]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/fork.c
Merge tag 'sound-fix-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-kernels.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 static int max_threads; /* tunable limit on nr_threads */
127
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
131
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139
140 int nr_processes(void)
141 {
142 int cpu;
143 int total = 0;
144
145 for_each_possible_cpu(cpu)
146 total += per_cpu(process_counts, cpu);
147
148 return total;
149 }
150
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170
171 /*
172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173 * kmemcache based allocator.
174 */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176
177 #ifdef CONFIG_VMAP_STACK
178 /*
179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180 * flush. Try to minimize the number of calls by caching stacks.
181 */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 int i;
189
190 for (i = 0; i < NR_CACHED_STACKS; i++) {
191 struct vm_struct *vm_stack = cached_vm_stacks[i];
192
193 if (!vm_stack)
194 continue;
195
196 vfree(vm_stack->addr);
197 cached_vm_stacks[i] = NULL;
198 }
199
200 return 0;
201 }
202 #endif
203
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 void *stack;
208 int i;
209
210 for (i = 0; i < NR_CACHED_STACKS; i++) {
211 struct vm_struct *s;
212
213 s = this_cpu_xchg(cached_stacks[i], NULL);
214
215 if (!s)
216 continue;
217
218 /* Clear stale pointers from reused stack. */
219 memset(s->addr, 0, THREAD_SIZE);
220
221 tsk->stack_vm_area = s;
222 tsk->stack = s->addr;
223 return s->addr;
224 }
225
226 /*
227 * Allocated stacks are cached and later reused by new threads,
228 * so memcg accounting is performed manually on assigning/releasing
229 * stacks to tasks. Drop __GFP_ACCOUNT.
230 */
231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 VMALLOC_START, VMALLOC_END,
233 THREADINFO_GFP & ~__GFP_ACCOUNT,
234 PAGE_KERNEL,
235 0, node, __builtin_return_address(0));
236
237 /*
238 * We can't call find_vm_area() in interrupt context, and
239 * free_thread_stack() can be called in interrupt context,
240 * so cache the vm_struct.
241 */
242 if (stack) {
243 tsk->stack_vm_area = find_vm_area(stack);
244 tsk->stack = stack;
245 }
246 return stack;
247 #else
248 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 THREAD_SIZE_ORDER);
250
251 if (likely(page)) {
252 tsk->stack = page_address(page);
253 return tsk->stack;
254 }
255 return NULL;
256 #endif
257 }
258
259 static inline void free_thread_stack(struct task_struct *tsk)
260 {
261 #ifdef CONFIG_VMAP_STACK
262 struct vm_struct *vm = task_stack_vm_area(tsk);
263
264 if (vm) {
265 int i;
266
267 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 mod_memcg_page_state(vm->pages[i],
269 MEMCG_KERNEL_STACK_KB,
270 -(int)(PAGE_SIZE / 1024));
271
272 memcg_kmem_uncharge(vm->pages[i], 0);
273 }
274
275 for (i = 0; i < NR_CACHED_STACKS; i++) {
276 if (this_cpu_cmpxchg(cached_stacks[i],
277 NULL, tsk->stack_vm_area) != NULL)
278 continue;
279
280 return;
281 }
282
283 vfree_atomic(tsk->stack);
284 return;
285 }
286 #endif
287
288 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
289 }
290 # else
291 static struct kmem_cache *thread_stack_cache;
292
293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
294 int node)
295 {
296 unsigned long *stack;
297 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
298 tsk->stack = stack;
299 return stack;
300 }
301
302 static void free_thread_stack(struct task_struct *tsk)
303 {
304 kmem_cache_free(thread_stack_cache, tsk->stack);
305 }
306
307 void thread_stack_cache_init(void)
308 {
309 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
310 THREAD_SIZE, THREAD_SIZE, 0, 0,
311 THREAD_SIZE, NULL);
312 BUG_ON(thread_stack_cache == NULL);
313 }
314 # endif
315 #endif
316
317 /* SLAB cache for signal_struct structures (tsk->signal) */
318 static struct kmem_cache *signal_cachep;
319
320 /* SLAB cache for sighand_struct structures (tsk->sighand) */
321 struct kmem_cache *sighand_cachep;
322
323 /* SLAB cache for files_struct structures (tsk->files) */
324 struct kmem_cache *files_cachep;
325
326 /* SLAB cache for fs_struct structures (tsk->fs) */
327 struct kmem_cache *fs_cachep;
328
329 /* SLAB cache for vm_area_struct structures */
330 static struct kmem_cache *vm_area_cachep;
331
332 /* SLAB cache for mm_struct structures (tsk->mm) */
333 static struct kmem_cache *mm_cachep;
334
335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
336 {
337 struct vm_area_struct *vma;
338
339 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 if (vma)
341 vma_init(vma, mm);
342 return vma;
343 }
344
345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
346 {
347 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348
349 if (new) {
350 *new = *orig;
351 INIT_LIST_HEAD(&new->anon_vma_chain);
352 }
353 return new;
354 }
355
356 void vm_area_free(struct vm_area_struct *vma)
357 {
358 kmem_cache_free(vm_area_cachep, vma);
359 }
360
361 static void account_kernel_stack(struct task_struct *tsk, int account)
362 {
363 void *stack = task_stack_page(tsk);
364 struct vm_struct *vm = task_stack_vm_area(tsk);
365
366 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
367
368 if (vm) {
369 int i;
370
371 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
372
373 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
374 mod_zone_page_state(page_zone(vm->pages[i]),
375 NR_KERNEL_STACK_KB,
376 PAGE_SIZE / 1024 * account);
377 }
378 } else {
379 /*
380 * All stack pages are in the same zone and belong to the
381 * same memcg.
382 */
383 struct page *first_page = virt_to_page(stack);
384
385 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
386 THREAD_SIZE / 1024 * account);
387
388 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
390 }
391 }
392
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396 struct vm_struct *vm = task_stack_vm_area(tsk);
397 int ret;
398
399 if (vm) {
400 int i;
401
402 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
403 /*
404 * If memcg_kmem_charge() fails, page->mem_cgroup
405 * pointer is NULL, and both memcg_kmem_uncharge()
406 * and mod_memcg_page_state() in free_thread_stack()
407 * will ignore this page. So it's safe.
408 */
409 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 if (ret)
411 return ret;
412
413 mod_memcg_page_state(vm->pages[i],
414 MEMCG_KERNEL_STACK_KB,
415 PAGE_SIZE / 1024);
416 }
417 }
418 #endif
419 return 0;
420 }
421
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 if (WARN_ON(tsk->state != TASK_DEAD))
425 return; /* Better to leak the stack than to free prematurely */
426
427 account_kernel_stack(tsk, -1);
428 free_thread_stack(tsk);
429 tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 tsk->stack_vm_area = NULL;
432 #endif
433 }
434
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 if (refcount_dec_and_test(&tsk->stack_refcount))
439 release_task_stack(tsk);
440 }
441 #endif
442
443 void free_task(struct task_struct *tsk)
444 {
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 /*
447 * The task is finally done with both the stack and thread_info,
448 * so free both.
449 */
450 release_task_stack(tsk);
451 #else
452 /*
453 * If the task had a separate stack allocation, it should be gone
454 * by now.
455 */
456 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 rt_mutex_debug_task_free(tsk);
459 ftrace_graph_exit_task(tsk);
460 put_seccomp_filter(tsk);
461 arch_release_task_struct(tsk);
462 if (tsk->flags & PF_KTHREAD)
463 free_kthread_struct(tsk);
464 free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467
468 #ifdef CONFIG_MMU
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 struct mm_struct *oldmm)
471 {
472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 struct rb_node **rb_link, *rb_parent;
474 int retval;
475 unsigned long charge;
476 LIST_HEAD(uf);
477
478 uprobe_start_dup_mmap();
479 if (down_write_killable(&oldmm->mmap_sem)) {
480 retval = -EINTR;
481 goto fail_uprobe_end;
482 }
483 flush_cache_dup_mm(oldmm);
484 uprobe_dup_mmap(oldmm, mm);
485 /*
486 * Not linked in yet - no deadlock potential:
487 */
488 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
489
490 /* No ordering required: file already has been exposed. */
491 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492
493 mm->total_vm = oldmm->total_vm;
494 mm->data_vm = oldmm->data_vm;
495 mm->exec_vm = oldmm->exec_vm;
496 mm->stack_vm = oldmm->stack_vm;
497
498 rb_link = &mm->mm_rb.rb_node;
499 rb_parent = NULL;
500 pprev = &mm->mmap;
501 retval = ksm_fork(mm, oldmm);
502 if (retval)
503 goto out;
504 retval = khugepaged_fork(mm, oldmm);
505 if (retval)
506 goto out;
507
508 prev = NULL;
509 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 struct file *file;
511
512 if (mpnt->vm_flags & VM_DONTCOPY) {
513 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 continue;
515 }
516 charge = 0;
517 /*
518 * Don't duplicate many vmas if we've been oom-killed (for
519 * example)
520 */
521 if (fatal_signal_pending(current)) {
522 retval = -EINTR;
523 goto out;
524 }
525 if (mpnt->vm_flags & VM_ACCOUNT) {
526 unsigned long len = vma_pages(mpnt);
527
528 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 goto fail_nomem;
530 charge = len;
531 }
532 tmp = vm_area_dup(mpnt);
533 if (!tmp)
534 goto fail_nomem;
535 retval = vma_dup_policy(mpnt, tmp);
536 if (retval)
537 goto fail_nomem_policy;
538 tmp->vm_mm = mm;
539 retval = dup_userfaultfd(tmp, &uf);
540 if (retval)
541 goto fail_nomem_anon_vma_fork;
542 if (tmp->vm_flags & VM_WIPEONFORK) {
543 /* VM_WIPEONFORK gets a clean slate in the child. */
544 tmp->anon_vma = NULL;
545 if (anon_vma_prepare(tmp))
546 goto fail_nomem_anon_vma_fork;
547 } else if (anon_vma_fork(tmp, mpnt))
548 goto fail_nomem_anon_vma_fork;
549 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 tmp->vm_next = tmp->vm_prev = NULL;
551 file = tmp->vm_file;
552 if (file) {
553 struct inode *inode = file_inode(file);
554 struct address_space *mapping = file->f_mapping;
555
556 get_file(file);
557 if (tmp->vm_flags & VM_DENYWRITE)
558 atomic_dec(&inode->i_writecount);
559 i_mmap_lock_write(mapping);
560 if (tmp->vm_flags & VM_SHARED)
561 atomic_inc(&mapping->i_mmap_writable);
562 flush_dcache_mmap_lock(mapping);
563 /* insert tmp into the share list, just after mpnt */
564 vma_interval_tree_insert_after(tmp, mpnt,
565 &mapping->i_mmap);
566 flush_dcache_mmap_unlock(mapping);
567 i_mmap_unlock_write(mapping);
568 }
569
570 /*
571 * Clear hugetlb-related page reserves for children. This only
572 * affects MAP_PRIVATE mappings. Faults generated by the child
573 * are not guaranteed to succeed, even if read-only
574 */
575 if (is_vm_hugetlb_page(tmp))
576 reset_vma_resv_huge_pages(tmp);
577
578 /*
579 * Link in the new vma and copy the page table entries.
580 */
581 *pprev = tmp;
582 pprev = &tmp->vm_next;
583 tmp->vm_prev = prev;
584 prev = tmp;
585
586 __vma_link_rb(mm, tmp, rb_link, rb_parent);
587 rb_link = &tmp->vm_rb.rb_right;
588 rb_parent = &tmp->vm_rb;
589
590 mm->map_count++;
591 if (!(tmp->vm_flags & VM_WIPEONFORK))
592 retval = copy_page_range(mm, oldmm, mpnt);
593
594 if (tmp->vm_ops && tmp->vm_ops->open)
595 tmp->vm_ops->open(tmp);
596
597 if (retval)
598 goto out;
599 }
600 /* a new mm has just been created */
601 retval = arch_dup_mmap(oldmm, mm);
602 out:
603 up_write(&mm->mmap_sem);
604 flush_tlb_mm(oldmm);
605 up_write(&oldmm->mmap_sem);
606 dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 uprobe_end_dup_mmap();
609 return retval;
610 fail_nomem_anon_vma_fork:
611 mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 vm_area_free(tmp);
614 fail_nomem:
615 retval = -ENOMEM;
616 vm_unacct_memory(charge);
617 goto out;
618 }
619
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 mm->pgd = pgd_alloc(mm);
623 if (unlikely(!mm->pgd))
624 return -ENOMEM;
625 return 0;
626 }
627
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 down_write(&oldmm->mmap_sem);
636 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 up_write(&oldmm->mmap_sem);
638 return 0;
639 }
640 #define mm_alloc_pgd(mm) (0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643
644 static void check_mm(struct mm_struct *mm)
645 {
646 int i;
647
648 for (i = 0; i < NR_MM_COUNTERS; i++) {
649 long x = atomic_long_read(&mm->rss_stat.count[i]);
650
651 if (unlikely(x))
652 printk(KERN_ALERT "BUG: Bad rss-counter state "
653 "mm:%p idx:%d val:%ld\n", mm, i, x);
654 }
655
656 if (mm_pgtables_bytes(mm))
657 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
658 mm_pgtables_bytes(mm));
659
660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
661 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
662 #endif
663 }
664
665 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
666 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
667
668 /*
669 * Called when the last reference to the mm
670 * is dropped: either by a lazy thread or by
671 * mmput. Free the page directory and the mm.
672 */
673 void __mmdrop(struct mm_struct *mm)
674 {
675 BUG_ON(mm == &init_mm);
676 WARN_ON_ONCE(mm == current->mm);
677 WARN_ON_ONCE(mm == current->active_mm);
678 mm_free_pgd(mm);
679 destroy_context(mm);
680 mmu_notifier_mm_destroy(mm);
681 check_mm(mm);
682 put_user_ns(mm->user_ns);
683 free_mm(mm);
684 }
685 EXPORT_SYMBOL_GPL(__mmdrop);
686
687 static void mmdrop_async_fn(struct work_struct *work)
688 {
689 struct mm_struct *mm;
690
691 mm = container_of(work, struct mm_struct, async_put_work);
692 __mmdrop(mm);
693 }
694
695 static void mmdrop_async(struct mm_struct *mm)
696 {
697 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
698 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
699 schedule_work(&mm->async_put_work);
700 }
701 }
702
703 static inline void free_signal_struct(struct signal_struct *sig)
704 {
705 taskstats_tgid_free(sig);
706 sched_autogroup_exit(sig);
707 /*
708 * __mmdrop is not safe to call from softirq context on x86 due to
709 * pgd_dtor so postpone it to the async context
710 */
711 if (sig->oom_mm)
712 mmdrop_async(sig->oom_mm);
713 kmem_cache_free(signal_cachep, sig);
714 }
715
716 static inline void put_signal_struct(struct signal_struct *sig)
717 {
718 if (refcount_dec_and_test(&sig->sigcnt))
719 free_signal_struct(sig);
720 }
721
722 void __put_task_struct(struct task_struct *tsk)
723 {
724 WARN_ON(!tsk->exit_state);
725 WARN_ON(refcount_read(&tsk->usage));
726 WARN_ON(tsk == current);
727
728 cgroup_free(tsk);
729 task_numa_free(tsk, true);
730 security_task_free(tsk);
731 exit_creds(tsk);
732 delayacct_tsk_free(tsk);
733 put_signal_struct(tsk->signal);
734
735 if (!profile_handoff_task(tsk))
736 free_task(tsk);
737 }
738 EXPORT_SYMBOL_GPL(__put_task_struct);
739
740 void __init __weak arch_task_cache_init(void) { }
741
742 /*
743 * set_max_threads
744 */
745 static void set_max_threads(unsigned int max_threads_suggested)
746 {
747 u64 threads;
748 unsigned long nr_pages = totalram_pages();
749
750 /*
751 * The number of threads shall be limited such that the thread
752 * structures may only consume a small part of the available memory.
753 */
754 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
755 threads = MAX_THREADS;
756 else
757 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
758 (u64) THREAD_SIZE * 8UL);
759
760 if (threads > max_threads_suggested)
761 threads = max_threads_suggested;
762
763 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
764 }
765
766 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
767 /* Initialized by the architecture: */
768 int arch_task_struct_size __read_mostly;
769 #endif
770
771 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
772 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
773 {
774 /* Fetch thread_struct whitelist for the architecture. */
775 arch_thread_struct_whitelist(offset, size);
776
777 /*
778 * Handle zero-sized whitelist or empty thread_struct, otherwise
779 * adjust offset to position of thread_struct in task_struct.
780 */
781 if (unlikely(*size == 0))
782 *offset = 0;
783 else
784 *offset += offsetof(struct task_struct, thread);
785 }
786 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
787
788 void __init fork_init(void)
789 {
790 int i;
791 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
792 #ifndef ARCH_MIN_TASKALIGN
793 #define ARCH_MIN_TASKALIGN 0
794 #endif
795 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
796 unsigned long useroffset, usersize;
797
798 /* create a slab on which task_structs can be allocated */
799 task_struct_whitelist(&useroffset, &usersize);
800 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
801 arch_task_struct_size, align,
802 SLAB_PANIC|SLAB_ACCOUNT,
803 useroffset, usersize, NULL);
804 #endif
805
806 /* do the arch specific task caches init */
807 arch_task_cache_init();
808
809 set_max_threads(MAX_THREADS);
810
811 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
812 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
813 init_task.signal->rlim[RLIMIT_SIGPENDING] =
814 init_task.signal->rlim[RLIMIT_NPROC];
815
816 for (i = 0; i < UCOUNT_COUNTS; i++) {
817 init_user_ns.ucount_max[i] = max_threads/2;
818 }
819
820 #ifdef CONFIG_VMAP_STACK
821 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
822 NULL, free_vm_stack_cache);
823 #endif
824
825 lockdep_init_task(&init_task);
826 uprobes_init();
827 }
828
829 int __weak arch_dup_task_struct(struct task_struct *dst,
830 struct task_struct *src)
831 {
832 *dst = *src;
833 return 0;
834 }
835
836 void set_task_stack_end_magic(struct task_struct *tsk)
837 {
838 unsigned long *stackend;
839
840 stackend = end_of_stack(tsk);
841 *stackend = STACK_END_MAGIC; /* for overflow detection */
842 }
843
844 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
845 {
846 struct task_struct *tsk;
847 unsigned long *stack;
848 struct vm_struct *stack_vm_area __maybe_unused;
849 int err;
850
851 if (node == NUMA_NO_NODE)
852 node = tsk_fork_get_node(orig);
853 tsk = alloc_task_struct_node(node);
854 if (!tsk)
855 return NULL;
856
857 stack = alloc_thread_stack_node(tsk, node);
858 if (!stack)
859 goto free_tsk;
860
861 if (memcg_charge_kernel_stack(tsk))
862 goto free_stack;
863
864 stack_vm_area = task_stack_vm_area(tsk);
865
866 err = arch_dup_task_struct(tsk, orig);
867
868 /*
869 * arch_dup_task_struct() clobbers the stack-related fields. Make
870 * sure they're properly initialized before using any stack-related
871 * functions again.
872 */
873 tsk->stack = stack;
874 #ifdef CONFIG_VMAP_STACK
875 tsk->stack_vm_area = stack_vm_area;
876 #endif
877 #ifdef CONFIG_THREAD_INFO_IN_TASK
878 refcount_set(&tsk->stack_refcount, 1);
879 #endif
880
881 if (err)
882 goto free_stack;
883
884 #ifdef CONFIG_SECCOMP
885 /*
886 * We must handle setting up seccomp filters once we're under
887 * the sighand lock in case orig has changed between now and
888 * then. Until then, filter must be NULL to avoid messing up
889 * the usage counts on the error path calling free_task.
890 */
891 tsk->seccomp.filter = NULL;
892 #endif
893
894 setup_thread_stack(tsk, orig);
895 clear_user_return_notifier(tsk);
896 clear_tsk_need_resched(tsk);
897 set_task_stack_end_magic(tsk);
898
899 #ifdef CONFIG_STACKPROTECTOR
900 tsk->stack_canary = get_random_canary();
901 #endif
902 if (orig->cpus_ptr == &orig->cpus_mask)
903 tsk->cpus_ptr = &tsk->cpus_mask;
904
905 /*
906 * One for us, one for whoever does the "release_task()" (usually
907 * parent)
908 */
909 refcount_set(&tsk->usage, 2);
910 #ifdef CONFIG_BLK_DEV_IO_TRACE
911 tsk->btrace_seq = 0;
912 #endif
913 tsk->splice_pipe = NULL;
914 tsk->task_frag.page = NULL;
915 tsk->wake_q.next = NULL;
916
917 account_kernel_stack(tsk, 1);
918
919 kcov_task_init(tsk);
920
921 #ifdef CONFIG_FAULT_INJECTION
922 tsk->fail_nth = 0;
923 #endif
924
925 #ifdef CONFIG_BLK_CGROUP
926 tsk->throttle_queue = NULL;
927 tsk->use_memdelay = 0;
928 #endif
929
930 #ifdef CONFIG_MEMCG
931 tsk->active_memcg = NULL;
932 #endif
933 return tsk;
934
935 free_stack:
936 free_thread_stack(tsk);
937 free_tsk:
938 free_task_struct(tsk);
939 return NULL;
940 }
941
942 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
943
944 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
945
946 static int __init coredump_filter_setup(char *s)
947 {
948 default_dump_filter =
949 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
950 MMF_DUMP_FILTER_MASK;
951 return 1;
952 }
953
954 __setup("coredump_filter=", coredump_filter_setup);
955
956 #include <linux/init_task.h>
957
958 static void mm_init_aio(struct mm_struct *mm)
959 {
960 #ifdef CONFIG_AIO
961 spin_lock_init(&mm->ioctx_lock);
962 mm->ioctx_table = NULL;
963 #endif
964 }
965
966 static __always_inline void mm_clear_owner(struct mm_struct *mm,
967 struct task_struct *p)
968 {
969 #ifdef CONFIG_MEMCG
970 if (mm->owner == p)
971 WRITE_ONCE(mm->owner, NULL);
972 #endif
973 }
974
975 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
976 {
977 #ifdef CONFIG_MEMCG
978 mm->owner = p;
979 #endif
980 }
981
982 static void mm_init_uprobes_state(struct mm_struct *mm)
983 {
984 #ifdef CONFIG_UPROBES
985 mm->uprobes_state.xol_area = NULL;
986 #endif
987 }
988
989 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
990 struct user_namespace *user_ns)
991 {
992 mm->mmap = NULL;
993 mm->mm_rb = RB_ROOT;
994 mm->vmacache_seqnum = 0;
995 atomic_set(&mm->mm_users, 1);
996 atomic_set(&mm->mm_count, 1);
997 init_rwsem(&mm->mmap_sem);
998 INIT_LIST_HEAD(&mm->mmlist);
999 mm->core_state = NULL;
1000 mm_pgtables_bytes_init(mm);
1001 mm->map_count = 0;
1002 mm->locked_vm = 0;
1003 atomic64_set(&mm->pinned_vm, 0);
1004 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1005 spin_lock_init(&mm->page_table_lock);
1006 spin_lock_init(&mm->arg_lock);
1007 mm_init_cpumask(mm);
1008 mm_init_aio(mm);
1009 mm_init_owner(mm, p);
1010 RCU_INIT_POINTER(mm->exe_file, NULL);
1011 mmu_notifier_mm_init(mm);
1012 init_tlb_flush_pending(mm);
1013 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1014 mm->pmd_huge_pte = NULL;
1015 #endif
1016 mm_init_uprobes_state(mm);
1017
1018 if (current->mm) {
1019 mm->flags = current->mm->flags & MMF_INIT_MASK;
1020 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1021 } else {
1022 mm->flags = default_dump_filter;
1023 mm->def_flags = 0;
1024 }
1025
1026 if (mm_alloc_pgd(mm))
1027 goto fail_nopgd;
1028
1029 if (init_new_context(p, mm))
1030 goto fail_nocontext;
1031
1032 mm->user_ns = get_user_ns(user_ns);
1033 return mm;
1034
1035 fail_nocontext:
1036 mm_free_pgd(mm);
1037 fail_nopgd:
1038 free_mm(mm);
1039 return NULL;
1040 }
1041
1042 /*
1043 * Allocate and initialize an mm_struct.
1044 */
1045 struct mm_struct *mm_alloc(void)
1046 {
1047 struct mm_struct *mm;
1048
1049 mm = allocate_mm();
1050 if (!mm)
1051 return NULL;
1052
1053 memset(mm, 0, sizeof(*mm));
1054 return mm_init(mm, current, current_user_ns());
1055 }
1056
1057 static inline void __mmput(struct mm_struct *mm)
1058 {
1059 VM_BUG_ON(atomic_read(&mm->mm_users));
1060
1061 uprobe_clear_state(mm);
1062 exit_aio(mm);
1063 ksm_exit(mm);
1064 khugepaged_exit(mm); /* must run before exit_mmap */
1065 exit_mmap(mm);
1066 mm_put_huge_zero_page(mm);
1067 set_mm_exe_file(mm, NULL);
1068 if (!list_empty(&mm->mmlist)) {
1069 spin_lock(&mmlist_lock);
1070 list_del(&mm->mmlist);
1071 spin_unlock(&mmlist_lock);
1072 }
1073 if (mm->binfmt)
1074 module_put(mm->binfmt->module);
1075 mmdrop(mm);
1076 }
1077
1078 /*
1079 * Decrement the use count and release all resources for an mm.
1080 */
1081 void mmput(struct mm_struct *mm)
1082 {
1083 might_sleep();
1084
1085 if (atomic_dec_and_test(&mm->mm_users))
1086 __mmput(mm);
1087 }
1088 EXPORT_SYMBOL_GPL(mmput);
1089
1090 #ifdef CONFIG_MMU
1091 static void mmput_async_fn(struct work_struct *work)
1092 {
1093 struct mm_struct *mm = container_of(work, struct mm_struct,
1094 async_put_work);
1095
1096 __mmput(mm);
1097 }
1098
1099 void mmput_async(struct mm_struct *mm)
1100 {
1101 if (atomic_dec_and_test(&mm->mm_users)) {
1102 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1103 schedule_work(&mm->async_put_work);
1104 }
1105 }
1106 #endif
1107
1108 /**
1109 * set_mm_exe_file - change a reference to the mm's executable file
1110 *
1111 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1112 *
1113 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1114 * invocations: in mmput() nobody alive left, in execve task is single
1115 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1116 * mm->exe_file, but does so without using set_mm_exe_file() in order
1117 * to do avoid the need for any locks.
1118 */
1119 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1120 {
1121 struct file *old_exe_file;
1122
1123 /*
1124 * It is safe to dereference the exe_file without RCU as
1125 * this function is only called if nobody else can access
1126 * this mm -- see comment above for justification.
1127 */
1128 old_exe_file = rcu_dereference_raw(mm->exe_file);
1129
1130 if (new_exe_file)
1131 get_file(new_exe_file);
1132 rcu_assign_pointer(mm->exe_file, new_exe_file);
1133 if (old_exe_file)
1134 fput(old_exe_file);
1135 }
1136
1137 /**
1138 * get_mm_exe_file - acquire a reference to the mm's executable file
1139 *
1140 * Returns %NULL if mm has no associated executable file.
1141 * User must release file via fput().
1142 */
1143 struct file *get_mm_exe_file(struct mm_struct *mm)
1144 {
1145 struct file *exe_file;
1146
1147 rcu_read_lock();
1148 exe_file = rcu_dereference(mm->exe_file);
1149 if (exe_file && !get_file_rcu(exe_file))
1150 exe_file = NULL;
1151 rcu_read_unlock();
1152 return exe_file;
1153 }
1154 EXPORT_SYMBOL(get_mm_exe_file);
1155
1156 /**
1157 * get_task_exe_file - acquire a reference to the task's executable file
1158 *
1159 * Returns %NULL if task's mm (if any) has no associated executable file or
1160 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1161 * User must release file via fput().
1162 */
1163 struct file *get_task_exe_file(struct task_struct *task)
1164 {
1165 struct file *exe_file = NULL;
1166 struct mm_struct *mm;
1167
1168 task_lock(task);
1169 mm = task->mm;
1170 if (mm) {
1171 if (!(task->flags & PF_KTHREAD))
1172 exe_file = get_mm_exe_file(mm);
1173 }
1174 task_unlock(task);
1175 return exe_file;
1176 }
1177 EXPORT_SYMBOL(get_task_exe_file);
1178
1179 /**
1180 * get_task_mm - acquire a reference to the task's mm
1181 *
1182 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1183 * this kernel workthread has transiently adopted a user mm with use_mm,
1184 * to do its AIO) is not set and if so returns a reference to it, after
1185 * bumping up the use count. User must release the mm via mmput()
1186 * after use. Typically used by /proc and ptrace.
1187 */
1188 struct mm_struct *get_task_mm(struct task_struct *task)
1189 {
1190 struct mm_struct *mm;
1191
1192 task_lock(task);
1193 mm = task->mm;
1194 if (mm) {
1195 if (task->flags & PF_KTHREAD)
1196 mm = NULL;
1197 else
1198 mmget(mm);
1199 }
1200 task_unlock(task);
1201 return mm;
1202 }
1203 EXPORT_SYMBOL_GPL(get_task_mm);
1204
1205 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1206 {
1207 struct mm_struct *mm;
1208 int err;
1209
1210 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1211 if (err)
1212 return ERR_PTR(err);
1213
1214 mm = get_task_mm(task);
1215 if (mm && mm != current->mm &&
1216 !ptrace_may_access(task, mode)) {
1217 mmput(mm);
1218 mm = ERR_PTR(-EACCES);
1219 }
1220 mutex_unlock(&task->signal->cred_guard_mutex);
1221
1222 return mm;
1223 }
1224
1225 static void complete_vfork_done(struct task_struct *tsk)
1226 {
1227 struct completion *vfork;
1228
1229 task_lock(tsk);
1230 vfork = tsk->vfork_done;
1231 if (likely(vfork)) {
1232 tsk->vfork_done = NULL;
1233 complete(vfork);
1234 }
1235 task_unlock(tsk);
1236 }
1237
1238 static int wait_for_vfork_done(struct task_struct *child,
1239 struct completion *vfork)
1240 {
1241 int killed;
1242
1243 freezer_do_not_count();
1244 cgroup_enter_frozen();
1245 killed = wait_for_completion_killable(vfork);
1246 cgroup_leave_frozen(false);
1247 freezer_count();
1248
1249 if (killed) {
1250 task_lock(child);
1251 child->vfork_done = NULL;
1252 task_unlock(child);
1253 }
1254
1255 put_task_struct(child);
1256 return killed;
1257 }
1258
1259 /* Please note the differences between mmput and mm_release.
1260 * mmput is called whenever we stop holding onto a mm_struct,
1261 * error success whatever.
1262 *
1263 * mm_release is called after a mm_struct has been removed
1264 * from the current process.
1265 *
1266 * This difference is important for error handling, when we
1267 * only half set up a mm_struct for a new process and need to restore
1268 * the old one. Because we mmput the new mm_struct before
1269 * restoring the old one. . .
1270 * Eric Biederman 10 January 1998
1271 */
1272 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1273 {
1274 /* Get rid of any futexes when releasing the mm */
1275 #ifdef CONFIG_FUTEX
1276 if (unlikely(tsk->robust_list)) {
1277 exit_robust_list(tsk);
1278 tsk->robust_list = NULL;
1279 }
1280 #ifdef CONFIG_COMPAT
1281 if (unlikely(tsk->compat_robust_list)) {
1282 compat_exit_robust_list(tsk);
1283 tsk->compat_robust_list = NULL;
1284 }
1285 #endif
1286 if (unlikely(!list_empty(&tsk->pi_state_list)))
1287 exit_pi_state_list(tsk);
1288 #endif
1289
1290 uprobe_free_utask(tsk);
1291
1292 /* Get rid of any cached register state */
1293 deactivate_mm(tsk, mm);
1294
1295 /*
1296 * Signal userspace if we're not exiting with a core dump
1297 * because we want to leave the value intact for debugging
1298 * purposes.
1299 */
1300 if (tsk->clear_child_tid) {
1301 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1302 atomic_read(&mm->mm_users) > 1) {
1303 /*
1304 * We don't check the error code - if userspace has
1305 * not set up a proper pointer then tough luck.
1306 */
1307 put_user(0, tsk->clear_child_tid);
1308 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1309 1, NULL, NULL, 0, 0);
1310 }
1311 tsk->clear_child_tid = NULL;
1312 }
1313
1314 /*
1315 * All done, finally we can wake up parent and return this mm to him.
1316 * Also kthread_stop() uses this completion for synchronization.
1317 */
1318 if (tsk->vfork_done)
1319 complete_vfork_done(tsk);
1320 }
1321
1322 /**
1323 * dup_mm() - duplicates an existing mm structure
1324 * @tsk: the task_struct with which the new mm will be associated.
1325 * @oldmm: the mm to duplicate.
1326 *
1327 * Allocates a new mm structure and duplicates the provided @oldmm structure
1328 * content into it.
1329 *
1330 * Return: the duplicated mm or NULL on failure.
1331 */
1332 static struct mm_struct *dup_mm(struct task_struct *tsk,
1333 struct mm_struct *oldmm)
1334 {
1335 struct mm_struct *mm;
1336 int err;
1337
1338 mm = allocate_mm();
1339 if (!mm)
1340 goto fail_nomem;
1341
1342 memcpy(mm, oldmm, sizeof(*mm));
1343
1344 if (!mm_init(mm, tsk, mm->user_ns))
1345 goto fail_nomem;
1346
1347 err = dup_mmap(mm, oldmm);
1348 if (err)
1349 goto free_pt;
1350
1351 mm->hiwater_rss = get_mm_rss(mm);
1352 mm->hiwater_vm = mm->total_vm;
1353
1354 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1355 goto free_pt;
1356
1357 return mm;
1358
1359 free_pt:
1360 /* don't put binfmt in mmput, we haven't got module yet */
1361 mm->binfmt = NULL;
1362 mm_init_owner(mm, NULL);
1363 mmput(mm);
1364
1365 fail_nomem:
1366 return NULL;
1367 }
1368
1369 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1370 {
1371 struct mm_struct *mm, *oldmm;
1372 int retval;
1373
1374 tsk->min_flt = tsk->maj_flt = 0;
1375 tsk->nvcsw = tsk->nivcsw = 0;
1376 #ifdef CONFIG_DETECT_HUNG_TASK
1377 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1378 tsk->last_switch_time = 0;
1379 #endif
1380
1381 tsk->mm = NULL;
1382 tsk->active_mm = NULL;
1383
1384 /*
1385 * Are we cloning a kernel thread?
1386 *
1387 * We need to steal a active VM for that..
1388 */
1389 oldmm = current->mm;
1390 if (!oldmm)
1391 return 0;
1392
1393 /* initialize the new vmacache entries */
1394 vmacache_flush(tsk);
1395
1396 if (clone_flags & CLONE_VM) {
1397 mmget(oldmm);
1398 mm = oldmm;
1399 goto good_mm;
1400 }
1401
1402 retval = -ENOMEM;
1403 mm = dup_mm(tsk, current->mm);
1404 if (!mm)
1405 goto fail_nomem;
1406
1407 good_mm:
1408 tsk->mm = mm;
1409 tsk->active_mm = mm;
1410 return 0;
1411
1412 fail_nomem:
1413 return retval;
1414 }
1415
1416 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1417 {
1418 struct fs_struct *fs = current->fs;
1419 if (clone_flags & CLONE_FS) {
1420 /* tsk->fs is already what we want */
1421 spin_lock(&fs->lock);
1422 if (fs->in_exec) {
1423 spin_unlock(&fs->lock);
1424 return -EAGAIN;
1425 }
1426 fs->users++;
1427 spin_unlock(&fs->lock);
1428 return 0;
1429 }
1430 tsk->fs = copy_fs_struct(fs);
1431 if (!tsk->fs)
1432 return -ENOMEM;
1433 return 0;
1434 }
1435
1436 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1437 {
1438 struct files_struct *oldf, *newf;
1439 int error = 0;
1440
1441 /*
1442 * A background process may not have any files ...
1443 */
1444 oldf = current->files;
1445 if (!oldf)
1446 goto out;
1447
1448 if (clone_flags & CLONE_FILES) {
1449 atomic_inc(&oldf->count);
1450 goto out;
1451 }
1452
1453 newf = dup_fd(oldf, &error);
1454 if (!newf)
1455 goto out;
1456
1457 tsk->files = newf;
1458 error = 0;
1459 out:
1460 return error;
1461 }
1462
1463 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1464 {
1465 #ifdef CONFIG_BLOCK
1466 struct io_context *ioc = current->io_context;
1467 struct io_context *new_ioc;
1468
1469 if (!ioc)
1470 return 0;
1471 /*
1472 * Share io context with parent, if CLONE_IO is set
1473 */
1474 if (clone_flags & CLONE_IO) {
1475 ioc_task_link(ioc);
1476 tsk->io_context = ioc;
1477 } else if (ioprio_valid(ioc->ioprio)) {
1478 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1479 if (unlikely(!new_ioc))
1480 return -ENOMEM;
1481
1482 new_ioc->ioprio = ioc->ioprio;
1483 put_io_context(new_ioc);
1484 }
1485 #endif
1486 return 0;
1487 }
1488
1489 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1490 {
1491 struct sighand_struct *sig;
1492
1493 if (clone_flags & CLONE_SIGHAND) {
1494 refcount_inc(&current->sighand->count);
1495 return 0;
1496 }
1497 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1498 rcu_assign_pointer(tsk->sighand, sig);
1499 if (!sig)
1500 return -ENOMEM;
1501
1502 refcount_set(&sig->count, 1);
1503 spin_lock_irq(&current->sighand->siglock);
1504 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1505 spin_unlock_irq(&current->sighand->siglock);
1506 return 0;
1507 }
1508
1509 void __cleanup_sighand(struct sighand_struct *sighand)
1510 {
1511 if (refcount_dec_and_test(&sighand->count)) {
1512 signalfd_cleanup(sighand);
1513 /*
1514 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1515 * without an RCU grace period, see __lock_task_sighand().
1516 */
1517 kmem_cache_free(sighand_cachep, sighand);
1518 }
1519 }
1520
1521 /*
1522 * Initialize POSIX timer handling for a thread group.
1523 */
1524 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1525 {
1526 struct posix_cputimers *pct = &sig->posix_cputimers;
1527 unsigned long cpu_limit;
1528
1529 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1530 posix_cputimers_group_init(pct, cpu_limit);
1531 }
1532
1533 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1534 {
1535 struct signal_struct *sig;
1536
1537 if (clone_flags & CLONE_THREAD)
1538 return 0;
1539
1540 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1541 tsk->signal = sig;
1542 if (!sig)
1543 return -ENOMEM;
1544
1545 sig->nr_threads = 1;
1546 atomic_set(&sig->live, 1);
1547 refcount_set(&sig->sigcnt, 1);
1548
1549 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1550 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1551 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1552
1553 init_waitqueue_head(&sig->wait_chldexit);
1554 sig->curr_target = tsk;
1555 init_sigpending(&sig->shared_pending);
1556 INIT_HLIST_HEAD(&sig->multiprocess);
1557 seqlock_init(&sig->stats_lock);
1558 prev_cputime_init(&sig->prev_cputime);
1559
1560 #ifdef CONFIG_POSIX_TIMERS
1561 INIT_LIST_HEAD(&sig->posix_timers);
1562 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1563 sig->real_timer.function = it_real_fn;
1564 #endif
1565
1566 task_lock(current->group_leader);
1567 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1568 task_unlock(current->group_leader);
1569
1570 posix_cpu_timers_init_group(sig);
1571
1572 tty_audit_fork(sig);
1573 sched_autogroup_fork(sig);
1574
1575 sig->oom_score_adj = current->signal->oom_score_adj;
1576 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1577
1578 mutex_init(&sig->cred_guard_mutex);
1579
1580 return 0;
1581 }
1582
1583 static void copy_seccomp(struct task_struct *p)
1584 {
1585 #ifdef CONFIG_SECCOMP
1586 /*
1587 * Must be called with sighand->lock held, which is common to
1588 * all threads in the group. Holding cred_guard_mutex is not
1589 * needed because this new task is not yet running and cannot
1590 * be racing exec.
1591 */
1592 assert_spin_locked(&current->sighand->siglock);
1593
1594 /* Ref-count the new filter user, and assign it. */
1595 get_seccomp_filter(current);
1596 p->seccomp = current->seccomp;
1597
1598 /*
1599 * Explicitly enable no_new_privs here in case it got set
1600 * between the task_struct being duplicated and holding the
1601 * sighand lock. The seccomp state and nnp must be in sync.
1602 */
1603 if (task_no_new_privs(current))
1604 task_set_no_new_privs(p);
1605
1606 /*
1607 * If the parent gained a seccomp mode after copying thread
1608 * flags and between before we held the sighand lock, we have
1609 * to manually enable the seccomp thread flag here.
1610 */
1611 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1612 set_tsk_thread_flag(p, TIF_SECCOMP);
1613 #endif
1614 }
1615
1616 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1617 {
1618 current->clear_child_tid = tidptr;
1619
1620 return task_pid_vnr(current);
1621 }
1622
1623 static void rt_mutex_init_task(struct task_struct *p)
1624 {
1625 raw_spin_lock_init(&p->pi_lock);
1626 #ifdef CONFIG_RT_MUTEXES
1627 p->pi_waiters = RB_ROOT_CACHED;
1628 p->pi_top_task = NULL;
1629 p->pi_blocked_on = NULL;
1630 #endif
1631 }
1632
1633 static inline void init_task_pid_links(struct task_struct *task)
1634 {
1635 enum pid_type type;
1636
1637 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1638 INIT_HLIST_NODE(&task->pid_links[type]);
1639 }
1640 }
1641
1642 static inline void
1643 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1644 {
1645 if (type == PIDTYPE_PID)
1646 task->thread_pid = pid;
1647 else
1648 task->signal->pids[type] = pid;
1649 }
1650
1651 static inline void rcu_copy_process(struct task_struct *p)
1652 {
1653 #ifdef CONFIG_PREEMPT_RCU
1654 p->rcu_read_lock_nesting = 0;
1655 p->rcu_read_unlock_special.s = 0;
1656 p->rcu_blocked_node = NULL;
1657 INIT_LIST_HEAD(&p->rcu_node_entry);
1658 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1659 #ifdef CONFIG_TASKS_RCU
1660 p->rcu_tasks_holdout = false;
1661 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1662 p->rcu_tasks_idle_cpu = -1;
1663 #endif /* #ifdef CONFIG_TASKS_RCU */
1664 }
1665
1666 struct pid *pidfd_pid(const struct file *file)
1667 {
1668 if (file->f_op == &pidfd_fops)
1669 return file->private_data;
1670
1671 return ERR_PTR(-EBADF);
1672 }
1673
1674 static int pidfd_release(struct inode *inode, struct file *file)
1675 {
1676 struct pid *pid = file->private_data;
1677
1678 file->private_data = NULL;
1679 put_pid(pid);
1680 return 0;
1681 }
1682
1683 #ifdef CONFIG_PROC_FS
1684 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1685 {
1686 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1687 struct pid *pid = f->private_data;
1688
1689 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1690 seq_putc(m, '\n');
1691 }
1692 #endif
1693
1694 /*
1695 * Poll support for process exit notification.
1696 */
1697 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1698 {
1699 struct task_struct *task;
1700 struct pid *pid = file->private_data;
1701 int poll_flags = 0;
1702
1703 poll_wait(file, &pid->wait_pidfd, pts);
1704
1705 rcu_read_lock();
1706 task = pid_task(pid, PIDTYPE_PID);
1707 /*
1708 * Inform pollers only when the whole thread group exits.
1709 * If the thread group leader exits before all other threads in the
1710 * group, then poll(2) should block, similar to the wait(2) family.
1711 */
1712 if (!task || (task->exit_state && thread_group_empty(task)))
1713 poll_flags = POLLIN | POLLRDNORM;
1714 rcu_read_unlock();
1715
1716 return poll_flags;
1717 }
1718
1719 const struct file_operations pidfd_fops = {
1720 .release = pidfd_release,
1721 .poll = pidfd_poll,
1722 #ifdef CONFIG_PROC_FS
1723 .show_fdinfo = pidfd_show_fdinfo,
1724 #endif
1725 };
1726
1727 static void __delayed_free_task(struct rcu_head *rhp)
1728 {
1729 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1730
1731 free_task(tsk);
1732 }
1733
1734 static __always_inline void delayed_free_task(struct task_struct *tsk)
1735 {
1736 if (IS_ENABLED(CONFIG_MEMCG))
1737 call_rcu(&tsk->rcu, __delayed_free_task);
1738 else
1739 free_task(tsk);
1740 }
1741
1742 /*
1743 * This creates a new process as a copy of the old one,
1744 * but does not actually start it yet.
1745 *
1746 * It copies the registers, and all the appropriate
1747 * parts of the process environment (as per the clone
1748 * flags). The actual kick-off is left to the caller.
1749 */
1750 static __latent_entropy struct task_struct *copy_process(
1751 struct pid *pid,
1752 int trace,
1753 int node,
1754 struct kernel_clone_args *args)
1755 {
1756 int pidfd = -1, retval;
1757 struct task_struct *p;
1758 struct multiprocess_signals delayed;
1759 struct file *pidfile = NULL;
1760 u64 clone_flags = args->flags;
1761
1762 /*
1763 * Don't allow sharing the root directory with processes in a different
1764 * namespace
1765 */
1766 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1767 return ERR_PTR(-EINVAL);
1768
1769 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1770 return ERR_PTR(-EINVAL);
1771
1772 /*
1773 * Thread groups must share signals as well, and detached threads
1774 * can only be started up within the thread group.
1775 */
1776 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1777 return ERR_PTR(-EINVAL);
1778
1779 /*
1780 * Shared signal handlers imply shared VM. By way of the above,
1781 * thread groups also imply shared VM. Blocking this case allows
1782 * for various simplifications in other code.
1783 */
1784 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1785 return ERR_PTR(-EINVAL);
1786
1787 /*
1788 * Siblings of global init remain as zombies on exit since they are
1789 * not reaped by their parent (swapper). To solve this and to avoid
1790 * multi-rooted process trees, prevent global and container-inits
1791 * from creating siblings.
1792 */
1793 if ((clone_flags & CLONE_PARENT) &&
1794 current->signal->flags & SIGNAL_UNKILLABLE)
1795 return ERR_PTR(-EINVAL);
1796
1797 /*
1798 * If the new process will be in a different pid or user namespace
1799 * do not allow it to share a thread group with the forking task.
1800 */
1801 if (clone_flags & CLONE_THREAD) {
1802 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1803 (task_active_pid_ns(current) !=
1804 current->nsproxy->pid_ns_for_children))
1805 return ERR_PTR(-EINVAL);
1806 }
1807
1808 if (clone_flags & CLONE_PIDFD) {
1809 /*
1810 * - CLONE_DETACHED is blocked so that we can potentially
1811 * reuse it later for CLONE_PIDFD.
1812 * - CLONE_THREAD is blocked until someone really needs it.
1813 */
1814 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1815 return ERR_PTR(-EINVAL);
1816 }
1817
1818 /*
1819 * Force any signals received before this point to be delivered
1820 * before the fork happens. Collect up signals sent to multiple
1821 * processes that happen during the fork and delay them so that
1822 * they appear to happen after the fork.
1823 */
1824 sigemptyset(&delayed.signal);
1825 INIT_HLIST_NODE(&delayed.node);
1826
1827 spin_lock_irq(&current->sighand->siglock);
1828 if (!(clone_flags & CLONE_THREAD))
1829 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1830 recalc_sigpending();
1831 spin_unlock_irq(&current->sighand->siglock);
1832 retval = -ERESTARTNOINTR;
1833 if (signal_pending(current))
1834 goto fork_out;
1835
1836 retval = -ENOMEM;
1837 p = dup_task_struct(current, node);
1838 if (!p)
1839 goto fork_out;
1840
1841 /*
1842 * This _must_ happen before we call free_task(), i.e. before we jump
1843 * to any of the bad_fork_* labels. This is to avoid freeing
1844 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1845 * kernel threads (PF_KTHREAD).
1846 */
1847 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1848 /*
1849 * Clear TID on mm_release()?
1850 */
1851 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1852
1853 ftrace_graph_init_task(p);
1854
1855 rt_mutex_init_task(p);
1856
1857 #ifdef CONFIG_PROVE_LOCKING
1858 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1859 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1860 #endif
1861 retval = -EAGAIN;
1862 if (atomic_read(&p->real_cred->user->processes) >=
1863 task_rlimit(p, RLIMIT_NPROC)) {
1864 if (p->real_cred->user != INIT_USER &&
1865 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1866 goto bad_fork_free;
1867 }
1868 current->flags &= ~PF_NPROC_EXCEEDED;
1869
1870 retval = copy_creds(p, clone_flags);
1871 if (retval < 0)
1872 goto bad_fork_free;
1873
1874 /*
1875 * If multiple threads are within copy_process(), then this check
1876 * triggers too late. This doesn't hurt, the check is only there
1877 * to stop root fork bombs.
1878 */
1879 retval = -EAGAIN;
1880 if (nr_threads >= max_threads)
1881 goto bad_fork_cleanup_count;
1882
1883 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1884 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1885 p->flags |= PF_FORKNOEXEC;
1886 INIT_LIST_HEAD(&p->children);
1887 INIT_LIST_HEAD(&p->sibling);
1888 rcu_copy_process(p);
1889 p->vfork_done = NULL;
1890 spin_lock_init(&p->alloc_lock);
1891
1892 init_sigpending(&p->pending);
1893
1894 p->utime = p->stime = p->gtime = 0;
1895 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1896 p->utimescaled = p->stimescaled = 0;
1897 #endif
1898 prev_cputime_init(&p->prev_cputime);
1899
1900 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1901 seqcount_init(&p->vtime.seqcount);
1902 p->vtime.starttime = 0;
1903 p->vtime.state = VTIME_INACTIVE;
1904 #endif
1905
1906 #if defined(SPLIT_RSS_COUNTING)
1907 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1908 #endif
1909
1910 p->default_timer_slack_ns = current->timer_slack_ns;
1911
1912 #ifdef CONFIG_PSI
1913 p->psi_flags = 0;
1914 #endif
1915
1916 task_io_accounting_init(&p->ioac);
1917 acct_clear_integrals(p);
1918
1919 posix_cputimers_init(&p->posix_cputimers);
1920
1921 p->io_context = NULL;
1922 audit_set_context(p, NULL);
1923 cgroup_fork(p);
1924 #ifdef CONFIG_NUMA
1925 p->mempolicy = mpol_dup(p->mempolicy);
1926 if (IS_ERR(p->mempolicy)) {
1927 retval = PTR_ERR(p->mempolicy);
1928 p->mempolicy = NULL;
1929 goto bad_fork_cleanup_threadgroup_lock;
1930 }
1931 #endif
1932 #ifdef CONFIG_CPUSETS
1933 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1934 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1935 seqcount_init(&p->mems_allowed_seq);
1936 #endif
1937 #ifdef CONFIG_TRACE_IRQFLAGS
1938 p->irq_events = 0;
1939 p->hardirqs_enabled = 0;
1940 p->hardirq_enable_ip = 0;
1941 p->hardirq_enable_event = 0;
1942 p->hardirq_disable_ip = _THIS_IP_;
1943 p->hardirq_disable_event = 0;
1944 p->softirqs_enabled = 1;
1945 p->softirq_enable_ip = _THIS_IP_;
1946 p->softirq_enable_event = 0;
1947 p->softirq_disable_ip = 0;
1948 p->softirq_disable_event = 0;
1949 p->hardirq_context = 0;
1950 p->softirq_context = 0;
1951 #endif
1952
1953 p->pagefault_disabled = 0;
1954
1955 #ifdef CONFIG_LOCKDEP
1956 lockdep_init_task(p);
1957 #endif
1958
1959 #ifdef CONFIG_DEBUG_MUTEXES
1960 p->blocked_on = NULL; /* not blocked yet */
1961 #endif
1962 #ifdef CONFIG_BCACHE
1963 p->sequential_io = 0;
1964 p->sequential_io_avg = 0;
1965 #endif
1966
1967 /* Perform scheduler related setup. Assign this task to a CPU. */
1968 retval = sched_fork(clone_flags, p);
1969 if (retval)
1970 goto bad_fork_cleanup_policy;
1971
1972 retval = perf_event_init_task(p);
1973 if (retval)
1974 goto bad_fork_cleanup_policy;
1975 retval = audit_alloc(p);
1976 if (retval)
1977 goto bad_fork_cleanup_perf;
1978 /* copy all the process information */
1979 shm_init_task(p);
1980 retval = security_task_alloc(p, clone_flags);
1981 if (retval)
1982 goto bad_fork_cleanup_audit;
1983 retval = copy_semundo(clone_flags, p);
1984 if (retval)
1985 goto bad_fork_cleanup_security;
1986 retval = copy_files(clone_flags, p);
1987 if (retval)
1988 goto bad_fork_cleanup_semundo;
1989 retval = copy_fs(clone_flags, p);
1990 if (retval)
1991 goto bad_fork_cleanup_files;
1992 retval = copy_sighand(clone_flags, p);
1993 if (retval)
1994 goto bad_fork_cleanup_fs;
1995 retval = copy_signal(clone_flags, p);
1996 if (retval)
1997 goto bad_fork_cleanup_sighand;
1998 retval = copy_mm(clone_flags, p);
1999 if (retval)
2000 goto bad_fork_cleanup_signal;
2001 retval = copy_namespaces(clone_flags, p);
2002 if (retval)
2003 goto bad_fork_cleanup_mm;
2004 retval = copy_io(clone_flags, p);
2005 if (retval)
2006 goto bad_fork_cleanup_namespaces;
2007 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2008 args->tls);
2009 if (retval)
2010 goto bad_fork_cleanup_io;
2011
2012 stackleak_task_init(p);
2013
2014 if (pid != &init_struct_pid) {
2015 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2016 if (IS_ERR(pid)) {
2017 retval = PTR_ERR(pid);
2018 goto bad_fork_cleanup_thread;
2019 }
2020 }
2021
2022 /*
2023 * This has to happen after we've potentially unshared the file
2024 * descriptor table (so that the pidfd doesn't leak into the child
2025 * if the fd table isn't shared).
2026 */
2027 if (clone_flags & CLONE_PIDFD) {
2028 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2029 if (retval < 0)
2030 goto bad_fork_free_pid;
2031
2032 pidfd = retval;
2033
2034 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2035 O_RDWR | O_CLOEXEC);
2036 if (IS_ERR(pidfile)) {
2037 put_unused_fd(pidfd);
2038 retval = PTR_ERR(pidfile);
2039 goto bad_fork_free_pid;
2040 }
2041 get_pid(pid); /* held by pidfile now */
2042
2043 retval = put_user(pidfd, args->pidfd);
2044 if (retval)
2045 goto bad_fork_put_pidfd;
2046 }
2047
2048 #ifdef CONFIG_BLOCK
2049 p->plug = NULL;
2050 #endif
2051 #ifdef CONFIG_FUTEX
2052 p->robust_list = NULL;
2053 #ifdef CONFIG_COMPAT
2054 p->compat_robust_list = NULL;
2055 #endif
2056 INIT_LIST_HEAD(&p->pi_state_list);
2057 p->pi_state_cache = NULL;
2058 #endif
2059 /*
2060 * sigaltstack should be cleared when sharing the same VM
2061 */
2062 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2063 sas_ss_reset(p);
2064
2065 /*
2066 * Syscall tracing and stepping should be turned off in the
2067 * child regardless of CLONE_PTRACE.
2068 */
2069 user_disable_single_step(p);
2070 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2071 #ifdef TIF_SYSCALL_EMU
2072 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2073 #endif
2074 clear_tsk_latency_tracing(p);
2075
2076 /* ok, now we should be set up.. */
2077 p->pid = pid_nr(pid);
2078 if (clone_flags & CLONE_THREAD) {
2079 p->exit_signal = -1;
2080 p->group_leader = current->group_leader;
2081 p->tgid = current->tgid;
2082 } else {
2083 if (clone_flags & CLONE_PARENT)
2084 p->exit_signal = current->group_leader->exit_signal;
2085 else
2086 p->exit_signal = args->exit_signal;
2087 p->group_leader = p;
2088 p->tgid = p->pid;
2089 }
2090
2091 p->nr_dirtied = 0;
2092 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2093 p->dirty_paused_when = 0;
2094
2095 p->pdeath_signal = 0;
2096 INIT_LIST_HEAD(&p->thread_group);
2097 p->task_works = NULL;
2098
2099 cgroup_threadgroup_change_begin(current);
2100 /*
2101 * Ensure that the cgroup subsystem policies allow the new process to be
2102 * forked. It should be noted the the new process's css_set can be changed
2103 * between here and cgroup_post_fork() if an organisation operation is in
2104 * progress.
2105 */
2106 retval = cgroup_can_fork(p);
2107 if (retval)
2108 goto bad_fork_cgroup_threadgroup_change_end;
2109
2110 /*
2111 * From this point on we must avoid any synchronous user-space
2112 * communication until we take the tasklist-lock. In particular, we do
2113 * not want user-space to be able to predict the process start-time by
2114 * stalling fork(2) after we recorded the start_time but before it is
2115 * visible to the system.
2116 */
2117
2118 p->start_time = ktime_get_ns();
2119 p->real_start_time = ktime_get_boottime_ns();
2120
2121 /*
2122 * Make it visible to the rest of the system, but dont wake it up yet.
2123 * Need tasklist lock for parent etc handling!
2124 */
2125 write_lock_irq(&tasklist_lock);
2126
2127 /* CLONE_PARENT re-uses the old parent */
2128 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2129 p->real_parent = current->real_parent;
2130 p->parent_exec_id = current->parent_exec_id;
2131 } else {
2132 p->real_parent = current;
2133 p->parent_exec_id = current->self_exec_id;
2134 }
2135
2136 klp_copy_process(p);
2137
2138 spin_lock(&current->sighand->siglock);
2139
2140 /*
2141 * Copy seccomp details explicitly here, in case they were changed
2142 * before holding sighand lock.
2143 */
2144 copy_seccomp(p);
2145
2146 rseq_fork(p, clone_flags);
2147
2148 /* Don't start children in a dying pid namespace */
2149 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2150 retval = -ENOMEM;
2151 goto bad_fork_cancel_cgroup;
2152 }
2153
2154 /* Let kill terminate clone/fork in the middle */
2155 if (fatal_signal_pending(current)) {
2156 retval = -EINTR;
2157 goto bad_fork_cancel_cgroup;
2158 }
2159
2160 /* past the last point of failure */
2161 if (pidfile)
2162 fd_install(pidfd, pidfile);
2163
2164 init_task_pid_links(p);
2165 if (likely(p->pid)) {
2166 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2167
2168 init_task_pid(p, PIDTYPE_PID, pid);
2169 if (thread_group_leader(p)) {
2170 init_task_pid(p, PIDTYPE_TGID, pid);
2171 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2172 init_task_pid(p, PIDTYPE_SID, task_session(current));
2173
2174 if (is_child_reaper(pid)) {
2175 ns_of_pid(pid)->child_reaper = p;
2176 p->signal->flags |= SIGNAL_UNKILLABLE;
2177 }
2178 p->signal->shared_pending.signal = delayed.signal;
2179 p->signal->tty = tty_kref_get(current->signal->tty);
2180 /*
2181 * Inherit has_child_subreaper flag under the same
2182 * tasklist_lock with adding child to the process tree
2183 * for propagate_has_child_subreaper optimization.
2184 */
2185 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2186 p->real_parent->signal->is_child_subreaper;
2187 list_add_tail(&p->sibling, &p->real_parent->children);
2188 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2189 attach_pid(p, PIDTYPE_TGID);
2190 attach_pid(p, PIDTYPE_PGID);
2191 attach_pid(p, PIDTYPE_SID);
2192 __this_cpu_inc(process_counts);
2193 } else {
2194 current->signal->nr_threads++;
2195 atomic_inc(&current->signal->live);
2196 refcount_inc(&current->signal->sigcnt);
2197 task_join_group_stop(p);
2198 list_add_tail_rcu(&p->thread_group,
2199 &p->group_leader->thread_group);
2200 list_add_tail_rcu(&p->thread_node,
2201 &p->signal->thread_head);
2202 }
2203 attach_pid(p, PIDTYPE_PID);
2204 nr_threads++;
2205 }
2206 total_forks++;
2207 hlist_del_init(&delayed.node);
2208 spin_unlock(&current->sighand->siglock);
2209 syscall_tracepoint_update(p);
2210 write_unlock_irq(&tasklist_lock);
2211
2212 proc_fork_connector(p);
2213 cgroup_post_fork(p);
2214 cgroup_threadgroup_change_end(current);
2215 perf_event_fork(p);
2216
2217 trace_task_newtask(p, clone_flags);
2218 uprobe_copy_process(p, clone_flags);
2219
2220 return p;
2221
2222 bad_fork_cancel_cgroup:
2223 spin_unlock(&current->sighand->siglock);
2224 write_unlock_irq(&tasklist_lock);
2225 cgroup_cancel_fork(p);
2226 bad_fork_cgroup_threadgroup_change_end:
2227 cgroup_threadgroup_change_end(current);
2228 bad_fork_put_pidfd:
2229 if (clone_flags & CLONE_PIDFD) {
2230 fput(pidfile);
2231 put_unused_fd(pidfd);
2232 }
2233 bad_fork_free_pid:
2234 if (pid != &init_struct_pid)
2235 free_pid(pid);
2236 bad_fork_cleanup_thread:
2237 exit_thread(p);
2238 bad_fork_cleanup_io:
2239 if (p->io_context)
2240 exit_io_context(p);
2241 bad_fork_cleanup_namespaces:
2242 exit_task_namespaces(p);
2243 bad_fork_cleanup_mm:
2244 if (p->mm) {
2245 mm_clear_owner(p->mm, p);
2246 mmput(p->mm);
2247 }
2248 bad_fork_cleanup_signal:
2249 if (!(clone_flags & CLONE_THREAD))
2250 free_signal_struct(p->signal);
2251 bad_fork_cleanup_sighand:
2252 __cleanup_sighand(p->sighand);
2253 bad_fork_cleanup_fs:
2254 exit_fs(p); /* blocking */
2255 bad_fork_cleanup_files:
2256 exit_files(p); /* blocking */
2257 bad_fork_cleanup_semundo:
2258 exit_sem(p);
2259 bad_fork_cleanup_security:
2260 security_task_free(p);
2261 bad_fork_cleanup_audit:
2262 audit_free(p);
2263 bad_fork_cleanup_perf:
2264 perf_event_free_task(p);
2265 bad_fork_cleanup_policy:
2266 lockdep_free_task(p);
2267 #ifdef CONFIG_NUMA
2268 mpol_put(p->mempolicy);
2269 bad_fork_cleanup_threadgroup_lock:
2270 #endif
2271 delayacct_tsk_free(p);
2272 bad_fork_cleanup_count:
2273 atomic_dec(&p->cred->user->processes);
2274 exit_creds(p);
2275 bad_fork_free:
2276 p->state = TASK_DEAD;
2277 put_task_stack(p);
2278 delayed_free_task(p);
2279 fork_out:
2280 spin_lock_irq(&current->sighand->siglock);
2281 hlist_del_init(&delayed.node);
2282 spin_unlock_irq(&current->sighand->siglock);
2283 return ERR_PTR(retval);
2284 }
2285
2286 static inline void init_idle_pids(struct task_struct *idle)
2287 {
2288 enum pid_type type;
2289
2290 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2291 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2292 init_task_pid(idle, type, &init_struct_pid);
2293 }
2294 }
2295
2296 struct task_struct *fork_idle(int cpu)
2297 {
2298 struct task_struct *task;
2299 struct kernel_clone_args args = {
2300 .flags = CLONE_VM,
2301 };
2302
2303 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2304 if (!IS_ERR(task)) {
2305 init_idle_pids(task);
2306 init_idle(task, cpu);
2307 }
2308
2309 return task;
2310 }
2311
2312 struct mm_struct *copy_init_mm(void)
2313 {
2314 return dup_mm(NULL, &init_mm);
2315 }
2316
2317 /*
2318 * Ok, this is the main fork-routine.
2319 *
2320 * It copies the process, and if successful kick-starts
2321 * it and waits for it to finish using the VM if required.
2322 *
2323 * args->exit_signal is expected to be checked for sanity by the caller.
2324 */
2325 long _do_fork(struct kernel_clone_args *args)
2326 {
2327 u64 clone_flags = args->flags;
2328 struct completion vfork;
2329 struct pid *pid;
2330 struct task_struct *p;
2331 int trace = 0;
2332 long nr;
2333
2334 /*
2335 * Determine whether and which event to report to ptracer. When
2336 * called from kernel_thread or CLONE_UNTRACED is explicitly
2337 * requested, no event is reported; otherwise, report if the event
2338 * for the type of forking is enabled.
2339 */
2340 if (!(clone_flags & CLONE_UNTRACED)) {
2341 if (clone_flags & CLONE_VFORK)
2342 trace = PTRACE_EVENT_VFORK;
2343 else if (args->exit_signal != SIGCHLD)
2344 trace = PTRACE_EVENT_CLONE;
2345 else
2346 trace = PTRACE_EVENT_FORK;
2347
2348 if (likely(!ptrace_event_enabled(current, trace)))
2349 trace = 0;
2350 }
2351
2352 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2353 add_latent_entropy();
2354
2355 if (IS_ERR(p))
2356 return PTR_ERR(p);
2357
2358 /*
2359 * Do this prior waking up the new thread - the thread pointer
2360 * might get invalid after that point, if the thread exits quickly.
2361 */
2362 trace_sched_process_fork(current, p);
2363
2364 pid = get_task_pid(p, PIDTYPE_PID);
2365 nr = pid_vnr(pid);
2366
2367 if (clone_flags & CLONE_PARENT_SETTID)
2368 put_user(nr, args->parent_tid);
2369
2370 if (clone_flags & CLONE_VFORK) {
2371 p->vfork_done = &vfork;
2372 init_completion(&vfork);
2373 get_task_struct(p);
2374 }
2375
2376 wake_up_new_task(p);
2377
2378 /* forking complete and child started to run, tell ptracer */
2379 if (unlikely(trace))
2380 ptrace_event_pid(trace, pid);
2381
2382 if (clone_flags & CLONE_VFORK) {
2383 if (!wait_for_vfork_done(p, &vfork))
2384 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2385 }
2386
2387 put_pid(pid);
2388 return nr;
2389 }
2390
2391 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2392 {
2393 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2394 if ((kargs->flags & CLONE_PIDFD) &&
2395 (kargs->flags & CLONE_PARENT_SETTID))
2396 return false;
2397
2398 return true;
2399 }
2400
2401 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2402 /* For compatibility with architectures that call do_fork directly rather than
2403 * using the syscall entry points below. */
2404 long do_fork(unsigned long clone_flags,
2405 unsigned long stack_start,
2406 unsigned long stack_size,
2407 int __user *parent_tidptr,
2408 int __user *child_tidptr)
2409 {
2410 struct kernel_clone_args args = {
2411 .flags = (clone_flags & ~CSIGNAL),
2412 .pidfd = parent_tidptr,
2413 .child_tid = child_tidptr,
2414 .parent_tid = parent_tidptr,
2415 .exit_signal = (clone_flags & CSIGNAL),
2416 .stack = stack_start,
2417 .stack_size = stack_size,
2418 };
2419
2420 if (!legacy_clone_args_valid(&args))
2421 return -EINVAL;
2422
2423 return _do_fork(&args);
2424 }
2425 #endif
2426
2427 /*
2428 * Create a kernel thread.
2429 */
2430 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2431 {
2432 struct kernel_clone_args args = {
2433 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2434 .exit_signal = (flags & CSIGNAL),
2435 .stack = (unsigned long)fn,
2436 .stack_size = (unsigned long)arg,
2437 };
2438
2439 return _do_fork(&args);
2440 }
2441
2442 #ifdef __ARCH_WANT_SYS_FORK
2443 SYSCALL_DEFINE0(fork)
2444 {
2445 #ifdef CONFIG_MMU
2446 struct kernel_clone_args args = {
2447 .exit_signal = SIGCHLD,
2448 };
2449
2450 return _do_fork(&args);
2451 #else
2452 /* can not support in nommu mode */
2453 return -EINVAL;
2454 #endif
2455 }
2456 #endif
2457
2458 #ifdef __ARCH_WANT_SYS_VFORK
2459 SYSCALL_DEFINE0(vfork)
2460 {
2461 struct kernel_clone_args args = {
2462 .flags = CLONE_VFORK | CLONE_VM,
2463 .exit_signal = SIGCHLD,
2464 };
2465
2466 return _do_fork(&args);
2467 }
2468 #endif
2469
2470 #ifdef __ARCH_WANT_SYS_CLONE
2471 #ifdef CONFIG_CLONE_BACKWARDS
2472 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2473 int __user *, parent_tidptr,
2474 unsigned long, tls,
2475 int __user *, child_tidptr)
2476 #elif defined(CONFIG_CLONE_BACKWARDS2)
2477 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2478 int __user *, parent_tidptr,
2479 int __user *, child_tidptr,
2480 unsigned long, tls)
2481 #elif defined(CONFIG_CLONE_BACKWARDS3)
2482 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2483 int, stack_size,
2484 int __user *, parent_tidptr,
2485 int __user *, child_tidptr,
2486 unsigned long, tls)
2487 #else
2488 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2489 int __user *, parent_tidptr,
2490 int __user *, child_tidptr,
2491 unsigned long, tls)
2492 #endif
2493 {
2494 struct kernel_clone_args args = {
2495 .flags = (clone_flags & ~CSIGNAL),
2496 .pidfd = parent_tidptr,
2497 .child_tid = child_tidptr,
2498 .parent_tid = parent_tidptr,
2499 .exit_signal = (clone_flags & CSIGNAL),
2500 .stack = newsp,
2501 .tls = tls,
2502 };
2503
2504 if (!legacy_clone_args_valid(&args))
2505 return -EINVAL;
2506
2507 return _do_fork(&args);
2508 }
2509 #endif
2510
2511 #ifdef __ARCH_WANT_SYS_CLONE3
2512 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2513 struct clone_args __user *uargs,
2514 size_t size)
2515 {
2516 struct clone_args args;
2517
2518 if (unlikely(size > PAGE_SIZE))
2519 return -E2BIG;
2520
2521 if (unlikely(size < sizeof(struct clone_args)))
2522 return -EINVAL;
2523
2524 if (unlikely(!access_ok(uargs, size)))
2525 return -EFAULT;
2526
2527 if (size > sizeof(struct clone_args)) {
2528 unsigned char __user *addr;
2529 unsigned char __user *end;
2530 unsigned char val;
2531
2532 addr = (void __user *)uargs + sizeof(struct clone_args);
2533 end = (void __user *)uargs + size;
2534
2535 for (; addr < end; addr++) {
2536 if (get_user(val, addr))
2537 return -EFAULT;
2538 if (val)
2539 return -E2BIG;
2540 }
2541
2542 size = sizeof(struct clone_args);
2543 }
2544
2545 if (copy_from_user(&args, uargs, size))
2546 return -EFAULT;
2547
2548 /*
2549 * Verify that higher 32bits of exit_signal are unset and that
2550 * it is a valid signal
2551 */
2552 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2553 !valid_signal(args.exit_signal)))
2554 return -EINVAL;
2555
2556 *kargs = (struct kernel_clone_args){
2557 .flags = args.flags,
2558 .pidfd = u64_to_user_ptr(args.pidfd),
2559 .child_tid = u64_to_user_ptr(args.child_tid),
2560 .parent_tid = u64_to_user_ptr(args.parent_tid),
2561 .exit_signal = args.exit_signal,
2562 .stack = args.stack,
2563 .stack_size = args.stack_size,
2564 .tls = args.tls,
2565 };
2566
2567 return 0;
2568 }
2569
2570 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2571 {
2572 /*
2573 * All lower bits of the flag word are taken.
2574 * Verify that no other unknown flags are passed along.
2575 */
2576 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2577 return false;
2578
2579 /*
2580 * - make the CLONE_DETACHED bit reuseable for clone3
2581 * - make the CSIGNAL bits reuseable for clone3
2582 */
2583 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2584 return false;
2585
2586 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2587 kargs->exit_signal)
2588 return false;
2589
2590 return true;
2591 }
2592
2593 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2594 {
2595 int err;
2596
2597 struct kernel_clone_args kargs;
2598
2599 err = copy_clone_args_from_user(&kargs, uargs, size);
2600 if (err)
2601 return err;
2602
2603 if (!clone3_args_valid(&kargs))
2604 return -EINVAL;
2605
2606 return _do_fork(&kargs);
2607 }
2608 #endif
2609
2610 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2611 {
2612 struct task_struct *leader, *parent, *child;
2613 int res;
2614
2615 read_lock(&tasklist_lock);
2616 leader = top = top->group_leader;
2617 down:
2618 for_each_thread(leader, parent) {
2619 list_for_each_entry(child, &parent->children, sibling) {
2620 res = visitor(child, data);
2621 if (res) {
2622 if (res < 0)
2623 goto out;
2624 leader = child;
2625 goto down;
2626 }
2627 up:
2628 ;
2629 }
2630 }
2631
2632 if (leader != top) {
2633 child = leader;
2634 parent = child->real_parent;
2635 leader = parent->group_leader;
2636 goto up;
2637 }
2638 out:
2639 read_unlock(&tasklist_lock);
2640 }
2641
2642 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2643 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2644 #endif
2645
2646 static void sighand_ctor(void *data)
2647 {
2648 struct sighand_struct *sighand = data;
2649
2650 spin_lock_init(&sighand->siglock);
2651 init_waitqueue_head(&sighand->signalfd_wqh);
2652 }
2653
2654 void __init proc_caches_init(void)
2655 {
2656 unsigned int mm_size;
2657
2658 sighand_cachep = kmem_cache_create("sighand_cache",
2659 sizeof(struct sighand_struct), 0,
2660 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2661 SLAB_ACCOUNT, sighand_ctor);
2662 signal_cachep = kmem_cache_create("signal_cache",
2663 sizeof(struct signal_struct), 0,
2664 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2665 NULL);
2666 files_cachep = kmem_cache_create("files_cache",
2667 sizeof(struct files_struct), 0,
2668 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2669 NULL);
2670 fs_cachep = kmem_cache_create("fs_cache",
2671 sizeof(struct fs_struct), 0,
2672 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2673 NULL);
2674
2675 /*
2676 * The mm_cpumask is located at the end of mm_struct, and is
2677 * dynamically sized based on the maximum CPU number this system
2678 * can have, taking hotplug into account (nr_cpu_ids).
2679 */
2680 mm_size = sizeof(struct mm_struct) + cpumask_size();
2681
2682 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2683 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2684 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2685 offsetof(struct mm_struct, saved_auxv),
2686 sizeof_field(struct mm_struct, saved_auxv),
2687 NULL);
2688 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2689 mmap_init();
2690 nsproxy_cache_init();
2691 }
2692
2693 /*
2694 * Check constraints on flags passed to the unshare system call.
2695 */
2696 static int check_unshare_flags(unsigned long unshare_flags)
2697 {
2698 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2699 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2700 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2701 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2702 return -EINVAL;
2703 /*
2704 * Not implemented, but pretend it works if there is nothing
2705 * to unshare. Note that unsharing the address space or the
2706 * signal handlers also need to unshare the signal queues (aka
2707 * CLONE_THREAD).
2708 */
2709 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2710 if (!thread_group_empty(current))
2711 return -EINVAL;
2712 }
2713 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2714 if (refcount_read(&current->sighand->count) > 1)
2715 return -EINVAL;
2716 }
2717 if (unshare_flags & CLONE_VM) {
2718 if (!current_is_single_threaded())
2719 return -EINVAL;
2720 }
2721
2722 return 0;
2723 }
2724
2725 /*
2726 * Unshare the filesystem structure if it is being shared
2727 */
2728 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2729 {
2730 struct fs_struct *fs = current->fs;
2731
2732 if (!(unshare_flags & CLONE_FS) || !fs)
2733 return 0;
2734
2735 /* don't need lock here; in the worst case we'll do useless copy */
2736 if (fs->users == 1)
2737 return 0;
2738
2739 *new_fsp = copy_fs_struct(fs);
2740 if (!*new_fsp)
2741 return -ENOMEM;
2742
2743 return 0;
2744 }
2745
2746 /*
2747 * Unshare file descriptor table if it is being shared
2748 */
2749 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2750 {
2751 struct files_struct *fd = current->files;
2752 int error = 0;
2753
2754 if ((unshare_flags & CLONE_FILES) &&
2755 (fd && atomic_read(&fd->count) > 1)) {
2756 *new_fdp = dup_fd(fd, &error);
2757 if (!*new_fdp)
2758 return error;
2759 }
2760
2761 return 0;
2762 }
2763
2764 /*
2765 * unshare allows a process to 'unshare' part of the process
2766 * context which was originally shared using clone. copy_*
2767 * functions used by do_fork() cannot be used here directly
2768 * because they modify an inactive task_struct that is being
2769 * constructed. Here we are modifying the current, active,
2770 * task_struct.
2771 */
2772 int ksys_unshare(unsigned long unshare_flags)
2773 {
2774 struct fs_struct *fs, *new_fs = NULL;
2775 struct files_struct *fd, *new_fd = NULL;
2776 struct cred *new_cred = NULL;
2777 struct nsproxy *new_nsproxy = NULL;
2778 int do_sysvsem = 0;
2779 int err;
2780
2781 /*
2782 * If unsharing a user namespace must also unshare the thread group
2783 * and unshare the filesystem root and working directories.
2784 */
2785 if (unshare_flags & CLONE_NEWUSER)
2786 unshare_flags |= CLONE_THREAD | CLONE_FS;
2787 /*
2788 * If unsharing vm, must also unshare signal handlers.
2789 */
2790 if (unshare_flags & CLONE_VM)
2791 unshare_flags |= CLONE_SIGHAND;
2792 /*
2793 * If unsharing a signal handlers, must also unshare the signal queues.
2794 */
2795 if (unshare_flags & CLONE_SIGHAND)
2796 unshare_flags |= CLONE_THREAD;
2797 /*
2798 * If unsharing namespace, must also unshare filesystem information.
2799 */
2800 if (unshare_flags & CLONE_NEWNS)
2801 unshare_flags |= CLONE_FS;
2802
2803 err = check_unshare_flags(unshare_flags);
2804 if (err)
2805 goto bad_unshare_out;
2806 /*
2807 * CLONE_NEWIPC must also detach from the undolist: after switching
2808 * to a new ipc namespace, the semaphore arrays from the old
2809 * namespace are unreachable.
2810 */
2811 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2812 do_sysvsem = 1;
2813 err = unshare_fs(unshare_flags, &new_fs);
2814 if (err)
2815 goto bad_unshare_out;
2816 err = unshare_fd(unshare_flags, &new_fd);
2817 if (err)
2818 goto bad_unshare_cleanup_fs;
2819 err = unshare_userns(unshare_flags, &new_cred);
2820 if (err)
2821 goto bad_unshare_cleanup_fd;
2822 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2823 new_cred, new_fs);
2824 if (err)
2825 goto bad_unshare_cleanup_cred;
2826
2827 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2828 if (do_sysvsem) {
2829 /*
2830 * CLONE_SYSVSEM is equivalent to sys_exit().
2831 */
2832 exit_sem(current);
2833 }
2834 if (unshare_flags & CLONE_NEWIPC) {
2835 /* Orphan segments in old ns (see sem above). */
2836 exit_shm(current);
2837 shm_init_task(current);
2838 }
2839
2840 if (new_nsproxy)
2841 switch_task_namespaces(current, new_nsproxy);
2842
2843 task_lock(current);
2844
2845 if (new_fs) {
2846 fs = current->fs;
2847 spin_lock(&fs->lock);
2848 current->fs = new_fs;
2849 if (--fs->users)
2850 new_fs = NULL;
2851 else
2852 new_fs = fs;
2853 spin_unlock(&fs->lock);
2854 }
2855
2856 if (new_fd) {
2857 fd = current->files;
2858 current->files = new_fd;
2859 new_fd = fd;
2860 }
2861
2862 task_unlock(current);
2863
2864 if (new_cred) {
2865 /* Install the new user namespace */
2866 commit_creds(new_cred);
2867 new_cred = NULL;
2868 }
2869 }
2870
2871 perf_event_namespaces(current);
2872
2873 bad_unshare_cleanup_cred:
2874 if (new_cred)
2875 put_cred(new_cred);
2876 bad_unshare_cleanup_fd:
2877 if (new_fd)
2878 put_files_struct(new_fd);
2879
2880 bad_unshare_cleanup_fs:
2881 if (new_fs)
2882 free_fs_struct(new_fs);
2883
2884 bad_unshare_out:
2885 return err;
2886 }
2887
2888 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2889 {
2890 return ksys_unshare(unshare_flags);
2891 }
2892
2893 /*
2894 * Helper to unshare the files of the current task.
2895 * We don't want to expose copy_files internals to
2896 * the exec layer of the kernel.
2897 */
2898
2899 int unshare_files(struct files_struct **displaced)
2900 {
2901 struct task_struct *task = current;
2902 struct files_struct *copy = NULL;
2903 int error;
2904
2905 error = unshare_fd(CLONE_FILES, &copy);
2906 if (error || !copy) {
2907 *displaced = NULL;
2908 return error;
2909 }
2910 *displaced = task->files;
2911 task_lock(task);
2912 task->files = copy;
2913 task_unlock(task);
2914 return 0;
2915 }
2916
2917 int sysctl_max_threads(struct ctl_table *table, int write,
2918 void __user *buffer, size_t *lenp, loff_t *ppos)
2919 {
2920 struct ctl_table t;
2921 int ret;
2922 int threads = max_threads;
2923 int min = MIN_THREADS;
2924 int max = MAX_THREADS;
2925
2926 t = *table;
2927 t.data = &threads;
2928 t.extra1 = &min;
2929 t.extra2 = &max;
2930
2931 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2932 if (ret || !write)
2933 return ret;
2934
2935 set_max_threads(threads);
2936
2937 return 0;
2938 }