]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 #include <linux/proc_fs.h>
54 #include <linux/blkdev.h>
55
56 #include <asm/pgtable.h>
57 #include <asm/pgalloc.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/cacheflush.h>
61 #include <asm/tlbflush.h>
62
63 /*
64 * Protected counters by write_lock_irq(&tasklist_lock)
65 */
66 unsigned long total_forks; /* Handle normal Linux uptimes. */
67 int nr_threads; /* The idle threads do not count.. */
68
69 int max_threads; /* tunable limit on nr_threads */
70
71 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
72
73 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
74
75 int nr_processes(void)
76 {
77 int cpu;
78 int total = 0;
79
80 for_each_online_cpu(cpu)
81 total += per_cpu(process_counts, cpu);
82
83 return total;
84 }
85
86 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
87 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
88 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
89 static struct kmem_cache *task_struct_cachep;
90 #endif
91
92 /* SLAB cache for signal_struct structures (tsk->signal) */
93 static struct kmem_cache *signal_cachep;
94
95 /* SLAB cache for sighand_struct structures (tsk->sighand) */
96 struct kmem_cache *sighand_cachep;
97
98 /* SLAB cache for files_struct structures (tsk->files) */
99 struct kmem_cache *files_cachep;
100
101 /* SLAB cache for fs_struct structures (tsk->fs) */
102 struct kmem_cache *fs_cachep;
103
104 /* SLAB cache for vm_area_struct structures */
105 struct kmem_cache *vm_area_cachep;
106
107 /* SLAB cache for mm_struct structures (tsk->mm) */
108 static struct kmem_cache *mm_cachep;
109
110 void free_task(struct task_struct *tsk)
111 {
112 prop_local_destroy_single(&tsk->dirties);
113 free_thread_info(tsk->stack);
114 rt_mutex_debug_task_free(tsk);
115 free_task_struct(tsk);
116 }
117 EXPORT_SYMBOL(free_task);
118
119 void __put_task_struct(struct task_struct *tsk)
120 {
121 WARN_ON(!tsk->exit_state);
122 WARN_ON(atomic_read(&tsk->usage));
123 WARN_ON(tsk == current);
124
125 security_task_free(tsk);
126 free_uid(tsk->user);
127 put_group_info(tsk->group_info);
128 delayacct_tsk_free(tsk);
129
130 if (!profile_handoff_task(tsk))
131 free_task(tsk);
132 }
133
134 void __init fork_init(unsigned long mempages)
135 {
136 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
137 #ifndef ARCH_MIN_TASKALIGN
138 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
139 #endif
140 /* create a slab on which task_structs can be allocated */
141 task_struct_cachep =
142 kmem_cache_create("task_struct", sizeof(struct task_struct),
143 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
144 #endif
145
146 /*
147 * The default maximum number of threads is set to a safe
148 * value: the thread structures can take up at most half
149 * of memory.
150 */
151 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
152
153 /*
154 * we need to allow at least 20 threads to boot a system
155 */
156 if(max_threads < 20)
157 max_threads = 20;
158
159 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
160 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
161 init_task.signal->rlim[RLIMIT_SIGPENDING] =
162 init_task.signal->rlim[RLIMIT_NPROC];
163 }
164
165 static struct task_struct *dup_task_struct(struct task_struct *orig)
166 {
167 struct task_struct *tsk;
168 struct thread_info *ti;
169 int err;
170
171 prepare_to_copy(orig);
172
173 tsk = alloc_task_struct();
174 if (!tsk)
175 return NULL;
176
177 ti = alloc_thread_info(tsk);
178 if (!ti) {
179 free_task_struct(tsk);
180 return NULL;
181 }
182
183 *tsk = *orig;
184 tsk->stack = ti;
185
186 err = prop_local_init_single(&tsk->dirties);
187 if (err) {
188 free_thread_info(ti);
189 free_task_struct(tsk);
190 return NULL;
191 }
192
193 setup_thread_stack(tsk, orig);
194
195 #ifdef CONFIG_CC_STACKPROTECTOR
196 tsk->stack_canary = get_random_int();
197 #endif
198
199 /* One for us, one for whoever does the "release_task()" (usually parent) */
200 atomic_set(&tsk->usage,2);
201 atomic_set(&tsk->fs_excl, 0);
202 #ifdef CONFIG_BLK_DEV_IO_TRACE
203 tsk->btrace_seq = 0;
204 #endif
205 tsk->splice_pipe = NULL;
206 return tsk;
207 }
208
209 #ifdef CONFIG_MMU
210 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
211 {
212 struct vm_area_struct *mpnt, *tmp, **pprev;
213 struct rb_node **rb_link, *rb_parent;
214 int retval;
215 unsigned long charge;
216 struct mempolicy *pol;
217
218 down_write(&oldmm->mmap_sem);
219 flush_cache_dup_mm(oldmm);
220 /*
221 * Not linked in yet - no deadlock potential:
222 */
223 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
224
225 mm->locked_vm = 0;
226 mm->mmap = NULL;
227 mm->mmap_cache = NULL;
228 mm->free_area_cache = oldmm->mmap_base;
229 mm->cached_hole_size = ~0UL;
230 mm->map_count = 0;
231 cpus_clear(mm->cpu_vm_mask);
232 mm->mm_rb = RB_ROOT;
233 rb_link = &mm->mm_rb.rb_node;
234 rb_parent = NULL;
235 pprev = &mm->mmap;
236
237 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
238 struct file *file;
239
240 if (mpnt->vm_flags & VM_DONTCOPY) {
241 long pages = vma_pages(mpnt);
242 mm->total_vm -= pages;
243 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
244 -pages);
245 continue;
246 }
247 charge = 0;
248 if (mpnt->vm_flags & VM_ACCOUNT) {
249 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
250 if (security_vm_enough_memory(len))
251 goto fail_nomem;
252 charge = len;
253 }
254 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
255 if (!tmp)
256 goto fail_nomem;
257 *tmp = *mpnt;
258 pol = mpol_copy(vma_policy(mpnt));
259 retval = PTR_ERR(pol);
260 if (IS_ERR(pol))
261 goto fail_nomem_policy;
262 vma_set_policy(tmp, pol);
263 tmp->vm_flags &= ~VM_LOCKED;
264 tmp->vm_mm = mm;
265 tmp->vm_next = NULL;
266 anon_vma_link(tmp);
267 file = tmp->vm_file;
268 if (file) {
269 struct inode *inode = file->f_path.dentry->d_inode;
270 get_file(file);
271 if (tmp->vm_flags & VM_DENYWRITE)
272 atomic_dec(&inode->i_writecount);
273
274 /* insert tmp into the share list, just after mpnt */
275 spin_lock(&file->f_mapping->i_mmap_lock);
276 tmp->vm_truncate_count = mpnt->vm_truncate_count;
277 flush_dcache_mmap_lock(file->f_mapping);
278 vma_prio_tree_add(tmp, mpnt);
279 flush_dcache_mmap_unlock(file->f_mapping);
280 spin_unlock(&file->f_mapping->i_mmap_lock);
281 }
282
283 /*
284 * Link in the new vma and copy the page table entries.
285 */
286 *pprev = tmp;
287 pprev = &tmp->vm_next;
288
289 __vma_link_rb(mm, tmp, rb_link, rb_parent);
290 rb_link = &tmp->vm_rb.rb_right;
291 rb_parent = &tmp->vm_rb;
292
293 mm->map_count++;
294 retval = copy_page_range(mm, oldmm, mpnt);
295
296 if (tmp->vm_ops && tmp->vm_ops->open)
297 tmp->vm_ops->open(tmp);
298
299 if (retval)
300 goto out;
301 }
302 /* a new mm has just been created */
303 arch_dup_mmap(oldmm, mm);
304 retval = 0;
305 out:
306 up_write(&mm->mmap_sem);
307 flush_tlb_mm(oldmm);
308 up_write(&oldmm->mmap_sem);
309 return retval;
310 fail_nomem_policy:
311 kmem_cache_free(vm_area_cachep, tmp);
312 fail_nomem:
313 retval = -ENOMEM;
314 vm_unacct_memory(charge);
315 goto out;
316 }
317
318 static inline int mm_alloc_pgd(struct mm_struct * mm)
319 {
320 mm->pgd = pgd_alloc(mm);
321 if (unlikely(!mm->pgd))
322 return -ENOMEM;
323 return 0;
324 }
325
326 static inline void mm_free_pgd(struct mm_struct * mm)
327 {
328 pgd_free(mm, mm->pgd);
329 }
330 #else
331 #define dup_mmap(mm, oldmm) (0)
332 #define mm_alloc_pgd(mm) (0)
333 #define mm_free_pgd(mm)
334 #endif /* CONFIG_MMU */
335
336 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
337
338 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
339 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
340
341 #include <linux/init_task.h>
342
343 static struct mm_struct * mm_init(struct mm_struct * mm)
344 {
345 atomic_set(&mm->mm_users, 1);
346 atomic_set(&mm->mm_count, 1);
347 init_rwsem(&mm->mmap_sem);
348 INIT_LIST_HEAD(&mm->mmlist);
349 mm->flags = (current->mm) ? current->mm->flags
350 : MMF_DUMP_FILTER_DEFAULT;
351 mm->core_waiters = 0;
352 mm->nr_ptes = 0;
353 set_mm_counter(mm, file_rss, 0);
354 set_mm_counter(mm, anon_rss, 0);
355 spin_lock_init(&mm->page_table_lock);
356 rwlock_init(&mm->ioctx_list_lock);
357 mm->ioctx_list = NULL;
358 mm->free_area_cache = TASK_UNMAPPED_BASE;
359 mm->cached_hole_size = ~0UL;
360
361 if (likely(!mm_alloc_pgd(mm))) {
362 mm->def_flags = 0;
363 return mm;
364 }
365 free_mm(mm);
366 return NULL;
367 }
368
369 /*
370 * Allocate and initialize an mm_struct.
371 */
372 struct mm_struct * mm_alloc(void)
373 {
374 struct mm_struct * mm;
375
376 mm = allocate_mm();
377 if (mm) {
378 memset(mm, 0, sizeof(*mm));
379 mm = mm_init(mm);
380 }
381 return mm;
382 }
383
384 /*
385 * Called when the last reference to the mm
386 * is dropped: either by a lazy thread or by
387 * mmput. Free the page directory and the mm.
388 */
389 void fastcall __mmdrop(struct mm_struct *mm)
390 {
391 BUG_ON(mm == &init_mm);
392 mm_free_pgd(mm);
393 destroy_context(mm);
394 free_mm(mm);
395 }
396 EXPORT_SYMBOL_GPL(__mmdrop);
397
398 /*
399 * Decrement the use count and release all resources for an mm.
400 */
401 void mmput(struct mm_struct *mm)
402 {
403 might_sleep();
404
405 if (atomic_dec_and_test(&mm->mm_users)) {
406 exit_aio(mm);
407 exit_mmap(mm);
408 if (!list_empty(&mm->mmlist)) {
409 spin_lock(&mmlist_lock);
410 list_del(&mm->mmlist);
411 spin_unlock(&mmlist_lock);
412 }
413 put_swap_token(mm);
414 mmdrop(mm);
415 }
416 }
417 EXPORT_SYMBOL_GPL(mmput);
418
419 /**
420 * get_task_mm - acquire a reference to the task's mm
421 *
422 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
423 * this kernel workthread has transiently adopted a user mm with use_mm,
424 * to do its AIO) is not set and if so returns a reference to it, after
425 * bumping up the use count. User must release the mm via mmput()
426 * after use. Typically used by /proc and ptrace.
427 */
428 struct mm_struct *get_task_mm(struct task_struct *task)
429 {
430 struct mm_struct *mm;
431
432 task_lock(task);
433 mm = task->mm;
434 if (mm) {
435 if (task->flags & PF_BORROWED_MM)
436 mm = NULL;
437 else
438 atomic_inc(&mm->mm_users);
439 }
440 task_unlock(task);
441 return mm;
442 }
443 EXPORT_SYMBOL_GPL(get_task_mm);
444
445 /* Please note the differences between mmput and mm_release.
446 * mmput is called whenever we stop holding onto a mm_struct,
447 * error success whatever.
448 *
449 * mm_release is called after a mm_struct has been removed
450 * from the current process.
451 *
452 * This difference is important for error handling, when we
453 * only half set up a mm_struct for a new process and need to restore
454 * the old one. Because we mmput the new mm_struct before
455 * restoring the old one. . .
456 * Eric Biederman 10 January 1998
457 */
458 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
459 {
460 struct completion *vfork_done = tsk->vfork_done;
461
462 /* Get rid of any cached register state */
463 deactivate_mm(tsk, mm);
464
465 /* notify parent sleeping on vfork() */
466 if (vfork_done) {
467 tsk->vfork_done = NULL;
468 complete(vfork_done);
469 }
470
471 /*
472 * If we're exiting normally, clear a user-space tid field if
473 * requested. We leave this alone when dying by signal, to leave
474 * the value intact in a core dump, and to save the unnecessary
475 * trouble otherwise. Userland only wants this done for a sys_exit.
476 */
477 if (tsk->clear_child_tid
478 && !(tsk->flags & PF_SIGNALED)
479 && atomic_read(&mm->mm_users) > 1) {
480 u32 __user * tidptr = tsk->clear_child_tid;
481 tsk->clear_child_tid = NULL;
482
483 /*
484 * We don't check the error code - if userspace has
485 * not set up a proper pointer then tough luck.
486 */
487 put_user(0, tidptr);
488 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
489 }
490 }
491
492 /*
493 * Allocate a new mm structure and copy contents from the
494 * mm structure of the passed in task structure.
495 */
496 static struct mm_struct *dup_mm(struct task_struct *tsk)
497 {
498 struct mm_struct *mm, *oldmm = current->mm;
499 int err;
500
501 if (!oldmm)
502 return NULL;
503
504 mm = allocate_mm();
505 if (!mm)
506 goto fail_nomem;
507
508 memcpy(mm, oldmm, sizeof(*mm));
509
510 /* Initializing for Swap token stuff */
511 mm->token_priority = 0;
512 mm->last_interval = 0;
513
514 if (!mm_init(mm))
515 goto fail_nomem;
516
517 if (init_new_context(tsk, mm))
518 goto fail_nocontext;
519
520 err = dup_mmap(mm, oldmm);
521 if (err)
522 goto free_pt;
523
524 mm->hiwater_rss = get_mm_rss(mm);
525 mm->hiwater_vm = mm->total_vm;
526
527 return mm;
528
529 free_pt:
530 mmput(mm);
531
532 fail_nomem:
533 return NULL;
534
535 fail_nocontext:
536 /*
537 * If init_new_context() failed, we cannot use mmput() to free the mm
538 * because it calls destroy_context()
539 */
540 mm_free_pgd(mm);
541 free_mm(mm);
542 return NULL;
543 }
544
545 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
546 {
547 struct mm_struct * mm, *oldmm;
548 int retval;
549
550 tsk->min_flt = tsk->maj_flt = 0;
551 tsk->nvcsw = tsk->nivcsw = 0;
552
553 tsk->mm = NULL;
554 tsk->active_mm = NULL;
555
556 /*
557 * Are we cloning a kernel thread?
558 *
559 * We need to steal a active VM for that..
560 */
561 oldmm = current->mm;
562 if (!oldmm)
563 return 0;
564
565 if (clone_flags & CLONE_VM) {
566 atomic_inc(&oldmm->mm_users);
567 mm = oldmm;
568 goto good_mm;
569 }
570
571 retval = -ENOMEM;
572 mm = dup_mm(tsk);
573 if (!mm)
574 goto fail_nomem;
575
576 good_mm:
577 /* Initializing for Swap token stuff */
578 mm->token_priority = 0;
579 mm->last_interval = 0;
580
581 tsk->mm = mm;
582 tsk->active_mm = mm;
583 return 0;
584
585 fail_nomem:
586 return retval;
587 }
588
589 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
590 {
591 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
592 /* We don't need to lock fs - think why ;-) */
593 if (fs) {
594 atomic_set(&fs->count, 1);
595 rwlock_init(&fs->lock);
596 fs->umask = old->umask;
597 read_lock(&old->lock);
598 fs->rootmnt = mntget(old->rootmnt);
599 fs->root = dget(old->root);
600 fs->pwdmnt = mntget(old->pwdmnt);
601 fs->pwd = dget(old->pwd);
602 if (old->altroot) {
603 fs->altrootmnt = mntget(old->altrootmnt);
604 fs->altroot = dget(old->altroot);
605 } else {
606 fs->altrootmnt = NULL;
607 fs->altroot = NULL;
608 }
609 read_unlock(&old->lock);
610 }
611 return fs;
612 }
613
614 struct fs_struct *copy_fs_struct(struct fs_struct *old)
615 {
616 return __copy_fs_struct(old);
617 }
618
619 EXPORT_SYMBOL_GPL(copy_fs_struct);
620
621 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
622 {
623 if (clone_flags & CLONE_FS) {
624 atomic_inc(&current->fs->count);
625 return 0;
626 }
627 tsk->fs = __copy_fs_struct(current->fs);
628 if (!tsk->fs)
629 return -ENOMEM;
630 return 0;
631 }
632
633 static int count_open_files(struct fdtable *fdt)
634 {
635 int size = fdt->max_fds;
636 int i;
637
638 /* Find the last open fd */
639 for (i = size/(8*sizeof(long)); i > 0; ) {
640 if (fdt->open_fds->fds_bits[--i])
641 break;
642 }
643 i = (i+1) * 8 * sizeof(long);
644 return i;
645 }
646
647 static struct files_struct *alloc_files(void)
648 {
649 struct files_struct *newf;
650 struct fdtable *fdt;
651
652 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
653 if (!newf)
654 goto out;
655
656 atomic_set(&newf->count, 1);
657
658 spin_lock_init(&newf->file_lock);
659 newf->next_fd = 0;
660 fdt = &newf->fdtab;
661 fdt->max_fds = NR_OPEN_DEFAULT;
662 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
663 fdt->open_fds = (fd_set *)&newf->open_fds_init;
664 fdt->fd = &newf->fd_array[0];
665 INIT_RCU_HEAD(&fdt->rcu);
666 fdt->next = NULL;
667 rcu_assign_pointer(newf->fdt, fdt);
668 out:
669 return newf;
670 }
671
672 /*
673 * Allocate a new files structure and copy contents from the
674 * passed in files structure.
675 * errorp will be valid only when the returned files_struct is NULL.
676 */
677 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
678 {
679 struct files_struct *newf;
680 struct file **old_fds, **new_fds;
681 int open_files, size, i;
682 struct fdtable *old_fdt, *new_fdt;
683
684 *errorp = -ENOMEM;
685 newf = alloc_files();
686 if (!newf)
687 goto out;
688
689 spin_lock(&oldf->file_lock);
690 old_fdt = files_fdtable(oldf);
691 new_fdt = files_fdtable(newf);
692 open_files = count_open_files(old_fdt);
693
694 /*
695 * Check whether we need to allocate a larger fd array and fd set.
696 * Note: we're not a clone task, so the open count won't change.
697 */
698 if (open_files > new_fdt->max_fds) {
699 new_fdt->max_fds = 0;
700 spin_unlock(&oldf->file_lock);
701 spin_lock(&newf->file_lock);
702 *errorp = expand_files(newf, open_files-1);
703 spin_unlock(&newf->file_lock);
704 if (*errorp < 0)
705 goto out_release;
706 new_fdt = files_fdtable(newf);
707 /*
708 * Reacquire the oldf lock and a pointer to its fd table
709 * who knows it may have a new bigger fd table. We need
710 * the latest pointer.
711 */
712 spin_lock(&oldf->file_lock);
713 old_fdt = files_fdtable(oldf);
714 }
715
716 old_fds = old_fdt->fd;
717 new_fds = new_fdt->fd;
718
719 memcpy(new_fdt->open_fds->fds_bits,
720 old_fdt->open_fds->fds_bits, open_files/8);
721 memcpy(new_fdt->close_on_exec->fds_bits,
722 old_fdt->close_on_exec->fds_bits, open_files/8);
723
724 for (i = open_files; i != 0; i--) {
725 struct file *f = *old_fds++;
726 if (f) {
727 get_file(f);
728 } else {
729 /*
730 * The fd may be claimed in the fd bitmap but not yet
731 * instantiated in the files array if a sibling thread
732 * is partway through open(). So make sure that this
733 * fd is available to the new process.
734 */
735 FD_CLR(open_files - i, new_fdt->open_fds);
736 }
737 rcu_assign_pointer(*new_fds++, f);
738 }
739 spin_unlock(&oldf->file_lock);
740
741 /* compute the remainder to be cleared */
742 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
743
744 /* This is long word aligned thus could use a optimized version */
745 memset(new_fds, 0, size);
746
747 if (new_fdt->max_fds > open_files) {
748 int left = (new_fdt->max_fds-open_files)/8;
749 int start = open_files / (8 * sizeof(unsigned long));
750
751 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
752 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
753 }
754
755 return newf;
756
757 out_release:
758 kmem_cache_free(files_cachep, newf);
759 out:
760 return NULL;
761 }
762
763 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
764 {
765 struct files_struct *oldf, *newf;
766 int error = 0;
767
768 /*
769 * A background process may not have any files ...
770 */
771 oldf = current->files;
772 if (!oldf)
773 goto out;
774
775 if (clone_flags & CLONE_FILES) {
776 atomic_inc(&oldf->count);
777 goto out;
778 }
779
780 /*
781 * Note: we may be using current for both targets (See exec.c)
782 * This works because we cache current->files (old) as oldf. Don't
783 * break this.
784 */
785 tsk->files = NULL;
786 newf = dup_fd(oldf, &error);
787 if (!newf)
788 goto out;
789
790 tsk->files = newf;
791 error = 0;
792 out:
793 return error;
794 }
795
796 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
797 {
798 #ifdef CONFIG_BLOCK
799 struct io_context *ioc = current->io_context;
800
801 if (!ioc)
802 return 0;
803 /*
804 * Share io context with parent, if CLONE_IO is set
805 */
806 if (clone_flags & CLONE_IO) {
807 tsk->io_context = ioc_task_link(ioc);
808 if (unlikely(!tsk->io_context))
809 return -ENOMEM;
810 } else if (ioprio_valid(ioc->ioprio)) {
811 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
812 if (unlikely(!tsk->io_context))
813 return -ENOMEM;
814
815 tsk->io_context->ioprio = ioc->ioprio;
816 }
817 #endif
818 return 0;
819 }
820
821 /*
822 * Helper to unshare the files of the current task.
823 * We don't want to expose copy_files internals to
824 * the exec layer of the kernel.
825 */
826
827 int unshare_files(void)
828 {
829 struct files_struct *files = current->files;
830 int rc;
831
832 BUG_ON(!files);
833
834 /* This can race but the race causes us to copy when we don't
835 need to and drop the copy */
836 if(atomic_read(&files->count) == 1)
837 {
838 atomic_inc(&files->count);
839 return 0;
840 }
841 rc = copy_files(0, current);
842 if(rc)
843 current->files = files;
844 return rc;
845 }
846
847 EXPORT_SYMBOL(unshare_files);
848
849 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
850 {
851 struct sighand_struct *sig;
852
853 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
854 atomic_inc(&current->sighand->count);
855 return 0;
856 }
857 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
858 rcu_assign_pointer(tsk->sighand, sig);
859 if (!sig)
860 return -ENOMEM;
861 atomic_set(&sig->count, 1);
862 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
863 return 0;
864 }
865
866 void __cleanup_sighand(struct sighand_struct *sighand)
867 {
868 if (atomic_dec_and_test(&sighand->count))
869 kmem_cache_free(sighand_cachep, sighand);
870 }
871
872 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
873 {
874 struct signal_struct *sig;
875 int ret;
876
877 if (clone_flags & CLONE_THREAD) {
878 atomic_inc(&current->signal->count);
879 atomic_inc(&current->signal->live);
880 return 0;
881 }
882 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
883 tsk->signal = sig;
884 if (!sig)
885 return -ENOMEM;
886
887 ret = copy_thread_group_keys(tsk);
888 if (ret < 0) {
889 kmem_cache_free(signal_cachep, sig);
890 return ret;
891 }
892
893 atomic_set(&sig->count, 1);
894 atomic_set(&sig->live, 1);
895 init_waitqueue_head(&sig->wait_chldexit);
896 sig->flags = 0;
897 sig->group_exit_code = 0;
898 sig->group_exit_task = NULL;
899 sig->group_stop_count = 0;
900 sig->curr_target = NULL;
901 init_sigpending(&sig->shared_pending);
902 INIT_LIST_HEAD(&sig->posix_timers);
903
904 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
905 sig->it_real_incr.tv64 = 0;
906 sig->real_timer.function = it_real_fn;
907 sig->tsk = tsk;
908
909 sig->it_virt_expires = cputime_zero;
910 sig->it_virt_incr = cputime_zero;
911 sig->it_prof_expires = cputime_zero;
912 sig->it_prof_incr = cputime_zero;
913
914 sig->leader = 0; /* session leadership doesn't inherit */
915 sig->tty_old_pgrp = NULL;
916
917 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
918 sig->gtime = cputime_zero;
919 sig->cgtime = cputime_zero;
920 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
921 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
922 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
923 sig->sum_sched_runtime = 0;
924 INIT_LIST_HEAD(&sig->cpu_timers[0]);
925 INIT_LIST_HEAD(&sig->cpu_timers[1]);
926 INIT_LIST_HEAD(&sig->cpu_timers[2]);
927 taskstats_tgid_init(sig);
928
929 task_lock(current->group_leader);
930 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
931 task_unlock(current->group_leader);
932
933 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
934 /*
935 * New sole thread in the process gets an expiry time
936 * of the whole CPU time limit.
937 */
938 tsk->it_prof_expires =
939 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
940 }
941 acct_init_pacct(&sig->pacct);
942
943 tty_audit_fork(sig);
944
945 return 0;
946 }
947
948 void __cleanup_signal(struct signal_struct *sig)
949 {
950 exit_thread_group_keys(sig);
951 kmem_cache_free(signal_cachep, sig);
952 }
953
954 static void cleanup_signal(struct task_struct *tsk)
955 {
956 struct signal_struct *sig = tsk->signal;
957
958 atomic_dec(&sig->live);
959
960 if (atomic_dec_and_test(&sig->count))
961 __cleanup_signal(sig);
962 }
963
964 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
965 {
966 unsigned long new_flags = p->flags;
967
968 new_flags &= ~PF_SUPERPRIV;
969 new_flags |= PF_FORKNOEXEC;
970 if (!(clone_flags & CLONE_PTRACE))
971 p->ptrace = 0;
972 p->flags = new_flags;
973 clear_freeze_flag(p);
974 }
975
976 asmlinkage long sys_set_tid_address(int __user *tidptr)
977 {
978 current->clear_child_tid = tidptr;
979
980 return task_pid_vnr(current);
981 }
982
983 static void rt_mutex_init_task(struct task_struct *p)
984 {
985 spin_lock_init(&p->pi_lock);
986 #ifdef CONFIG_RT_MUTEXES
987 plist_head_init(&p->pi_waiters, &p->pi_lock);
988 p->pi_blocked_on = NULL;
989 #endif
990 }
991
992 /*
993 * This creates a new process as a copy of the old one,
994 * but does not actually start it yet.
995 *
996 * It copies the registers, and all the appropriate
997 * parts of the process environment (as per the clone
998 * flags). The actual kick-off is left to the caller.
999 */
1000 static struct task_struct *copy_process(unsigned long clone_flags,
1001 unsigned long stack_start,
1002 struct pt_regs *regs,
1003 unsigned long stack_size,
1004 int __user *child_tidptr,
1005 struct pid *pid)
1006 {
1007 int retval;
1008 struct task_struct *p;
1009 int cgroup_callbacks_done = 0;
1010
1011 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1012 return ERR_PTR(-EINVAL);
1013
1014 /*
1015 * Thread groups must share signals as well, and detached threads
1016 * can only be started up within the thread group.
1017 */
1018 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1019 return ERR_PTR(-EINVAL);
1020
1021 /*
1022 * Shared signal handlers imply shared VM. By way of the above,
1023 * thread groups also imply shared VM. Blocking this case allows
1024 * for various simplifications in other code.
1025 */
1026 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1027 return ERR_PTR(-EINVAL);
1028
1029 retval = security_task_create(clone_flags);
1030 if (retval)
1031 goto fork_out;
1032
1033 retval = -ENOMEM;
1034 p = dup_task_struct(current);
1035 if (!p)
1036 goto fork_out;
1037
1038 rt_mutex_init_task(p);
1039
1040 #ifdef CONFIG_TRACE_IRQFLAGS
1041 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1042 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1043 #endif
1044 retval = -EAGAIN;
1045 if (atomic_read(&p->user->processes) >=
1046 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1047 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1048 p->user != current->nsproxy->user_ns->root_user)
1049 goto bad_fork_free;
1050 }
1051
1052 atomic_inc(&p->user->__count);
1053 atomic_inc(&p->user->processes);
1054 get_group_info(p->group_info);
1055
1056 /*
1057 * If multiple threads are within copy_process(), then this check
1058 * triggers too late. This doesn't hurt, the check is only there
1059 * to stop root fork bombs.
1060 */
1061 if (nr_threads >= max_threads)
1062 goto bad_fork_cleanup_count;
1063
1064 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1065 goto bad_fork_cleanup_count;
1066
1067 if (p->binfmt && !try_module_get(p->binfmt->module))
1068 goto bad_fork_cleanup_put_domain;
1069
1070 p->did_exec = 0;
1071 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1072 copy_flags(clone_flags, p);
1073 INIT_LIST_HEAD(&p->children);
1074 INIT_LIST_HEAD(&p->sibling);
1075 #ifdef CONFIG_PREEMPT_RCU
1076 p->rcu_read_lock_nesting = 0;
1077 p->rcu_flipctr_idx = 0;
1078 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1079 p->vfork_done = NULL;
1080 spin_lock_init(&p->alloc_lock);
1081
1082 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1083 init_sigpending(&p->pending);
1084
1085 p->utime = cputime_zero;
1086 p->stime = cputime_zero;
1087 p->gtime = cputime_zero;
1088 p->utimescaled = cputime_zero;
1089 p->stimescaled = cputime_zero;
1090 p->prev_utime = cputime_zero;
1091 p->prev_stime = cputime_zero;
1092
1093 #ifdef CONFIG_DETECT_SOFTLOCKUP
1094 p->last_switch_count = 0;
1095 p->last_switch_timestamp = 0;
1096 #endif
1097
1098 #ifdef CONFIG_TASK_XACCT
1099 p->rchar = 0; /* I/O counter: bytes read */
1100 p->wchar = 0; /* I/O counter: bytes written */
1101 p->syscr = 0; /* I/O counter: read syscalls */
1102 p->syscw = 0; /* I/O counter: write syscalls */
1103 #endif
1104 task_io_accounting_init(p);
1105 acct_clear_integrals(p);
1106
1107 p->it_virt_expires = cputime_zero;
1108 p->it_prof_expires = cputime_zero;
1109 p->it_sched_expires = 0;
1110 INIT_LIST_HEAD(&p->cpu_timers[0]);
1111 INIT_LIST_HEAD(&p->cpu_timers[1]);
1112 INIT_LIST_HEAD(&p->cpu_timers[2]);
1113
1114 p->lock_depth = -1; /* -1 = no lock */
1115 do_posix_clock_monotonic_gettime(&p->start_time);
1116 p->real_start_time = p->start_time;
1117 monotonic_to_bootbased(&p->real_start_time);
1118 #ifdef CONFIG_SECURITY
1119 p->security = NULL;
1120 #endif
1121 p->cap_bset = current->cap_bset;
1122 p->io_context = NULL;
1123 p->audit_context = NULL;
1124 cgroup_fork(p);
1125 #ifdef CONFIG_NUMA
1126 p->mempolicy = mpol_copy(p->mempolicy);
1127 if (IS_ERR(p->mempolicy)) {
1128 retval = PTR_ERR(p->mempolicy);
1129 p->mempolicy = NULL;
1130 goto bad_fork_cleanup_cgroup;
1131 }
1132 mpol_fix_fork_child_flag(p);
1133 #endif
1134 #ifdef CONFIG_TRACE_IRQFLAGS
1135 p->irq_events = 0;
1136 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1137 p->hardirqs_enabled = 1;
1138 #else
1139 p->hardirqs_enabled = 0;
1140 #endif
1141 p->hardirq_enable_ip = 0;
1142 p->hardirq_enable_event = 0;
1143 p->hardirq_disable_ip = _THIS_IP_;
1144 p->hardirq_disable_event = 0;
1145 p->softirqs_enabled = 1;
1146 p->softirq_enable_ip = _THIS_IP_;
1147 p->softirq_enable_event = 0;
1148 p->softirq_disable_ip = 0;
1149 p->softirq_disable_event = 0;
1150 p->hardirq_context = 0;
1151 p->softirq_context = 0;
1152 #endif
1153 #ifdef CONFIG_LOCKDEP
1154 p->lockdep_depth = 0; /* no locks held yet */
1155 p->curr_chain_key = 0;
1156 p->lockdep_recursion = 0;
1157 #endif
1158
1159 #ifdef CONFIG_DEBUG_MUTEXES
1160 p->blocked_on = NULL; /* not blocked yet */
1161 #endif
1162
1163 /* Perform scheduler related setup. Assign this task to a CPU. */
1164 sched_fork(p, clone_flags);
1165
1166 if ((retval = security_task_alloc(p)))
1167 goto bad_fork_cleanup_policy;
1168 if ((retval = audit_alloc(p)))
1169 goto bad_fork_cleanup_security;
1170 /* copy all the process information */
1171 if ((retval = copy_semundo(clone_flags, p)))
1172 goto bad_fork_cleanup_audit;
1173 if ((retval = copy_files(clone_flags, p)))
1174 goto bad_fork_cleanup_semundo;
1175 if ((retval = copy_fs(clone_flags, p)))
1176 goto bad_fork_cleanup_files;
1177 if ((retval = copy_sighand(clone_flags, p)))
1178 goto bad_fork_cleanup_fs;
1179 if ((retval = copy_signal(clone_flags, p)))
1180 goto bad_fork_cleanup_sighand;
1181 if ((retval = copy_mm(clone_flags, p)))
1182 goto bad_fork_cleanup_signal;
1183 if ((retval = copy_keys(clone_flags, p)))
1184 goto bad_fork_cleanup_mm;
1185 if ((retval = copy_namespaces(clone_flags, p)))
1186 goto bad_fork_cleanup_keys;
1187 if ((retval = copy_io(clone_flags, p)))
1188 goto bad_fork_cleanup_namespaces;
1189 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1190 if (retval)
1191 goto bad_fork_cleanup_io;
1192
1193 if (pid != &init_struct_pid) {
1194 retval = -ENOMEM;
1195 pid = alloc_pid(task_active_pid_ns(p));
1196 if (!pid)
1197 goto bad_fork_cleanup_io;
1198
1199 if (clone_flags & CLONE_NEWPID) {
1200 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1201 if (retval < 0)
1202 goto bad_fork_free_pid;
1203 }
1204 }
1205
1206 p->pid = pid_nr(pid);
1207 p->tgid = p->pid;
1208 if (clone_flags & CLONE_THREAD)
1209 p->tgid = current->tgid;
1210
1211 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1212 /*
1213 * Clear TID on mm_release()?
1214 */
1215 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1216 #ifdef CONFIG_FUTEX
1217 p->robust_list = NULL;
1218 #ifdef CONFIG_COMPAT
1219 p->compat_robust_list = NULL;
1220 #endif
1221 INIT_LIST_HEAD(&p->pi_state_list);
1222 p->pi_state_cache = NULL;
1223 #endif
1224 /*
1225 * sigaltstack should be cleared when sharing the same VM
1226 */
1227 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1228 p->sas_ss_sp = p->sas_ss_size = 0;
1229
1230 /*
1231 * Syscall tracing should be turned off in the child regardless
1232 * of CLONE_PTRACE.
1233 */
1234 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1235 #ifdef TIF_SYSCALL_EMU
1236 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1237 #endif
1238 clear_all_latency_tracing(p);
1239
1240 /* Our parent execution domain becomes current domain
1241 These must match for thread signalling to apply */
1242 p->parent_exec_id = p->self_exec_id;
1243
1244 /* ok, now we should be set up.. */
1245 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1246 p->pdeath_signal = 0;
1247 p->exit_state = 0;
1248
1249 /*
1250 * Ok, make it visible to the rest of the system.
1251 * We dont wake it up yet.
1252 */
1253 p->group_leader = p;
1254 INIT_LIST_HEAD(&p->thread_group);
1255 INIT_LIST_HEAD(&p->ptrace_children);
1256 INIT_LIST_HEAD(&p->ptrace_list);
1257
1258 /* Now that the task is set up, run cgroup callbacks if
1259 * necessary. We need to run them before the task is visible
1260 * on the tasklist. */
1261 cgroup_fork_callbacks(p);
1262 cgroup_callbacks_done = 1;
1263
1264 /* Need tasklist lock for parent etc handling! */
1265 write_lock_irq(&tasklist_lock);
1266
1267 /*
1268 * The task hasn't been attached yet, so its cpus_allowed mask will
1269 * not be changed, nor will its assigned CPU.
1270 *
1271 * The cpus_allowed mask of the parent may have changed after it was
1272 * copied first time - so re-copy it here, then check the child's CPU
1273 * to ensure it is on a valid CPU (and if not, just force it back to
1274 * parent's CPU). This avoids alot of nasty races.
1275 */
1276 p->cpus_allowed = current->cpus_allowed;
1277 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1278 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1279 !cpu_online(task_cpu(p))))
1280 set_task_cpu(p, smp_processor_id());
1281
1282 /* CLONE_PARENT re-uses the old parent */
1283 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1284 p->real_parent = current->real_parent;
1285 else
1286 p->real_parent = current;
1287 p->parent = p->real_parent;
1288
1289 spin_lock(&current->sighand->siglock);
1290
1291 /*
1292 * Process group and session signals need to be delivered to just the
1293 * parent before the fork or both the parent and the child after the
1294 * fork. Restart if a signal comes in before we add the new process to
1295 * it's process group.
1296 * A fatal signal pending means that current will exit, so the new
1297 * thread can't slip out of an OOM kill (or normal SIGKILL).
1298 */
1299 recalc_sigpending();
1300 if (signal_pending(current)) {
1301 spin_unlock(&current->sighand->siglock);
1302 write_unlock_irq(&tasklist_lock);
1303 retval = -ERESTARTNOINTR;
1304 goto bad_fork_free_pid;
1305 }
1306
1307 if (clone_flags & CLONE_THREAD) {
1308 p->group_leader = current->group_leader;
1309 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1310
1311 if (!cputime_eq(current->signal->it_virt_expires,
1312 cputime_zero) ||
1313 !cputime_eq(current->signal->it_prof_expires,
1314 cputime_zero) ||
1315 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1316 !list_empty(&current->signal->cpu_timers[0]) ||
1317 !list_empty(&current->signal->cpu_timers[1]) ||
1318 !list_empty(&current->signal->cpu_timers[2])) {
1319 /*
1320 * Have child wake up on its first tick to check
1321 * for process CPU timers.
1322 */
1323 p->it_prof_expires = jiffies_to_cputime(1);
1324 }
1325 }
1326
1327 if (likely(p->pid)) {
1328 add_parent(p);
1329 if (unlikely(p->ptrace & PT_PTRACED))
1330 __ptrace_link(p, current->parent);
1331
1332 if (thread_group_leader(p)) {
1333 if (clone_flags & CLONE_NEWPID)
1334 p->nsproxy->pid_ns->child_reaper = p;
1335
1336 p->signal->tty = current->signal->tty;
1337 set_task_pgrp(p, task_pgrp_nr(current));
1338 set_task_session(p, task_session_nr(current));
1339 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1340 attach_pid(p, PIDTYPE_SID, task_session(current));
1341 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1342 __get_cpu_var(process_counts)++;
1343 }
1344 attach_pid(p, PIDTYPE_PID, pid);
1345 nr_threads++;
1346 }
1347
1348 total_forks++;
1349 spin_unlock(&current->sighand->siglock);
1350 write_unlock_irq(&tasklist_lock);
1351 proc_fork_connector(p);
1352 cgroup_post_fork(p);
1353 return p;
1354
1355 bad_fork_free_pid:
1356 if (pid != &init_struct_pid)
1357 free_pid(pid);
1358 bad_fork_cleanup_io:
1359 put_io_context(p->io_context);
1360 bad_fork_cleanup_namespaces:
1361 exit_task_namespaces(p);
1362 bad_fork_cleanup_keys:
1363 exit_keys(p);
1364 bad_fork_cleanup_mm:
1365 if (p->mm)
1366 mmput(p->mm);
1367 bad_fork_cleanup_signal:
1368 cleanup_signal(p);
1369 bad_fork_cleanup_sighand:
1370 __cleanup_sighand(p->sighand);
1371 bad_fork_cleanup_fs:
1372 exit_fs(p); /* blocking */
1373 bad_fork_cleanup_files:
1374 exit_files(p); /* blocking */
1375 bad_fork_cleanup_semundo:
1376 exit_sem(p);
1377 bad_fork_cleanup_audit:
1378 audit_free(p);
1379 bad_fork_cleanup_security:
1380 security_task_free(p);
1381 bad_fork_cleanup_policy:
1382 #ifdef CONFIG_NUMA
1383 mpol_free(p->mempolicy);
1384 bad_fork_cleanup_cgroup:
1385 #endif
1386 cgroup_exit(p, cgroup_callbacks_done);
1387 delayacct_tsk_free(p);
1388 if (p->binfmt)
1389 module_put(p->binfmt->module);
1390 bad_fork_cleanup_put_domain:
1391 module_put(task_thread_info(p)->exec_domain->module);
1392 bad_fork_cleanup_count:
1393 put_group_info(p->group_info);
1394 atomic_dec(&p->user->processes);
1395 free_uid(p->user);
1396 bad_fork_free:
1397 free_task(p);
1398 fork_out:
1399 return ERR_PTR(retval);
1400 }
1401
1402 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1403 {
1404 memset(regs, 0, sizeof(struct pt_regs));
1405 return regs;
1406 }
1407
1408 struct task_struct * __cpuinit fork_idle(int cpu)
1409 {
1410 struct task_struct *task;
1411 struct pt_regs regs;
1412
1413 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1414 &init_struct_pid);
1415 if (!IS_ERR(task))
1416 init_idle(task, cpu);
1417
1418 return task;
1419 }
1420
1421 static int fork_traceflag(unsigned clone_flags)
1422 {
1423 if (clone_flags & CLONE_UNTRACED)
1424 return 0;
1425 else if (clone_flags & CLONE_VFORK) {
1426 if (current->ptrace & PT_TRACE_VFORK)
1427 return PTRACE_EVENT_VFORK;
1428 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1429 if (current->ptrace & PT_TRACE_CLONE)
1430 return PTRACE_EVENT_CLONE;
1431 } else if (current->ptrace & PT_TRACE_FORK)
1432 return PTRACE_EVENT_FORK;
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * Ok, this is the main fork-routine.
1439 *
1440 * It copies the process, and if successful kick-starts
1441 * it and waits for it to finish using the VM if required.
1442 */
1443 long do_fork(unsigned long clone_flags,
1444 unsigned long stack_start,
1445 struct pt_regs *regs,
1446 unsigned long stack_size,
1447 int __user *parent_tidptr,
1448 int __user *child_tidptr)
1449 {
1450 struct task_struct *p;
1451 int trace = 0;
1452 long nr;
1453
1454 /*
1455 * We hope to recycle these flags after 2.6.26
1456 */
1457 if (unlikely(clone_flags & CLONE_STOPPED)) {
1458 static int __read_mostly count = 100;
1459
1460 if (count > 0 && printk_ratelimit()) {
1461 char comm[TASK_COMM_LEN];
1462
1463 count--;
1464 printk(KERN_INFO "fork(): process `%s' used deprecated "
1465 "clone flags 0x%lx\n",
1466 get_task_comm(comm, current),
1467 clone_flags & CLONE_STOPPED);
1468 }
1469 }
1470
1471 if (unlikely(current->ptrace)) {
1472 trace = fork_traceflag (clone_flags);
1473 if (trace)
1474 clone_flags |= CLONE_PTRACE;
1475 }
1476
1477 p = copy_process(clone_flags, stack_start, regs, stack_size,
1478 child_tidptr, NULL);
1479 /*
1480 * Do this prior waking up the new thread - the thread pointer
1481 * might get invalid after that point, if the thread exits quickly.
1482 */
1483 if (!IS_ERR(p)) {
1484 struct completion vfork;
1485
1486 /*
1487 * this is enough to call pid_nr_ns here, but this if
1488 * improves optimisation of regular fork()
1489 */
1490 nr = (clone_flags & CLONE_NEWPID) ?
1491 task_pid_nr_ns(p, current->nsproxy->pid_ns) :
1492 task_pid_vnr(p);
1493
1494 if (clone_flags & CLONE_PARENT_SETTID)
1495 put_user(nr, parent_tidptr);
1496
1497 if (clone_flags & CLONE_VFORK) {
1498 p->vfork_done = &vfork;
1499 init_completion(&vfork);
1500 }
1501
1502 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1503 /*
1504 * We'll start up with an immediate SIGSTOP.
1505 */
1506 sigaddset(&p->pending.signal, SIGSTOP);
1507 set_tsk_thread_flag(p, TIF_SIGPENDING);
1508 }
1509
1510 if (!(clone_flags & CLONE_STOPPED))
1511 wake_up_new_task(p, clone_flags);
1512 else
1513 p->state = TASK_STOPPED;
1514
1515 if (unlikely (trace)) {
1516 current->ptrace_message = nr;
1517 ptrace_notify ((trace << 8) | SIGTRAP);
1518 }
1519
1520 if (clone_flags & CLONE_VFORK) {
1521 freezer_do_not_count();
1522 wait_for_completion(&vfork);
1523 freezer_count();
1524 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1525 current->ptrace_message = nr;
1526 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1527 }
1528 }
1529 } else {
1530 nr = PTR_ERR(p);
1531 }
1532 return nr;
1533 }
1534
1535 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1536 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1537 #endif
1538
1539 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1540 {
1541 struct sighand_struct *sighand = data;
1542
1543 spin_lock_init(&sighand->siglock);
1544 init_waitqueue_head(&sighand->signalfd_wqh);
1545 }
1546
1547 void __init proc_caches_init(void)
1548 {
1549 sighand_cachep = kmem_cache_create("sighand_cache",
1550 sizeof(struct sighand_struct), 0,
1551 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1552 sighand_ctor);
1553 signal_cachep = kmem_cache_create("signal_cache",
1554 sizeof(struct signal_struct), 0,
1555 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1556 files_cachep = kmem_cache_create("files_cache",
1557 sizeof(struct files_struct), 0,
1558 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1559 fs_cachep = kmem_cache_create("fs_cache",
1560 sizeof(struct fs_struct), 0,
1561 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1562 vm_area_cachep = kmem_cache_create("vm_area_struct",
1563 sizeof(struct vm_area_struct), 0,
1564 SLAB_PANIC, NULL);
1565 mm_cachep = kmem_cache_create("mm_struct",
1566 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1567 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1568 }
1569
1570 /*
1571 * Check constraints on flags passed to the unshare system call and
1572 * force unsharing of additional process context as appropriate.
1573 */
1574 static void check_unshare_flags(unsigned long *flags_ptr)
1575 {
1576 /*
1577 * If unsharing a thread from a thread group, must also
1578 * unshare vm.
1579 */
1580 if (*flags_ptr & CLONE_THREAD)
1581 *flags_ptr |= CLONE_VM;
1582
1583 /*
1584 * If unsharing vm, must also unshare signal handlers.
1585 */
1586 if (*flags_ptr & CLONE_VM)
1587 *flags_ptr |= CLONE_SIGHAND;
1588
1589 /*
1590 * If unsharing signal handlers and the task was created
1591 * using CLONE_THREAD, then must unshare the thread
1592 */
1593 if ((*flags_ptr & CLONE_SIGHAND) &&
1594 (atomic_read(&current->signal->count) > 1))
1595 *flags_ptr |= CLONE_THREAD;
1596
1597 /*
1598 * If unsharing namespace, must also unshare filesystem information.
1599 */
1600 if (*flags_ptr & CLONE_NEWNS)
1601 *flags_ptr |= CLONE_FS;
1602 }
1603
1604 /*
1605 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1606 */
1607 static int unshare_thread(unsigned long unshare_flags)
1608 {
1609 if (unshare_flags & CLONE_THREAD)
1610 return -EINVAL;
1611
1612 return 0;
1613 }
1614
1615 /*
1616 * Unshare the filesystem structure if it is being shared
1617 */
1618 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1619 {
1620 struct fs_struct *fs = current->fs;
1621
1622 if ((unshare_flags & CLONE_FS) &&
1623 (fs && atomic_read(&fs->count) > 1)) {
1624 *new_fsp = __copy_fs_struct(current->fs);
1625 if (!*new_fsp)
1626 return -ENOMEM;
1627 }
1628
1629 return 0;
1630 }
1631
1632 /*
1633 * Unsharing of sighand is not supported yet
1634 */
1635 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1636 {
1637 struct sighand_struct *sigh = current->sighand;
1638
1639 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1640 return -EINVAL;
1641 else
1642 return 0;
1643 }
1644
1645 /*
1646 * Unshare vm if it is being shared
1647 */
1648 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1649 {
1650 struct mm_struct *mm = current->mm;
1651
1652 if ((unshare_flags & CLONE_VM) &&
1653 (mm && atomic_read(&mm->mm_users) > 1)) {
1654 return -EINVAL;
1655 }
1656
1657 return 0;
1658 }
1659
1660 /*
1661 * Unshare file descriptor table if it is being shared
1662 */
1663 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1664 {
1665 struct files_struct *fd = current->files;
1666 int error = 0;
1667
1668 if ((unshare_flags & CLONE_FILES) &&
1669 (fd && atomic_read(&fd->count) > 1)) {
1670 *new_fdp = dup_fd(fd, &error);
1671 if (!*new_fdp)
1672 return error;
1673 }
1674
1675 return 0;
1676 }
1677
1678 /*
1679 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1680 * supported yet
1681 */
1682 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1683 {
1684 if (unshare_flags & CLONE_SYSVSEM)
1685 return -EINVAL;
1686
1687 return 0;
1688 }
1689
1690 /*
1691 * unshare allows a process to 'unshare' part of the process
1692 * context which was originally shared using clone. copy_*
1693 * functions used by do_fork() cannot be used here directly
1694 * because they modify an inactive task_struct that is being
1695 * constructed. Here we are modifying the current, active,
1696 * task_struct.
1697 */
1698 asmlinkage long sys_unshare(unsigned long unshare_flags)
1699 {
1700 int err = 0;
1701 struct fs_struct *fs, *new_fs = NULL;
1702 struct sighand_struct *new_sigh = NULL;
1703 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1704 struct files_struct *fd, *new_fd = NULL;
1705 struct sem_undo_list *new_ulist = NULL;
1706 struct nsproxy *new_nsproxy = NULL;
1707
1708 check_unshare_flags(&unshare_flags);
1709
1710 /* Return -EINVAL for all unsupported flags */
1711 err = -EINVAL;
1712 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1713 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1714 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1715 CLONE_NEWNET))
1716 goto bad_unshare_out;
1717
1718 if ((err = unshare_thread(unshare_flags)))
1719 goto bad_unshare_out;
1720 if ((err = unshare_fs(unshare_flags, &new_fs)))
1721 goto bad_unshare_cleanup_thread;
1722 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1723 goto bad_unshare_cleanup_fs;
1724 if ((err = unshare_vm(unshare_flags, &new_mm)))
1725 goto bad_unshare_cleanup_sigh;
1726 if ((err = unshare_fd(unshare_flags, &new_fd)))
1727 goto bad_unshare_cleanup_vm;
1728 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1729 goto bad_unshare_cleanup_fd;
1730 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1731 new_fs)))
1732 goto bad_unshare_cleanup_semundo;
1733
1734 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1735
1736 if (new_nsproxy) {
1737 switch_task_namespaces(current, new_nsproxy);
1738 new_nsproxy = NULL;
1739 }
1740
1741 task_lock(current);
1742
1743 if (new_fs) {
1744 fs = current->fs;
1745 current->fs = new_fs;
1746 new_fs = fs;
1747 }
1748
1749 if (new_mm) {
1750 mm = current->mm;
1751 active_mm = current->active_mm;
1752 current->mm = new_mm;
1753 current->active_mm = new_mm;
1754 activate_mm(active_mm, new_mm);
1755 new_mm = mm;
1756 }
1757
1758 if (new_fd) {
1759 fd = current->files;
1760 current->files = new_fd;
1761 new_fd = fd;
1762 }
1763
1764 task_unlock(current);
1765 }
1766
1767 if (new_nsproxy)
1768 put_nsproxy(new_nsproxy);
1769
1770 bad_unshare_cleanup_semundo:
1771 bad_unshare_cleanup_fd:
1772 if (new_fd)
1773 put_files_struct(new_fd);
1774
1775 bad_unshare_cleanup_vm:
1776 if (new_mm)
1777 mmput(new_mm);
1778
1779 bad_unshare_cleanup_sigh:
1780 if (new_sigh)
1781 if (atomic_dec_and_test(&new_sigh->count))
1782 kmem_cache_free(sighand_cachep, new_sigh);
1783
1784 bad_unshare_cleanup_fs:
1785 if (new_fs)
1786 put_fs_struct(new_fs);
1787
1788 bad_unshare_cleanup_thread:
1789 bad_unshare_out:
1790 return err;
1791 }