]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/fork.c
Merge tag 'iomap-5.7-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 static int max_threads; /* tunable limit on nr_threads */
127
128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148
149 int nr_processes(void)
150 {
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180 /*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187 /*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227 /* Clear the KASAN shadow of the stack. */
228 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
230 /* Clear stale pointers from reused stack. */
231 memset(s->addr, 0, THREAD_SIZE);
232
233 tsk->stack_vm_area = s;
234 tsk->stack = s->addr;
235 return s->addr;
236 }
237
238 /*
239 * Allocated stacks are cached and later reused by new threads,
240 * so memcg accounting is performed manually on assigning/releasing
241 * stacks to tasks. Drop __GFP_ACCOUNT.
242 */
243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 VMALLOC_START, VMALLOC_END,
245 THREADINFO_GFP & ~__GFP_ACCOUNT,
246 PAGE_KERNEL,
247 0, node, __builtin_return_address(0));
248
249 /*
250 * We can't call find_vm_area() in interrupt context, and
251 * free_thread_stack() can be called in interrupt context,
252 * so cache the vm_struct.
253 */
254 if (stack) {
255 tsk->stack_vm_area = find_vm_area(stack);
256 tsk->stack = stack;
257 }
258 return stack;
259 #else
260 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 THREAD_SIZE_ORDER);
262
263 if (likely(page)) {
264 tsk->stack = page_address(page);
265 return tsk->stack;
266 }
267 return NULL;
268 #endif
269 }
270
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 struct vm_struct *vm = task_stack_vm_area(tsk);
275
276 if (vm) {
277 int i;
278
279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 mod_memcg_page_state(vm->pages[i],
281 MEMCG_KERNEL_STACK_KB,
282 -(int)(PAGE_SIZE / 1024));
283
284 memcg_kmem_uncharge(vm->pages[i], 0);
285 }
286
287 for (i = 0; i < NR_CACHED_STACKS; i++) {
288 if (this_cpu_cmpxchg(cached_stacks[i],
289 NULL, tsk->stack_vm_area) != NULL)
290 continue;
291
292 return;
293 }
294
295 vfree_atomic(tsk->stack);
296 return;
297 }
298 #endif
299
300 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 int node)
307 {
308 unsigned long *stack;
309 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 tsk->stack = stack;
311 return stack;
312 }
313
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318
319 void thread_stack_cache_init(void)
320 {
321 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 THREAD_SIZE, THREAD_SIZE, 0, 0,
323 THREAD_SIZE, NULL);
324 BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 struct vm_area_struct *vma;
350
351 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 if (vma)
353 vma_init(vma, mm);
354 return vma;
355 }
356
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360
361 if (new) {
362 *new = *orig;
363 INIT_LIST_HEAD(&new->anon_vma_chain);
364 }
365 return new;
366 }
367
368 void vm_area_free(struct vm_area_struct *vma)
369 {
370 kmem_cache_free(vm_area_cachep, vma);
371 }
372
373 static void account_kernel_stack(struct task_struct *tsk, int account)
374 {
375 void *stack = task_stack_page(tsk);
376 struct vm_struct *vm = task_stack_vm_area(tsk);
377
378 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
379
380 if (vm) {
381 int i;
382
383 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
384
385 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
386 mod_zone_page_state(page_zone(vm->pages[i]),
387 NR_KERNEL_STACK_KB,
388 PAGE_SIZE / 1024 * account);
389 }
390 } else {
391 /*
392 * All stack pages are in the same zone and belong to the
393 * same memcg.
394 */
395 struct page *first_page = virt_to_page(stack);
396
397 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
398 THREAD_SIZE / 1024 * account);
399
400 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
401 account * (THREAD_SIZE / 1024));
402 }
403 }
404
405 static int memcg_charge_kernel_stack(struct task_struct *tsk)
406 {
407 #ifdef CONFIG_VMAP_STACK
408 struct vm_struct *vm = task_stack_vm_area(tsk);
409 int ret;
410
411 if (vm) {
412 int i;
413
414 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
415 /*
416 * If memcg_kmem_charge() fails, page->mem_cgroup
417 * pointer is NULL, and both memcg_kmem_uncharge()
418 * and mod_memcg_page_state() in free_thread_stack()
419 * will ignore this page. So it's safe.
420 */
421 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
422 if (ret)
423 return ret;
424
425 mod_memcg_page_state(vm->pages[i],
426 MEMCG_KERNEL_STACK_KB,
427 PAGE_SIZE / 1024);
428 }
429 }
430 #endif
431 return 0;
432 }
433
434 static void release_task_stack(struct task_struct *tsk)
435 {
436 if (WARN_ON(tsk->state != TASK_DEAD))
437 return; /* Better to leak the stack than to free prematurely */
438
439 account_kernel_stack(tsk, -1);
440 free_thread_stack(tsk);
441 tsk->stack = NULL;
442 #ifdef CONFIG_VMAP_STACK
443 tsk->stack_vm_area = NULL;
444 #endif
445 }
446
447 #ifdef CONFIG_THREAD_INFO_IN_TASK
448 void put_task_stack(struct task_struct *tsk)
449 {
450 if (refcount_dec_and_test(&tsk->stack_refcount))
451 release_task_stack(tsk);
452 }
453 #endif
454
455 void free_task(struct task_struct *tsk)
456 {
457 #ifndef CONFIG_THREAD_INFO_IN_TASK
458 /*
459 * The task is finally done with both the stack and thread_info,
460 * so free both.
461 */
462 release_task_stack(tsk);
463 #else
464 /*
465 * If the task had a separate stack allocation, it should be gone
466 * by now.
467 */
468 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
469 #endif
470 rt_mutex_debug_task_free(tsk);
471 ftrace_graph_exit_task(tsk);
472 put_seccomp_filter(tsk);
473 arch_release_task_struct(tsk);
474 if (tsk->flags & PF_KTHREAD)
475 free_kthread_struct(tsk);
476 free_task_struct(tsk);
477 }
478 EXPORT_SYMBOL(free_task);
479
480 #ifdef CONFIG_MMU
481 static __latent_entropy int dup_mmap(struct mm_struct *mm,
482 struct mm_struct *oldmm)
483 {
484 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
485 struct rb_node **rb_link, *rb_parent;
486 int retval;
487 unsigned long charge;
488 LIST_HEAD(uf);
489
490 uprobe_start_dup_mmap();
491 if (down_write_killable(&oldmm->mmap_sem)) {
492 retval = -EINTR;
493 goto fail_uprobe_end;
494 }
495 flush_cache_dup_mm(oldmm);
496 uprobe_dup_mmap(oldmm, mm);
497 /*
498 * Not linked in yet - no deadlock potential:
499 */
500 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
501
502 /* No ordering required: file already has been exposed. */
503 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
504
505 mm->total_vm = oldmm->total_vm;
506 mm->data_vm = oldmm->data_vm;
507 mm->exec_vm = oldmm->exec_vm;
508 mm->stack_vm = oldmm->stack_vm;
509
510 rb_link = &mm->mm_rb.rb_node;
511 rb_parent = NULL;
512 pprev = &mm->mmap;
513 retval = ksm_fork(mm, oldmm);
514 if (retval)
515 goto out;
516 retval = khugepaged_fork(mm, oldmm);
517 if (retval)
518 goto out;
519
520 prev = NULL;
521 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
522 struct file *file;
523
524 if (mpnt->vm_flags & VM_DONTCOPY) {
525 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
526 continue;
527 }
528 charge = 0;
529 /*
530 * Don't duplicate many vmas if we've been oom-killed (for
531 * example)
532 */
533 if (fatal_signal_pending(current)) {
534 retval = -EINTR;
535 goto out;
536 }
537 if (mpnt->vm_flags & VM_ACCOUNT) {
538 unsigned long len = vma_pages(mpnt);
539
540 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
541 goto fail_nomem;
542 charge = len;
543 }
544 tmp = vm_area_dup(mpnt);
545 if (!tmp)
546 goto fail_nomem;
547 retval = vma_dup_policy(mpnt, tmp);
548 if (retval)
549 goto fail_nomem_policy;
550 tmp->vm_mm = mm;
551 retval = dup_userfaultfd(tmp, &uf);
552 if (retval)
553 goto fail_nomem_anon_vma_fork;
554 if (tmp->vm_flags & VM_WIPEONFORK) {
555 /* VM_WIPEONFORK gets a clean slate in the child. */
556 tmp->anon_vma = NULL;
557 if (anon_vma_prepare(tmp))
558 goto fail_nomem_anon_vma_fork;
559 } else if (anon_vma_fork(tmp, mpnt))
560 goto fail_nomem_anon_vma_fork;
561 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
562 tmp->vm_next = tmp->vm_prev = NULL;
563 file = tmp->vm_file;
564 if (file) {
565 struct inode *inode = file_inode(file);
566 struct address_space *mapping = file->f_mapping;
567
568 get_file(file);
569 if (tmp->vm_flags & VM_DENYWRITE)
570 atomic_dec(&inode->i_writecount);
571 i_mmap_lock_write(mapping);
572 if (tmp->vm_flags & VM_SHARED)
573 atomic_inc(&mapping->i_mmap_writable);
574 flush_dcache_mmap_lock(mapping);
575 /* insert tmp into the share list, just after mpnt */
576 vma_interval_tree_insert_after(tmp, mpnt,
577 &mapping->i_mmap);
578 flush_dcache_mmap_unlock(mapping);
579 i_mmap_unlock_write(mapping);
580 }
581
582 /*
583 * Clear hugetlb-related page reserves for children. This only
584 * affects MAP_PRIVATE mappings. Faults generated by the child
585 * are not guaranteed to succeed, even if read-only
586 */
587 if (is_vm_hugetlb_page(tmp))
588 reset_vma_resv_huge_pages(tmp);
589
590 /*
591 * Link in the new vma and copy the page table entries.
592 */
593 *pprev = tmp;
594 pprev = &tmp->vm_next;
595 tmp->vm_prev = prev;
596 prev = tmp;
597
598 __vma_link_rb(mm, tmp, rb_link, rb_parent);
599 rb_link = &tmp->vm_rb.rb_right;
600 rb_parent = &tmp->vm_rb;
601
602 mm->map_count++;
603 if (!(tmp->vm_flags & VM_WIPEONFORK))
604 retval = copy_page_range(mm, oldmm, mpnt);
605
606 if (tmp->vm_ops && tmp->vm_ops->open)
607 tmp->vm_ops->open(tmp);
608
609 if (retval)
610 goto out;
611 }
612 /* a new mm has just been created */
613 retval = arch_dup_mmap(oldmm, mm);
614 out:
615 up_write(&mm->mmap_sem);
616 flush_tlb_mm(oldmm);
617 up_write(&oldmm->mmap_sem);
618 dup_userfaultfd_complete(&uf);
619 fail_uprobe_end:
620 uprobe_end_dup_mmap();
621 return retval;
622 fail_nomem_anon_vma_fork:
623 mpol_put(vma_policy(tmp));
624 fail_nomem_policy:
625 vm_area_free(tmp);
626 fail_nomem:
627 retval = -ENOMEM;
628 vm_unacct_memory(charge);
629 goto out;
630 }
631
632 static inline int mm_alloc_pgd(struct mm_struct *mm)
633 {
634 mm->pgd = pgd_alloc(mm);
635 if (unlikely(!mm->pgd))
636 return -ENOMEM;
637 return 0;
638 }
639
640 static inline void mm_free_pgd(struct mm_struct *mm)
641 {
642 pgd_free(mm, mm->pgd);
643 }
644 #else
645 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
646 {
647 down_write(&oldmm->mmap_sem);
648 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
649 up_write(&oldmm->mmap_sem);
650 return 0;
651 }
652 #define mm_alloc_pgd(mm) (0)
653 #define mm_free_pgd(mm)
654 #endif /* CONFIG_MMU */
655
656 static void check_mm(struct mm_struct *mm)
657 {
658 int i;
659
660 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
661 "Please make sure 'struct resident_page_types[]' is updated as well");
662
663 for (i = 0; i < NR_MM_COUNTERS; i++) {
664 long x = atomic_long_read(&mm->rss_stat.count[i]);
665
666 if (unlikely(x))
667 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
668 mm, resident_page_types[i], x);
669 }
670
671 if (mm_pgtables_bytes(mm))
672 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
673 mm_pgtables_bytes(mm));
674
675 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
676 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
677 #endif
678 }
679
680 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
681 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
682
683 /*
684 * Called when the last reference to the mm
685 * is dropped: either by a lazy thread or by
686 * mmput. Free the page directory and the mm.
687 */
688 void __mmdrop(struct mm_struct *mm)
689 {
690 BUG_ON(mm == &init_mm);
691 WARN_ON_ONCE(mm == current->mm);
692 WARN_ON_ONCE(mm == current->active_mm);
693 mm_free_pgd(mm);
694 destroy_context(mm);
695 mmu_notifier_subscriptions_destroy(mm);
696 check_mm(mm);
697 put_user_ns(mm->user_ns);
698 free_mm(mm);
699 }
700 EXPORT_SYMBOL_GPL(__mmdrop);
701
702 static void mmdrop_async_fn(struct work_struct *work)
703 {
704 struct mm_struct *mm;
705
706 mm = container_of(work, struct mm_struct, async_put_work);
707 __mmdrop(mm);
708 }
709
710 static void mmdrop_async(struct mm_struct *mm)
711 {
712 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
713 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
714 schedule_work(&mm->async_put_work);
715 }
716 }
717
718 static inline void free_signal_struct(struct signal_struct *sig)
719 {
720 taskstats_tgid_free(sig);
721 sched_autogroup_exit(sig);
722 /*
723 * __mmdrop is not safe to call from softirq context on x86 due to
724 * pgd_dtor so postpone it to the async context
725 */
726 if (sig->oom_mm)
727 mmdrop_async(sig->oom_mm);
728 kmem_cache_free(signal_cachep, sig);
729 }
730
731 static inline void put_signal_struct(struct signal_struct *sig)
732 {
733 if (refcount_dec_and_test(&sig->sigcnt))
734 free_signal_struct(sig);
735 }
736
737 void __put_task_struct(struct task_struct *tsk)
738 {
739 WARN_ON(!tsk->exit_state);
740 WARN_ON(refcount_read(&tsk->usage));
741 WARN_ON(tsk == current);
742
743 cgroup_free(tsk);
744 task_numa_free(tsk, true);
745 security_task_free(tsk);
746 exit_creds(tsk);
747 delayacct_tsk_free(tsk);
748 put_signal_struct(tsk->signal);
749
750 if (!profile_handoff_task(tsk))
751 free_task(tsk);
752 }
753 EXPORT_SYMBOL_GPL(__put_task_struct);
754
755 void __init __weak arch_task_cache_init(void) { }
756
757 /*
758 * set_max_threads
759 */
760 static void set_max_threads(unsigned int max_threads_suggested)
761 {
762 u64 threads;
763 unsigned long nr_pages = totalram_pages();
764
765 /*
766 * The number of threads shall be limited such that the thread
767 * structures may only consume a small part of the available memory.
768 */
769 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
770 threads = MAX_THREADS;
771 else
772 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
773 (u64) THREAD_SIZE * 8UL);
774
775 if (threads > max_threads_suggested)
776 threads = max_threads_suggested;
777
778 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
779 }
780
781 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
782 /* Initialized by the architecture: */
783 int arch_task_struct_size __read_mostly;
784 #endif
785
786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
787 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
788 {
789 /* Fetch thread_struct whitelist for the architecture. */
790 arch_thread_struct_whitelist(offset, size);
791
792 /*
793 * Handle zero-sized whitelist or empty thread_struct, otherwise
794 * adjust offset to position of thread_struct in task_struct.
795 */
796 if (unlikely(*size == 0))
797 *offset = 0;
798 else
799 *offset += offsetof(struct task_struct, thread);
800 }
801 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
802
803 void __init fork_init(void)
804 {
805 int i;
806 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
807 #ifndef ARCH_MIN_TASKALIGN
808 #define ARCH_MIN_TASKALIGN 0
809 #endif
810 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
811 unsigned long useroffset, usersize;
812
813 /* create a slab on which task_structs can be allocated */
814 task_struct_whitelist(&useroffset, &usersize);
815 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
816 arch_task_struct_size, align,
817 SLAB_PANIC|SLAB_ACCOUNT,
818 useroffset, usersize, NULL);
819 #endif
820
821 /* do the arch specific task caches init */
822 arch_task_cache_init();
823
824 set_max_threads(MAX_THREADS);
825
826 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
827 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
828 init_task.signal->rlim[RLIMIT_SIGPENDING] =
829 init_task.signal->rlim[RLIMIT_NPROC];
830
831 for (i = 0; i < UCOUNT_COUNTS; i++) {
832 init_user_ns.ucount_max[i] = max_threads/2;
833 }
834
835 #ifdef CONFIG_VMAP_STACK
836 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
837 NULL, free_vm_stack_cache);
838 #endif
839
840 lockdep_init_task(&init_task);
841 uprobes_init();
842 }
843
844 int __weak arch_dup_task_struct(struct task_struct *dst,
845 struct task_struct *src)
846 {
847 *dst = *src;
848 return 0;
849 }
850
851 void set_task_stack_end_magic(struct task_struct *tsk)
852 {
853 unsigned long *stackend;
854
855 stackend = end_of_stack(tsk);
856 *stackend = STACK_END_MAGIC; /* for overflow detection */
857 }
858
859 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
860 {
861 struct task_struct *tsk;
862 unsigned long *stack;
863 struct vm_struct *stack_vm_area __maybe_unused;
864 int err;
865
866 if (node == NUMA_NO_NODE)
867 node = tsk_fork_get_node(orig);
868 tsk = alloc_task_struct_node(node);
869 if (!tsk)
870 return NULL;
871
872 stack = alloc_thread_stack_node(tsk, node);
873 if (!stack)
874 goto free_tsk;
875
876 if (memcg_charge_kernel_stack(tsk))
877 goto free_stack;
878
879 stack_vm_area = task_stack_vm_area(tsk);
880
881 err = arch_dup_task_struct(tsk, orig);
882
883 /*
884 * arch_dup_task_struct() clobbers the stack-related fields. Make
885 * sure they're properly initialized before using any stack-related
886 * functions again.
887 */
888 tsk->stack = stack;
889 #ifdef CONFIG_VMAP_STACK
890 tsk->stack_vm_area = stack_vm_area;
891 #endif
892 #ifdef CONFIG_THREAD_INFO_IN_TASK
893 refcount_set(&tsk->stack_refcount, 1);
894 #endif
895
896 if (err)
897 goto free_stack;
898
899 #ifdef CONFIG_SECCOMP
900 /*
901 * We must handle setting up seccomp filters once we're under
902 * the sighand lock in case orig has changed between now and
903 * then. Until then, filter must be NULL to avoid messing up
904 * the usage counts on the error path calling free_task.
905 */
906 tsk->seccomp.filter = NULL;
907 #endif
908
909 setup_thread_stack(tsk, orig);
910 clear_user_return_notifier(tsk);
911 clear_tsk_need_resched(tsk);
912 set_task_stack_end_magic(tsk);
913
914 #ifdef CONFIG_STACKPROTECTOR
915 tsk->stack_canary = get_random_canary();
916 #endif
917 if (orig->cpus_ptr == &orig->cpus_mask)
918 tsk->cpus_ptr = &tsk->cpus_mask;
919
920 /*
921 * One for the user space visible state that goes away when reaped.
922 * One for the scheduler.
923 */
924 refcount_set(&tsk->rcu_users, 2);
925 /* One for the rcu users */
926 refcount_set(&tsk->usage, 1);
927 #ifdef CONFIG_BLK_DEV_IO_TRACE
928 tsk->btrace_seq = 0;
929 #endif
930 tsk->splice_pipe = NULL;
931 tsk->task_frag.page = NULL;
932 tsk->wake_q.next = NULL;
933
934 account_kernel_stack(tsk, 1);
935
936 kcov_task_init(tsk);
937
938 #ifdef CONFIG_FAULT_INJECTION
939 tsk->fail_nth = 0;
940 #endif
941
942 #ifdef CONFIG_BLK_CGROUP
943 tsk->throttle_queue = NULL;
944 tsk->use_memdelay = 0;
945 #endif
946
947 #ifdef CONFIG_MEMCG
948 tsk->active_memcg = NULL;
949 #endif
950 return tsk;
951
952 free_stack:
953 free_thread_stack(tsk);
954 free_tsk:
955 free_task_struct(tsk);
956 return NULL;
957 }
958
959 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
960
961 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
962
963 static int __init coredump_filter_setup(char *s)
964 {
965 default_dump_filter =
966 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
967 MMF_DUMP_FILTER_MASK;
968 return 1;
969 }
970
971 __setup("coredump_filter=", coredump_filter_setup);
972
973 #include <linux/init_task.h>
974
975 static void mm_init_aio(struct mm_struct *mm)
976 {
977 #ifdef CONFIG_AIO
978 spin_lock_init(&mm->ioctx_lock);
979 mm->ioctx_table = NULL;
980 #endif
981 }
982
983 static __always_inline void mm_clear_owner(struct mm_struct *mm,
984 struct task_struct *p)
985 {
986 #ifdef CONFIG_MEMCG
987 if (mm->owner == p)
988 WRITE_ONCE(mm->owner, NULL);
989 #endif
990 }
991
992 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
993 {
994 #ifdef CONFIG_MEMCG
995 mm->owner = p;
996 #endif
997 }
998
999 static void mm_init_uprobes_state(struct mm_struct *mm)
1000 {
1001 #ifdef CONFIG_UPROBES
1002 mm->uprobes_state.xol_area = NULL;
1003 #endif
1004 }
1005
1006 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1007 struct user_namespace *user_ns)
1008 {
1009 mm->mmap = NULL;
1010 mm->mm_rb = RB_ROOT;
1011 mm->vmacache_seqnum = 0;
1012 atomic_set(&mm->mm_users, 1);
1013 atomic_set(&mm->mm_count, 1);
1014 init_rwsem(&mm->mmap_sem);
1015 INIT_LIST_HEAD(&mm->mmlist);
1016 mm->core_state = NULL;
1017 mm_pgtables_bytes_init(mm);
1018 mm->map_count = 0;
1019 mm->locked_vm = 0;
1020 atomic64_set(&mm->pinned_vm, 0);
1021 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1022 spin_lock_init(&mm->page_table_lock);
1023 spin_lock_init(&mm->arg_lock);
1024 mm_init_cpumask(mm);
1025 mm_init_aio(mm);
1026 mm_init_owner(mm, p);
1027 RCU_INIT_POINTER(mm->exe_file, NULL);
1028 mmu_notifier_subscriptions_init(mm);
1029 init_tlb_flush_pending(mm);
1030 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1031 mm->pmd_huge_pte = NULL;
1032 #endif
1033 mm_init_uprobes_state(mm);
1034
1035 if (current->mm) {
1036 mm->flags = current->mm->flags & MMF_INIT_MASK;
1037 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1038 } else {
1039 mm->flags = default_dump_filter;
1040 mm->def_flags = 0;
1041 }
1042
1043 if (mm_alloc_pgd(mm))
1044 goto fail_nopgd;
1045
1046 if (init_new_context(p, mm))
1047 goto fail_nocontext;
1048
1049 mm->user_ns = get_user_ns(user_ns);
1050 return mm;
1051
1052 fail_nocontext:
1053 mm_free_pgd(mm);
1054 fail_nopgd:
1055 free_mm(mm);
1056 return NULL;
1057 }
1058
1059 /*
1060 * Allocate and initialize an mm_struct.
1061 */
1062 struct mm_struct *mm_alloc(void)
1063 {
1064 struct mm_struct *mm;
1065
1066 mm = allocate_mm();
1067 if (!mm)
1068 return NULL;
1069
1070 memset(mm, 0, sizeof(*mm));
1071 return mm_init(mm, current, current_user_ns());
1072 }
1073
1074 static inline void __mmput(struct mm_struct *mm)
1075 {
1076 VM_BUG_ON(atomic_read(&mm->mm_users));
1077
1078 uprobe_clear_state(mm);
1079 exit_aio(mm);
1080 ksm_exit(mm);
1081 khugepaged_exit(mm); /* must run before exit_mmap */
1082 exit_mmap(mm);
1083 mm_put_huge_zero_page(mm);
1084 set_mm_exe_file(mm, NULL);
1085 if (!list_empty(&mm->mmlist)) {
1086 spin_lock(&mmlist_lock);
1087 list_del(&mm->mmlist);
1088 spin_unlock(&mmlist_lock);
1089 }
1090 if (mm->binfmt)
1091 module_put(mm->binfmt->module);
1092 mmdrop(mm);
1093 }
1094
1095 /*
1096 * Decrement the use count and release all resources for an mm.
1097 */
1098 void mmput(struct mm_struct *mm)
1099 {
1100 might_sleep();
1101
1102 if (atomic_dec_and_test(&mm->mm_users))
1103 __mmput(mm);
1104 }
1105 EXPORT_SYMBOL_GPL(mmput);
1106
1107 #ifdef CONFIG_MMU
1108 static void mmput_async_fn(struct work_struct *work)
1109 {
1110 struct mm_struct *mm = container_of(work, struct mm_struct,
1111 async_put_work);
1112
1113 __mmput(mm);
1114 }
1115
1116 void mmput_async(struct mm_struct *mm)
1117 {
1118 if (atomic_dec_and_test(&mm->mm_users)) {
1119 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1120 schedule_work(&mm->async_put_work);
1121 }
1122 }
1123 #endif
1124
1125 /**
1126 * set_mm_exe_file - change a reference to the mm's executable file
1127 *
1128 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1129 *
1130 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1131 * invocations: in mmput() nobody alive left, in execve task is single
1132 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1133 * mm->exe_file, but does so without using set_mm_exe_file() in order
1134 * to do avoid the need for any locks.
1135 */
1136 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1137 {
1138 struct file *old_exe_file;
1139
1140 /*
1141 * It is safe to dereference the exe_file without RCU as
1142 * this function is only called if nobody else can access
1143 * this mm -- see comment above for justification.
1144 */
1145 old_exe_file = rcu_dereference_raw(mm->exe_file);
1146
1147 if (new_exe_file)
1148 get_file(new_exe_file);
1149 rcu_assign_pointer(mm->exe_file, new_exe_file);
1150 if (old_exe_file)
1151 fput(old_exe_file);
1152 }
1153
1154 /**
1155 * get_mm_exe_file - acquire a reference to the mm's executable file
1156 *
1157 * Returns %NULL if mm has no associated executable file.
1158 * User must release file via fput().
1159 */
1160 struct file *get_mm_exe_file(struct mm_struct *mm)
1161 {
1162 struct file *exe_file;
1163
1164 rcu_read_lock();
1165 exe_file = rcu_dereference(mm->exe_file);
1166 if (exe_file && !get_file_rcu(exe_file))
1167 exe_file = NULL;
1168 rcu_read_unlock();
1169 return exe_file;
1170 }
1171 EXPORT_SYMBOL(get_mm_exe_file);
1172
1173 /**
1174 * get_task_exe_file - acquire a reference to the task's executable file
1175 *
1176 * Returns %NULL if task's mm (if any) has no associated executable file or
1177 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1178 * User must release file via fput().
1179 */
1180 struct file *get_task_exe_file(struct task_struct *task)
1181 {
1182 struct file *exe_file = NULL;
1183 struct mm_struct *mm;
1184
1185 task_lock(task);
1186 mm = task->mm;
1187 if (mm) {
1188 if (!(task->flags & PF_KTHREAD))
1189 exe_file = get_mm_exe_file(mm);
1190 }
1191 task_unlock(task);
1192 return exe_file;
1193 }
1194 EXPORT_SYMBOL(get_task_exe_file);
1195
1196 /**
1197 * get_task_mm - acquire a reference to the task's mm
1198 *
1199 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1200 * this kernel workthread has transiently adopted a user mm with use_mm,
1201 * to do its AIO) is not set and if so returns a reference to it, after
1202 * bumping up the use count. User must release the mm via mmput()
1203 * after use. Typically used by /proc and ptrace.
1204 */
1205 struct mm_struct *get_task_mm(struct task_struct *task)
1206 {
1207 struct mm_struct *mm;
1208
1209 task_lock(task);
1210 mm = task->mm;
1211 if (mm) {
1212 if (task->flags & PF_KTHREAD)
1213 mm = NULL;
1214 else
1215 mmget(mm);
1216 }
1217 task_unlock(task);
1218 return mm;
1219 }
1220 EXPORT_SYMBOL_GPL(get_task_mm);
1221
1222 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1223 {
1224 struct mm_struct *mm;
1225 int err;
1226
1227 err = mutex_lock_killable(&task->signal->exec_update_mutex);
1228 if (err)
1229 return ERR_PTR(err);
1230
1231 mm = get_task_mm(task);
1232 if (mm && mm != current->mm &&
1233 !ptrace_may_access(task, mode)) {
1234 mmput(mm);
1235 mm = ERR_PTR(-EACCES);
1236 }
1237 mutex_unlock(&task->signal->exec_update_mutex);
1238
1239 return mm;
1240 }
1241
1242 static void complete_vfork_done(struct task_struct *tsk)
1243 {
1244 struct completion *vfork;
1245
1246 task_lock(tsk);
1247 vfork = tsk->vfork_done;
1248 if (likely(vfork)) {
1249 tsk->vfork_done = NULL;
1250 complete(vfork);
1251 }
1252 task_unlock(tsk);
1253 }
1254
1255 static int wait_for_vfork_done(struct task_struct *child,
1256 struct completion *vfork)
1257 {
1258 int killed;
1259
1260 freezer_do_not_count();
1261 cgroup_enter_frozen();
1262 killed = wait_for_completion_killable(vfork);
1263 cgroup_leave_frozen(false);
1264 freezer_count();
1265
1266 if (killed) {
1267 task_lock(child);
1268 child->vfork_done = NULL;
1269 task_unlock(child);
1270 }
1271
1272 put_task_struct(child);
1273 return killed;
1274 }
1275
1276 /* Please note the differences between mmput and mm_release.
1277 * mmput is called whenever we stop holding onto a mm_struct,
1278 * error success whatever.
1279 *
1280 * mm_release is called after a mm_struct has been removed
1281 * from the current process.
1282 *
1283 * This difference is important for error handling, when we
1284 * only half set up a mm_struct for a new process and need to restore
1285 * the old one. Because we mmput the new mm_struct before
1286 * restoring the old one. . .
1287 * Eric Biederman 10 January 1998
1288 */
1289 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1290 {
1291 uprobe_free_utask(tsk);
1292
1293 /* Get rid of any cached register state */
1294 deactivate_mm(tsk, mm);
1295
1296 /*
1297 * Signal userspace if we're not exiting with a core dump
1298 * because we want to leave the value intact for debugging
1299 * purposes.
1300 */
1301 if (tsk->clear_child_tid) {
1302 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1303 atomic_read(&mm->mm_users) > 1) {
1304 /*
1305 * We don't check the error code - if userspace has
1306 * not set up a proper pointer then tough luck.
1307 */
1308 put_user(0, tsk->clear_child_tid);
1309 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1310 1, NULL, NULL, 0, 0);
1311 }
1312 tsk->clear_child_tid = NULL;
1313 }
1314
1315 /*
1316 * All done, finally we can wake up parent and return this mm to him.
1317 * Also kthread_stop() uses this completion for synchronization.
1318 */
1319 if (tsk->vfork_done)
1320 complete_vfork_done(tsk);
1321 }
1322
1323 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1324 {
1325 futex_exit_release(tsk);
1326 mm_release(tsk, mm);
1327 }
1328
1329 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1330 {
1331 futex_exec_release(tsk);
1332 mm_release(tsk, mm);
1333 }
1334
1335 /**
1336 * dup_mm() - duplicates an existing mm structure
1337 * @tsk: the task_struct with which the new mm will be associated.
1338 * @oldmm: the mm to duplicate.
1339 *
1340 * Allocates a new mm structure and duplicates the provided @oldmm structure
1341 * content into it.
1342 *
1343 * Return: the duplicated mm or NULL on failure.
1344 */
1345 static struct mm_struct *dup_mm(struct task_struct *tsk,
1346 struct mm_struct *oldmm)
1347 {
1348 struct mm_struct *mm;
1349 int err;
1350
1351 mm = allocate_mm();
1352 if (!mm)
1353 goto fail_nomem;
1354
1355 memcpy(mm, oldmm, sizeof(*mm));
1356
1357 if (!mm_init(mm, tsk, mm->user_ns))
1358 goto fail_nomem;
1359
1360 err = dup_mmap(mm, oldmm);
1361 if (err)
1362 goto free_pt;
1363
1364 mm->hiwater_rss = get_mm_rss(mm);
1365 mm->hiwater_vm = mm->total_vm;
1366
1367 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1368 goto free_pt;
1369
1370 return mm;
1371
1372 free_pt:
1373 /* don't put binfmt in mmput, we haven't got module yet */
1374 mm->binfmt = NULL;
1375 mm_init_owner(mm, NULL);
1376 mmput(mm);
1377
1378 fail_nomem:
1379 return NULL;
1380 }
1381
1382 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1383 {
1384 struct mm_struct *mm, *oldmm;
1385 int retval;
1386
1387 tsk->min_flt = tsk->maj_flt = 0;
1388 tsk->nvcsw = tsk->nivcsw = 0;
1389 #ifdef CONFIG_DETECT_HUNG_TASK
1390 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1391 tsk->last_switch_time = 0;
1392 #endif
1393
1394 tsk->mm = NULL;
1395 tsk->active_mm = NULL;
1396
1397 /*
1398 * Are we cloning a kernel thread?
1399 *
1400 * We need to steal a active VM for that..
1401 */
1402 oldmm = current->mm;
1403 if (!oldmm)
1404 return 0;
1405
1406 /* initialize the new vmacache entries */
1407 vmacache_flush(tsk);
1408
1409 if (clone_flags & CLONE_VM) {
1410 mmget(oldmm);
1411 mm = oldmm;
1412 goto good_mm;
1413 }
1414
1415 retval = -ENOMEM;
1416 mm = dup_mm(tsk, current->mm);
1417 if (!mm)
1418 goto fail_nomem;
1419
1420 good_mm:
1421 tsk->mm = mm;
1422 tsk->active_mm = mm;
1423 return 0;
1424
1425 fail_nomem:
1426 return retval;
1427 }
1428
1429 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1430 {
1431 struct fs_struct *fs = current->fs;
1432 if (clone_flags & CLONE_FS) {
1433 /* tsk->fs is already what we want */
1434 spin_lock(&fs->lock);
1435 if (fs->in_exec) {
1436 spin_unlock(&fs->lock);
1437 return -EAGAIN;
1438 }
1439 fs->users++;
1440 spin_unlock(&fs->lock);
1441 return 0;
1442 }
1443 tsk->fs = copy_fs_struct(fs);
1444 if (!tsk->fs)
1445 return -ENOMEM;
1446 return 0;
1447 }
1448
1449 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1450 {
1451 struct files_struct *oldf, *newf;
1452 int error = 0;
1453
1454 /*
1455 * A background process may not have any files ...
1456 */
1457 oldf = current->files;
1458 if (!oldf)
1459 goto out;
1460
1461 if (clone_flags & CLONE_FILES) {
1462 atomic_inc(&oldf->count);
1463 goto out;
1464 }
1465
1466 newf = dup_fd(oldf, &error);
1467 if (!newf)
1468 goto out;
1469
1470 tsk->files = newf;
1471 error = 0;
1472 out:
1473 return error;
1474 }
1475
1476 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1477 {
1478 #ifdef CONFIG_BLOCK
1479 struct io_context *ioc = current->io_context;
1480 struct io_context *new_ioc;
1481
1482 if (!ioc)
1483 return 0;
1484 /*
1485 * Share io context with parent, if CLONE_IO is set
1486 */
1487 if (clone_flags & CLONE_IO) {
1488 ioc_task_link(ioc);
1489 tsk->io_context = ioc;
1490 } else if (ioprio_valid(ioc->ioprio)) {
1491 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1492 if (unlikely(!new_ioc))
1493 return -ENOMEM;
1494
1495 new_ioc->ioprio = ioc->ioprio;
1496 put_io_context(new_ioc);
1497 }
1498 #endif
1499 return 0;
1500 }
1501
1502 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1503 {
1504 struct sighand_struct *sig;
1505
1506 if (clone_flags & CLONE_SIGHAND) {
1507 refcount_inc(&current->sighand->count);
1508 return 0;
1509 }
1510 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1511 RCU_INIT_POINTER(tsk->sighand, sig);
1512 if (!sig)
1513 return -ENOMEM;
1514
1515 refcount_set(&sig->count, 1);
1516 spin_lock_irq(&current->sighand->siglock);
1517 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1518 spin_unlock_irq(&current->sighand->siglock);
1519
1520 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1521 if (clone_flags & CLONE_CLEAR_SIGHAND)
1522 flush_signal_handlers(tsk, 0);
1523
1524 return 0;
1525 }
1526
1527 void __cleanup_sighand(struct sighand_struct *sighand)
1528 {
1529 if (refcount_dec_and_test(&sighand->count)) {
1530 signalfd_cleanup(sighand);
1531 /*
1532 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1533 * without an RCU grace period, see __lock_task_sighand().
1534 */
1535 kmem_cache_free(sighand_cachep, sighand);
1536 }
1537 }
1538
1539 /*
1540 * Initialize POSIX timer handling for a thread group.
1541 */
1542 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1543 {
1544 struct posix_cputimers *pct = &sig->posix_cputimers;
1545 unsigned long cpu_limit;
1546
1547 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1548 posix_cputimers_group_init(pct, cpu_limit);
1549 }
1550
1551 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1552 {
1553 struct signal_struct *sig;
1554
1555 if (clone_flags & CLONE_THREAD)
1556 return 0;
1557
1558 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1559 tsk->signal = sig;
1560 if (!sig)
1561 return -ENOMEM;
1562
1563 sig->nr_threads = 1;
1564 atomic_set(&sig->live, 1);
1565 refcount_set(&sig->sigcnt, 1);
1566
1567 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1568 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1569 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1570
1571 init_waitqueue_head(&sig->wait_chldexit);
1572 sig->curr_target = tsk;
1573 init_sigpending(&sig->shared_pending);
1574 INIT_HLIST_HEAD(&sig->multiprocess);
1575 seqlock_init(&sig->stats_lock);
1576 prev_cputime_init(&sig->prev_cputime);
1577
1578 #ifdef CONFIG_POSIX_TIMERS
1579 INIT_LIST_HEAD(&sig->posix_timers);
1580 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1581 sig->real_timer.function = it_real_fn;
1582 #endif
1583
1584 task_lock(current->group_leader);
1585 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1586 task_unlock(current->group_leader);
1587
1588 posix_cpu_timers_init_group(sig);
1589
1590 tty_audit_fork(sig);
1591 sched_autogroup_fork(sig);
1592
1593 sig->oom_score_adj = current->signal->oom_score_adj;
1594 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1595
1596 mutex_init(&sig->cred_guard_mutex);
1597 mutex_init(&sig->exec_update_mutex);
1598
1599 return 0;
1600 }
1601
1602 static void copy_seccomp(struct task_struct *p)
1603 {
1604 #ifdef CONFIG_SECCOMP
1605 /*
1606 * Must be called with sighand->lock held, which is common to
1607 * all threads in the group. Holding cred_guard_mutex is not
1608 * needed because this new task is not yet running and cannot
1609 * be racing exec.
1610 */
1611 assert_spin_locked(&current->sighand->siglock);
1612
1613 /* Ref-count the new filter user, and assign it. */
1614 get_seccomp_filter(current);
1615 p->seccomp = current->seccomp;
1616
1617 /*
1618 * Explicitly enable no_new_privs here in case it got set
1619 * between the task_struct being duplicated and holding the
1620 * sighand lock. The seccomp state and nnp must be in sync.
1621 */
1622 if (task_no_new_privs(current))
1623 task_set_no_new_privs(p);
1624
1625 /*
1626 * If the parent gained a seccomp mode after copying thread
1627 * flags and between before we held the sighand lock, we have
1628 * to manually enable the seccomp thread flag here.
1629 */
1630 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1631 set_tsk_thread_flag(p, TIF_SECCOMP);
1632 #endif
1633 }
1634
1635 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1636 {
1637 current->clear_child_tid = tidptr;
1638
1639 return task_pid_vnr(current);
1640 }
1641
1642 static void rt_mutex_init_task(struct task_struct *p)
1643 {
1644 raw_spin_lock_init(&p->pi_lock);
1645 #ifdef CONFIG_RT_MUTEXES
1646 p->pi_waiters = RB_ROOT_CACHED;
1647 p->pi_top_task = NULL;
1648 p->pi_blocked_on = NULL;
1649 #endif
1650 }
1651
1652 static inline void init_task_pid_links(struct task_struct *task)
1653 {
1654 enum pid_type type;
1655
1656 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1657 INIT_HLIST_NODE(&task->pid_links[type]);
1658 }
1659 }
1660
1661 static inline void
1662 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1663 {
1664 if (type == PIDTYPE_PID)
1665 task->thread_pid = pid;
1666 else
1667 task->signal->pids[type] = pid;
1668 }
1669
1670 static inline void rcu_copy_process(struct task_struct *p)
1671 {
1672 #ifdef CONFIG_PREEMPT_RCU
1673 p->rcu_read_lock_nesting = 0;
1674 p->rcu_read_unlock_special.s = 0;
1675 p->rcu_blocked_node = NULL;
1676 INIT_LIST_HEAD(&p->rcu_node_entry);
1677 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1678 #ifdef CONFIG_TASKS_RCU
1679 p->rcu_tasks_holdout = false;
1680 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1681 p->rcu_tasks_idle_cpu = -1;
1682 #endif /* #ifdef CONFIG_TASKS_RCU */
1683 }
1684
1685 struct pid *pidfd_pid(const struct file *file)
1686 {
1687 if (file->f_op == &pidfd_fops)
1688 return file->private_data;
1689
1690 return ERR_PTR(-EBADF);
1691 }
1692
1693 static int pidfd_release(struct inode *inode, struct file *file)
1694 {
1695 struct pid *pid = file->private_data;
1696
1697 file->private_data = NULL;
1698 put_pid(pid);
1699 return 0;
1700 }
1701
1702 #ifdef CONFIG_PROC_FS
1703 /**
1704 * pidfd_show_fdinfo - print information about a pidfd
1705 * @m: proc fdinfo file
1706 * @f: file referencing a pidfd
1707 *
1708 * Pid:
1709 * This function will print the pid that a given pidfd refers to in the
1710 * pid namespace of the procfs instance.
1711 * If the pid namespace of the process is not a descendant of the pid
1712 * namespace of the procfs instance 0 will be shown as its pid. This is
1713 * similar to calling getppid() on a process whose parent is outside of
1714 * its pid namespace.
1715 *
1716 * NSpid:
1717 * If pid namespaces are supported then this function will also print
1718 * the pid of a given pidfd refers to for all descendant pid namespaces
1719 * starting from the current pid namespace of the instance, i.e. the
1720 * Pid field and the first entry in the NSpid field will be identical.
1721 * If the pid namespace of the process is not a descendant of the pid
1722 * namespace of the procfs instance 0 will be shown as its first NSpid
1723 * entry and no others will be shown.
1724 * Note that this differs from the Pid and NSpid fields in
1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726 * the pid namespace of the procfs instance. The difference becomes
1727 * obvious when sending around a pidfd between pid namespaces from a
1728 * different branch of the tree, i.e. where no ancestoral relation is
1729 * present between the pid namespaces:
1730 * - create two new pid namespaces ns1 and ns2 in the initial pid
1731 * namespace (also take care to create new mount namespaces in the
1732 * new pid namespace and mount procfs)
1733 * - create a process with a pidfd in ns1
1734 * - send pidfd from ns1 to ns2
1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736 * have exactly one entry, which is 0
1737 */
1738 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739 {
1740 struct pid *pid = f->private_data;
1741 struct pid_namespace *ns;
1742 pid_t nr = -1;
1743
1744 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745 ns = proc_pid_ns(file_inode(m->file));
1746 nr = pid_nr_ns(pid, ns);
1747 }
1748
1749 seq_put_decimal_ll(m, "Pid:\t", nr);
1750
1751 #ifdef CONFIG_PID_NS
1752 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753 if (nr > 0) {
1754 int i;
1755
1756 /* If nr is non-zero it means that 'pid' is valid and that
1757 * ns, i.e. the pid namespace associated with the procfs
1758 * instance, is in the pid namespace hierarchy of pid.
1759 * Start at one below the already printed level.
1760 */
1761 for (i = ns->level + 1; i <= pid->level; i++)
1762 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763 }
1764 #endif
1765 seq_putc(m, '\n');
1766 }
1767 #endif
1768
1769 /*
1770 * Poll support for process exit notification.
1771 */
1772 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773 {
1774 struct task_struct *task;
1775 struct pid *pid = file->private_data;
1776 __poll_t poll_flags = 0;
1777
1778 poll_wait(file, &pid->wait_pidfd, pts);
1779
1780 rcu_read_lock();
1781 task = pid_task(pid, PIDTYPE_PID);
1782 /*
1783 * Inform pollers only when the whole thread group exits.
1784 * If the thread group leader exits before all other threads in the
1785 * group, then poll(2) should block, similar to the wait(2) family.
1786 */
1787 if (!task || (task->exit_state && thread_group_empty(task)))
1788 poll_flags = EPOLLIN | EPOLLRDNORM;
1789 rcu_read_unlock();
1790
1791 return poll_flags;
1792 }
1793
1794 const struct file_operations pidfd_fops = {
1795 .release = pidfd_release,
1796 .poll = pidfd_poll,
1797 #ifdef CONFIG_PROC_FS
1798 .show_fdinfo = pidfd_show_fdinfo,
1799 #endif
1800 };
1801
1802 static void __delayed_free_task(struct rcu_head *rhp)
1803 {
1804 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1805
1806 free_task(tsk);
1807 }
1808
1809 static __always_inline void delayed_free_task(struct task_struct *tsk)
1810 {
1811 if (IS_ENABLED(CONFIG_MEMCG))
1812 call_rcu(&tsk->rcu, __delayed_free_task);
1813 else
1814 free_task(tsk);
1815 }
1816
1817 /*
1818 * This creates a new process as a copy of the old one,
1819 * but does not actually start it yet.
1820 *
1821 * It copies the registers, and all the appropriate
1822 * parts of the process environment (as per the clone
1823 * flags). The actual kick-off is left to the caller.
1824 */
1825 static __latent_entropy struct task_struct *copy_process(
1826 struct pid *pid,
1827 int trace,
1828 int node,
1829 struct kernel_clone_args *args)
1830 {
1831 int pidfd = -1, retval;
1832 struct task_struct *p;
1833 struct multiprocess_signals delayed;
1834 struct file *pidfile = NULL;
1835 u64 clone_flags = args->flags;
1836 struct nsproxy *nsp = current->nsproxy;
1837
1838 /*
1839 * Don't allow sharing the root directory with processes in a different
1840 * namespace
1841 */
1842 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1843 return ERR_PTR(-EINVAL);
1844
1845 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1846 return ERR_PTR(-EINVAL);
1847
1848 /*
1849 * Thread groups must share signals as well, and detached threads
1850 * can only be started up within the thread group.
1851 */
1852 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1853 return ERR_PTR(-EINVAL);
1854
1855 /*
1856 * Shared signal handlers imply shared VM. By way of the above,
1857 * thread groups also imply shared VM. Blocking this case allows
1858 * for various simplifications in other code.
1859 */
1860 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1861 return ERR_PTR(-EINVAL);
1862
1863 /*
1864 * Siblings of global init remain as zombies on exit since they are
1865 * not reaped by their parent (swapper). To solve this and to avoid
1866 * multi-rooted process trees, prevent global and container-inits
1867 * from creating siblings.
1868 */
1869 if ((clone_flags & CLONE_PARENT) &&
1870 current->signal->flags & SIGNAL_UNKILLABLE)
1871 return ERR_PTR(-EINVAL);
1872
1873 /*
1874 * If the new process will be in a different pid or user namespace
1875 * do not allow it to share a thread group with the forking task.
1876 */
1877 if (clone_flags & CLONE_THREAD) {
1878 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1879 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1880 return ERR_PTR(-EINVAL);
1881 }
1882
1883 /*
1884 * If the new process will be in a different time namespace
1885 * do not allow it to share VM or a thread group with the forking task.
1886 */
1887 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1888 if (nsp->time_ns != nsp->time_ns_for_children)
1889 return ERR_PTR(-EINVAL);
1890 }
1891
1892 if (clone_flags & CLONE_PIDFD) {
1893 /*
1894 * - CLONE_DETACHED is blocked so that we can potentially
1895 * reuse it later for CLONE_PIDFD.
1896 * - CLONE_THREAD is blocked until someone really needs it.
1897 */
1898 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1899 return ERR_PTR(-EINVAL);
1900 }
1901
1902 /*
1903 * Force any signals received before this point to be delivered
1904 * before the fork happens. Collect up signals sent to multiple
1905 * processes that happen during the fork and delay them so that
1906 * they appear to happen after the fork.
1907 */
1908 sigemptyset(&delayed.signal);
1909 INIT_HLIST_NODE(&delayed.node);
1910
1911 spin_lock_irq(&current->sighand->siglock);
1912 if (!(clone_flags & CLONE_THREAD))
1913 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1914 recalc_sigpending();
1915 spin_unlock_irq(&current->sighand->siglock);
1916 retval = -ERESTARTNOINTR;
1917 if (signal_pending(current))
1918 goto fork_out;
1919
1920 retval = -ENOMEM;
1921 p = dup_task_struct(current, node);
1922 if (!p)
1923 goto fork_out;
1924
1925 /*
1926 * This _must_ happen before we call free_task(), i.e. before we jump
1927 * to any of the bad_fork_* labels. This is to avoid freeing
1928 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1929 * kernel threads (PF_KTHREAD).
1930 */
1931 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1932 /*
1933 * Clear TID on mm_release()?
1934 */
1935 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1936
1937 ftrace_graph_init_task(p);
1938
1939 rt_mutex_init_task(p);
1940
1941 #ifdef CONFIG_PROVE_LOCKING
1942 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1943 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1944 #endif
1945 retval = -EAGAIN;
1946 if (atomic_read(&p->real_cred->user->processes) >=
1947 task_rlimit(p, RLIMIT_NPROC)) {
1948 if (p->real_cred->user != INIT_USER &&
1949 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1950 goto bad_fork_free;
1951 }
1952 current->flags &= ~PF_NPROC_EXCEEDED;
1953
1954 retval = copy_creds(p, clone_flags);
1955 if (retval < 0)
1956 goto bad_fork_free;
1957
1958 /*
1959 * If multiple threads are within copy_process(), then this check
1960 * triggers too late. This doesn't hurt, the check is only there
1961 * to stop root fork bombs.
1962 */
1963 retval = -EAGAIN;
1964 if (nr_threads >= max_threads)
1965 goto bad_fork_cleanup_count;
1966
1967 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1968 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1969 p->flags |= PF_FORKNOEXEC;
1970 INIT_LIST_HEAD(&p->children);
1971 INIT_LIST_HEAD(&p->sibling);
1972 rcu_copy_process(p);
1973 p->vfork_done = NULL;
1974 spin_lock_init(&p->alloc_lock);
1975
1976 init_sigpending(&p->pending);
1977
1978 p->utime = p->stime = p->gtime = 0;
1979 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1980 p->utimescaled = p->stimescaled = 0;
1981 #endif
1982 prev_cputime_init(&p->prev_cputime);
1983
1984 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1985 seqcount_init(&p->vtime.seqcount);
1986 p->vtime.starttime = 0;
1987 p->vtime.state = VTIME_INACTIVE;
1988 #endif
1989
1990 #if defined(SPLIT_RSS_COUNTING)
1991 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1992 #endif
1993
1994 p->default_timer_slack_ns = current->timer_slack_ns;
1995
1996 #ifdef CONFIG_PSI
1997 p->psi_flags = 0;
1998 #endif
1999
2000 task_io_accounting_init(&p->ioac);
2001 acct_clear_integrals(p);
2002
2003 posix_cputimers_init(&p->posix_cputimers);
2004
2005 p->io_context = NULL;
2006 audit_set_context(p, NULL);
2007 cgroup_fork(p);
2008 #ifdef CONFIG_NUMA
2009 p->mempolicy = mpol_dup(p->mempolicy);
2010 if (IS_ERR(p->mempolicy)) {
2011 retval = PTR_ERR(p->mempolicy);
2012 p->mempolicy = NULL;
2013 goto bad_fork_cleanup_threadgroup_lock;
2014 }
2015 #endif
2016 #ifdef CONFIG_CPUSETS
2017 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2018 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2019 seqcount_init(&p->mems_allowed_seq);
2020 #endif
2021 #ifdef CONFIG_TRACE_IRQFLAGS
2022 p->irq_events = 0;
2023 p->hardirqs_enabled = 0;
2024 p->hardirq_enable_ip = 0;
2025 p->hardirq_enable_event = 0;
2026 p->hardirq_disable_ip = _THIS_IP_;
2027 p->hardirq_disable_event = 0;
2028 p->softirqs_enabled = 1;
2029 p->softirq_enable_ip = _THIS_IP_;
2030 p->softirq_enable_event = 0;
2031 p->softirq_disable_ip = 0;
2032 p->softirq_disable_event = 0;
2033 p->hardirq_context = 0;
2034 p->softirq_context = 0;
2035 #endif
2036
2037 p->pagefault_disabled = 0;
2038
2039 #ifdef CONFIG_LOCKDEP
2040 lockdep_init_task(p);
2041 #endif
2042
2043 #ifdef CONFIG_DEBUG_MUTEXES
2044 p->blocked_on = NULL; /* not blocked yet */
2045 #endif
2046 #ifdef CONFIG_BCACHE
2047 p->sequential_io = 0;
2048 p->sequential_io_avg = 0;
2049 #endif
2050
2051 /* Perform scheduler related setup. Assign this task to a CPU. */
2052 retval = sched_fork(clone_flags, p);
2053 if (retval)
2054 goto bad_fork_cleanup_policy;
2055
2056 retval = perf_event_init_task(p);
2057 if (retval)
2058 goto bad_fork_cleanup_policy;
2059 retval = audit_alloc(p);
2060 if (retval)
2061 goto bad_fork_cleanup_perf;
2062 /* copy all the process information */
2063 shm_init_task(p);
2064 retval = security_task_alloc(p, clone_flags);
2065 if (retval)
2066 goto bad_fork_cleanup_audit;
2067 retval = copy_semundo(clone_flags, p);
2068 if (retval)
2069 goto bad_fork_cleanup_security;
2070 retval = copy_files(clone_flags, p);
2071 if (retval)
2072 goto bad_fork_cleanup_semundo;
2073 retval = copy_fs(clone_flags, p);
2074 if (retval)
2075 goto bad_fork_cleanup_files;
2076 retval = copy_sighand(clone_flags, p);
2077 if (retval)
2078 goto bad_fork_cleanup_fs;
2079 retval = copy_signal(clone_flags, p);
2080 if (retval)
2081 goto bad_fork_cleanup_sighand;
2082 retval = copy_mm(clone_flags, p);
2083 if (retval)
2084 goto bad_fork_cleanup_signal;
2085 retval = copy_namespaces(clone_flags, p);
2086 if (retval)
2087 goto bad_fork_cleanup_mm;
2088 retval = copy_io(clone_flags, p);
2089 if (retval)
2090 goto bad_fork_cleanup_namespaces;
2091 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2092 args->tls);
2093 if (retval)
2094 goto bad_fork_cleanup_io;
2095
2096 stackleak_task_init(p);
2097
2098 if (pid != &init_struct_pid) {
2099 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2100 args->set_tid_size);
2101 if (IS_ERR(pid)) {
2102 retval = PTR_ERR(pid);
2103 goto bad_fork_cleanup_thread;
2104 }
2105 }
2106
2107 /*
2108 * This has to happen after we've potentially unshared the file
2109 * descriptor table (so that the pidfd doesn't leak into the child
2110 * if the fd table isn't shared).
2111 */
2112 if (clone_flags & CLONE_PIDFD) {
2113 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2114 if (retval < 0)
2115 goto bad_fork_free_pid;
2116
2117 pidfd = retval;
2118
2119 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2120 O_RDWR | O_CLOEXEC);
2121 if (IS_ERR(pidfile)) {
2122 put_unused_fd(pidfd);
2123 retval = PTR_ERR(pidfile);
2124 goto bad_fork_free_pid;
2125 }
2126 get_pid(pid); /* held by pidfile now */
2127
2128 retval = put_user(pidfd, args->pidfd);
2129 if (retval)
2130 goto bad_fork_put_pidfd;
2131 }
2132
2133 #ifdef CONFIG_BLOCK
2134 p->plug = NULL;
2135 #endif
2136 futex_init_task(p);
2137
2138 /*
2139 * sigaltstack should be cleared when sharing the same VM
2140 */
2141 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2142 sas_ss_reset(p);
2143
2144 /*
2145 * Syscall tracing and stepping should be turned off in the
2146 * child regardless of CLONE_PTRACE.
2147 */
2148 user_disable_single_step(p);
2149 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2150 #ifdef TIF_SYSCALL_EMU
2151 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2152 #endif
2153 clear_tsk_latency_tracing(p);
2154
2155 /* ok, now we should be set up.. */
2156 p->pid = pid_nr(pid);
2157 if (clone_flags & CLONE_THREAD) {
2158 p->exit_signal = -1;
2159 p->group_leader = current->group_leader;
2160 p->tgid = current->tgid;
2161 } else {
2162 if (clone_flags & CLONE_PARENT)
2163 p->exit_signal = current->group_leader->exit_signal;
2164 else
2165 p->exit_signal = args->exit_signal;
2166 p->group_leader = p;
2167 p->tgid = p->pid;
2168 }
2169
2170 p->nr_dirtied = 0;
2171 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2172 p->dirty_paused_when = 0;
2173
2174 p->pdeath_signal = 0;
2175 INIT_LIST_HEAD(&p->thread_group);
2176 p->task_works = NULL;
2177
2178 cgroup_threadgroup_change_begin(current);
2179 /*
2180 * Ensure that the cgroup subsystem policies allow the new process to be
2181 * forked. It should be noted the the new process's css_set can be changed
2182 * between here and cgroup_post_fork() if an organisation operation is in
2183 * progress.
2184 */
2185 retval = cgroup_can_fork(p);
2186 if (retval)
2187 goto bad_fork_cgroup_threadgroup_change_end;
2188
2189 /*
2190 * From this point on we must avoid any synchronous user-space
2191 * communication until we take the tasklist-lock. In particular, we do
2192 * not want user-space to be able to predict the process start-time by
2193 * stalling fork(2) after we recorded the start_time but before it is
2194 * visible to the system.
2195 */
2196
2197 p->start_time = ktime_get_ns();
2198 p->start_boottime = ktime_get_boottime_ns();
2199
2200 /*
2201 * Make it visible to the rest of the system, but dont wake it up yet.
2202 * Need tasklist lock for parent etc handling!
2203 */
2204 write_lock_irq(&tasklist_lock);
2205
2206 /* CLONE_PARENT re-uses the old parent */
2207 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2208 p->real_parent = current->real_parent;
2209 p->parent_exec_id = current->parent_exec_id;
2210 } else {
2211 p->real_parent = current;
2212 p->parent_exec_id = current->self_exec_id;
2213 }
2214
2215 klp_copy_process(p);
2216
2217 spin_lock(&current->sighand->siglock);
2218
2219 /*
2220 * Copy seccomp details explicitly here, in case they were changed
2221 * before holding sighand lock.
2222 */
2223 copy_seccomp(p);
2224
2225 rseq_fork(p, clone_flags);
2226
2227 /* Don't start children in a dying pid namespace */
2228 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2229 retval = -ENOMEM;
2230 goto bad_fork_cancel_cgroup;
2231 }
2232
2233 /* Let kill terminate clone/fork in the middle */
2234 if (fatal_signal_pending(current)) {
2235 retval = -EINTR;
2236 goto bad_fork_cancel_cgroup;
2237 }
2238
2239 /* past the last point of failure */
2240 if (pidfile)
2241 fd_install(pidfd, pidfile);
2242
2243 init_task_pid_links(p);
2244 if (likely(p->pid)) {
2245 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2246
2247 init_task_pid(p, PIDTYPE_PID, pid);
2248 if (thread_group_leader(p)) {
2249 init_task_pid(p, PIDTYPE_TGID, pid);
2250 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2251 init_task_pid(p, PIDTYPE_SID, task_session(current));
2252
2253 if (is_child_reaper(pid)) {
2254 ns_of_pid(pid)->child_reaper = p;
2255 p->signal->flags |= SIGNAL_UNKILLABLE;
2256 }
2257 p->signal->shared_pending.signal = delayed.signal;
2258 p->signal->tty = tty_kref_get(current->signal->tty);
2259 /*
2260 * Inherit has_child_subreaper flag under the same
2261 * tasklist_lock with adding child to the process tree
2262 * for propagate_has_child_subreaper optimization.
2263 */
2264 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2265 p->real_parent->signal->is_child_subreaper;
2266 list_add_tail(&p->sibling, &p->real_parent->children);
2267 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2268 attach_pid(p, PIDTYPE_TGID);
2269 attach_pid(p, PIDTYPE_PGID);
2270 attach_pid(p, PIDTYPE_SID);
2271 __this_cpu_inc(process_counts);
2272 } else {
2273 current->signal->nr_threads++;
2274 atomic_inc(&current->signal->live);
2275 refcount_inc(&current->signal->sigcnt);
2276 task_join_group_stop(p);
2277 list_add_tail_rcu(&p->thread_group,
2278 &p->group_leader->thread_group);
2279 list_add_tail_rcu(&p->thread_node,
2280 &p->signal->thread_head);
2281 }
2282 attach_pid(p, PIDTYPE_PID);
2283 nr_threads++;
2284 }
2285 total_forks++;
2286 hlist_del_init(&delayed.node);
2287 spin_unlock(&current->sighand->siglock);
2288 syscall_tracepoint_update(p);
2289 write_unlock_irq(&tasklist_lock);
2290
2291 proc_fork_connector(p);
2292 cgroup_post_fork(p);
2293 cgroup_threadgroup_change_end(current);
2294 perf_event_fork(p);
2295
2296 trace_task_newtask(p, clone_flags);
2297 uprobe_copy_process(p, clone_flags);
2298
2299 return p;
2300
2301 bad_fork_cancel_cgroup:
2302 spin_unlock(&current->sighand->siglock);
2303 write_unlock_irq(&tasklist_lock);
2304 cgroup_cancel_fork(p);
2305 bad_fork_cgroup_threadgroup_change_end:
2306 cgroup_threadgroup_change_end(current);
2307 bad_fork_put_pidfd:
2308 if (clone_flags & CLONE_PIDFD) {
2309 fput(pidfile);
2310 put_unused_fd(pidfd);
2311 }
2312 bad_fork_free_pid:
2313 if (pid != &init_struct_pid)
2314 free_pid(pid);
2315 bad_fork_cleanup_thread:
2316 exit_thread(p);
2317 bad_fork_cleanup_io:
2318 if (p->io_context)
2319 exit_io_context(p);
2320 bad_fork_cleanup_namespaces:
2321 exit_task_namespaces(p);
2322 bad_fork_cleanup_mm:
2323 if (p->mm) {
2324 mm_clear_owner(p->mm, p);
2325 mmput(p->mm);
2326 }
2327 bad_fork_cleanup_signal:
2328 if (!(clone_flags & CLONE_THREAD))
2329 free_signal_struct(p->signal);
2330 bad_fork_cleanup_sighand:
2331 __cleanup_sighand(p->sighand);
2332 bad_fork_cleanup_fs:
2333 exit_fs(p); /* blocking */
2334 bad_fork_cleanup_files:
2335 exit_files(p); /* blocking */
2336 bad_fork_cleanup_semundo:
2337 exit_sem(p);
2338 bad_fork_cleanup_security:
2339 security_task_free(p);
2340 bad_fork_cleanup_audit:
2341 audit_free(p);
2342 bad_fork_cleanup_perf:
2343 perf_event_free_task(p);
2344 bad_fork_cleanup_policy:
2345 lockdep_free_task(p);
2346 #ifdef CONFIG_NUMA
2347 mpol_put(p->mempolicy);
2348 bad_fork_cleanup_threadgroup_lock:
2349 #endif
2350 delayacct_tsk_free(p);
2351 bad_fork_cleanup_count:
2352 atomic_dec(&p->cred->user->processes);
2353 exit_creds(p);
2354 bad_fork_free:
2355 p->state = TASK_DEAD;
2356 put_task_stack(p);
2357 delayed_free_task(p);
2358 fork_out:
2359 spin_lock_irq(&current->sighand->siglock);
2360 hlist_del_init(&delayed.node);
2361 spin_unlock_irq(&current->sighand->siglock);
2362 return ERR_PTR(retval);
2363 }
2364
2365 static inline void init_idle_pids(struct task_struct *idle)
2366 {
2367 enum pid_type type;
2368
2369 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2370 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2371 init_task_pid(idle, type, &init_struct_pid);
2372 }
2373 }
2374
2375 struct task_struct *fork_idle(int cpu)
2376 {
2377 struct task_struct *task;
2378 struct kernel_clone_args args = {
2379 .flags = CLONE_VM,
2380 };
2381
2382 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2383 if (!IS_ERR(task)) {
2384 init_idle_pids(task);
2385 init_idle(task, cpu);
2386 }
2387
2388 return task;
2389 }
2390
2391 struct mm_struct *copy_init_mm(void)
2392 {
2393 return dup_mm(NULL, &init_mm);
2394 }
2395
2396 /*
2397 * Ok, this is the main fork-routine.
2398 *
2399 * It copies the process, and if successful kick-starts
2400 * it and waits for it to finish using the VM if required.
2401 *
2402 * args->exit_signal is expected to be checked for sanity by the caller.
2403 */
2404 long _do_fork(struct kernel_clone_args *args)
2405 {
2406 u64 clone_flags = args->flags;
2407 struct completion vfork;
2408 struct pid *pid;
2409 struct task_struct *p;
2410 int trace = 0;
2411 long nr;
2412
2413 /*
2414 * Determine whether and which event to report to ptracer. When
2415 * called from kernel_thread or CLONE_UNTRACED is explicitly
2416 * requested, no event is reported; otherwise, report if the event
2417 * for the type of forking is enabled.
2418 */
2419 if (!(clone_flags & CLONE_UNTRACED)) {
2420 if (clone_flags & CLONE_VFORK)
2421 trace = PTRACE_EVENT_VFORK;
2422 else if (args->exit_signal != SIGCHLD)
2423 trace = PTRACE_EVENT_CLONE;
2424 else
2425 trace = PTRACE_EVENT_FORK;
2426
2427 if (likely(!ptrace_event_enabled(current, trace)))
2428 trace = 0;
2429 }
2430
2431 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2432 add_latent_entropy();
2433
2434 if (IS_ERR(p))
2435 return PTR_ERR(p);
2436
2437 /*
2438 * Do this prior waking up the new thread - the thread pointer
2439 * might get invalid after that point, if the thread exits quickly.
2440 */
2441 trace_sched_process_fork(current, p);
2442
2443 pid = get_task_pid(p, PIDTYPE_PID);
2444 nr = pid_vnr(pid);
2445
2446 if (clone_flags & CLONE_PARENT_SETTID)
2447 put_user(nr, args->parent_tid);
2448
2449 if (clone_flags & CLONE_VFORK) {
2450 p->vfork_done = &vfork;
2451 init_completion(&vfork);
2452 get_task_struct(p);
2453 }
2454
2455 wake_up_new_task(p);
2456
2457 /* forking complete and child started to run, tell ptracer */
2458 if (unlikely(trace))
2459 ptrace_event_pid(trace, pid);
2460
2461 if (clone_flags & CLONE_VFORK) {
2462 if (!wait_for_vfork_done(p, &vfork))
2463 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2464 }
2465
2466 put_pid(pid);
2467 return nr;
2468 }
2469
2470 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2471 {
2472 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2473 if ((kargs->flags & CLONE_PIDFD) &&
2474 (kargs->flags & CLONE_PARENT_SETTID))
2475 return false;
2476
2477 return true;
2478 }
2479
2480 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2481 /* For compatibility with architectures that call do_fork directly rather than
2482 * using the syscall entry points below. */
2483 long do_fork(unsigned long clone_flags,
2484 unsigned long stack_start,
2485 unsigned long stack_size,
2486 int __user *parent_tidptr,
2487 int __user *child_tidptr)
2488 {
2489 struct kernel_clone_args args = {
2490 .flags = (clone_flags & ~CSIGNAL),
2491 .pidfd = parent_tidptr,
2492 .child_tid = child_tidptr,
2493 .parent_tid = parent_tidptr,
2494 .exit_signal = (clone_flags & CSIGNAL),
2495 .stack = stack_start,
2496 .stack_size = stack_size,
2497 };
2498
2499 if (!legacy_clone_args_valid(&args))
2500 return -EINVAL;
2501
2502 return _do_fork(&args);
2503 }
2504 #endif
2505
2506 /*
2507 * Create a kernel thread.
2508 */
2509 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2510 {
2511 struct kernel_clone_args args = {
2512 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2513 .exit_signal = (flags & CSIGNAL),
2514 .stack = (unsigned long)fn,
2515 .stack_size = (unsigned long)arg,
2516 };
2517
2518 return _do_fork(&args);
2519 }
2520
2521 #ifdef __ARCH_WANT_SYS_FORK
2522 SYSCALL_DEFINE0(fork)
2523 {
2524 #ifdef CONFIG_MMU
2525 struct kernel_clone_args args = {
2526 .exit_signal = SIGCHLD,
2527 };
2528
2529 return _do_fork(&args);
2530 #else
2531 /* can not support in nommu mode */
2532 return -EINVAL;
2533 #endif
2534 }
2535 #endif
2536
2537 #ifdef __ARCH_WANT_SYS_VFORK
2538 SYSCALL_DEFINE0(vfork)
2539 {
2540 struct kernel_clone_args args = {
2541 .flags = CLONE_VFORK | CLONE_VM,
2542 .exit_signal = SIGCHLD,
2543 };
2544
2545 return _do_fork(&args);
2546 }
2547 #endif
2548
2549 #ifdef __ARCH_WANT_SYS_CLONE
2550 #ifdef CONFIG_CLONE_BACKWARDS
2551 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2552 int __user *, parent_tidptr,
2553 unsigned long, tls,
2554 int __user *, child_tidptr)
2555 #elif defined(CONFIG_CLONE_BACKWARDS2)
2556 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2557 int __user *, parent_tidptr,
2558 int __user *, child_tidptr,
2559 unsigned long, tls)
2560 #elif defined(CONFIG_CLONE_BACKWARDS3)
2561 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2562 int, stack_size,
2563 int __user *, parent_tidptr,
2564 int __user *, child_tidptr,
2565 unsigned long, tls)
2566 #else
2567 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2568 int __user *, parent_tidptr,
2569 int __user *, child_tidptr,
2570 unsigned long, tls)
2571 #endif
2572 {
2573 struct kernel_clone_args args = {
2574 .flags = (clone_flags & ~CSIGNAL),
2575 .pidfd = parent_tidptr,
2576 .child_tid = child_tidptr,
2577 .parent_tid = parent_tidptr,
2578 .exit_signal = (clone_flags & CSIGNAL),
2579 .stack = newsp,
2580 .tls = tls,
2581 };
2582
2583 if (!legacy_clone_args_valid(&args))
2584 return -EINVAL;
2585
2586 return _do_fork(&args);
2587 }
2588 #endif
2589
2590 #ifdef __ARCH_WANT_SYS_CLONE3
2591
2592 /*
2593 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2594 * the registers containing the syscall arguments for clone. This doesn't work
2595 * with clone3 since the TLS value is passed in clone_args instead.
2596 */
2597 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2598 #error clone3 requires copy_thread_tls support in arch
2599 #endif
2600
2601 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2602 struct clone_args __user *uargs,
2603 size_t usize)
2604 {
2605 int err;
2606 struct clone_args args;
2607 pid_t *kset_tid = kargs->set_tid;
2608
2609 if (unlikely(usize > PAGE_SIZE))
2610 return -E2BIG;
2611 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2612 return -EINVAL;
2613
2614 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2615 if (err)
2616 return err;
2617
2618 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2619 return -EINVAL;
2620
2621 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2622 return -EINVAL;
2623
2624 if (unlikely(args.set_tid && args.set_tid_size == 0))
2625 return -EINVAL;
2626
2627 /*
2628 * Verify that higher 32bits of exit_signal are unset and that
2629 * it is a valid signal
2630 */
2631 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2632 !valid_signal(args.exit_signal)))
2633 return -EINVAL;
2634
2635 *kargs = (struct kernel_clone_args){
2636 .flags = args.flags,
2637 .pidfd = u64_to_user_ptr(args.pidfd),
2638 .child_tid = u64_to_user_ptr(args.child_tid),
2639 .parent_tid = u64_to_user_ptr(args.parent_tid),
2640 .exit_signal = args.exit_signal,
2641 .stack = args.stack,
2642 .stack_size = args.stack_size,
2643 .tls = args.tls,
2644 .set_tid_size = args.set_tid_size,
2645 };
2646
2647 if (args.set_tid &&
2648 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2649 (kargs->set_tid_size * sizeof(pid_t))))
2650 return -EFAULT;
2651
2652 kargs->set_tid = kset_tid;
2653
2654 return 0;
2655 }
2656
2657 /**
2658 * clone3_stack_valid - check and prepare stack
2659 * @kargs: kernel clone args
2660 *
2661 * Verify that the stack arguments userspace gave us are sane.
2662 * In addition, set the stack direction for userspace since it's easy for us to
2663 * determine.
2664 */
2665 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2666 {
2667 if (kargs->stack == 0) {
2668 if (kargs->stack_size > 0)
2669 return false;
2670 } else {
2671 if (kargs->stack_size == 0)
2672 return false;
2673
2674 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2675 return false;
2676
2677 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2678 kargs->stack += kargs->stack_size;
2679 #endif
2680 }
2681
2682 return true;
2683 }
2684
2685 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2686 {
2687 /* Verify that no unknown flags are passed along. */
2688 if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND))
2689 return false;
2690
2691 /*
2692 * - make the CLONE_DETACHED bit reuseable for clone3
2693 * - make the CSIGNAL bits reuseable for clone3
2694 */
2695 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2696 return false;
2697
2698 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2699 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2700 return false;
2701
2702 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2703 kargs->exit_signal)
2704 return false;
2705
2706 if (!clone3_stack_valid(kargs))
2707 return false;
2708
2709 return true;
2710 }
2711
2712 /**
2713 * clone3 - create a new process with specific properties
2714 * @uargs: argument structure
2715 * @size: size of @uargs
2716 *
2717 * clone3() is the extensible successor to clone()/clone2().
2718 * It takes a struct as argument that is versioned by its size.
2719 *
2720 * Return: On success, a positive PID for the child process.
2721 * On error, a negative errno number.
2722 */
2723 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2724 {
2725 int err;
2726
2727 struct kernel_clone_args kargs;
2728 pid_t set_tid[MAX_PID_NS_LEVEL];
2729
2730 kargs.set_tid = set_tid;
2731
2732 err = copy_clone_args_from_user(&kargs, uargs, size);
2733 if (err)
2734 return err;
2735
2736 if (!clone3_args_valid(&kargs))
2737 return -EINVAL;
2738
2739 return _do_fork(&kargs);
2740 }
2741 #endif
2742
2743 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2744 {
2745 struct task_struct *leader, *parent, *child;
2746 int res;
2747
2748 read_lock(&tasklist_lock);
2749 leader = top = top->group_leader;
2750 down:
2751 for_each_thread(leader, parent) {
2752 list_for_each_entry(child, &parent->children, sibling) {
2753 res = visitor(child, data);
2754 if (res) {
2755 if (res < 0)
2756 goto out;
2757 leader = child;
2758 goto down;
2759 }
2760 up:
2761 ;
2762 }
2763 }
2764
2765 if (leader != top) {
2766 child = leader;
2767 parent = child->real_parent;
2768 leader = parent->group_leader;
2769 goto up;
2770 }
2771 out:
2772 read_unlock(&tasklist_lock);
2773 }
2774
2775 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2776 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2777 #endif
2778
2779 static void sighand_ctor(void *data)
2780 {
2781 struct sighand_struct *sighand = data;
2782
2783 spin_lock_init(&sighand->siglock);
2784 init_waitqueue_head(&sighand->signalfd_wqh);
2785 }
2786
2787 void __init proc_caches_init(void)
2788 {
2789 unsigned int mm_size;
2790
2791 sighand_cachep = kmem_cache_create("sighand_cache",
2792 sizeof(struct sighand_struct), 0,
2793 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2794 SLAB_ACCOUNT, sighand_ctor);
2795 signal_cachep = kmem_cache_create("signal_cache",
2796 sizeof(struct signal_struct), 0,
2797 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2798 NULL);
2799 files_cachep = kmem_cache_create("files_cache",
2800 sizeof(struct files_struct), 0,
2801 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2802 NULL);
2803 fs_cachep = kmem_cache_create("fs_cache",
2804 sizeof(struct fs_struct), 0,
2805 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2806 NULL);
2807
2808 /*
2809 * The mm_cpumask is located at the end of mm_struct, and is
2810 * dynamically sized based on the maximum CPU number this system
2811 * can have, taking hotplug into account (nr_cpu_ids).
2812 */
2813 mm_size = sizeof(struct mm_struct) + cpumask_size();
2814
2815 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2816 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2817 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2818 offsetof(struct mm_struct, saved_auxv),
2819 sizeof_field(struct mm_struct, saved_auxv),
2820 NULL);
2821 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2822 mmap_init();
2823 nsproxy_cache_init();
2824 }
2825
2826 /*
2827 * Check constraints on flags passed to the unshare system call.
2828 */
2829 static int check_unshare_flags(unsigned long unshare_flags)
2830 {
2831 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2832 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2833 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2834 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2835 CLONE_NEWTIME))
2836 return -EINVAL;
2837 /*
2838 * Not implemented, but pretend it works if there is nothing
2839 * to unshare. Note that unsharing the address space or the
2840 * signal handlers also need to unshare the signal queues (aka
2841 * CLONE_THREAD).
2842 */
2843 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2844 if (!thread_group_empty(current))
2845 return -EINVAL;
2846 }
2847 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2848 if (refcount_read(&current->sighand->count) > 1)
2849 return -EINVAL;
2850 }
2851 if (unshare_flags & CLONE_VM) {
2852 if (!current_is_single_threaded())
2853 return -EINVAL;
2854 }
2855
2856 return 0;
2857 }
2858
2859 /*
2860 * Unshare the filesystem structure if it is being shared
2861 */
2862 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2863 {
2864 struct fs_struct *fs = current->fs;
2865
2866 if (!(unshare_flags & CLONE_FS) || !fs)
2867 return 0;
2868
2869 /* don't need lock here; in the worst case we'll do useless copy */
2870 if (fs->users == 1)
2871 return 0;
2872
2873 *new_fsp = copy_fs_struct(fs);
2874 if (!*new_fsp)
2875 return -ENOMEM;
2876
2877 return 0;
2878 }
2879
2880 /*
2881 * Unshare file descriptor table if it is being shared
2882 */
2883 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2884 {
2885 struct files_struct *fd = current->files;
2886 int error = 0;
2887
2888 if ((unshare_flags & CLONE_FILES) &&
2889 (fd && atomic_read(&fd->count) > 1)) {
2890 *new_fdp = dup_fd(fd, &error);
2891 if (!*new_fdp)
2892 return error;
2893 }
2894
2895 return 0;
2896 }
2897
2898 /*
2899 * unshare allows a process to 'unshare' part of the process
2900 * context which was originally shared using clone. copy_*
2901 * functions used by do_fork() cannot be used here directly
2902 * because they modify an inactive task_struct that is being
2903 * constructed. Here we are modifying the current, active,
2904 * task_struct.
2905 */
2906 int ksys_unshare(unsigned long unshare_flags)
2907 {
2908 struct fs_struct *fs, *new_fs = NULL;
2909 struct files_struct *fd, *new_fd = NULL;
2910 struct cred *new_cred = NULL;
2911 struct nsproxy *new_nsproxy = NULL;
2912 int do_sysvsem = 0;
2913 int err;
2914
2915 /*
2916 * If unsharing a user namespace must also unshare the thread group
2917 * and unshare the filesystem root and working directories.
2918 */
2919 if (unshare_flags & CLONE_NEWUSER)
2920 unshare_flags |= CLONE_THREAD | CLONE_FS;
2921 /*
2922 * If unsharing vm, must also unshare signal handlers.
2923 */
2924 if (unshare_flags & CLONE_VM)
2925 unshare_flags |= CLONE_SIGHAND;
2926 /*
2927 * If unsharing a signal handlers, must also unshare the signal queues.
2928 */
2929 if (unshare_flags & CLONE_SIGHAND)
2930 unshare_flags |= CLONE_THREAD;
2931 /*
2932 * If unsharing namespace, must also unshare filesystem information.
2933 */
2934 if (unshare_flags & CLONE_NEWNS)
2935 unshare_flags |= CLONE_FS;
2936
2937 err = check_unshare_flags(unshare_flags);
2938 if (err)
2939 goto bad_unshare_out;
2940 /*
2941 * CLONE_NEWIPC must also detach from the undolist: after switching
2942 * to a new ipc namespace, the semaphore arrays from the old
2943 * namespace are unreachable.
2944 */
2945 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2946 do_sysvsem = 1;
2947 err = unshare_fs(unshare_flags, &new_fs);
2948 if (err)
2949 goto bad_unshare_out;
2950 err = unshare_fd(unshare_flags, &new_fd);
2951 if (err)
2952 goto bad_unshare_cleanup_fs;
2953 err = unshare_userns(unshare_flags, &new_cred);
2954 if (err)
2955 goto bad_unshare_cleanup_fd;
2956 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2957 new_cred, new_fs);
2958 if (err)
2959 goto bad_unshare_cleanup_cred;
2960
2961 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2962 if (do_sysvsem) {
2963 /*
2964 * CLONE_SYSVSEM is equivalent to sys_exit().
2965 */
2966 exit_sem(current);
2967 }
2968 if (unshare_flags & CLONE_NEWIPC) {
2969 /* Orphan segments in old ns (see sem above). */
2970 exit_shm(current);
2971 shm_init_task(current);
2972 }
2973
2974 if (new_nsproxy)
2975 switch_task_namespaces(current, new_nsproxy);
2976
2977 task_lock(current);
2978
2979 if (new_fs) {
2980 fs = current->fs;
2981 spin_lock(&fs->lock);
2982 current->fs = new_fs;
2983 if (--fs->users)
2984 new_fs = NULL;
2985 else
2986 new_fs = fs;
2987 spin_unlock(&fs->lock);
2988 }
2989
2990 if (new_fd) {
2991 fd = current->files;
2992 current->files = new_fd;
2993 new_fd = fd;
2994 }
2995
2996 task_unlock(current);
2997
2998 if (new_cred) {
2999 /* Install the new user namespace */
3000 commit_creds(new_cred);
3001 new_cred = NULL;
3002 }
3003 }
3004
3005 perf_event_namespaces(current);
3006
3007 bad_unshare_cleanup_cred:
3008 if (new_cred)
3009 put_cred(new_cred);
3010 bad_unshare_cleanup_fd:
3011 if (new_fd)
3012 put_files_struct(new_fd);
3013
3014 bad_unshare_cleanup_fs:
3015 if (new_fs)
3016 free_fs_struct(new_fs);
3017
3018 bad_unshare_out:
3019 return err;
3020 }
3021
3022 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3023 {
3024 return ksys_unshare(unshare_flags);
3025 }
3026
3027 /*
3028 * Helper to unshare the files of the current task.
3029 * We don't want to expose copy_files internals to
3030 * the exec layer of the kernel.
3031 */
3032
3033 int unshare_files(struct files_struct **displaced)
3034 {
3035 struct task_struct *task = current;
3036 struct files_struct *copy = NULL;
3037 int error;
3038
3039 error = unshare_fd(CLONE_FILES, &copy);
3040 if (error || !copy) {
3041 *displaced = NULL;
3042 return error;
3043 }
3044 *displaced = task->files;
3045 task_lock(task);
3046 task->files = copy;
3047 task_unlock(task);
3048 return 0;
3049 }
3050
3051 int sysctl_max_threads(struct ctl_table *table, int write,
3052 void __user *buffer, size_t *lenp, loff_t *ppos)
3053 {
3054 struct ctl_table t;
3055 int ret;
3056 int threads = max_threads;
3057 int min = 1;
3058 int max = MAX_THREADS;
3059
3060 t = *table;
3061 t.data = &threads;
3062 t.extra1 = &min;
3063 t.extra2 = &max;
3064
3065 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3066 if (ret || !write)
3067 return ret;
3068
3069 max_threads = threads;
3070
3071 return 0;
3072 }