree_insert_after(tmp, mpnt,
428 &mapping->i_mmap);
429 flush_dcache_mmap_unlock(mapping);
430 mutex_unlock(&mapping->i_mmap_mutex);
431 }
432
433 /*
434 * Clear hugetlb-related page reserves for children. This only
435 * affects MAP_PRIVATE mappings. Faults generated by the child
436 * are not guaranteed to succeed, even if read-only
437 */
438 if (is_vm_hugetlb_page(tmp))
439 reset_vma_resv_huge_pages(tmp);
440
441 /*
442 * Link in the new vma and copy the page table entries.
443 */
444 *pprev = tmp;
445 pprev = &tmp->vm_next;
446 tmp->vm_prev = prev;
447 prev = tmp;
448
449 __vma_link_rb(mm, tmp, rb_link, rb_parent);
450 rb_link = &tmp->vm_rb.rb_right;
451 rb_parent = &tmp->vm_rb;
452
453 mm->map_count++;
454 retval = copy_page_range(mm, oldmm, mpnt);
455
456 if (tmp->vm_ops && tmp->vm_ops->open)
457 tmp->vm_ops->open(tmp);
458
459 if (retval)
460 goto out;
461 }
462 /* a new mm has just been created */
463 arch_dup_mmap(oldmm, mm);
464 retval = 0;
465 out:
466 up_write(&mm->mmap_sem);
467 flush_tlb_mm(oldmm);
468 up_write(&oldmm->mmap_sem);
469 uprobe_end_dup_mmap();
470 return retval;
471 fail_nomem_anon_vma_fork:
472 mpol_put(vma_policy(tmp));
473 fail_nomem_policy:
474 kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476 retval = -ENOMEM;
477 vm_unacct_memory(charge);
478 goto out;
479 }
480
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
482 {
483 mm->pgd = pgd_alloc(mm);
484 if (unlikely(!mm->pgd))
485 return -ENOMEM;
486 return 0;
487 }
488
489 static inline void mm_free_pgd(struct mm_struct *mm)
490 {
491 pgd_free(mm, mm->pgd);
492 }
493 #else
494 #define dup_mmap(mm, oldmm) (0)
495 #define mm_alloc_pgd(mm) (0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
498
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
500
501 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
503
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
505
506 static int __init coredump_filter_setup(char *s)
507 {
508 default_dump_filter =
509 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510 MMF_DUMP_FILTER_MASK;
511 return 1;
512 }
513
514 __setup("coredump_filter=", coredump_filter_setup);
515
516 #include <linux/init_task.h>
517
518 static void mm_init_aio(struct mm_struct *mm)
519 {
520 #ifdef CONFIG_AIO
521 spin_lock_init(&mm->ioctx_lock);
522 mm->ioctx_table = NULL;
523 #endif
524 }
525
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
527 {
528 atomic_set(&mm->mm_users, 1);
529 atomic_set(&mm->mm_count, 1);
530 init_rwsem(&mm->mmap_sem);
531 INIT_LIST_HEAD(&mm->mmlist);
532 mm->flags = (current->mm) ?
533 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534 mm->core_state = NULL;
535 mm->nr_ptes = 0;
536 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537 spin_lock_init(&mm->page_table_lock);
538 mm_init_aio(mm);
539 mm_init_owner(mm, p);
540
541 if (likely(!mm_alloc_pgd(mm))) {
542 mm->def_flags = 0;
543 mmu_notifier_mm_init(mm);
544 return mm;
545 }
546
547 free_mm(mm);
548 return NULL;
549 }
550
551 static void check_mm(struct mm_struct *mm)
552 {
553 int i;
554
555 for (i = 0; i < NR_MM_COUNTERS; i++) {
556 long x = atomic_long_read(&mm->rss_stat.count[i]);
557
558 if (unlikely(x))
559 printk(KERN_ALERT "BUG: Bad rss-counter state "
560 "mm:%p idx:%d val:%ld\n", mm, i, x);
561 }
562
563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
564 VM_BUG_ON(mm->pmd_huge_pte);
565 #endif
566 }
567
568 /*
569 * Allocate and initialize an mm_struct.
570 */
571 struct mm_struct *mm_alloc(void)
572 {
573 struct mm_struct *mm;
574
575 mm = allocate_mm();
576 if (!mm)
577 return NULL;
578
579 memset(mm, 0, sizeof(*mm));
580 mm_init_cpumask(mm);
581 return mm_init(mm, current);
582 }
583
584 /*
585 * Called when the last reference to the mm
586 * is dropped: either by a lazy thread or by
587 * mmput. Free the page directory and the mm.
588 */
589 void __mmdrop(struct mm_struct *mm)
590 {
591 BUG_ON(mm == &init_mm);
592 mm_free_pgd(mm);
593 destroy_context(mm);
594 mmu_notifier_mm_destroy(mm);
595 check_mm(mm);
596 free_mm(mm);
597 }
598 EXPORT_SYMBOL_GPL(__mmdrop);
599
600 /*
601 * Decrement the use count and release all resources for an mm.
602 */
603 void mmput(struct mm_struct *mm)
604 {
605 might_sleep();
606
607 if (atomic_dec_and_test(&mm->mm_users)) {
608 uprobe_clear_state(mm);
609 exit_aio(mm);
610 ksm_exit(mm);
611 khugepaged_exit(mm); /* must run before exit_mmap */
612 exit_mmap(mm);
613 set_mm_exe_file(mm, NULL);
614 if (!list_empty(&mm->mmlist)) {
615 spin_lock(&mmlist_lock);
616 list_del(&mm->mmlist);
617 spin_unlock(&mmlist_lock);
618 }
619 if (mm->binfmt)
620 module_put(mm->binfmt->module);
621 mmdrop(mm);
622 }
623 }
624 EXPORT_SYMBOL_GPL(mmput);
625
626 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
627 {
628 if (new_exe_file)
629 get_file(new_exe_file);
630 if (mm->exe_file)
631 fput(mm->exe_file);
632 mm->exe_file = new_exe_file;
633 }
634
635 struct file *get_mm_exe_file(struct mm_struct *mm)
636 {
637 struct file *exe_file;
638
639 /* We need mmap_sem to protect against races with removal of exe_file */
640 down_read(&mm->mmap_sem);
641 exe_file = mm->exe_file;
642 if (exe_file)
643 get_file(exe_file);
644 up_read(&mm->mmap_sem);
645 return exe_file;
646 }
647
648 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
649 {
650 /* It's safe to write the exe_file pointer without exe_file_lock because
651 * this is called during fork when the task is not yet in /proc */
652 newmm->exe_file = get_mm_exe_file(oldmm);
653 }
654
655 /**
656 * get_task_mm - acquire a reference to the task's mm
657 *
658 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
659 * this kernel workthread has transiently adopted a user mm with use_mm,
660 * to do its AIO) is not set and if so returns a reference to it, after
661 * bumping up the use count. User must release the mm via mmput()
662 * after use. Typically used by /proc and ptrace.
663 */
664 struct mm_struct *get_task_mm(struct task_struct *task)
665 {
666 struct mm_struct *mm;
667
668 task_lock(task);
669 mm = task->mm;
670 if (mm) {
671 if (task->flags & PF_KTHREAD)
672 mm = NULL;
673 else
674 atomic_inc(&mm->mm_users);
675 }
676 task_unlock(task);
677 return mm;
678 }
679 EXPORT_SYMBOL_GPL(get_task_mm);
680
681 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
682 {
683 struct mm_struct *mm;
684 int err;
685
686 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
687 if (err)
688 return ERR_PTR(err);
689
690 mm = get_task_mm(task);
691 if (mm && mm != current->mm &&
692 !ptrace_may_access(task, mode)) {
693 mmput(mm);
694 mm = ERR_PTR(-EACCES);
695 }
696 mutex_unlock(&task->signal->cred_guard_mutex);
697
698 return mm;
699 }
700
701 static void complete_vfork_done(struct task_struct *tsk)
702 {
703 struct completion *vfork;
704
705 task_lock(tsk);
706 vfork = tsk->vfork_done;
707 if (likely(vfork)) {
708 tsk->vfork_done = NULL;
709 complete(vfork);
710 }
711 task_unlock(tsk);
712 }
713
714 static int wait_for_vfork_done(struct task_struct *child,
715 struct completion *vfork)
716 {
717 int killed;
718
719 freezer_do_not_count();
720 killed = wait_for_completion_killable(vfork);
721 freezer_count();
722
723 if (killed) {
724 task_lock(child);
725 child->vfork_done = NULL;
726 task_unlock(child);
727 }
728
729 put_task_struct(child);
730 return killed;
731 }
732
733 /* Please note the differences between mmput and mm_release.
734 * mmput is called whenever we stop holding onto a mm_struct,
735 * error success whatever.
736 *
737 * mm_release is called after a mm_struct has been removed
738 * from the current process.
739 *
740 * This difference is important for error handling, when we
741 * only half set up a mm_struct for a new process and need to restore
742 * the old one. Because we mmput the new mm_struct before
743 * restoring the old one. . .
744 * Eric Biederman 10 January 1998
745 */
746 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
747 {
748 /* Get rid of any futexes when releasing the mm */
749 #ifdef CONFIG_FUTEX
750 if (unlikely(tsk->robust_list)) {
751 exit_robust_list(tsk);
752 tsk->robust_list = NULL;
753 }
754 #ifdef CONFIG_COMPAT
755 if (unlikely(tsk->compat_robust_list)) {
756 compat_exit_robust_list(tsk);
757 tsk->compat_robust_list = NULL;
758 }
759 #endif
760 if (unlikely(!list_empty(&tsk->pi_state_list)))
761 exit_pi_state_list(tsk);
762 #endif
763
764 uprobe_free_utask(tsk);
765
766 /* Get rid of any cached register state */
767 deactivate_mm(tsk, mm);
768
769 /*
770 * If we're exiting normally, clear a user-space tid field if
771 * requested. We leave this alone when dying by signal, to leave
772 * the value intact in a core dump, and to save the unnecessary
773 * trouble, say, a killed vfork parent shouldn't touch this mm.
774 * Userland only wants this done for a sys_exit.
775 */
776 if (tsk->clear_child_tid) {
777 if (!(tsk->flags & PF_SIGNALED) &&
778 atomic_read(&mm->mm_users) > 1) {
779 /*
780 * We don't check the error code - if userspace has
781 * not set up a proper pointer then tough luck.
782 */
783 put_user(0, tsk->clear_child_tid);
784 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
785 1, NULL, NULL, 0);
786 }
787 tsk->clear_child_tid = NULL;
788 }
789
790 /*
791 * All done, finally we can wake up parent and return this mm to him.
792 * Also kthread_stop() uses this completion for synchronization.
793 */
794 if (tsk->vfork_done)
795 complete_vfork_done(tsk);
796 }
797
798 /*
799 * Allocate a new mm structure and copy contents from the
800 * mm structure of the passed in task structure.
801 */
802 struct mm_struct *dup_mm(struct task_struct *tsk)
803 {
804 struct mm_struct *mm, *oldmm = current->mm;
805 int err;
806
807 if (!oldmm)
808 return NULL;
809
810 mm = allocate_mm();
811 if (!mm)
812 goto fail_nomem;
813
814 memcpy(mm, oldmm, sizeof(*mm));
815 mm_init_cpumask(mm);
816
817 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
818 mm->pmd_huge_pte = NULL;
819 #endif
820 if (!mm_init(mm, tsk))
821 goto fail_nomem;
822
823 if (init_new_context(tsk, mm))
824 goto fail_nocontext;
825
826 dup_mm_exe_file(oldmm, mm);
827
828 err = dup_mmap(mm, oldmm);
829 if (err)
830 goto free_pt;
831
832 mm->hiwater_rss = get_mm_rss(mm);
833 mm->hiwater_vm = mm->total_vm;
834
835 if (mm->binfmt && !try_module_get(mm->binfmt->module))
836 goto free_pt;
837
838 return mm;
839
840 free_pt:
841 /* don't put binfmt in mmput, we haven't got module yet */
842 mm->binfmt = NULL;
843 mmput(mm);
844
845 fail_nomem:
846 return NULL;
847
848 fail_nocontext:
849 /*
850 * If init_new_context() failed, we cannot use mmput() to free the mm
851 * because it calls destroy_context()
852 */
853 mm_free_pgd(mm);
854 free_mm(mm);
855 return NULL;
856 }
857
858 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
859 {
860 struct mm_struct *mm, *oldmm;
861 int retval;
862
863 tsk->min_flt = tsk->maj_flt = 0;
864 tsk->nvcsw = tsk->nivcsw = 0;
865 #ifdef CONFIG_DETECT_HUNG_TASK
866 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
867 #endif
868
869 tsk->mm = NULL;
870 tsk->active_mm = NULL;
871
872 /*
873 * Are we cloning a kernel thread?
874 *
875 * We need to steal a active VM for that..
876 */
877 oldmm = current->mm;
878 if (!oldmm)
879 return 0;
880
881 if (clone_flags & CLONE_VM) {
882 atomic_inc(&oldmm->mm_users);
883 mm = oldmm;
884 goto good_mm;
885 }
886
887 retval = -ENOMEM;
888 mm = dup_mm(tsk);
889 if (!mm)
890 goto fail_nomem;
891
892 good_mm:
893 tsk->mm = mm;
894 tsk->active_mm = mm;
895 return 0;
896
897 fail_nomem:
898 return retval;
899 }
900
901 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
902 {
903 struct fs_struct *fs = current->fs;
904 if (clone_flags & CLONE_FS) {
905 /* tsk->fs is already what we want */
906 spin_lock(&fs->lock);
907 if (fs->in_exec) {
908 spin_unlock(&fs->lock);
909 return -EAGAIN;
910 }
911 fs->users++;
912 spin_unlock(&fs->lock);
913 return 0;
914 }
915 tsk->fs = copy_fs_struct(fs);
916 if (!tsk->fs)
917 return -ENOMEM;
918 return 0;
919 }
920
921 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
922 {
923 struct files_struct *oldf, *newf;
924 int error = 0;
925
926 /*
927 * A background process may not have any files ...
928 */
929 oldf = current->files;
930 if (!oldf)
931 goto out;
932
933 if (clone_flags & CLONE_FILES) {
934 atomic_inc(&oldf->count);
935 goto out;
936 }
937
938 newf = dup_fd(oldf, &error);
939 if (!newf)
940 goto out;
941
942 tsk->files = newf;
943 error = 0;
944 out:
945 return error;
946 }
947
948 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
949 {
950 #ifdef CONFIG_BLOCK
951 struct io_context *ioc = current->io_context;
952 struct io_context *new_ioc;
953
954 if (!ioc)
955 return 0;
956 /*
957 * Share io context with parent, if CLONE_IO is set
958 */
959 if (clone_flags & CLONE_IO) {
960 ioc_task_link(ioc);
961 tsk->io_context = ioc;
962 } else if (ioprio_valid(ioc->ioprio)) {
963 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
964 if (unlikely(!new_ioc))
965 return -ENOMEM;
966
967 new_ioc->ioprio = ioc->ioprio;
968 put_io_context(new_ioc);
969 }
970 #endif
971 return 0;
972 }
973
974 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
975 {
976 struct sighand_struct *sig;
977
978 if (clone_flags & CLONE_SIGHAND) {
979 atomic_inc(&current->sighand->count);
980 return 0;
981 }
982 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
983 rcu_assign_pointer(tsk->sighand, sig);
984 if (!sig)
985 return -ENOMEM;
986 atomic_set(&sig->count, 1);
987 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
988 return 0;
989 }
990
991 void __cleanup_sighand(struct sighand_struct *sighand)
992 {
993 if (atomic_dec_and_test(&sighand->count)) {
994 signalfd_cleanup(sighand);
995 kmem_cache_free(sighand_cachep, sighand);
996 }
997 }
998
999
1000 /*
1001 * Initialize POSIX timer handling for a thread group.
1002 */
1003 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1004 {
1005 unsigned long cpu_limit;
1006
1007 /* Thread group counters. */
1008 thread_group_cputime_init(sig);
1009
1010 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1011 if (cpu_limit != RLIM_INFINITY) {
1012 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1013 sig->cputimer.running = 1;
1014 }
1015
1016 /* The timer lists. */
1017 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1018 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1019 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1020 }
1021
1022 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1023 {
1024 struct signal_struct *sig;
1025
1026 if (clone_flags & CLONE_THREAD)
1027 return 0;
1028
1029 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1030 tsk->signal = sig;
1031 if (!sig)
1032 return -ENOMEM;
1033
1034 sig->nr_threads = 1;
1035 atomic_set(&sig->live, 1);
1036 atomic_set(&sig->sigcnt, 1);
1037 init_waitqueue_head(&sig->wait_chldexit);
1038 sig->curr_target = tsk;
1039 init_sigpending(&sig->shared_pending);
1040 INIT_LIST_HEAD(&sig->posix_timers);
1041
1042 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1043 sig->real_timer.function = it_real_fn;
1044
1045 task_lock(current->group_leader);
1046 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1047 task_unlock(current->group_leader);
1048
1049 posix_cpu_timers_init_group(sig);
1050
1051 tty_audit_fork(sig);
1052 sched_autogroup_fork(sig);
1053
1054 #ifdef CONFIG_CGROUPS
1055 init_rwsem(&sig->group_rwsem);
1056 #endif
1057
1058 sig->oom_score_adj = current->signal->oom_score_adj;
1059 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1060
1061 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1062 current->signal->is_child_subreaper;
1063
1064 mutex_init(&sig->cred_guard_mutex);
1065
1066 return 0;
1067 }
1068
1069 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1070 {
1071 unsigned long new_flags = p->flags;
1072
1073 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1074 new_flags |= PF_FORKNOEXEC;
1075 p->flags = new_flags;
1076 }
1077
1078 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1079 {
1080 current->clear_child_tid = tidptr;
1081
1082 return task_pid_vnr(current);
1083 }
1084
1085 static void rt_mutex_init_task(struct task_struct *p)
1086 {
1087 raw_spin_lock_init(&p->pi_lock);
1088 #ifdef CONFIG_RT_MUTEXES
1089 plist_head_init(&p->pi_waiters);
1090 p->pi_blocked_on = NULL;
1091 #endif
1092 }
1093
1094 #ifdef CONFIG_MM_OWNER
1095 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1096 {
1097 mm->owner = p;
1098 }
1099 #endif /* CONFIG_MM_OWNER */
1100
1101 /*
1102 * Initialize POSIX timer handling for a single task.
1103 */
1104 static void posix_cpu_timers_init(struct task_struct *tsk)
1105 {
1106 tsk->cputime_expires.prof_exp = 0;
1107 tsk->cputime_expires.virt_exp = 0;
1108 tsk->cputime_expires.sched_exp = 0;
1109 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1110 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1111 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1112 }
1113
1114 static inline void
1115 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1116 {
1117 task->pids[type].pid = pid;
1118 }
1119
1120 /*
1121 * This creates a new process as a copy of the old one,
1122 * but does not actually start it yet.
1123 *
1124 * It copies the registers, and all the appropriate
1125 * parts of the process environment (as per the clone
1126 * flags). The actual kick-off is left to the caller.
1127 */
1128 static struct task_struct *copy_process(unsigned long clone_flags,
1129 unsigned long stack_start,
1130 unsigned long stack_size,
1131 int __user *child_tidptr,
1132 struct pid *pid,
1133 int trace)
1134 {
1135 int retval;
1136 struct task_struct *p;
1137
1138 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1139 return ERR_PTR(-EINVAL);
1140
1141 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1142 return ERR_PTR(-EINVAL);
1143
1144 /*
1145 * Thread groups must share signals as well, and detached threads
1146 * can only be started up within the thread group.
1147 */
1148 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1149 return ERR_PTR(-EINVAL);
1150
1151 /*
1152 * Shared signal handlers imply shared VM. By way of the above,
1153 * thread groups also imply shared VM. Blocking this case allows
1154 * for various simplifications in other code.
1155 */
1156 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1157 return ERR_PTR(-EINVAL);
1158
1159 /*
1160 * Siblings of global init remain as zombies on exit since they are
1161 * not reaped by their parent (swapper). To solve this and to avoid
1162 * multi-rooted process trees, prevent global and container-inits
1163 * from creating siblings.
1164 */
1165 if ((clone_flags & CLONE_PARENT) &&
1166 current->signal->flags & SIGNAL_UNKILLABLE)
1167 return ERR_PTR(-EINVAL);
1168
1169 /*
1170 * If the new process will be in a different pid or user namespace
1171 * do not allow it to share a thread group or signal handlers or
1172 * parent with the forking task.
1173 */
1174 if (clone_flags & (CLONE_SIGHAND | CLONE_PARENT)) {
1175 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1176 (task_active_pid_ns(current) !=
1177 current->nsproxy->pid_ns_for_children))
1178 return ERR_PTR(-EINVAL);
1179 }
1180
1181 retval = security_task_create(clone_flags);
1182 if (retval)
1183 goto fork_out;
1184
1185 retval = -ENOMEM;
1186 p = dup_task_struct(current);
1187 if (!p)
1188 goto fork_out;
1189
1190 ftrace_graph_init_task(p);
1191 get_seccomp_filter(p);
1192
1193 rt_mutex_init_task(p);
1194
1195 #ifdef CONFIG_PROVE_LOCKING
1196 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1197 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1198 #endif
1199 retval = -EAGAIN;
1200 if (atomic_read(&p->real_cred->user->processes) >=
1201 task_rlimit(p, RLIMIT_NPROC)) {
1202 if (p->real_cred->user != INIT_USER &&
1203 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1204 goto bad_fork_free;
1205 }
1206 current->flags &= ~PF_NPROC_EXCEEDED;
1207
1208 retval = copy_creds(p, clone_flags);
1209 if (retval < 0)
1210 goto bad_fork_free;
1211
1212 /*
1213 * If multiple threads are within copy_process(), then this check
1214 * triggers too late. This doesn't hurt, the check is only there
1215 * to stop root fork bombs.
1216 */
1217 retval = -EAGAIN;
1218 if (nr_threads >= max_threads)
1219 goto bad_fork_cleanup_count;
1220
1221 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1222 goto bad_fork_cleanup_count;
1223
1224 p->did_exec = 0;
1225 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1226 copy_flags(clone_flags, p);
1227 INIT_LIST_HEAD(&p->children);
1228 INIT_LIST_HEAD(&p->sibling);
1229 rcu_copy_process(p);
1230 p->vfork_done = NULL;
1231 spin_lock_init(&p->alloc_lock);
1232
1233 init_sigpending(&p->pending);
1234
1235 p->utime = p->stime = p->gtime = 0;
1236 p->utimescaled = p->stimescaled = 0;
1237 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1238 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1239 #endif
1240 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1241 seqlock_init(&p->vtime_seqlock);
1242 p->vtime_snap = 0;
1243 p->vtime_snap_whence = VTIME_SLEEPING;
1244 #endif
1245
1246 #if defined(SPLIT_RSS_COUNTING)
1247 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1248 #endif
1249
1250 p->default_timer_slack_ns = current->timer_slack_ns;
1251
1252 task_io_accounting_init(&p->ioac);
1253 acct_clear_integrals(p);
1254
1255 posix_cpu_timers_init(p);
1256
1257 do_posix_clock_monotonic_gettime(&p->start_time);
1258 p->real_start_time = p->start_time;
1259 monotonic_to_bootbased(&p->real_start_time);
1260 p->io_context = NULL;
1261 p->audit_context = NULL;
1262 if (clone_flags & CLONE_THREAD)
1263 threadgroup_change_begin(current);
1264 cgroup_fork(p);
1265 #ifdef CONFIG_NUMA
1266 p->mempolicy = mpol_dup(p->mempolicy);
1267 if (IS_ERR(p->mempolicy)) {
1268 retval = PTR_ERR(p->mempolicy);
1269 p->mempolicy = NULL;
1270 goto bad_fork_cleanup_cgroup;
1271 }
1272 mpol_fix_fork_child_flag(p);
1273 #endif
1274 #ifdef CONFIG_CPUSETS
1275 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1276 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1277 seqcount_init(&p->mems_allowed_seq);
1278 #endif
1279 #ifdef CONFIG_TRACE_IRQFLAGS
1280 p->irq_events = 0;
1281 p->hardirqs_enabled = 0;
1282 p->hardirq_enable_ip = 0;
1283 p->hardirq_enable_event = 0;
1284 p->hardirq_disable_ip = _THIS_IP_;
1285 p->hardirq_disable_event = 0;
1286 p->softirqs_enabled = 1;
1287 p->softirq_enable_ip = _THIS_IP_;
1288 p->softirq_enable_event = 0;
1289 p->softirq_disable_ip = 0;
1290 p->softirq_disable_event = 0;
1291 p->hardirq_context = 0;
1292 p->softirq_context = 0;
1293 #endif
1294 #ifdef CONFIG_LOCKDEP
1295 p->lockdep_depth = 0; /* no locks held yet */
1296 p->curr_chain_key = 0;
1297 p->lockdep_recursion = 0;
1298 #endif
1299
1300 #ifdef CONFIG_DEBUG_MUTEXES
1301 p->blocked_on = NULL; /* not blocked yet */
1302 #endif
1303 #ifdef CONFIG_MEMCG
1304 p->memcg_batch.do_batch = 0;
1305 p->memcg_batch.memcg = NULL;
1306 #endif
1307 #ifdef CONFIG_BCACHE
1308 p->sequential_io = 0;
1309 p->sequential_io_avg = 0;
1310 #endif
1311
1312 /* Perform scheduler related setup. Assign this task to a CPU. */
1313 sched_fork(clone_flags, p);
1314
1315 retval = perf_event_init_task(p);
1316 if (retval)
1317 goto bad_fork_cleanup_policy;
1318 retval = audit_alloc(p);
1319 if (retval)
1320 goto bad_fork_cleanup_policy;
1321 /* copy all the process information */
1322 retval = copy_semundo(clone_flags, p);
1323 if (retval)
1324 goto bad_fork_cleanup_audit;
1325 retval = copy_files(clone_flags, p);
1326 if (retval)
1327 goto bad_fork_cleanup_semundo;
1328 retval = copy_fs(clone_flags, p);
1329 if (retval)
1330 goto bad_fork_cleanup_files;
1331 retval = copy_sighand(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_fs;
1334 retval = copy_signal(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_sighand;
1337 retval = copy_mm(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_signal;
1340 retval = copy_namespaces(clone_flags, p);
1341 if (retval)
1342 goto bad_fork_cleanup_mm;
1343 retval = copy_io(clone_flags, p);
1344 if (retval)
1345 goto bad_fork_cleanup_namespaces;
1346 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1347 if (retval)
1348 goto bad_fork_cleanup_io;
1349
1350 if (pid != &init_struct_pid) {
1351 retval = -ENOMEM;
1352 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1353 if (!pid)
1354 goto bad_fork_cleanup_io;
1355 }
1356
1357 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1358 /*
1359 * Clear TID on mm_release()?
1360 */
1361 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1362 #ifdef CONFIG_BLOCK
1363 p->plug = NULL;
1364 #endif
1365 #ifdef CONFIG_FUTEX
1366 p->robust_list = NULL;
1367 #ifdef CONFIG_COMPAT
1368 p->compat_robust_list = NULL;
1369 #endif
1370 INIT_LIST_HEAD(&p->pi_state_list);
1371 p->pi_state_cache = NULL;
1372 #endif
1373 /*
1374 * sigaltstack should be cleared when sharing the same VM
1375 */
1376 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1377 p->sas_ss_sp = p->sas_ss_size = 0;
1378
1379 /*
1380 * Syscall tracing and stepping should be turned off in the
1381 * child regardless of CLONE_PTRACE.
1382 */
1383 user_disable_single_step(p);
1384 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1385 #ifdef TIF_SYSCALL_EMU
1386 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1387 #endif
1388 clear_all_latency_tracing(p);
1389
1390 /* ok, now we should be set up.. */
1391 p->pid = pid_nr(pid);
1392 if (clone_flags & CLONE_THREAD) {
1393 p->exit_signal = -1;
1394 p->group_leader = current->group_leader;
1395 p->tgid = current->tgid;
1396 } else {
1397 if (clone_flags & CLONE_PARENT)
1398 p->exit_signal = current->group_leader->exit_signal;
1399 else
1400 p->exit_signal = (clone_flags & CSIGNAL);
1401 p->group_leader = p;
1402 p->tgid = p->pid;
1403 }
1404
1405 p->pdeath_signal = 0;
1406 p->exit_state = 0;
1407
1408 p->nr_dirtied = 0;
1409 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1410 p->dirty_paused_when = 0;
1411
1412 INIT_LIST_HEAD(&p->thread_group);
1413 p->task_works = NULL;
1414
1415 /*
1416 * Make it visible to the rest of the system, but dont wake it up yet.
1417 * Need tasklist lock for parent etc handling!
1418 */
1419 write_lock_irq(&tasklist_lock);
1420
1421 /* CLONE_PARENT re-uses the old parent */
1422 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1423 p->real_parent = current->real_parent;
1424 p->parent_exec_id = current->parent_exec_id;
1425 } else {
1426 p->real_parent = current;
1427 p->parent_exec_id = current->self_exec_id;
1428 }
1429
1430 spin_lock(&current->sighand->siglock);
1431
1432 /*
1433 * Process group and session signals need to be delivered to just the
1434 * parent before the fork or both the parent and the child after the
1435 * fork. Restart if a signal comes in before we add the new process to
1436 * it's process group.
1437 * A fatal signal pending means that current will exit, so the new
1438 * thread can't slip out of an OOM kill (or normal SIGKILL).
1439 */
1440 recalc_sigpending();
1441 if (signal_pending(current)) {
1442 spin_unlock(&current->sighand->siglock);
1443 write_unlock_irq(&tasklist_lock);
1444 retval = -ERESTARTNOINTR;
1445 goto bad_fork_free_pid;
1446 }
1447
1448 if (likely(p->pid)) {
1449 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1450
1451 init_task_pid(p, PIDTYPE_PID, pid);
1452 if (thread_group_leader(p)) {
1453 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1454 init_task_pid(p, PIDTYPE_SID, task_session(current));
1455
1456 if (is_child_reaper(pid)) {
1457 ns_of_pid(pid)->child_reaper = p;
1458 p->signal->flags |= SIGNAL_UNKILLABLE;
1459 }
1460
1461 p->signal->leader_pid = pid;
1462 p->signal->tty = tty_kref_get(current->signal->tty);
1463 list_add_tail(&p->sibling, &p->real_parent->children);
1464 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1465 attach_pid(p, PIDTYPE_PGID);
1466 attach_pid(p, PIDTYPE_SID);
1467 __this_cpu_inc(process_counts);
1468 } else {
1469 current->signal->nr_threads++;
1470 atomic_inc(&current->signal->live);
1471 atomic_inc(&current->signal->sigcnt);
1472 list_add_tail_rcu(&p->thread_group,
1473 &p->group_leader->thread_group);
1474 }
1475 attach_pid(p, PIDTYPE_PID);
1476 nr_threads++;
1477 }
1478
1479 total_forks++;
1480 spin_unlock(&current->sighand->siglock);
1481 write_unlock_irq(&tasklist_lock);
1482 proc_fork_connector(p);
1483 cgroup_post_fork(p);
1484 if (clone_flags & CLONE_THREAD)
1485 threadgroup_change_end(current);
1486 perf_event_fork(p);
1487
1488 trace_task_newtask(p, clone_flags);
1489 uprobe_copy_process(p, clone_flags);
1490
1491 return p;
1492
1493 bad_fork_free_pid:
1494 if (pid != &init_struct_pid)
1495 free_pid(pid);
1496 bad_fork_cleanup_io:
1497 if (p->io_context)
1498 exit_io_context(p);
1499 bad_fork_cleanup_namespaces:
1500 exit_task_namespaces(p);
1501 bad_fork_cleanup_mm:
1502 if (p->mm)
1503 mmput(p->mm);
1504 bad_fork_cleanup_signal:
1505 if (!(clone_flags & CLONE_THREAD))
1506 free_signal_struct(p->signal);
1507 bad_fork_cleanup_sighand:
1508 __cleanup_sighand(p->sighand);
1509 bad_fork_cleanup_fs:
1510 exit_fs(p); /* blocking */
1511 bad_fork_cleanup_files:
1512 exit_files(p); /* blocking */
1513 bad_fork_cleanup_semundo:
1514 exit_sem(p);
1515 bad_fork_cleanup_audit:
1516 audit_free(p);
1517 bad_fork_cleanup_policy:
1518 perf_event_free_task(p);
1519 #ifdef CONFIG_NUMA
1520 mpol_put(p->mempolicy);
1521 bad_fork_cleanup_cgroup:
1522 #endif
1523 if (clone_flags & CLONE_THREAD)
1524 threadgroup_change_end(current);
1525 cgroup_exit(p, 0);
1526 delayacct_tsk_free(p);
1527 module_put(task_thread_info(p)->exec_domain->module);
1528 bad_fork_cleanup_count:
1529 atomic_dec(&p->cred->user->processes);
1530 exit_creds(p);
1531 bad_fork_free:
1532 free_task(p);
1533 fork_out:
1534 return ERR_PTR(retval);
1535 }
1536
1537 static inline void init_idle_pids(struct pid_link *links)
1538 {
1539 enum pid_type type;
1540
1541 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1542 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1543 links[type].pid = &init_struct_pid;
1544 }
1545 }
1546
1547 struct task_struct *fork_idle(int cpu)
1548 {
1549 struct task_struct *task;
1550 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1551 if (!IS_ERR(task)) {
1552 init_idle_pids(task->pids);
1553 init_idle(task, cpu);
1554 }
1555
1556 return task;
1557 }
1558
1559 /*
1560 * Ok, this is the main fork-routine.
1561 *
1562 * It copies the process, and if successful kick-starts
1563 * it and waits for it to finish using the VM if required.
1564 */
1565 long do_fork(unsigned long clone_flags,
1566 unsigned long stack_start,
1567 unsigned long stack_size,
1568 int __user *parent_tidptr,
1569 int __user *child_tidptr)
1570 {
1571 struct task_struct *p;
1572 int trace = 0;
1573 long nr;
1574
1575 /*
1576 * Determine whether and which event to report to ptracer. When
1577 * called from kernel_thread or CLONE_UNTRACED is explicitly
1578 * requested, no event is reported; otherwise, report if the event
1579 * for the type of forking is enabled.
1580 */
1581 if (!(clone_flags & CLONE_UNTRACED)) {
1582 if (clone_flags & CLONE_VFORK)
1583 trace = PTRACE_EVENT_VFORK;
1584 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1585 trace = PTRACE_EVENT_CLONE;
1586 else
1587 trace = PTRACE_EVENT_FORK;
1588
1589 if (likely(!ptrace_event_enabled(current, trace)))
1590 trace = 0;
1591 }
1592
1593 p = copy_process(clone_flags, stack_start, stack_size,
1594 child_tidptr, NULL, trace);
1595 /*
1596 * Do this prior waking up the new thread - the thread pointer
1597 * might get invalid after that point, if the thread exits quickly.
1598 */
1599 if (!IS_ERR(p)) {
1600 struct completion vfork;
1601
1602 trace_sched_process_fork(current, p);
1603
1604 nr = task_pid_vnr(p);
1605
1606 if (clone_flags & CLONE_PARENT_SETTID)
1607 put_user(nr, parent_tidptr);
1608
1609 if (clone_flags & CLONE_VFORK) {
1610 p->vfork_done = &vfork;
1611 init_completion(&vfork);
1612 get_task_struct(p);
1613 }
1614
1615 wake_up_new_task(p);
1616
1617 /* forking complete and child started to run, tell ptracer */
1618 if (unlikely(trace))
1619 ptrace_event(trace, nr);
1620
1621 if (clone_flags & CLONE_VFORK) {
1622 if (!wait_for_vfork_done(p, &vfork))
1623 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1624 }
1625 } else {
1626 nr = PTR_ERR(p);
1627 }
1628 return nr;
1629 }
1630
1631 /*
1632 * Create a kernel thread.
1633 */
1634 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1635 {
1636 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1637 (unsigned long)arg, NULL, NULL);
1638 }
1639
1640 #ifdef __ARCH_WANT_SYS_FORK
1641 SYSCALL_DEFINE0(fork)
1642 {
1643 #ifdef CONFIG_MMU
1644 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1645 #else
1646 /* can not support in nommu mode */
1647 return(-EINVAL);
1648 #endif
1649 }
1650 #endif
1651
1652 #ifdef __ARCH_WANT_SYS_VFORK
1653 SYSCALL_DEFINE0(vfork)
1654 {
1655 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1656 0, NULL, NULL);
1657 }
1658 #endif
1659
1660 #ifdef __ARCH_WANT_SYS_CLONE
1661 #ifdef CONFIG_CLONE_BACKWARDS
1662 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1663 int __user *, parent_tidptr,
1664 int, tls_val,
1665 int __user *, child_tidptr)
1666 #elif defined(CONFIG_CLONE_BACKWARDS2)
1667 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1668 int __user *, parent_tidptr,
1669 int __user *, child_tidptr,
1670 int, tls_val)
1671 #elif defined(CONFIG_CLONE_BACKWARDS3)
1672 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1673 int, stack_size,
1674 int __user *, parent_tidptr,
1675 int __user *, child_tidptr,
1676 int, tls_val)
1677 #else
1678 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1679 int __user *, parent_tidptr,
1680 int __user *, child_tidptr,
1681 int, tls_val)
1682 #endif
1683 {
1684 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1685 }
1686 #endif
1687
1688 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1689 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1690 #endif
1691
1692 static void sighand_ctor(void *data)
1693 {
1694 struct sighand_struct *sighand = data;
1695
1696 spin_lock_init(&sighand->siglock);
1697 init_waitqueue_head(&sighand->signalfd_wqh);
1698 }
1699
1700 void __init proc_caches_init(void)
1701 {
1702 sighand_cachep = kmem_cache_create("sighand_cache",
1703 sizeof(struct sighand_struct), 0,
1704 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1705 SLAB_NOTRACK, sighand_ctor);
1706 signal_cachep = kmem_cache_create("signal_cache",
1707 sizeof(struct signal_struct), 0,
1708 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1709 files_cachep = kmem_cache_create("files_cache",
1710 sizeof(struct files_struct), 0,
1711 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1712 fs_cachep = kmem_cache_create("fs_cache",
1713 sizeof(struct fs_struct), 0,
1714 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1715 /*
1716 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1717 * whole struct cpumask for the OFFSTACK case. We could change
1718 * this to *only* allocate as much of it as required by the
1719 * maximum number of CPU's we can ever have. The cpumask_allocation
1720 * is at the end of the structure, exactly for that reason.
1721 */
1722 mm_cachep = kmem_cache_create("mm_struct",
1723 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1724 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1725 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1726 mmap_init();
1727 nsproxy_cache_init();
1728 }
1729
1730 /*
1731 * Check constraints on flags passed to the unshare system call.
1732 */
1733 static int check_unshare_flags(unsigned long unshare_flags)
1734 {
1735 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1736 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1737 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1738 CLONE_NEWUSER|CLONE_NEWPID))
1739 return -EINVAL;
1740 /*
1741 * Not implemented, but pretend it works if there is nothing to
1742 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1743 * needs to unshare vm.
1744 */
1745 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1746 /* FIXME: get_task_mm() increments ->mm_users */
1747 if (atomic_read(&current->mm->mm_users) > 1)
1748 return -EINVAL;
1749 }
1750
1751 return 0;
1752 }
1753
1754 /*
1755 * Unshare the filesystem structure if it is being shared
1756 */
1757 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1758 {
1759 struct fs_struct *fs = current->fs;
1760
1761 if (!(unshare_flags & CLONE_FS) || !fs)
1762 return 0;
1763
1764 /* don't need lock here; in the worst case we'll do useless copy */
1765 if (fs->users == 1)
1766 return 0;
1767
1768 *new_fsp = copy_fs_struct(fs);
1769 if (!*new_fsp)
1770 return -ENOMEM;
1771
1772 return 0;
1773 }
1774
1775 /*
1776 * Unshare file descriptor table if it is being shared
1777 */
1778 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1779 {
1780 struct files_struct *fd = current->files;
1781 int error = 0;
1782
1783 if ((unshare_flags & CLONE_FILES) &&
1784 (fd && atomic_read(&fd->count) > 1)) {
1785 *new_fdp = dup_fd(fd, &error);
1786 if (!*new_fdp)
1787 return error;
1788 }
1789
1790 return 0;
1791 }
1792
1793 /*
1794 * unshare allows a process to 'unshare' part of the process
1795 * context which was originally shared using clone. copy_*
1796 * functions used by do_fork() cannot be used here directly
1797 * because they modify an inactive task_struct that is being
1798 * constructed. Here we are modifying the current, active,
1799 * task_struct.
1800 */
1801 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1802 {
1803 struct fs_struct *fs, *new_fs = NULL;
1804 struct files_struct *fd, *new_fd = NULL;
1805 struct cred *new_cred = NULL;
1806 struct nsproxy *new_nsproxy = NULL;
1807 int do_sysvsem = 0;
1808 int err;
1809
1810 /*
1811 * If unsharing a user namespace must also unshare the thread.
1812 */
1813 if (unshare_flags & CLONE_NEWUSER)
1814 unshare_flags |= CLONE_THREAD | CLONE_FS;
1815 /*
1816 * If unsharing a thread from a thread group, must also unshare vm.
1817 */
1818 if (unshare_flags & CLONE_THREAD)
1819 unshare_flags |= CLONE_VM;
1820 /*
1821 * If unsharing vm, must also unshare signal handlers.
1822 */
1823 if (unshare_flags & CLONE_VM)
1824 unshare_flags |= CLONE_SIGHAND;
1825 /*
1826 * If unsharing namespace, must also unshare filesystem information.
1827 */
1828 if (unshare_flags & CLONE_NEWNS)
1829 unshare_flags |= CLONE_FS;
1830
1831 err = check_unshare_flags(unshare_flags);
1832 if (err)
1833 goto bad_unshare_out;
1834 /*
1835 * CLONE_NEWIPC must also detach from the undolist: after switching
1836 * to a new ipc namespace, the semaphore arrays from the old
1837 * namespace are unreachable.
1838 */
1839 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1840 do_sysvsem = 1;
1841 err = unshare_fs(unshare_flags, &new_fs);
1842 if (err)
1843 goto bad_unshare_out;
1844 err = unshare_fd(unshare_flags, &new_fd);
1845 if (err)
1846 goto bad_unshare_cleanup_fs;
1847 err = unshare_userns(unshare_flags, &new_cred);
1848 if (err)
1849 goto bad_unshare_cleanup_fd;
1850 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1851 new_cred, new_fs);
1852 if (err)
1853 goto bad_unshare_cleanup_cred;
1854
1855 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1856 if (do_sysvsem) {
1857 /*
1858 * CLONE_SYSVSEM is equivalent to sys_exit().
1859 */
1860 exit_sem(current);
1861 }
1862
1863 if (new_nsproxy)
1864 switch_task_namespaces(current, new_nsproxy);
1865
1866 task_lock(current);
1867
1868 if (new_fs) {
1869 fs = current->fs;
1870 spin_lock(&fs->lock);
1871 current->fs = new_fs;
1872 if (--fs->users)
1873 new_fs = NULL;
1874 else
1875 new_fs = fs;
1876 spin_unlock(&fs->lock);
1877 }
1878
1879 if (new_fd) {
1880 fd = current->files;
1881 current->files = new_fd;
1882 new_fd = fd;
1883 }
1884
1885 task_unlock(current);
1886
1887 if (new_cred) {
1888 /* Install the new user namespace */
1889 commit_creds(new_cred);
1890 new_cred = NULL;
1891 }
1892 }
1893
1894 bad_unshare_cleanup_cred:
1895 if (new_cred)
1896 put_cred(new_cred);
1897 bad_unshare_cleanup_fd:
1898 if (new_fd)
1899 put_files_struct(new_fd);
1900
1901 bad_unshare_cleanup_fs:
1902 if (new_fs)
1903 free_fs_struct(new_fs);
1904
1905 bad_unshare_out:
1906 return err;
1907 }
1908
1909 /*
1910 * Helper to unshare the files of the current task.
1911 * We don't want to expose copy_files internals to
1912 * the exec layer of the kernel.
1913 */
1914
1915 int unshare_files(struct files_struct **displaced)
1916 {
1917 struct task_struct *task = current;
1918 struct files_struct *copy = NULL;
1919 int error;
1920
1921 error = unshare_fd(CLONE_FILES, &copy);
1922 if (error || !copy) {
1923 *displaced = NULL;
1924 return error;
1925 }
1926 *displaced = task->files;
1927 task_lock(task);
1928 task->files = copy;
1929 task_unlock(task);
1930 return 0;
1931 }