]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge tag 'mmc-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162
163 #ifdef CONFIG_VMAP_STACK
164 /*
165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166 * flush. Try to minimize the number of calls by caching stacks.
167 */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 void *stack;
176 int i;
177
178 local_irq_disable();
179 for (i = 0; i < NR_CACHED_STACKS; i++) {
180 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181
182 if (!s)
183 continue;
184 this_cpu_write(cached_stacks[i], NULL);
185
186 tsk->stack_vm_area = s;
187 local_irq_enable();
188 return s->addr;
189 }
190 local_irq_enable();
191
192 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 VMALLOC_START, VMALLOC_END,
194 THREADINFO_GFP | __GFP_HIGHMEM,
195 PAGE_KERNEL,
196 0, node, __builtin_return_address(0));
197
198 /*
199 * We can't call find_vm_area() in interrupt context, and
200 * free_thread_stack() can be called in interrupt context,
201 * so cache the vm_struct.
202 */
203 if (stack)
204 tsk->stack_vm_area = find_vm_area(stack);
205 return stack;
206 #else
207 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 THREAD_SIZE_ORDER);
209
210 return page ? page_address(page) : NULL;
211 #endif
212 }
213
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 if (task_stack_vm_area(tsk)) {
218 unsigned long flags;
219 int i;
220
221 local_irq_save(flags);
222 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 if (this_cpu_read(cached_stacks[i]))
224 continue;
225
226 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 local_irq_restore(flags);
228 return;
229 }
230 local_irq_restore(flags);
231
232 vfree(tsk->stack);
233 return;
234 }
235 #endif
236
237 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 int node)
244 {
245 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252
253 void thread_stack_cache_init(void)
254 {
255 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 THREAD_SIZE, 0, NULL);
257 BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 void *stack = task_stack_page(tsk);
283 struct vm_struct *vm = task_stack_vm_area(tsk);
284
285 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286
287 if (vm) {
288 int i;
289
290 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291
292 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 mod_zone_page_state(page_zone(vm->pages[i]),
294 NR_KERNEL_STACK_KB,
295 PAGE_SIZE / 1024 * account);
296 }
297
298 /* All stack pages belong to the same memcg. */
299 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 account * (THREAD_SIZE / 1024));
301 } else {
302 /*
303 * All stack pages are in the same zone and belong to the
304 * same memcg.
305 */
306 struct page *first_page = virt_to_page(stack);
307
308 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 THREAD_SIZE / 1024 * account);
310
311 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 account * (THREAD_SIZE / 1024));
313 }
314 }
315
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 account_kernel_stack(tsk, -1);
319 arch_release_thread_stack(tsk->stack);
320 free_thread_stack(tsk);
321 tsk->stack = NULL;
322 #ifdef CONFIG_VMAP_STACK
323 tsk->stack_vm_area = NULL;
324 #endif
325 }
326
327 #ifdef CONFIG_THREAD_INFO_IN_TASK
328 void put_task_stack(struct task_struct *tsk)
329 {
330 if (atomic_dec_and_test(&tsk->stack_refcount))
331 release_task_stack(tsk);
332 }
333 #endif
334
335 void free_task(struct task_struct *tsk)
336 {
337 #ifndef CONFIG_THREAD_INFO_IN_TASK
338 /*
339 * The task is finally done with both the stack and thread_info,
340 * so free both.
341 */
342 release_task_stack(tsk);
343 #else
344 /*
345 * If the task had a separate stack allocation, it should be gone
346 * by now.
347 */
348 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
349 #endif
350 rt_mutex_debug_task_free(tsk);
351 ftrace_graph_exit_task(tsk);
352 put_seccomp_filter(tsk);
353 arch_release_task_struct(tsk);
354 free_task_struct(tsk);
355 }
356 EXPORT_SYMBOL(free_task);
357
358 static inline void free_signal_struct(struct signal_struct *sig)
359 {
360 taskstats_tgid_free(sig);
361 sched_autogroup_exit(sig);
362 /*
363 * __mmdrop is not safe to call from softirq context on x86 due to
364 * pgd_dtor so postpone it to the async context
365 */
366 if (sig->oom_mm)
367 mmdrop_async(sig->oom_mm);
368 kmem_cache_free(signal_cachep, sig);
369 }
370
371 static inline void put_signal_struct(struct signal_struct *sig)
372 {
373 if (atomic_dec_and_test(&sig->sigcnt))
374 free_signal_struct(sig);
375 }
376
377 void __put_task_struct(struct task_struct *tsk)
378 {
379 WARN_ON(!tsk->exit_state);
380 WARN_ON(atomic_read(&tsk->usage));
381 WARN_ON(tsk == current);
382
383 cgroup_free(tsk);
384 task_numa_free(tsk);
385 security_task_free(tsk);
386 exit_creds(tsk);
387 delayacct_tsk_free(tsk);
388 put_signal_struct(tsk->signal);
389
390 if (!profile_handoff_task(tsk))
391 free_task(tsk);
392 }
393 EXPORT_SYMBOL_GPL(__put_task_struct);
394
395 void __init __weak arch_task_cache_init(void) { }
396
397 /*
398 * set_max_threads
399 */
400 static void set_max_threads(unsigned int max_threads_suggested)
401 {
402 u64 threads;
403
404 /*
405 * The number of threads shall be limited such that the thread
406 * structures may only consume a small part of the available memory.
407 */
408 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
409 threads = MAX_THREADS;
410 else
411 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
412 (u64) THREAD_SIZE * 8UL);
413
414 if (threads > max_threads_suggested)
415 threads = max_threads_suggested;
416
417 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
418 }
419
420 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
421 /* Initialized by the architecture: */
422 int arch_task_struct_size __read_mostly;
423 #endif
424
425 void __init fork_init(void)
426 {
427 int i;
428 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
429 #ifndef ARCH_MIN_TASKALIGN
430 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
431 #endif
432 /* create a slab on which task_structs can be allocated */
433 task_struct_cachep = kmem_cache_create("task_struct",
434 arch_task_struct_size, ARCH_MIN_TASKALIGN,
435 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
436 #endif
437
438 /* do the arch specific task caches init */
439 arch_task_cache_init();
440
441 set_max_threads(MAX_THREADS);
442
443 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
444 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
445 init_task.signal->rlim[RLIMIT_SIGPENDING] =
446 init_task.signal->rlim[RLIMIT_NPROC];
447
448 for (i = 0; i < UCOUNT_COUNTS; i++) {
449 init_user_ns.ucount_max[i] = max_threads/2;
450 }
451 }
452
453 int __weak arch_dup_task_struct(struct task_struct *dst,
454 struct task_struct *src)
455 {
456 *dst = *src;
457 return 0;
458 }
459
460 void set_task_stack_end_magic(struct task_struct *tsk)
461 {
462 unsigned long *stackend;
463
464 stackend = end_of_stack(tsk);
465 *stackend = STACK_END_MAGIC; /* for overflow detection */
466 }
467
468 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
469 {
470 struct task_struct *tsk;
471 unsigned long *stack;
472 struct vm_struct *stack_vm_area;
473 int err;
474
475 if (node == NUMA_NO_NODE)
476 node = tsk_fork_get_node(orig);
477 tsk = alloc_task_struct_node(node);
478 if (!tsk)
479 return NULL;
480
481 stack = alloc_thread_stack_node(tsk, node);
482 if (!stack)
483 goto free_tsk;
484
485 stack_vm_area = task_stack_vm_area(tsk);
486
487 err = arch_dup_task_struct(tsk, orig);
488
489 /*
490 * arch_dup_task_struct() clobbers the stack-related fields. Make
491 * sure they're properly initialized before using any stack-related
492 * functions again.
493 */
494 tsk->stack = stack;
495 #ifdef CONFIG_VMAP_STACK
496 tsk->stack_vm_area = stack_vm_area;
497 #endif
498 #ifdef CONFIG_THREAD_INFO_IN_TASK
499 atomic_set(&tsk->stack_refcount, 1);
500 #endif
501
502 if (err)
503 goto free_stack;
504
505 #ifdef CONFIG_SECCOMP
506 /*
507 * We must handle setting up seccomp filters once we're under
508 * the sighand lock in case orig has changed between now and
509 * then. Until then, filter must be NULL to avoid messing up
510 * the usage counts on the error path calling free_task.
511 */
512 tsk->seccomp.filter = NULL;
513 #endif
514
515 setup_thread_stack(tsk, orig);
516 clear_user_return_notifier(tsk);
517 clear_tsk_need_resched(tsk);
518 set_task_stack_end_magic(tsk);
519
520 #ifdef CONFIG_CC_STACKPROTECTOR
521 tsk->stack_canary = get_random_int();
522 #endif
523
524 /*
525 * One for us, one for whoever does the "release_task()" (usually
526 * parent)
527 */
528 atomic_set(&tsk->usage, 2);
529 #ifdef CONFIG_BLK_DEV_IO_TRACE
530 tsk->btrace_seq = 0;
531 #endif
532 tsk->splice_pipe = NULL;
533 tsk->task_frag.page = NULL;
534 tsk->wake_q.next = NULL;
535
536 account_kernel_stack(tsk, 1);
537
538 kcov_task_init(tsk);
539
540 return tsk;
541
542 free_stack:
543 free_thread_stack(tsk);
544 free_tsk:
545 free_task_struct(tsk);
546 return NULL;
547 }
548
549 #ifdef CONFIG_MMU
550 static __latent_entropy int dup_mmap(struct mm_struct *mm,
551 struct mm_struct *oldmm)
552 {
553 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
554 struct rb_node **rb_link, *rb_parent;
555 int retval;
556 unsigned long charge;
557
558 uprobe_start_dup_mmap();
559 if (down_write_killable(&oldmm->mmap_sem)) {
560 retval = -EINTR;
561 goto fail_uprobe_end;
562 }
563 flush_cache_dup_mm(oldmm);
564 uprobe_dup_mmap(oldmm, mm);
565 /*
566 * Not linked in yet - no deadlock potential:
567 */
568 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
569
570 /* No ordering required: file already has been exposed. */
571 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
572
573 mm->total_vm = oldmm->total_vm;
574 mm->data_vm = oldmm->data_vm;
575 mm->exec_vm = oldmm->exec_vm;
576 mm->stack_vm = oldmm->stack_vm;
577
578 rb_link = &mm->mm_rb.rb_node;
579 rb_parent = NULL;
580 pprev = &mm->mmap;
581 retval = ksm_fork(mm, oldmm);
582 if (retval)
583 goto out;
584 retval = khugepaged_fork(mm, oldmm);
585 if (retval)
586 goto out;
587
588 prev = NULL;
589 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
590 struct file *file;
591
592 if (mpnt->vm_flags & VM_DONTCOPY) {
593 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
594 continue;
595 }
596 charge = 0;
597 if (mpnt->vm_flags & VM_ACCOUNT) {
598 unsigned long len = vma_pages(mpnt);
599
600 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
601 goto fail_nomem;
602 charge = len;
603 }
604 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
605 if (!tmp)
606 goto fail_nomem;
607 *tmp = *mpnt;
608 INIT_LIST_HEAD(&tmp->anon_vma_chain);
609 retval = vma_dup_policy(mpnt, tmp);
610 if (retval)
611 goto fail_nomem_policy;
612 tmp->vm_mm = mm;
613 if (anon_vma_fork(tmp, mpnt))
614 goto fail_nomem_anon_vma_fork;
615 tmp->vm_flags &=
616 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
617 tmp->vm_next = tmp->vm_prev = NULL;
618 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
619 file = tmp->vm_file;
620 if (file) {
621 struct inode *inode = file_inode(file);
622 struct address_space *mapping = file->f_mapping;
623
624 get_file(file);
625 if (tmp->vm_flags & VM_DENYWRITE)
626 atomic_dec(&inode->i_writecount);
627 i_mmap_lock_write(mapping);
628 if (tmp->vm_flags & VM_SHARED)
629 atomic_inc(&mapping->i_mmap_writable);
630 flush_dcache_mmap_lock(mapping);
631 /* insert tmp into the share list, just after mpnt */
632 vma_interval_tree_insert_after(tmp, mpnt,
633 &mapping->i_mmap);
634 flush_dcache_mmap_unlock(mapping);
635 i_mmap_unlock_write(mapping);
636 }
637
638 /*
639 * Clear hugetlb-related page reserves for children. This only
640 * affects MAP_PRIVATE mappings. Faults generated by the child
641 * are not guaranteed to succeed, even if read-only
642 */
643 if (is_vm_hugetlb_page(tmp))
644 reset_vma_resv_huge_pages(tmp);
645
646 /*
647 * Link in the new vma and copy the page table entries.
648 */
649 *pprev = tmp;
650 pprev = &tmp->vm_next;
651 tmp->vm_prev = prev;
652 prev = tmp;
653
654 __vma_link_rb(mm, tmp, rb_link, rb_parent);
655 rb_link = &tmp->vm_rb.rb_right;
656 rb_parent = &tmp->vm_rb;
657
658 mm->map_count++;
659 retval = copy_page_range(mm, oldmm, mpnt);
660
661 if (tmp->vm_ops && tmp->vm_ops->open)
662 tmp->vm_ops->open(tmp);
663
664 if (retval)
665 goto out;
666 }
667 /* a new mm has just been created */
668 arch_dup_mmap(oldmm, mm);
669 retval = 0;
670 out:
671 up_write(&mm->mmap_sem);
672 flush_tlb_mm(oldmm);
673 up_write(&oldmm->mmap_sem);
674 fail_uprobe_end:
675 uprobe_end_dup_mmap();
676 return retval;
677 fail_nomem_anon_vma_fork:
678 mpol_put(vma_policy(tmp));
679 fail_nomem_policy:
680 kmem_cache_free(vm_area_cachep, tmp);
681 fail_nomem:
682 retval = -ENOMEM;
683 vm_unacct_memory(charge);
684 goto out;
685 }
686
687 static inline int mm_alloc_pgd(struct mm_struct *mm)
688 {
689 mm->pgd = pgd_alloc(mm);
690 if (unlikely(!mm->pgd))
691 return -ENOMEM;
692 return 0;
693 }
694
695 static inline void mm_free_pgd(struct mm_struct *mm)
696 {
697 pgd_free(mm, mm->pgd);
698 }
699 #else
700 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
701 {
702 down_write(&oldmm->mmap_sem);
703 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
704 up_write(&oldmm->mmap_sem);
705 return 0;
706 }
707 #define mm_alloc_pgd(mm) (0)
708 #define mm_free_pgd(mm)
709 #endif /* CONFIG_MMU */
710
711 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
712
713 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
714 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
715
716 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
717
718 static int __init coredump_filter_setup(char *s)
719 {
720 default_dump_filter =
721 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
722 MMF_DUMP_FILTER_MASK;
723 return 1;
724 }
725
726 __setup("coredump_filter=", coredump_filter_setup);
727
728 #include <linux/init_task.h>
729
730 static void mm_init_aio(struct mm_struct *mm)
731 {
732 #ifdef CONFIG_AIO
733 spin_lock_init(&mm->ioctx_lock);
734 mm->ioctx_table = NULL;
735 #endif
736 }
737
738 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
739 {
740 #ifdef CONFIG_MEMCG
741 mm->owner = p;
742 #endif
743 }
744
745 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
746 {
747 mm->mmap = NULL;
748 mm->mm_rb = RB_ROOT;
749 mm->vmacache_seqnum = 0;
750 atomic_set(&mm->mm_users, 1);
751 atomic_set(&mm->mm_count, 1);
752 init_rwsem(&mm->mmap_sem);
753 INIT_LIST_HEAD(&mm->mmlist);
754 mm->core_state = NULL;
755 atomic_long_set(&mm->nr_ptes, 0);
756 mm_nr_pmds_init(mm);
757 mm->map_count = 0;
758 mm->locked_vm = 0;
759 mm->pinned_vm = 0;
760 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
761 spin_lock_init(&mm->page_table_lock);
762 mm_init_cpumask(mm);
763 mm_init_aio(mm);
764 mm_init_owner(mm, p);
765 mmu_notifier_mm_init(mm);
766 clear_tlb_flush_pending(mm);
767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
768 mm->pmd_huge_pte = NULL;
769 #endif
770
771 if (current->mm) {
772 mm->flags = current->mm->flags & MMF_INIT_MASK;
773 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
774 } else {
775 mm->flags = default_dump_filter;
776 mm->def_flags = 0;
777 }
778
779 if (mm_alloc_pgd(mm))
780 goto fail_nopgd;
781
782 if (init_new_context(p, mm))
783 goto fail_nocontext;
784
785 return mm;
786
787 fail_nocontext:
788 mm_free_pgd(mm);
789 fail_nopgd:
790 free_mm(mm);
791 return NULL;
792 }
793
794 static void check_mm(struct mm_struct *mm)
795 {
796 int i;
797
798 for (i = 0; i < NR_MM_COUNTERS; i++) {
799 long x = atomic_long_read(&mm->rss_stat.count[i]);
800
801 if (unlikely(x))
802 printk(KERN_ALERT "BUG: Bad rss-counter state "
803 "mm:%p idx:%d val:%ld\n", mm, i, x);
804 }
805
806 if (atomic_long_read(&mm->nr_ptes))
807 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
808 atomic_long_read(&mm->nr_ptes));
809 if (mm_nr_pmds(mm))
810 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
811 mm_nr_pmds(mm));
812
813 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
814 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
815 #endif
816 }
817
818 /*
819 * Allocate and initialize an mm_struct.
820 */
821 struct mm_struct *mm_alloc(void)
822 {
823 struct mm_struct *mm;
824
825 mm = allocate_mm();
826 if (!mm)
827 return NULL;
828
829 memset(mm, 0, sizeof(*mm));
830 return mm_init(mm, current);
831 }
832
833 /*
834 * Called when the last reference to the mm
835 * is dropped: either by a lazy thread or by
836 * mmput. Free the page directory and the mm.
837 */
838 void __mmdrop(struct mm_struct *mm)
839 {
840 BUG_ON(mm == &init_mm);
841 mm_free_pgd(mm);
842 destroy_context(mm);
843 mmu_notifier_mm_destroy(mm);
844 check_mm(mm);
845 free_mm(mm);
846 }
847 EXPORT_SYMBOL_GPL(__mmdrop);
848
849 static inline void __mmput(struct mm_struct *mm)
850 {
851 VM_BUG_ON(atomic_read(&mm->mm_users));
852
853 uprobe_clear_state(mm);
854 exit_aio(mm);
855 ksm_exit(mm);
856 khugepaged_exit(mm); /* must run before exit_mmap */
857 exit_mmap(mm);
858 mm_put_huge_zero_page(mm);
859 set_mm_exe_file(mm, NULL);
860 if (!list_empty(&mm->mmlist)) {
861 spin_lock(&mmlist_lock);
862 list_del(&mm->mmlist);
863 spin_unlock(&mmlist_lock);
864 }
865 if (mm->binfmt)
866 module_put(mm->binfmt->module);
867 set_bit(MMF_OOM_SKIP, &mm->flags);
868 mmdrop(mm);
869 }
870
871 /*
872 * Decrement the use count and release all resources for an mm.
873 */
874 void mmput(struct mm_struct *mm)
875 {
876 might_sleep();
877
878 if (atomic_dec_and_test(&mm->mm_users))
879 __mmput(mm);
880 }
881 EXPORT_SYMBOL_GPL(mmput);
882
883 #ifdef CONFIG_MMU
884 static void mmput_async_fn(struct work_struct *work)
885 {
886 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
887 __mmput(mm);
888 }
889
890 void mmput_async(struct mm_struct *mm)
891 {
892 if (atomic_dec_and_test(&mm->mm_users)) {
893 INIT_WORK(&mm->async_put_work, mmput_async_fn);
894 schedule_work(&mm->async_put_work);
895 }
896 }
897 #endif
898
899 /**
900 * set_mm_exe_file - change a reference to the mm's executable file
901 *
902 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
903 *
904 * Main users are mmput() and sys_execve(). Callers prevent concurrent
905 * invocations: in mmput() nobody alive left, in execve task is single
906 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
907 * mm->exe_file, but does so without using set_mm_exe_file() in order
908 * to do avoid the need for any locks.
909 */
910 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
911 {
912 struct file *old_exe_file;
913
914 /*
915 * It is safe to dereference the exe_file without RCU as
916 * this function is only called if nobody else can access
917 * this mm -- see comment above for justification.
918 */
919 old_exe_file = rcu_dereference_raw(mm->exe_file);
920
921 if (new_exe_file)
922 get_file(new_exe_file);
923 rcu_assign_pointer(mm->exe_file, new_exe_file);
924 if (old_exe_file)
925 fput(old_exe_file);
926 }
927
928 /**
929 * get_mm_exe_file - acquire a reference to the mm's executable file
930 *
931 * Returns %NULL if mm has no associated executable file.
932 * User must release file via fput().
933 */
934 struct file *get_mm_exe_file(struct mm_struct *mm)
935 {
936 struct file *exe_file;
937
938 rcu_read_lock();
939 exe_file = rcu_dereference(mm->exe_file);
940 if (exe_file && !get_file_rcu(exe_file))
941 exe_file = NULL;
942 rcu_read_unlock();
943 return exe_file;
944 }
945 EXPORT_SYMBOL(get_mm_exe_file);
946
947 /**
948 * get_task_exe_file - acquire a reference to the task's executable file
949 *
950 * Returns %NULL if task's mm (if any) has no associated executable file or
951 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
952 * User must release file via fput().
953 */
954 struct file *get_task_exe_file(struct task_struct *task)
955 {
956 struct file *exe_file = NULL;
957 struct mm_struct *mm;
958
959 task_lock(task);
960 mm = task->mm;
961 if (mm) {
962 if (!(task->flags & PF_KTHREAD))
963 exe_file = get_mm_exe_file(mm);
964 }
965 task_unlock(task);
966 return exe_file;
967 }
968 EXPORT_SYMBOL(get_task_exe_file);
969
970 /**
971 * get_task_mm - acquire a reference to the task's mm
972 *
973 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
974 * this kernel workthread has transiently adopted a user mm with use_mm,
975 * to do its AIO) is not set and if so returns a reference to it, after
976 * bumping up the use count. User must release the mm via mmput()
977 * after use. Typically used by /proc and ptrace.
978 */
979 struct mm_struct *get_task_mm(struct task_struct *task)
980 {
981 struct mm_struct *mm;
982
983 task_lock(task);
984 mm = task->mm;
985 if (mm) {
986 if (task->flags & PF_KTHREAD)
987 mm = NULL;
988 else
989 atomic_inc(&mm->mm_users);
990 }
991 task_unlock(task);
992 return mm;
993 }
994 EXPORT_SYMBOL_GPL(get_task_mm);
995
996 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
997 {
998 struct mm_struct *mm;
999 int err;
1000
1001 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1002 if (err)
1003 return ERR_PTR(err);
1004
1005 mm = get_task_mm(task);
1006 if (mm && mm != current->mm &&
1007 !ptrace_may_access(task, mode)) {
1008 mmput(mm);
1009 mm = ERR_PTR(-EACCES);
1010 }
1011 mutex_unlock(&task->signal->cred_guard_mutex);
1012
1013 return mm;
1014 }
1015
1016 static void complete_vfork_done(struct task_struct *tsk)
1017 {
1018 struct completion *vfork;
1019
1020 task_lock(tsk);
1021 vfork = tsk->vfork_done;
1022 if (likely(vfork)) {
1023 tsk->vfork_done = NULL;
1024 complete(vfork);
1025 }
1026 task_unlock(tsk);
1027 }
1028
1029 static int wait_for_vfork_done(struct task_struct *child,
1030 struct completion *vfork)
1031 {
1032 int killed;
1033
1034 freezer_do_not_count();
1035 killed = wait_for_completion_killable(vfork);
1036 freezer_count();
1037
1038 if (killed) {
1039 task_lock(child);
1040 child->vfork_done = NULL;
1041 task_unlock(child);
1042 }
1043
1044 put_task_struct(child);
1045 return killed;
1046 }
1047
1048 /* Please note the differences between mmput and mm_release.
1049 * mmput is called whenever we stop holding onto a mm_struct,
1050 * error success whatever.
1051 *
1052 * mm_release is called after a mm_struct has been removed
1053 * from the current process.
1054 *
1055 * This difference is important for error handling, when we
1056 * only half set up a mm_struct for a new process and need to restore
1057 * the old one. Because we mmput the new mm_struct before
1058 * restoring the old one. . .
1059 * Eric Biederman 10 January 1998
1060 */
1061 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1062 {
1063 /* Get rid of any futexes when releasing the mm */
1064 #ifdef CONFIG_FUTEX
1065 if (unlikely(tsk->robust_list)) {
1066 exit_robust_list(tsk);
1067 tsk->robust_list = NULL;
1068 }
1069 #ifdef CONFIG_COMPAT
1070 if (unlikely(tsk->compat_robust_list)) {
1071 compat_exit_robust_list(tsk);
1072 tsk->compat_robust_list = NULL;
1073 }
1074 #endif
1075 if (unlikely(!list_empty(&tsk->pi_state_list)))
1076 exit_pi_state_list(tsk);
1077 #endif
1078
1079 uprobe_free_utask(tsk);
1080
1081 /* Get rid of any cached register state */
1082 deactivate_mm(tsk, mm);
1083
1084 /*
1085 * Signal userspace if we're not exiting with a core dump
1086 * because we want to leave the value intact for debugging
1087 * purposes.
1088 */
1089 if (tsk->clear_child_tid) {
1090 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1091 atomic_read(&mm->mm_users) > 1) {
1092 /*
1093 * We don't check the error code - if userspace has
1094 * not set up a proper pointer then tough luck.
1095 */
1096 put_user(0, tsk->clear_child_tid);
1097 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1098 1, NULL, NULL, 0);
1099 }
1100 tsk->clear_child_tid = NULL;
1101 }
1102
1103 /*
1104 * All done, finally we can wake up parent and return this mm to him.
1105 * Also kthread_stop() uses this completion for synchronization.
1106 */
1107 if (tsk->vfork_done)
1108 complete_vfork_done(tsk);
1109 }
1110
1111 /*
1112 * Allocate a new mm structure and copy contents from the
1113 * mm structure of the passed in task structure.
1114 */
1115 static struct mm_struct *dup_mm(struct task_struct *tsk)
1116 {
1117 struct mm_struct *mm, *oldmm = current->mm;
1118 int err;
1119
1120 mm = allocate_mm();
1121 if (!mm)
1122 goto fail_nomem;
1123
1124 memcpy(mm, oldmm, sizeof(*mm));
1125
1126 if (!mm_init(mm, tsk))
1127 goto fail_nomem;
1128
1129 err = dup_mmap(mm, oldmm);
1130 if (err)
1131 goto free_pt;
1132
1133 mm->hiwater_rss = get_mm_rss(mm);
1134 mm->hiwater_vm = mm->total_vm;
1135
1136 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1137 goto free_pt;
1138
1139 return mm;
1140
1141 free_pt:
1142 /* don't put binfmt in mmput, we haven't got module yet */
1143 mm->binfmt = NULL;
1144 mmput(mm);
1145
1146 fail_nomem:
1147 return NULL;
1148 }
1149
1150 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1151 {
1152 struct mm_struct *mm, *oldmm;
1153 int retval;
1154
1155 tsk->min_flt = tsk->maj_flt = 0;
1156 tsk->nvcsw = tsk->nivcsw = 0;
1157 #ifdef CONFIG_DETECT_HUNG_TASK
1158 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1159 #endif
1160
1161 tsk->mm = NULL;
1162 tsk->active_mm = NULL;
1163
1164 /*
1165 * Are we cloning a kernel thread?
1166 *
1167 * We need to steal a active VM for that..
1168 */
1169 oldmm = current->mm;
1170 if (!oldmm)
1171 return 0;
1172
1173 /* initialize the new vmacache entries */
1174 vmacache_flush(tsk);
1175
1176 if (clone_flags & CLONE_VM) {
1177 atomic_inc(&oldmm->mm_users);
1178 mm = oldmm;
1179 goto good_mm;
1180 }
1181
1182 retval = -ENOMEM;
1183 mm = dup_mm(tsk);
1184 if (!mm)
1185 goto fail_nomem;
1186
1187 good_mm:
1188 tsk->mm = mm;
1189 tsk->active_mm = mm;
1190 return 0;
1191
1192 fail_nomem:
1193 return retval;
1194 }
1195
1196 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1197 {
1198 struct fs_struct *fs = current->fs;
1199 if (clone_flags & CLONE_FS) {
1200 /* tsk->fs is already what we want */
1201 spin_lock(&fs->lock);
1202 if (fs->in_exec) {
1203 spin_unlock(&fs->lock);
1204 return -EAGAIN;
1205 }
1206 fs->users++;
1207 spin_unlock(&fs->lock);
1208 return 0;
1209 }
1210 tsk->fs = copy_fs_struct(fs);
1211 if (!tsk->fs)
1212 return -ENOMEM;
1213 return 0;
1214 }
1215
1216 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1217 {
1218 struct files_struct *oldf, *newf;
1219 int error = 0;
1220
1221 /*
1222 * A background process may not have any files ...
1223 */
1224 oldf = current->files;
1225 if (!oldf)
1226 goto out;
1227
1228 if (clone_flags & CLONE_FILES) {
1229 atomic_inc(&oldf->count);
1230 goto out;
1231 }
1232
1233 newf = dup_fd(oldf, &error);
1234 if (!newf)
1235 goto out;
1236
1237 tsk->files = newf;
1238 error = 0;
1239 out:
1240 return error;
1241 }
1242
1243 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1244 {
1245 #ifdef CONFIG_BLOCK
1246 struct io_context *ioc = current->io_context;
1247 struct io_context *new_ioc;
1248
1249 if (!ioc)
1250 return 0;
1251 /*
1252 * Share io context with parent, if CLONE_IO is set
1253 */
1254 if (clone_flags & CLONE_IO) {
1255 ioc_task_link(ioc);
1256 tsk->io_context = ioc;
1257 } else if (ioprio_valid(ioc->ioprio)) {
1258 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1259 if (unlikely(!new_ioc))
1260 return -ENOMEM;
1261
1262 new_ioc->ioprio = ioc->ioprio;
1263 put_io_context(new_ioc);
1264 }
1265 #endif
1266 return 0;
1267 }
1268
1269 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1270 {
1271 struct sighand_struct *sig;
1272
1273 if (clone_flags & CLONE_SIGHAND) {
1274 atomic_inc(&current->sighand->count);
1275 return 0;
1276 }
1277 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1278 rcu_assign_pointer(tsk->sighand, sig);
1279 if (!sig)
1280 return -ENOMEM;
1281
1282 atomic_set(&sig->count, 1);
1283 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1284 return 0;
1285 }
1286
1287 void __cleanup_sighand(struct sighand_struct *sighand)
1288 {
1289 if (atomic_dec_and_test(&sighand->count)) {
1290 signalfd_cleanup(sighand);
1291 /*
1292 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1293 * without an RCU grace period, see __lock_task_sighand().
1294 */
1295 kmem_cache_free(sighand_cachep, sighand);
1296 }
1297 }
1298
1299 /*
1300 * Initialize POSIX timer handling for a thread group.
1301 */
1302 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1303 {
1304 unsigned long cpu_limit;
1305
1306 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1307 if (cpu_limit != RLIM_INFINITY) {
1308 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1309 sig->cputimer.running = true;
1310 }
1311
1312 /* The timer lists. */
1313 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1314 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1315 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1316 }
1317
1318 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1319 {
1320 struct signal_struct *sig;
1321
1322 if (clone_flags & CLONE_THREAD)
1323 return 0;
1324
1325 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1326 tsk->signal = sig;
1327 if (!sig)
1328 return -ENOMEM;
1329
1330 sig->nr_threads = 1;
1331 atomic_set(&sig->live, 1);
1332 atomic_set(&sig->sigcnt, 1);
1333
1334 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1335 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1336 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1337
1338 init_waitqueue_head(&sig->wait_chldexit);
1339 sig->curr_target = tsk;
1340 init_sigpending(&sig->shared_pending);
1341 INIT_LIST_HEAD(&sig->posix_timers);
1342 seqlock_init(&sig->stats_lock);
1343 prev_cputime_init(&sig->prev_cputime);
1344
1345 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1346 sig->real_timer.function = it_real_fn;
1347
1348 task_lock(current->group_leader);
1349 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1350 task_unlock(current->group_leader);
1351
1352 posix_cpu_timers_init_group(sig);
1353
1354 tty_audit_fork(sig);
1355 sched_autogroup_fork(sig);
1356
1357 sig->oom_score_adj = current->signal->oom_score_adj;
1358 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1359
1360 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1361 current->signal->is_child_subreaper;
1362
1363 mutex_init(&sig->cred_guard_mutex);
1364
1365 return 0;
1366 }
1367
1368 static void copy_seccomp(struct task_struct *p)
1369 {
1370 #ifdef CONFIG_SECCOMP
1371 /*
1372 * Must be called with sighand->lock held, which is common to
1373 * all threads in the group. Holding cred_guard_mutex is not
1374 * needed because this new task is not yet running and cannot
1375 * be racing exec.
1376 */
1377 assert_spin_locked(&current->sighand->siglock);
1378
1379 /* Ref-count the new filter user, and assign it. */
1380 get_seccomp_filter(current);
1381 p->seccomp = current->seccomp;
1382
1383 /*
1384 * Explicitly enable no_new_privs here in case it got set
1385 * between the task_struct being duplicated and holding the
1386 * sighand lock. The seccomp state and nnp must be in sync.
1387 */
1388 if (task_no_new_privs(current))
1389 task_set_no_new_privs(p);
1390
1391 /*
1392 * If the parent gained a seccomp mode after copying thread
1393 * flags and between before we held the sighand lock, we have
1394 * to manually enable the seccomp thread flag here.
1395 */
1396 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1397 set_tsk_thread_flag(p, TIF_SECCOMP);
1398 #endif
1399 }
1400
1401 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1402 {
1403 current->clear_child_tid = tidptr;
1404
1405 return task_pid_vnr(current);
1406 }
1407
1408 static void rt_mutex_init_task(struct task_struct *p)
1409 {
1410 raw_spin_lock_init(&p->pi_lock);
1411 #ifdef CONFIG_RT_MUTEXES
1412 p->pi_waiters = RB_ROOT;
1413 p->pi_waiters_leftmost = NULL;
1414 p->pi_blocked_on = NULL;
1415 #endif
1416 }
1417
1418 /*
1419 * Initialize POSIX timer handling for a single task.
1420 */
1421 static void posix_cpu_timers_init(struct task_struct *tsk)
1422 {
1423 tsk->cputime_expires.prof_exp = 0;
1424 tsk->cputime_expires.virt_exp = 0;
1425 tsk->cputime_expires.sched_exp = 0;
1426 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1427 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1428 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1429 }
1430
1431 static inline void
1432 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1433 {
1434 task->pids[type].pid = pid;
1435 }
1436
1437 /*
1438 * This creates a new process as a copy of the old one,
1439 * but does not actually start it yet.
1440 *
1441 * It copies the registers, and all the appropriate
1442 * parts of the process environment (as per the clone
1443 * flags). The actual kick-off is left to the caller.
1444 */
1445 static __latent_entropy struct task_struct *copy_process(
1446 unsigned long clone_flags,
1447 unsigned long stack_start,
1448 unsigned long stack_size,
1449 int __user *child_tidptr,
1450 struct pid *pid,
1451 int trace,
1452 unsigned long tls,
1453 int node)
1454 {
1455 int retval;
1456 struct task_struct *p;
1457
1458 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1459 return ERR_PTR(-EINVAL);
1460
1461 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1462 return ERR_PTR(-EINVAL);
1463
1464 /*
1465 * Thread groups must share signals as well, and detached threads
1466 * can only be started up within the thread group.
1467 */
1468 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1469 return ERR_PTR(-EINVAL);
1470
1471 /*
1472 * Shared signal handlers imply shared VM. By way of the above,
1473 * thread groups also imply shared VM. Blocking this case allows
1474 * for various simplifications in other code.
1475 */
1476 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1477 return ERR_PTR(-EINVAL);
1478
1479 /*
1480 * Siblings of global init remain as zombies on exit since they are
1481 * not reaped by their parent (swapper). To solve this and to avoid
1482 * multi-rooted process trees, prevent global and container-inits
1483 * from creating siblings.
1484 */
1485 if ((clone_flags & CLONE_PARENT) &&
1486 current->signal->flags & SIGNAL_UNKILLABLE)
1487 return ERR_PTR(-EINVAL);
1488
1489 /*
1490 * If the new process will be in a different pid or user namespace
1491 * do not allow it to share a thread group with the forking task.
1492 */
1493 if (clone_flags & CLONE_THREAD) {
1494 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1495 (task_active_pid_ns(current) !=
1496 current->nsproxy->pid_ns_for_children))
1497 return ERR_PTR(-EINVAL);
1498 }
1499
1500 retval = security_task_create(clone_flags);
1501 if (retval)
1502 goto fork_out;
1503
1504 retval = -ENOMEM;
1505 p = dup_task_struct(current, node);
1506 if (!p)
1507 goto fork_out;
1508
1509 ftrace_graph_init_task(p);
1510
1511 rt_mutex_init_task(p);
1512
1513 #ifdef CONFIG_PROVE_LOCKING
1514 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1515 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1516 #endif
1517 retval = -EAGAIN;
1518 if (atomic_read(&p->real_cred->user->processes) >=
1519 task_rlimit(p, RLIMIT_NPROC)) {
1520 if (p->real_cred->user != INIT_USER &&
1521 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1522 goto bad_fork_free;
1523 }
1524 current->flags &= ~PF_NPROC_EXCEEDED;
1525
1526 retval = copy_creds(p, clone_flags);
1527 if (retval < 0)
1528 goto bad_fork_free;
1529
1530 /*
1531 * If multiple threads are within copy_process(), then this check
1532 * triggers too late. This doesn't hurt, the check is only there
1533 * to stop root fork bombs.
1534 */
1535 retval = -EAGAIN;
1536 if (nr_threads >= max_threads)
1537 goto bad_fork_cleanup_count;
1538
1539 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1540 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1541 p->flags |= PF_FORKNOEXEC;
1542 INIT_LIST_HEAD(&p->children);
1543 INIT_LIST_HEAD(&p->sibling);
1544 rcu_copy_process(p);
1545 p->vfork_done = NULL;
1546 spin_lock_init(&p->alloc_lock);
1547
1548 init_sigpending(&p->pending);
1549
1550 p->utime = p->stime = p->gtime = 0;
1551 p->utimescaled = p->stimescaled = 0;
1552 prev_cputime_init(&p->prev_cputime);
1553
1554 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1555 seqcount_init(&p->vtime_seqcount);
1556 p->vtime_snap = 0;
1557 p->vtime_snap_whence = VTIME_INACTIVE;
1558 #endif
1559
1560 #if defined(SPLIT_RSS_COUNTING)
1561 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1562 #endif
1563
1564 p->default_timer_slack_ns = current->timer_slack_ns;
1565
1566 task_io_accounting_init(&p->ioac);
1567 acct_clear_integrals(p);
1568
1569 posix_cpu_timers_init(p);
1570
1571 p->start_time = ktime_get_ns();
1572 p->real_start_time = ktime_get_boot_ns();
1573 p->io_context = NULL;
1574 p->audit_context = NULL;
1575 cgroup_fork(p);
1576 #ifdef CONFIG_NUMA
1577 p->mempolicy = mpol_dup(p->mempolicy);
1578 if (IS_ERR(p->mempolicy)) {
1579 retval = PTR_ERR(p->mempolicy);
1580 p->mempolicy = NULL;
1581 goto bad_fork_cleanup_threadgroup_lock;
1582 }
1583 #endif
1584 #ifdef CONFIG_CPUSETS
1585 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1586 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1587 seqcount_init(&p->mems_allowed_seq);
1588 #endif
1589 #ifdef CONFIG_TRACE_IRQFLAGS
1590 p->irq_events = 0;
1591 p->hardirqs_enabled = 0;
1592 p->hardirq_enable_ip = 0;
1593 p->hardirq_enable_event = 0;
1594 p->hardirq_disable_ip = _THIS_IP_;
1595 p->hardirq_disable_event = 0;
1596 p->softirqs_enabled = 1;
1597 p->softirq_enable_ip = _THIS_IP_;
1598 p->softirq_enable_event = 0;
1599 p->softirq_disable_ip = 0;
1600 p->softirq_disable_event = 0;
1601 p->hardirq_context = 0;
1602 p->softirq_context = 0;
1603 #endif
1604
1605 p->pagefault_disabled = 0;
1606
1607 #ifdef CONFIG_LOCKDEP
1608 p->lockdep_depth = 0; /* no locks held yet */
1609 p->curr_chain_key = 0;
1610 p->lockdep_recursion = 0;
1611 #endif
1612
1613 #ifdef CONFIG_DEBUG_MUTEXES
1614 p->blocked_on = NULL; /* not blocked yet */
1615 #endif
1616 #ifdef CONFIG_BCACHE
1617 p->sequential_io = 0;
1618 p->sequential_io_avg = 0;
1619 #endif
1620
1621 /* Perform scheduler related setup. Assign this task to a CPU. */
1622 retval = sched_fork(clone_flags, p);
1623 if (retval)
1624 goto bad_fork_cleanup_policy;
1625
1626 retval = perf_event_init_task(p);
1627 if (retval)
1628 goto bad_fork_cleanup_policy;
1629 retval = audit_alloc(p);
1630 if (retval)
1631 goto bad_fork_cleanup_perf;
1632 /* copy all the process information */
1633 shm_init_task(p);
1634 retval = copy_semundo(clone_flags, p);
1635 if (retval)
1636 goto bad_fork_cleanup_audit;
1637 retval = copy_files(clone_flags, p);
1638 if (retval)
1639 goto bad_fork_cleanup_semundo;
1640 retval = copy_fs(clone_flags, p);
1641 if (retval)
1642 goto bad_fork_cleanup_files;
1643 retval = copy_sighand(clone_flags, p);
1644 if (retval)
1645 goto bad_fork_cleanup_fs;
1646 retval = copy_signal(clone_flags, p);
1647 if (retval)
1648 goto bad_fork_cleanup_sighand;
1649 retval = copy_mm(clone_flags, p);
1650 if (retval)
1651 goto bad_fork_cleanup_signal;
1652 retval = copy_namespaces(clone_flags, p);
1653 if (retval)
1654 goto bad_fork_cleanup_mm;
1655 retval = copy_io(clone_flags, p);
1656 if (retval)
1657 goto bad_fork_cleanup_namespaces;
1658 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1659 if (retval)
1660 goto bad_fork_cleanup_io;
1661
1662 if (pid != &init_struct_pid) {
1663 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1664 if (IS_ERR(pid)) {
1665 retval = PTR_ERR(pid);
1666 goto bad_fork_cleanup_thread;
1667 }
1668 }
1669
1670 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1671 /*
1672 * Clear TID on mm_release()?
1673 */
1674 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1675 #ifdef CONFIG_BLOCK
1676 p->plug = NULL;
1677 #endif
1678 #ifdef CONFIG_FUTEX
1679 p->robust_list = NULL;
1680 #ifdef CONFIG_COMPAT
1681 p->compat_robust_list = NULL;
1682 #endif
1683 INIT_LIST_HEAD(&p->pi_state_list);
1684 p->pi_state_cache = NULL;
1685 #endif
1686 /*
1687 * sigaltstack should be cleared when sharing the same VM
1688 */
1689 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1690 sas_ss_reset(p);
1691
1692 /*
1693 * Syscall tracing and stepping should be turned off in the
1694 * child regardless of CLONE_PTRACE.
1695 */
1696 user_disable_single_step(p);
1697 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1698 #ifdef TIF_SYSCALL_EMU
1699 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1700 #endif
1701 clear_all_latency_tracing(p);
1702
1703 /* ok, now we should be set up.. */
1704 p->pid = pid_nr(pid);
1705 if (clone_flags & CLONE_THREAD) {
1706 p->exit_signal = -1;
1707 p->group_leader = current->group_leader;
1708 p->tgid = current->tgid;
1709 } else {
1710 if (clone_flags & CLONE_PARENT)
1711 p->exit_signal = current->group_leader->exit_signal;
1712 else
1713 p->exit_signal = (clone_flags & CSIGNAL);
1714 p->group_leader = p;
1715 p->tgid = p->pid;
1716 }
1717
1718 p->nr_dirtied = 0;
1719 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1720 p->dirty_paused_when = 0;
1721
1722 p->pdeath_signal = 0;
1723 INIT_LIST_HEAD(&p->thread_group);
1724 p->task_works = NULL;
1725
1726 threadgroup_change_begin(current);
1727 /*
1728 * Ensure that the cgroup subsystem policies allow the new process to be
1729 * forked. It should be noted the the new process's css_set can be changed
1730 * between here and cgroup_post_fork() if an organisation operation is in
1731 * progress.
1732 */
1733 retval = cgroup_can_fork(p);
1734 if (retval)
1735 goto bad_fork_free_pid;
1736
1737 /*
1738 * Make it visible to the rest of the system, but dont wake it up yet.
1739 * Need tasklist lock for parent etc handling!
1740 */
1741 write_lock_irq(&tasklist_lock);
1742
1743 /* CLONE_PARENT re-uses the old parent */
1744 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1745 p->real_parent = current->real_parent;
1746 p->parent_exec_id = current->parent_exec_id;
1747 } else {
1748 p->real_parent = current;
1749 p->parent_exec_id = current->self_exec_id;
1750 }
1751
1752 spin_lock(&current->sighand->siglock);
1753
1754 /*
1755 * Copy seccomp details explicitly here, in case they were changed
1756 * before holding sighand lock.
1757 */
1758 copy_seccomp(p);
1759
1760 /*
1761 * Process group and session signals need to be delivered to just the
1762 * parent before the fork or both the parent and the child after the
1763 * fork. Restart if a signal comes in before we add the new process to
1764 * it's process group.
1765 * A fatal signal pending means that current will exit, so the new
1766 * thread can't slip out of an OOM kill (or normal SIGKILL).
1767 */
1768 recalc_sigpending();
1769 if (signal_pending(current)) {
1770 spin_unlock(&current->sighand->siglock);
1771 write_unlock_irq(&tasklist_lock);
1772 retval = -ERESTARTNOINTR;
1773 goto bad_fork_cancel_cgroup;
1774 }
1775
1776 if (likely(p->pid)) {
1777 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1778
1779 init_task_pid(p, PIDTYPE_PID, pid);
1780 if (thread_group_leader(p)) {
1781 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1782 init_task_pid(p, PIDTYPE_SID, task_session(current));
1783
1784 if (is_child_reaper(pid)) {
1785 ns_of_pid(pid)->child_reaper = p;
1786 p->signal->flags |= SIGNAL_UNKILLABLE;
1787 }
1788
1789 p->signal->leader_pid = pid;
1790 p->signal->tty = tty_kref_get(current->signal->tty);
1791 list_add_tail(&p->sibling, &p->real_parent->children);
1792 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1793 attach_pid(p, PIDTYPE_PGID);
1794 attach_pid(p, PIDTYPE_SID);
1795 __this_cpu_inc(process_counts);
1796 } else {
1797 current->signal->nr_threads++;
1798 atomic_inc(&current->signal->live);
1799 atomic_inc(&current->signal->sigcnt);
1800 list_add_tail_rcu(&p->thread_group,
1801 &p->group_leader->thread_group);
1802 list_add_tail_rcu(&p->thread_node,
1803 &p->signal->thread_head);
1804 }
1805 attach_pid(p, PIDTYPE_PID);
1806 nr_threads++;
1807 }
1808
1809 total_forks++;
1810 spin_unlock(&current->sighand->siglock);
1811 syscall_tracepoint_update(p);
1812 write_unlock_irq(&tasklist_lock);
1813
1814 proc_fork_connector(p);
1815 cgroup_post_fork(p);
1816 threadgroup_change_end(current);
1817 perf_event_fork(p);
1818
1819 trace_task_newtask(p, clone_flags);
1820 uprobe_copy_process(p, clone_flags);
1821
1822 return p;
1823
1824 bad_fork_cancel_cgroup:
1825 cgroup_cancel_fork(p);
1826 bad_fork_free_pid:
1827 threadgroup_change_end(current);
1828 if (pid != &init_struct_pid)
1829 free_pid(pid);
1830 bad_fork_cleanup_thread:
1831 exit_thread(p);
1832 bad_fork_cleanup_io:
1833 if (p->io_context)
1834 exit_io_context(p);
1835 bad_fork_cleanup_namespaces:
1836 exit_task_namespaces(p);
1837 bad_fork_cleanup_mm:
1838 if (p->mm)
1839 mmput(p->mm);
1840 bad_fork_cleanup_signal:
1841 if (!(clone_flags & CLONE_THREAD))
1842 free_signal_struct(p->signal);
1843 bad_fork_cleanup_sighand:
1844 __cleanup_sighand(p->sighand);
1845 bad_fork_cleanup_fs:
1846 exit_fs(p); /* blocking */
1847 bad_fork_cleanup_files:
1848 exit_files(p); /* blocking */
1849 bad_fork_cleanup_semundo:
1850 exit_sem(p);
1851 bad_fork_cleanup_audit:
1852 audit_free(p);
1853 bad_fork_cleanup_perf:
1854 perf_event_free_task(p);
1855 bad_fork_cleanup_policy:
1856 #ifdef CONFIG_NUMA
1857 mpol_put(p->mempolicy);
1858 bad_fork_cleanup_threadgroup_lock:
1859 #endif
1860 delayacct_tsk_free(p);
1861 bad_fork_cleanup_count:
1862 atomic_dec(&p->cred->user->processes);
1863 exit_creds(p);
1864 bad_fork_free:
1865 put_task_stack(p);
1866 free_task(p);
1867 fork_out:
1868 return ERR_PTR(retval);
1869 }
1870
1871 static inline void init_idle_pids(struct pid_link *links)
1872 {
1873 enum pid_type type;
1874
1875 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1876 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1877 links[type].pid = &init_struct_pid;
1878 }
1879 }
1880
1881 struct task_struct *fork_idle(int cpu)
1882 {
1883 struct task_struct *task;
1884 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1885 cpu_to_node(cpu));
1886 if (!IS_ERR(task)) {
1887 init_idle_pids(task->pids);
1888 init_idle(task, cpu);
1889 }
1890
1891 return task;
1892 }
1893
1894 /*
1895 * Ok, this is the main fork-routine.
1896 *
1897 * It copies the process, and if successful kick-starts
1898 * it and waits for it to finish using the VM if required.
1899 */
1900 long _do_fork(unsigned long clone_flags,
1901 unsigned long stack_start,
1902 unsigned long stack_size,
1903 int __user *parent_tidptr,
1904 int __user *child_tidptr,
1905 unsigned long tls)
1906 {
1907 struct task_struct *p;
1908 int trace = 0;
1909 long nr;
1910
1911 /*
1912 * Determine whether and which event to report to ptracer. When
1913 * called from kernel_thread or CLONE_UNTRACED is explicitly
1914 * requested, no event is reported; otherwise, report if the event
1915 * for the type of forking is enabled.
1916 */
1917 if (!(clone_flags & CLONE_UNTRACED)) {
1918 if (clone_flags & CLONE_VFORK)
1919 trace = PTRACE_EVENT_VFORK;
1920 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1921 trace = PTRACE_EVENT_CLONE;
1922 else
1923 trace = PTRACE_EVENT_FORK;
1924
1925 if (likely(!ptrace_event_enabled(current, trace)))
1926 trace = 0;
1927 }
1928
1929 p = copy_process(clone_flags, stack_start, stack_size,
1930 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1931 add_latent_entropy();
1932 /*
1933 * Do this prior waking up the new thread - the thread pointer
1934 * might get invalid after that point, if the thread exits quickly.
1935 */
1936 if (!IS_ERR(p)) {
1937 struct completion vfork;
1938 struct pid *pid;
1939
1940 trace_sched_process_fork(current, p);
1941
1942 pid = get_task_pid(p, PIDTYPE_PID);
1943 nr = pid_vnr(pid);
1944
1945 if (clone_flags & CLONE_PARENT_SETTID)
1946 put_user(nr, parent_tidptr);
1947
1948 if (clone_flags & CLONE_VFORK) {
1949 p->vfork_done = &vfork;
1950 init_completion(&vfork);
1951 get_task_struct(p);
1952 }
1953
1954 wake_up_new_task(p);
1955
1956 /* forking complete and child started to run, tell ptracer */
1957 if (unlikely(trace))
1958 ptrace_event_pid(trace, pid);
1959
1960 if (clone_flags & CLONE_VFORK) {
1961 if (!wait_for_vfork_done(p, &vfork))
1962 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1963 }
1964
1965 put_pid(pid);
1966 } else {
1967 nr = PTR_ERR(p);
1968 }
1969 return nr;
1970 }
1971
1972 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1973 /* For compatibility with architectures that call do_fork directly rather than
1974 * using the syscall entry points below. */
1975 long do_fork(unsigned long clone_flags,
1976 unsigned long stack_start,
1977 unsigned long stack_size,
1978 int __user *parent_tidptr,
1979 int __user *child_tidptr)
1980 {
1981 return _do_fork(clone_flags, stack_start, stack_size,
1982 parent_tidptr, child_tidptr, 0);
1983 }
1984 #endif
1985
1986 /*
1987 * Create a kernel thread.
1988 */
1989 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1990 {
1991 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1992 (unsigned long)arg, NULL, NULL, 0);
1993 }
1994
1995 #ifdef __ARCH_WANT_SYS_FORK
1996 SYSCALL_DEFINE0(fork)
1997 {
1998 #ifdef CONFIG_MMU
1999 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2000 #else
2001 /* can not support in nommu mode */
2002 return -EINVAL;
2003 #endif
2004 }
2005 #endif
2006
2007 #ifdef __ARCH_WANT_SYS_VFORK
2008 SYSCALL_DEFINE0(vfork)
2009 {
2010 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2011 0, NULL, NULL, 0);
2012 }
2013 #endif
2014
2015 #ifdef __ARCH_WANT_SYS_CLONE
2016 #ifdef CONFIG_CLONE_BACKWARDS
2017 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2018 int __user *, parent_tidptr,
2019 unsigned long, tls,
2020 int __user *, child_tidptr)
2021 #elif defined(CONFIG_CLONE_BACKWARDS2)
2022 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2023 int __user *, parent_tidptr,
2024 int __user *, child_tidptr,
2025 unsigned long, tls)
2026 #elif defined(CONFIG_CLONE_BACKWARDS3)
2027 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2028 int, stack_size,
2029 int __user *, parent_tidptr,
2030 int __user *, child_tidptr,
2031 unsigned long, tls)
2032 #else
2033 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2034 int __user *, parent_tidptr,
2035 int __user *, child_tidptr,
2036 unsigned long, tls)
2037 #endif
2038 {
2039 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2040 }
2041 #endif
2042
2043 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2044 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2045 #endif
2046
2047 static void sighand_ctor(void *data)
2048 {
2049 struct sighand_struct *sighand = data;
2050
2051 spin_lock_init(&sighand->siglock);
2052 init_waitqueue_head(&sighand->signalfd_wqh);
2053 }
2054
2055 void __init proc_caches_init(void)
2056 {
2057 sighand_cachep = kmem_cache_create("sighand_cache",
2058 sizeof(struct sighand_struct), 0,
2059 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2060 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2061 signal_cachep = kmem_cache_create("signal_cache",
2062 sizeof(struct signal_struct), 0,
2063 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2064 NULL);
2065 files_cachep = kmem_cache_create("files_cache",
2066 sizeof(struct files_struct), 0,
2067 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2068 NULL);
2069 fs_cachep = kmem_cache_create("fs_cache",
2070 sizeof(struct fs_struct), 0,
2071 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2072 NULL);
2073 /*
2074 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2075 * whole struct cpumask for the OFFSTACK case. We could change
2076 * this to *only* allocate as much of it as required by the
2077 * maximum number of CPU's we can ever have. The cpumask_allocation
2078 * is at the end of the structure, exactly for that reason.
2079 */
2080 mm_cachep = kmem_cache_create("mm_struct",
2081 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2082 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2083 NULL);
2084 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2085 mmap_init();
2086 nsproxy_cache_init();
2087 }
2088
2089 /*
2090 * Check constraints on flags passed to the unshare system call.
2091 */
2092 static int check_unshare_flags(unsigned long unshare_flags)
2093 {
2094 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2095 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2096 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2097 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2098 return -EINVAL;
2099 /*
2100 * Not implemented, but pretend it works if there is nothing
2101 * to unshare. Note that unsharing the address space or the
2102 * signal handlers also need to unshare the signal queues (aka
2103 * CLONE_THREAD).
2104 */
2105 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2106 if (!thread_group_empty(current))
2107 return -EINVAL;
2108 }
2109 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2110 if (atomic_read(&current->sighand->count) > 1)
2111 return -EINVAL;
2112 }
2113 if (unshare_flags & CLONE_VM) {
2114 if (!current_is_single_threaded())
2115 return -EINVAL;
2116 }
2117
2118 return 0;
2119 }
2120
2121 /*
2122 * Unshare the filesystem structure if it is being shared
2123 */
2124 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2125 {
2126 struct fs_struct *fs = current->fs;
2127
2128 if (!(unshare_flags & CLONE_FS) || !fs)
2129 return 0;
2130
2131 /* don't need lock here; in the worst case we'll do useless copy */
2132 if (fs->users == 1)
2133 return 0;
2134
2135 *new_fsp = copy_fs_struct(fs);
2136 if (!*new_fsp)
2137 return -ENOMEM;
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * Unshare file descriptor table if it is being shared
2144 */
2145 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2146 {
2147 struct files_struct *fd = current->files;
2148 int error = 0;
2149
2150 if ((unshare_flags & CLONE_FILES) &&
2151 (fd && atomic_read(&fd->count) > 1)) {
2152 *new_fdp = dup_fd(fd, &error);
2153 if (!*new_fdp)
2154 return error;
2155 }
2156
2157 return 0;
2158 }
2159
2160 /*
2161 * unshare allows a process to 'unshare' part of the process
2162 * context which was originally shared using clone. copy_*
2163 * functions used by do_fork() cannot be used here directly
2164 * because they modify an inactive task_struct that is being
2165 * constructed. Here we are modifying the current, active,
2166 * task_struct.
2167 */
2168 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2169 {
2170 struct fs_struct *fs, *new_fs = NULL;
2171 struct files_struct *fd, *new_fd = NULL;
2172 struct cred *new_cred = NULL;
2173 struct nsproxy *new_nsproxy = NULL;
2174 int do_sysvsem = 0;
2175 int err;
2176
2177 /*
2178 * If unsharing a user namespace must also unshare the thread group
2179 * and unshare the filesystem root and working directories.
2180 */
2181 if (unshare_flags & CLONE_NEWUSER)
2182 unshare_flags |= CLONE_THREAD | CLONE_FS;
2183 /*
2184 * If unsharing vm, must also unshare signal handlers.
2185 */
2186 if (unshare_flags & CLONE_VM)
2187 unshare_flags |= CLONE_SIGHAND;
2188 /*
2189 * If unsharing a signal handlers, must also unshare the signal queues.
2190 */
2191 if (unshare_flags & CLONE_SIGHAND)
2192 unshare_flags |= CLONE_THREAD;
2193 /*
2194 * If unsharing namespace, must also unshare filesystem information.
2195 */
2196 if (unshare_flags & CLONE_NEWNS)
2197 unshare_flags |= CLONE_FS;
2198
2199 err = check_unshare_flags(unshare_flags);
2200 if (err)
2201 goto bad_unshare_out;
2202 /*
2203 * CLONE_NEWIPC must also detach from the undolist: after switching
2204 * to a new ipc namespace, the semaphore arrays from the old
2205 * namespace are unreachable.
2206 */
2207 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2208 do_sysvsem = 1;
2209 err = unshare_fs(unshare_flags, &new_fs);
2210 if (err)
2211 goto bad_unshare_out;
2212 err = unshare_fd(unshare_flags, &new_fd);
2213 if (err)
2214 goto bad_unshare_cleanup_fs;
2215 err = unshare_userns(unshare_flags, &new_cred);
2216 if (err)
2217 goto bad_unshare_cleanup_fd;
2218 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2219 new_cred, new_fs);
2220 if (err)
2221 goto bad_unshare_cleanup_cred;
2222
2223 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2224 if (do_sysvsem) {
2225 /*
2226 * CLONE_SYSVSEM is equivalent to sys_exit().
2227 */
2228 exit_sem(current);
2229 }
2230 if (unshare_flags & CLONE_NEWIPC) {
2231 /* Orphan segments in old ns (see sem above). */
2232 exit_shm(current);
2233 shm_init_task(current);
2234 }
2235
2236 if (new_nsproxy)
2237 switch_task_namespaces(current, new_nsproxy);
2238
2239 task_lock(current);
2240
2241 if (new_fs) {
2242 fs = current->fs;
2243 spin_lock(&fs->lock);
2244 current->fs = new_fs;
2245 if (--fs->users)
2246 new_fs = NULL;
2247 else
2248 new_fs = fs;
2249 spin_unlock(&fs->lock);
2250 }
2251
2252 if (new_fd) {
2253 fd = current->files;
2254 current->files = new_fd;
2255 new_fd = fd;
2256 }
2257
2258 task_unlock(current);
2259
2260 if (new_cred) {
2261 /* Install the new user namespace */
2262 commit_creds(new_cred);
2263 new_cred = NULL;
2264 }
2265 }
2266
2267 bad_unshare_cleanup_cred:
2268 if (new_cred)
2269 put_cred(new_cred);
2270 bad_unshare_cleanup_fd:
2271 if (new_fd)
2272 put_files_struct(new_fd);
2273
2274 bad_unshare_cleanup_fs:
2275 if (new_fs)
2276 free_fs_struct(new_fs);
2277
2278 bad_unshare_out:
2279 return err;
2280 }
2281
2282 /*
2283 * Helper to unshare the files of the current task.
2284 * We don't want to expose copy_files internals to
2285 * the exec layer of the kernel.
2286 */
2287
2288 int unshare_files(struct files_struct **displaced)
2289 {
2290 struct task_struct *task = current;
2291 struct files_struct *copy = NULL;
2292 int error;
2293
2294 error = unshare_fd(CLONE_FILES, &copy);
2295 if (error || !copy) {
2296 *displaced = NULL;
2297 return error;
2298 }
2299 *displaced = task->files;
2300 task_lock(task);
2301 task->files = copy;
2302 task_unlock(task);
2303 return 0;
2304 }
2305
2306 int sysctl_max_threads(struct ctl_table *table, int write,
2307 void __user *buffer, size_t *lenp, loff_t *ppos)
2308 {
2309 struct ctl_table t;
2310 int ret;
2311 int threads = max_threads;
2312 int min = MIN_THREADS;
2313 int max = MAX_THREADS;
2314
2315 t = *table;
2316 t.data = &threads;
2317 t.extra1 = &min;
2318 t.extra2 = &max;
2319
2320 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2321 if (ret || !write)
2322 return ret;
2323
2324 set_max_threads(threads);
2325
2326 return 0;
2327 }