]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
fork: copy mm's vm usage counters under mmap_sem
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77
78 #include <asm/pgtable.h>
79 #include <asm/pgalloc.h>
80 #include <asm/uaccess.h>
81 #include <asm/mmu_context.h>
82 #include <asm/cacheflush.h>
83 #include <asm/tlbflush.h>
84
85 #include <trace/events/sched.h>
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/task.h>
89
90 /*
91 * Protected counters by write_lock_irq(&tasklist_lock)
92 */
93 unsigned long total_forks; /* Handle normal Linux uptimes. */
94 int nr_threads; /* The idle threads do not count.. */
95
96 int max_threads; /* tunable limit on nr_threads */
97
98 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
99
100 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
101
102 #ifdef CONFIG_PROVE_RCU
103 int lockdep_tasklist_lock_is_held(void)
104 {
105 return lockdep_is_held(&tasklist_lock);
106 }
107 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
108 #endif /* #ifdef CONFIG_PROVE_RCU */
109
110 int nr_processes(void)
111 {
112 int cpu;
113 int total = 0;
114
115 for_each_possible_cpu(cpu)
116 total += per_cpu(process_counts, cpu);
117
118 return total;
119 }
120
121 void __weak arch_release_task_struct(struct task_struct *tsk)
122 {
123 }
124
125 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
126 static struct kmem_cache *task_struct_cachep;
127
128 static inline struct task_struct *alloc_task_struct_node(int node)
129 {
130 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
131 }
132
133 static inline void free_task_struct(struct task_struct *tsk)
134 {
135 kmem_cache_free(task_struct_cachep, tsk);
136 }
137 #endif
138
139 void __weak arch_release_thread_info(struct thread_info *ti)
140 {
141 }
142
143 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
144
145 /*
146 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
147 * kmemcache based allocator.
148 */
149 # if THREAD_SIZE >= PAGE_SIZE
150 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
151 int node)
152 {
153 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
154 THREAD_SIZE_ORDER);
155
156 return page ? page_address(page) : NULL;
157 }
158
159 static inline void free_thread_info(struct thread_info *ti)
160 {
161 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
162 }
163 # else
164 static struct kmem_cache *thread_info_cache;
165
166 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
167 int node)
168 {
169 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
170 }
171
172 static void free_thread_info(struct thread_info *ti)
173 {
174 kmem_cache_free(thread_info_cache, ti);
175 }
176
177 void thread_info_cache_init(void)
178 {
179 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
180 THREAD_SIZE, 0, NULL);
181 BUG_ON(thread_info_cache == NULL);
182 }
183 # endif
184 #endif
185
186 /* SLAB cache for signal_struct structures (tsk->signal) */
187 static struct kmem_cache *signal_cachep;
188
189 /* SLAB cache for sighand_struct structures (tsk->sighand) */
190 struct kmem_cache *sighand_cachep;
191
192 /* SLAB cache for files_struct structures (tsk->files) */
193 struct kmem_cache *files_cachep;
194
195 /* SLAB cache for fs_struct structures (tsk->fs) */
196 struct kmem_cache *fs_cachep;
197
198 /* SLAB cache for vm_area_struct structures */
199 struct kmem_cache *vm_area_cachep;
200
201 /* SLAB cache for mm_struct structures (tsk->mm) */
202 static struct kmem_cache *mm_cachep;
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206 struct zone *zone = page_zone(virt_to_page(ti));
207
208 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213 account_kernel_stack(tsk->stack, -1);
214 arch_release_thread_info(tsk->stack);
215 free_thread_info(tsk->stack);
216 rt_mutex_debug_task_free(tsk);
217 ftrace_graph_exit_task(tsk);
218 put_seccomp_filter(tsk);
219 arch_release_task_struct(tsk);
220 free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226 taskstats_tgid_free(sig);
227 sched_autogroup_exit(sig);
228 kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233 if (atomic_dec_and_test(&sig->sigcnt))
234 free_signal_struct(sig);
235 }
236
237 void __put_task_struct(struct task_struct *tsk)
238 {
239 WARN_ON(!tsk->exit_state);
240 WARN_ON(atomic_read(&tsk->usage));
241 WARN_ON(tsk == current);
242
243 task_numa_free(tsk);
244 security_task_free(tsk);
245 exit_creds(tsk);
246 delayacct_tsk_free(tsk);
247 put_signal_struct(tsk->signal);
248
249 if (!profile_handoff_task(tsk))
250 free_task(tsk);
251 }
252 EXPORT_SYMBOL_GPL(__put_task_struct);
253
254 void __init __weak arch_task_cache_init(void) { }
255
256 void __init fork_init(unsigned long mempages)
257 {
258 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
259 #ifndef ARCH_MIN_TASKALIGN
260 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
261 #endif
262 /* create a slab on which task_structs can be allocated */
263 task_struct_cachep =
264 kmem_cache_create("task_struct", sizeof(struct task_struct),
265 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
266 #endif
267
268 /* do the arch specific task caches init */
269 arch_task_cache_init();
270
271 /*
272 * The default maximum number of threads is set to a safe
273 * value: the thread structures can take up at most half
274 * of memory.
275 */
276 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
277
278 /*
279 * we need to allow at least 20 threads to boot a system
280 */
281 if (max_threads < 20)
282 max_threads = 20;
283
284 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
285 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
286 init_task.signal->rlim[RLIMIT_SIGPENDING] =
287 init_task.signal->rlim[RLIMIT_NPROC];
288 }
289
290 int __weak arch_dup_task_struct(struct task_struct *dst,
291 struct task_struct *src)
292 {
293 *dst = *src;
294 return 0;
295 }
296
297 static struct task_struct *dup_task_struct(struct task_struct *orig)
298 {
299 struct task_struct *tsk;
300 struct thread_info *ti;
301 unsigned long *stackend;
302 int node = tsk_fork_get_node(orig);
303 int err;
304
305 tsk = alloc_task_struct_node(node);
306 if (!tsk)
307 return NULL;
308
309 ti = alloc_thread_info_node(tsk, node);
310 if (!ti)
311 goto free_tsk;
312
313 err = arch_dup_task_struct(tsk, orig);
314 if (err)
315 goto free_ti;
316
317 tsk->stack = ti;
318 #ifdef CONFIG_SECCOMP
319 /*
320 * We must handle setting up seccomp filters once we're under
321 * the sighand lock in case orig has changed between now and
322 * then. Until then, filter must be NULL to avoid messing up
323 * the usage counts on the error path calling free_task.
324 */
325 tsk->seccomp.filter = NULL;
326 #endif
327
328 setup_thread_stack(tsk, orig);
329 clear_user_return_notifier(tsk);
330 clear_tsk_need_resched(tsk);
331 stackend = end_of_stack(tsk);
332 *stackend = STACK_END_MAGIC; /* for overflow detection */
333
334 #ifdef CONFIG_CC_STACKPROTECTOR
335 tsk->stack_canary = get_random_int();
336 #endif
337
338 /*
339 * One for us, one for whoever does the "release_task()" (usually
340 * parent)
341 */
342 atomic_set(&tsk->usage, 2);
343 #ifdef CONFIG_BLK_DEV_IO_TRACE
344 tsk->btrace_seq = 0;
345 #endif
346 tsk->splice_pipe = NULL;
347 tsk->task_frag.page = NULL;
348
349 account_kernel_stack(ti, 1);
350
351 return tsk;
352
353 free_ti:
354 free_thread_info(ti);
355 free_tsk:
356 free_task_struct(tsk);
357 return NULL;
358 }
359
360 #ifdef CONFIG_MMU
361 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
362 {
363 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
364 struct rb_node **rb_link, *rb_parent;
365 int retval;
366 unsigned long charge;
367
368 uprobe_start_dup_mmap();
369 down_write(&oldmm->mmap_sem);
370 flush_cache_dup_mm(oldmm);
371 uprobe_dup_mmap(oldmm, mm);
372 /*
373 * Not linked in yet - no deadlock potential:
374 */
375 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
376
377 mm->total_vm = oldmm->total_vm;
378 mm->shared_vm = oldmm->shared_vm;
379 mm->exec_vm = oldmm->exec_vm;
380 mm->stack_vm = oldmm->stack_vm;
381
382 rb_link = &mm->mm_rb.rb_node;
383 rb_parent = NULL;
384 pprev = &mm->mmap;
385 retval = ksm_fork(mm, oldmm);
386 if (retval)
387 goto out;
388 retval = khugepaged_fork(mm, oldmm);
389 if (retval)
390 goto out;
391
392 prev = NULL;
393 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
394 struct file *file;
395
396 if (mpnt->vm_flags & VM_DONTCOPY) {
397 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
398 -vma_pages(mpnt));
399 continue;
400 }
401 charge = 0;
402 if (mpnt->vm_flags & VM_ACCOUNT) {
403 unsigned long len = vma_pages(mpnt);
404
405 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
406 goto fail_nomem;
407 charge = len;
408 }
409 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
410 if (!tmp)
411 goto fail_nomem;
412 *tmp = *mpnt;
413 INIT_LIST_HEAD(&tmp->anon_vma_chain);
414 retval = vma_dup_policy(mpnt, tmp);
415 if (retval)
416 goto fail_nomem_policy;
417 tmp->vm_mm = mm;
418 if (anon_vma_fork(tmp, mpnt))
419 goto fail_nomem_anon_vma_fork;
420 tmp->vm_flags &= ~VM_LOCKED;
421 tmp->vm_next = tmp->vm_prev = NULL;
422 file = tmp->vm_file;
423 if (file) {
424 struct inode *inode = file_inode(file);
425 struct address_space *mapping = file->f_mapping;
426
427 get_file(file);
428 if (tmp->vm_flags & VM_DENYWRITE)
429 atomic_dec(&inode->i_writecount);
430 mutex_lock(&mapping->i_mmap_mutex);
431 if (tmp->vm_flags & VM_SHARED)
432 mapping->i_mmap_writable++;
433 flush_dcache_mmap_lock(mapping);
434 /* insert tmp into the share list, just after mpnt */
435 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
436 vma_nonlinear_insert(tmp,
437 &mapping->i_mmap_nonlinear);
438 else
439 vma_interval_tree_insert_after(tmp, mpnt,
440 &mapping->i_mmap);
441 flush_dcache_mmap_unlock(mapping);
442 mutex_unlock(&mapping->i_mmap_mutex);
443 }
444
445 /*
446 * Clear hugetlb-related page reserves for children. This only
447 * affects MAP_PRIVATE mappings. Faults generated by the child
448 * are not guaranteed to succeed, even if read-only
449 */
450 if (is_vm_hugetlb_page(tmp))
451 reset_vma_resv_huge_pages(tmp);
452
453 /*
454 * Link in the new vma and copy the page table entries.
455 */
456 *pprev = tmp;
457 pprev = &tmp->vm_next;
458 tmp->vm_prev = prev;
459 prev = tmp;
460
461 __vma_link_rb(mm, tmp, rb_link, rb_parent);
462 rb_link = &tmp->vm_rb.rb_right;
463 rb_parent = &tmp->vm_rb;
464
465 mm->map_count++;
466 retval = copy_page_range(mm, oldmm, mpnt);
467
468 if (tmp->vm_ops && tmp->vm_ops->open)
469 tmp->vm_ops->open(tmp);
470
471 if (retval)
472 goto out;
473 }
474 /* a new mm has just been created */
475 arch_dup_mmap(oldmm, mm);
476 retval = 0;
477 out:
478 up_write(&mm->mmap_sem);
479 flush_tlb_mm(oldmm);
480 up_write(&oldmm->mmap_sem);
481 uprobe_end_dup_mmap();
482 return retval;
483 fail_nomem_anon_vma_fork:
484 mpol_put(vma_policy(tmp));
485 fail_nomem_policy:
486 kmem_cache_free(vm_area_cachep, tmp);
487 fail_nomem:
488 retval = -ENOMEM;
489 vm_unacct_memory(charge);
490 goto out;
491 }
492
493 static inline int mm_alloc_pgd(struct mm_struct *mm)
494 {
495 mm->pgd = pgd_alloc(mm);
496 if (unlikely(!mm->pgd))
497 return -ENOMEM;
498 return 0;
499 }
500
501 static inline void mm_free_pgd(struct mm_struct *mm)
502 {
503 pgd_free(mm, mm->pgd);
504 }
505 #else
506 #define dup_mmap(mm, oldmm) (0)
507 #define mm_alloc_pgd(mm) (0)
508 #define mm_free_pgd(mm)
509 #endif /* CONFIG_MMU */
510
511 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
512
513 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
514 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
515
516 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
517
518 static int __init coredump_filter_setup(char *s)
519 {
520 default_dump_filter =
521 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
522 MMF_DUMP_FILTER_MASK;
523 return 1;
524 }
525
526 __setup("coredump_filter=", coredump_filter_setup);
527
528 #include <linux/init_task.h>
529
530 static void mm_init_aio(struct mm_struct *mm)
531 {
532 #ifdef CONFIG_AIO
533 spin_lock_init(&mm->ioctx_lock);
534 mm->ioctx_table = NULL;
535 #endif
536 }
537
538 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
539 {
540 mm->mmap = NULL;
541 mm->mm_rb = RB_ROOT;
542 mm->vmacache_seqnum = 0;
543 atomic_set(&mm->mm_users, 1);
544 atomic_set(&mm->mm_count, 1);
545 init_rwsem(&mm->mmap_sem);
546 INIT_LIST_HEAD(&mm->mmlist);
547 mm->core_state = NULL;
548 atomic_long_set(&mm->nr_ptes, 0);
549 mm->map_count = 0;
550 mm->locked_vm = 0;
551 mm->pinned_vm = 0;
552 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
553 spin_lock_init(&mm->page_table_lock);
554 mm_init_cpumask(mm);
555 mm_init_aio(mm);
556 mm_init_owner(mm, p);
557 mmu_notifier_mm_init(mm);
558 clear_tlb_flush_pending(mm);
559 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
560 mm->pmd_huge_pte = NULL;
561 #endif
562
563 if (current->mm) {
564 mm->flags = current->mm->flags & MMF_INIT_MASK;
565 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
566 } else {
567 mm->flags = default_dump_filter;
568 mm->def_flags = 0;
569 }
570
571 if (mm_alloc_pgd(mm))
572 goto fail_nopgd;
573
574 if (init_new_context(p, mm))
575 goto fail_nocontext;
576
577 return mm;
578
579 fail_nocontext:
580 mm_free_pgd(mm);
581 fail_nopgd:
582 free_mm(mm);
583 return NULL;
584 }
585
586 static void check_mm(struct mm_struct *mm)
587 {
588 int i;
589
590 for (i = 0; i < NR_MM_COUNTERS; i++) {
591 long x = atomic_long_read(&mm->rss_stat.count[i]);
592
593 if (unlikely(x))
594 printk(KERN_ALERT "BUG: Bad rss-counter state "
595 "mm:%p idx:%d val:%ld\n", mm, i, x);
596 }
597
598 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
599 VM_BUG_ON(mm->pmd_huge_pte);
600 #endif
601 }
602
603 /*
604 * Allocate and initialize an mm_struct.
605 */
606 struct mm_struct *mm_alloc(void)
607 {
608 struct mm_struct *mm;
609
610 mm = allocate_mm();
611 if (!mm)
612 return NULL;
613
614 memset(mm, 0, sizeof(*mm));
615 return mm_init(mm, current);
616 }
617
618 /*
619 * Called when the last reference to the mm
620 * is dropped: either by a lazy thread or by
621 * mmput. Free the page directory and the mm.
622 */
623 void __mmdrop(struct mm_struct *mm)
624 {
625 BUG_ON(mm == &init_mm);
626 mm_free_pgd(mm);
627 destroy_context(mm);
628 mmu_notifier_mm_destroy(mm);
629 check_mm(mm);
630 free_mm(mm);
631 }
632 EXPORT_SYMBOL_GPL(__mmdrop);
633
634 /*
635 * Decrement the use count and release all resources for an mm.
636 */
637 void mmput(struct mm_struct *mm)
638 {
639 might_sleep();
640
641 if (atomic_dec_and_test(&mm->mm_users)) {
642 uprobe_clear_state(mm);
643 exit_aio(mm);
644 ksm_exit(mm);
645 khugepaged_exit(mm); /* must run before exit_mmap */
646 exit_mmap(mm);
647 set_mm_exe_file(mm, NULL);
648 if (!list_empty(&mm->mmlist)) {
649 spin_lock(&mmlist_lock);
650 list_del(&mm->mmlist);
651 spin_unlock(&mmlist_lock);
652 }
653 if (mm->binfmt)
654 module_put(mm->binfmt->module);
655 mmdrop(mm);
656 }
657 }
658 EXPORT_SYMBOL_GPL(mmput);
659
660 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
661 {
662 if (new_exe_file)
663 get_file(new_exe_file);
664 if (mm->exe_file)
665 fput(mm->exe_file);
666 mm->exe_file = new_exe_file;
667 }
668
669 struct file *get_mm_exe_file(struct mm_struct *mm)
670 {
671 struct file *exe_file;
672
673 /* We need mmap_sem to protect against races with removal of exe_file */
674 down_read(&mm->mmap_sem);
675 exe_file = mm->exe_file;
676 if (exe_file)
677 get_file(exe_file);
678 up_read(&mm->mmap_sem);
679 return exe_file;
680 }
681
682 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
683 {
684 /* It's safe to write the exe_file pointer without exe_file_lock because
685 * this is called during fork when the task is not yet in /proc */
686 newmm->exe_file = get_mm_exe_file(oldmm);
687 }
688
689 /**
690 * get_task_mm - acquire a reference to the task's mm
691 *
692 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
693 * this kernel workthread has transiently adopted a user mm with use_mm,
694 * to do its AIO) is not set and if so returns a reference to it, after
695 * bumping up the use count. User must release the mm via mmput()
696 * after use. Typically used by /proc and ptrace.
697 */
698 struct mm_struct *get_task_mm(struct task_struct *task)
699 {
700 struct mm_struct *mm;
701
702 task_lock(task);
703 mm = task->mm;
704 if (mm) {
705 if (task->flags & PF_KTHREAD)
706 mm = NULL;
707 else
708 atomic_inc(&mm->mm_users);
709 }
710 task_unlock(task);
711 return mm;
712 }
713 EXPORT_SYMBOL_GPL(get_task_mm);
714
715 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
716 {
717 struct mm_struct *mm;
718 int err;
719
720 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
721 if (err)
722 return ERR_PTR(err);
723
724 mm = get_task_mm(task);
725 if (mm && mm != current->mm &&
726 !ptrace_may_access(task, mode)) {
727 mmput(mm);
728 mm = ERR_PTR(-EACCES);
729 }
730 mutex_unlock(&task->signal->cred_guard_mutex);
731
732 return mm;
733 }
734
735 static void complete_vfork_done(struct task_struct *tsk)
736 {
737 struct completion *vfork;
738
739 task_lock(tsk);
740 vfork = tsk->vfork_done;
741 if (likely(vfork)) {
742 tsk->vfork_done = NULL;
743 complete(vfork);
744 }
745 task_unlock(tsk);
746 }
747
748 static int wait_for_vfork_done(struct task_struct *child,
749 struct completion *vfork)
750 {
751 int killed;
752
753 freezer_do_not_count();
754 killed = wait_for_completion_killable(vfork);
755 freezer_count();
756
757 if (killed) {
758 task_lock(child);
759 child->vfork_done = NULL;
760 task_unlock(child);
761 }
762
763 put_task_struct(child);
764 return killed;
765 }
766
767 /* Please note the differences between mmput and mm_release.
768 * mmput is called whenever we stop holding onto a mm_struct,
769 * error success whatever.
770 *
771 * mm_release is called after a mm_struct has been removed
772 * from the current process.
773 *
774 * This difference is important for error handling, when we
775 * only half set up a mm_struct for a new process and need to restore
776 * the old one. Because we mmput the new mm_struct before
777 * restoring the old one. . .
778 * Eric Biederman 10 January 1998
779 */
780 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
781 {
782 /* Get rid of any futexes when releasing the mm */
783 #ifdef CONFIG_FUTEX
784 if (unlikely(tsk->robust_list)) {
785 exit_robust_list(tsk);
786 tsk->robust_list = NULL;
787 }
788 #ifdef CONFIG_COMPAT
789 if (unlikely(tsk->compat_robust_list)) {
790 compat_exit_robust_list(tsk);
791 tsk->compat_robust_list = NULL;
792 }
793 #endif
794 if (unlikely(!list_empty(&tsk->pi_state_list)))
795 exit_pi_state_list(tsk);
796 #endif
797
798 uprobe_free_utask(tsk);
799
800 /* Get rid of any cached register state */
801 deactivate_mm(tsk, mm);
802
803 /*
804 * If we're exiting normally, clear a user-space tid field if
805 * requested. We leave this alone when dying by signal, to leave
806 * the value intact in a core dump, and to save the unnecessary
807 * trouble, say, a killed vfork parent shouldn't touch this mm.
808 * Userland only wants this done for a sys_exit.
809 */
810 if (tsk->clear_child_tid) {
811 if (!(tsk->flags & PF_SIGNALED) &&
812 atomic_read(&mm->mm_users) > 1) {
813 /*
814 * We don't check the error code - if userspace has
815 * not set up a proper pointer then tough luck.
816 */
817 put_user(0, tsk->clear_child_tid);
818 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
819 1, NULL, NULL, 0);
820 }
821 tsk->clear_child_tid = NULL;
822 }
823
824 /*
825 * All done, finally we can wake up parent and return this mm to him.
826 * Also kthread_stop() uses this completion for synchronization.
827 */
828 if (tsk->vfork_done)
829 complete_vfork_done(tsk);
830 }
831
832 /*
833 * Allocate a new mm structure and copy contents from the
834 * mm structure of the passed in task structure.
835 */
836 static struct mm_struct *dup_mm(struct task_struct *tsk)
837 {
838 struct mm_struct *mm, *oldmm = current->mm;
839 int err;
840
841 mm = allocate_mm();
842 if (!mm)
843 goto fail_nomem;
844
845 memcpy(mm, oldmm, sizeof(*mm));
846
847 if (!mm_init(mm, tsk))
848 goto fail_nomem;
849
850 dup_mm_exe_file(oldmm, mm);
851
852 err = dup_mmap(mm, oldmm);
853 if (err)
854 goto free_pt;
855
856 mm->hiwater_rss = get_mm_rss(mm);
857 mm->hiwater_vm = mm->total_vm;
858
859 if (mm->binfmt && !try_module_get(mm->binfmt->module))
860 goto free_pt;
861
862 return mm;
863
864 free_pt:
865 /* don't put binfmt in mmput, we haven't got module yet */
866 mm->binfmt = NULL;
867 mmput(mm);
868
869 fail_nomem:
870 return NULL;
871 }
872
873 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
874 {
875 struct mm_struct *mm, *oldmm;
876 int retval;
877
878 tsk->min_flt = tsk->maj_flt = 0;
879 tsk->nvcsw = tsk->nivcsw = 0;
880 #ifdef CONFIG_DETECT_HUNG_TASK
881 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
882 #endif
883
884 tsk->mm = NULL;
885 tsk->active_mm = NULL;
886
887 /*
888 * Are we cloning a kernel thread?
889 *
890 * We need to steal a active VM for that..
891 */
892 oldmm = current->mm;
893 if (!oldmm)
894 return 0;
895
896 /* initialize the new vmacache entries */
897 vmacache_flush(tsk);
898
899 if (clone_flags & CLONE_VM) {
900 atomic_inc(&oldmm->mm_users);
901 mm = oldmm;
902 goto good_mm;
903 }
904
905 retval = -ENOMEM;
906 mm = dup_mm(tsk);
907 if (!mm)
908 goto fail_nomem;
909
910 good_mm:
911 tsk->mm = mm;
912 tsk->active_mm = mm;
913 return 0;
914
915 fail_nomem:
916 return retval;
917 }
918
919 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
920 {
921 struct fs_struct *fs = current->fs;
922 if (clone_flags & CLONE_FS) {
923 /* tsk->fs is already what we want */
924 spin_lock(&fs->lock);
925 if (fs->in_exec) {
926 spin_unlock(&fs->lock);
927 return -EAGAIN;
928 }
929 fs->users++;
930 spin_unlock(&fs->lock);
931 return 0;
932 }
933 tsk->fs = copy_fs_struct(fs);
934 if (!tsk->fs)
935 return -ENOMEM;
936 return 0;
937 }
938
939 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
940 {
941 struct files_struct *oldf, *newf;
942 int error = 0;
943
944 /*
945 * A background process may not have any files ...
946 */
947 oldf = current->files;
948 if (!oldf)
949 goto out;
950
951 if (clone_flags & CLONE_FILES) {
952 atomic_inc(&oldf->count);
953 goto out;
954 }
955
956 newf = dup_fd(oldf, &error);
957 if (!newf)
958 goto out;
959
960 tsk->files = newf;
961 error = 0;
962 out:
963 return error;
964 }
965
966 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
967 {
968 #ifdef CONFIG_BLOCK
969 struct io_context *ioc = current->io_context;
970 struct io_context *new_ioc;
971
972 if (!ioc)
973 return 0;
974 /*
975 * Share io context with parent, if CLONE_IO is set
976 */
977 if (clone_flags & CLONE_IO) {
978 ioc_task_link(ioc);
979 tsk->io_context = ioc;
980 } else if (ioprio_valid(ioc->ioprio)) {
981 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
982 if (unlikely(!new_ioc))
983 return -ENOMEM;
984
985 new_ioc->ioprio = ioc->ioprio;
986 put_io_context(new_ioc);
987 }
988 #endif
989 return 0;
990 }
991
992 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
993 {
994 struct sighand_struct *sig;
995
996 if (clone_flags & CLONE_SIGHAND) {
997 atomic_inc(&current->sighand->count);
998 return 0;
999 }
1000 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1001 rcu_assign_pointer(tsk->sighand, sig);
1002 if (!sig)
1003 return -ENOMEM;
1004 atomic_set(&sig->count, 1);
1005 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1006 return 0;
1007 }
1008
1009 void __cleanup_sighand(struct sighand_struct *sighand)
1010 {
1011 if (atomic_dec_and_test(&sighand->count)) {
1012 signalfd_cleanup(sighand);
1013 kmem_cache_free(sighand_cachep, sighand);
1014 }
1015 }
1016
1017
1018 /*
1019 * Initialize POSIX timer handling for a thread group.
1020 */
1021 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1022 {
1023 unsigned long cpu_limit;
1024
1025 /* Thread group counters. */
1026 thread_group_cputime_init(sig);
1027
1028 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1029 if (cpu_limit != RLIM_INFINITY) {
1030 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1031 sig->cputimer.running = 1;
1032 }
1033
1034 /* The timer lists. */
1035 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1036 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1037 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1038 }
1039
1040 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1041 {
1042 struct signal_struct *sig;
1043
1044 if (clone_flags & CLONE_THREAD)
1045 return 0;
1046
1047 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1048 tsk->signal = sig;
1049 if (!sig)
1050 return -ENOMEM;
1051
1052 sig->nr_threads = 1;
1053 atomic_set(&sig->live, 1);
1054 atomic_set(&sig->sigcnt, 1);
1055
1056 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1057 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1058 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1059
1060 init_waitqueue_head(&sig->wait_chldexit);
1061 sig->curr_target = tsk;
1062 init_sigpending(&sig->shared_pending);
1063 INIT_LIST_HEAD(&sig->posix_timers);
1064
1065 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1066 sig->real_timer.function = it_real_fn;
1067
1068 task_lock(current->group_leader);
1069 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1070 task_unlock(current->group_leader);
1071
1072 posix_cpu_timers_init_group(sig);
1073
1074 tty_audit_fork(sig);
1075 sched_autogroup_fork(sig);
1076
1077 #ifdef CONFIG_CGROUPS
1078 init_rwsem(&sig->group_rwsem);
1079 #endif
1080
1081 sig->oom_score_adj = current->signal->oom_score_adj;
1082 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1083
1084 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1085 current->signal->is_child_subreaper;
1086
1087 mutex_init(&sig->cred_guard_mutex);
1088
1089 return 0;
1090 }
1091
1092 static void copy_seccomp(struct task_struct *p)
1093 {
1094 #ifdef CONFIG_SECCOMP
1095 /*
1096 * Must be called with sighand->lock held, which is common to
1097 * all threads in the group. Holding cred_guard_mutex is not
1098 * needed because this new task is not yet running and cannot
1099 * be racing exec.
1100 */
1101 BUG_ON(!spin_is_locked(&current->sighand->siglock));
1102
1103 /* Ref-count the new filter user, and assign it. */
1104 get_seccomp_filter(current);
1105 p->seccomp = current->seccomp;
1106
1107 /*
1108 * Explicitly enable no_new_privs here in case it got set
1109 * between the task_struct being duplicated and holding the
1110 * sighand lock. The seccomp state and nnp must be in sync.
1111 */
1112 if (task_no_new_privs(current))
1113 task_set_no_new_privs(p);
1114
1115 /*
1116 * If the parent gained a seccomp mode after copying thread
1117 * flags and between before we held the sighand lock, we have
1118 * to manually enable the seccomp thread flag here.
1119 */
1120 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1121 set_tsk_thread_flag(p, TIF_SECCOMP);
1122 #endif
1123 }
1124
1125 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1126 {
1127 current->clear_child_tid = tidptr;
1128
1129 return task_pid_vnr(current);
1130 }
1131
1132 static void rt_mutex_init_task(struct task_struct *p)
1133 {
1134 raw_spin_lock_init(&p->pi_lock);
1135 #ifdef CONFIG_RT_MUTEXES
1136 p->pi_waiters = RB_ROOT;
1137 p->pi_waiters_leftmost = NULL;
1138 p->pi_blocked_on = NULL;
1139 #endif
1140 }
1141
1142 #ifdef CONFIG_MEMCG
1143 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1144 {
1145 mm->owner = p;
1146 }
1147 #endif /* CONFIG_MEMCG */
1148
1149 /*
1150 * Initialize POSIX timer handling for a single task.
1151 */
1152 static void posix_cpu_timers_init(struct task_struct *tsk)
1153 {
1154 tsk->cputime_expires.prof_exp = 0;
1155 tsk->cputime_expires.virt_exp = 0;
1156 tsk->cputime_expires.sched_exp = 0;
1157 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1158 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1159 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1160 }
1161
1162 static inline void
1163 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1164 {
1165 task->pids[type].pid = pid;
1166 }
1167
1168 /*
1169 * This creates a new process as a copy of the old one,
1170 * but does not actually start it yet.
1171 *
1172 * It copies the registers, and all the appropriate
1173 * parts of the process environment (as per the clone
1174 * flags). The actual kick-off is left to the caller.
1175 */
1176 static struct task_struct *copy_process(unsigned long clone_flags,
1177 unsigned long stack_start,
1178 unsigned long stack_size,
1179 int __user *child_tidptr,
1180 struct pid *pid,
1181 int trace)
1182 {
1183 int retval;
1184 struct task_struct *p;
1185
1186 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1187 return ERR_PTR(-EINVAL);
1188
1189 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1190 return ERR_PTR(-EINVAL);
1191
1192 /*
1193 * Thread groups must share signals as well, and detached threads
1194 * can only be started up within the thread group.
1195 */
1196 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1197 return ERR_PTR(-EINVAL);
1198
1199 /*
1200 * Shared signal handlers imply shared VM. By way of the above,
1201 * thread groups also imply shared VM. Blocking this case allows
1202 * for various simplifications in other code.
1203 */
1204 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1205 return ERR_PTR(-EINVAL);
1206
1207 /*
1208 * Siblings of global init remain as zombies on exit since they are
1209 * not reaped by their parent (swapper). To solve this and to avoid
1210 * multi-rooted process trees, prevent global and container-inits
1211 * from creating siblings.
1212 */
1213 if ((clone_flags & CLONE_PARENT) &&
1214 current->signal->flags & SIGNAL_UNKILLABLE)
1215 return ERR_PTR(-EINVAL);
1216
1217 /*
1218 * If the new process will be in a different pid or user namespace
1219 * do not allow it to share a thread group or signal handlers or
1220 * parent with the forking task.
1221 */
1222 if (clone_flags & CLONE_SIGHAND) {
1223 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1224 (task_active_pid_ns(current) !=
1225 current->nsproxy->pid_ns_for_children))
1226 return ERR_PTR(-EINVAL);
1227 }
1228
1229 retval = security_task_create(clone_flags);
1230 if (retval)
1231 goto fork_out;
1232
1233 retval = -ENOMEM;
1234 p = dup_task_struct(current);
1235 if (!p)
1236 goto fork_out;
1237
1238 ftrace_graph_init_task(p);
1239
1240 rt_mutex_init_task(p);
1241
1242 #ifdef CONFIG_PROVE_LOCKING
1243 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1244 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1245 #endif
1246 retval = -EAGAIN;
1247 if (atomic_read(&p->real_cred->user->processes) >=
1248 task_rlimit(p, RLIMIT_NPROC)) {
1249 if (p->real_cred->user != INIT_USER &&
1250 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1251 goto bad_fork_free;
1252 }
1253 current->flags &= ~PF_NPROC_EXCEEDED;
1254
1255 retval = copy_creds(p, clone_flags);
1256 if (retval < 0)
1257 goto bad_fork_free;
1258
1259 /*
1260 * If multiple threads are within copy_process(), then this check
1261 * triggers too late. This doesn't hurt, the check is only there
1262 * to stop root fork bombs.
1263 */
1264 retval = -EAGAIN;
1265 if (nr_threads >= max_threads)
1266 goto bad_fork_cleanup_count;
1267
1268 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1269 goto bad_fork_cleanup_count;
1270
1271 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1272 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1273 p->flags |= PF_FORKNOEXEC;
1274 INIT_LIST_HEAD(&p->children);
1275 INIT_LIST_HEAD(&p->sibling);
1276 rcu_copy_process(p);
1277 p->vfork_done = NULL;
1278 spin_lock_init(&p->alloc_lock);
1279
1280 init_sigpending(&p->pending);
1281
1282 p->utime = p->stime = p->gtime = 0;
1283 p->utimescaled = p->stimescaled = 0;
1284 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1285 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1286 #endif
1287 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1288 seqlock_init(&p->vtime_seqlock);
1289 p->vtime_snap = 0;
1290 p->vtime_snap_whence = VTIME_SLEEPING;
1291 #endif
1292
1293 #if defined(SPLIT_RSS_COUNTING)
1294 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1295 #endif
1296
1297 p->default_timer_slack_ns = current->timer_slack_ns;
1298
1299 task_io_accounting_init(&p->ioac);
1300 acct_clear_integrals(p);
1301
1302 posix_cpu_timers_init(p);
1303
1304 p->start_time = ktime_get_ns();
1305 p->real_start_time = ktime_get_boot_ns();
1306 p->io_context = NULL;
1307 p->audit_context = NULL;
1308 if (clone_flags & CLONE_THREAD)
1309 threadgroup_change_begin(current);
1310 cgroup_fork(p);
1311 #ifdef CONFIG_NUMA
1312 p->mempolicy = mpol_dup(p->mempolicy);
1313 if (IS_ERR(p->mempolicy)) {
1314 retval = PTR_ERR(p->mempolicy);
1315 p->mempolicy = NULL;
1316 goto bad_fork_cleanup_threadgroup_lock;
1317 }
1318 #endif
1319 #ifdef CONFIG_CPUSETS
1320 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1321 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1322 seqcount_init(&p->mems_allowed_seq);
1323 #endif
1324 #ifdef CONFIG_TRACE_IRQFLAGS
1325 p->irq_events = 0;
1326 p->hardirqs_enabled = 0;
1327 p->hardirq_enable_ip = 0;
1328 p->hardirq_enable_event = 0;
1329 p->hardirq_disable_ip = _THIS_IP_;
1330 p->hardirq_disable_event = 0;
1331 p->softirqs_enabled = 1;
1332 p->softirq_enable_ip = _THIS_IP_;
1333 p->softirq_enable_event = 0;
1334 p->softirq_disable_ip = 0;
1335 p->softirq_disable_event = 0;
1336 p->hardirq_context = 0;
1337 p->softirq_context = 0;
1338 #endif
1339 #ifdef CONFIG_LOCKDEP
1340 p->lockdep_depth = 0; /* no locks held yet */
1341 p->curr_chain_key = 0;
1342 p->lockdep_recursion = 0;
1343 #endif
1344
1345 #ifdef CONFIG_DEBUG_MUTEXES
1346 p->blocked_on = NULL; /* not blocked yet */
1347 #endif
1348 #ifdef CONFIG_BCACHE
1349 p->sequential_io = 0;
1350 p->sequential_io_avg = 0;
1351 #endif
1352
1353 /* Perform scheduler related setup. Assign this task to a CPU. */
1354 retval = sched_fork(clone_flags, p);
1355 if (retval)
1356 goto bad_fork_cleanup_policy;
1357
1358 retval = perf_event_init_task(p);
1359 if (retval)
1360 goto bad_fork_cleanup_policy;
1361 retval = audit_alloc(p);
1362 if (retval)
1363 goto bad_fork_cleanup_policy;
1364 /* copy all the process information */
1365 retval = copy_semundo(clone_flags, p);
1366 if (retval)
1367 goto bad_fork_cleanup_audit;
1368 retval = copy_files(clone_flags, p);
1369 if (retval)
1370 goto bad_fork_cleanup_semundo;
1371 retval = copy_fs(clone_flags, p);
1372 if (retval)
1373 goto bad_fork_cleanup_files;
1374 retval = copy_sighand(clone_flags, p);
1375 if (retval)
1376 goto bad_fork_cleanup_fs;
1377 retval = copy_signal(clone_flags, p);
1378 if (retval)
1379 goto bad_fork_cleanup_sighand;
1380 retval = copy_mm(clone_flags, p);
1381 if (retval)
1382 goto bad_fork_cleanup_signal;
1383 retval = copy_namespaces(clone_flags, p);
1384 if (retval)
1385 goto bad_fork_cleanup_mm;
1386 retval = copy_io(clone_flags, p);
1387 if (retval)
1388 goto bad_fork_cleanup_namespaces;
1389 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1390 if (retval)
1391 goto bad_fork_cleanup_io;
1392
1393 if (pid != &init_struct_pid) {
1394 retval = -ENOMEM;
1395 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1396 if (!pid)
1397 goto bad_fork_cleanup_io;
1398 }
1399
1400 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1401 /*
1402 * Clear TID on mm_release()?
1403 */
1404 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1405 #ifdef CONFIG_BLOCK
1406 p->plug = NULL;
1407 #endif
1408 #ifdef CONFIG_FUTEX
1409 p->robust_list = NULL;
1410 #ifdef CONFIG_COMPAT
1411 p->compat_robust_list = NULL;
1412 #endif
1413 INIT_LIST_HEAD(&p->pi_state_list);
1414 p->pi_state_cache = NULL;
1415 #endif
1416 /*
1417 * sigaltstack should be cleared when sharing the same VM
1418 */
1419 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1420 p->sas_ss_sp = p->sas_ss_size = 0;
1421
1422 /*
1423 * Syscall tracing and stepping should be turned off in the
1424 * child regardless of CLONE_PTRACE.
1425 */
1426 user_disable_single_step(p);
1427 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1428 #ifdef TIF_SYSCALL_EMU
1429 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1430 #endif
1431 clear_all_latency_tracing(p);
1432
1433 /* ok, now we should be set up.. */
1434 p->pid = pid_nr(pid);
1435 if (clone_flags & CLONE_THREAD) {
1436 p->exit_signal = -1;
1437 p->group_leader = current->group_leader;
1438 p->tgid = current->tgid;
1439 } else {
1440 if (clone_flags & CLONE_PARENT)
1441 p->exit_signal = current->group_leader->exit_signal;
1442 else
1443 p->exit_signal = (clone_flags & CSIGNAL);
1444 p->group_leader = p;
1445 p->tgid = p->pid;
1446 }
1447
1448 p->nr_dirtied = 0;
1449 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1450 p->dirty_paused_when = 0;
1451
1452 p->pdeath_signal = 0;
1453 INIT_LIST_HEAD(&p->thread_group);
1454 p->task_works = NULL;
1455
1456 /*
1457 * Make it visible to the rest of the system, but dont wake it up yet.
1458 * Need tasklist lock for parent etc handling!
1459 */
1460 write_lock_irq(&tasklist_lock);
1461
1462 /* CLONE_PARENT re-uses the old parent */
1463 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1464 p->real_parent = current->real_parent;
1465 p->parent_exec_id = current->parent_exec_id;
1466 } else {
1467 p->real_parent = current;
1468 p->parent_exec_id = current->self_exec_id;
1469 }
1470
1471 spin_lock(&current->sighand->siglock);
1472
1473 /*
1474 * Copy seccomp details explicitly here, in case they were changed
1475 * before holding sighand lock.
1476 */
1477 copy_seccomp(p);
1478
1479 /*
1480 * Process group and session signals need to be delivered to just the
1481 * parent before the fork or both the parent and the child after the
1482 * fork. Restart if a signal comes in before we add the new process to
1483 * it's process group.
1484 * A fatal signal pending means that current will exit, so the new
1485 * thread can't slip out of an OOM kill (or normal SIGKILL).
1486 */
1487 recalc_sigpending();
1488 if (signal_pending(current)) {
1489 spin_unlock(&current->sighand->siglock);
1490 write_unlock_irq(&tasklist_lock);
1491 retval = -ERESTARTNOINTR;
1492 goto bad_fork_free_pid;
1493 }
1494
1495 if (likely(p->pid)) {
1496 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1497
1498 init_task_pid(p, PIDTYPE_PID, pid);
1499 if (thread_group_leader(p)) {
1500 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1501 init_task_pid(p, PIDTYPE_SID, task_session(current));
1502
1503 if (is_child_reaper(pid)) {
1504 ns_of_pid(pid)->child_reaper = p;
1505 p->signal->flags |= SIGNAL_UNKILLABLE;
1506 }
1507
1508 p->signal->leader_pid = pid;
1509 p->signal->tty = tty_kref_get(current->signal->tty);
1510 list_add_tail(&p->sibling, &p->real_parent->children);
1511 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1512 attach_pid(p, PIDTYPE_PGID);
1513 attach_pid(p, PIDTYPE_SID);
1514 __this_cpu_inc(process_counts);
1515 } else {
1516 current->signal->nr_threads++;
1517 atomic_inc(&current->signal->live);
1518 atomic_inc(&current->signal->sigcnt);
1519 list_add_tail_rcu(&p->thread_group,
1520 &p->group_leader->thread_group);
1521 list_add_tail_rcu(&p->thread_node,
1522 &p->signal->thread_head);
1523 }
1524 attach_pid(p, PIDTYPE_PID);
1525 nr_threads++;
1526 }
1527
1528 total_forks++;
1529 spin_unlock(&current->sighand->siglock);
1530 syscall_tracepoint_update(p);
1531 write_unlock_irq(&tasklist_lock);
1532
1533 proc_fork_connector(p);
1534 cgroup_post_fork(p);
1535 if (clone_flags & CLONE_THREAD)
1536 threadgroup_change_end(current);
1537 perf_event_fork(p);
1538
1539 trace_task_newtask(p, clone_flags);
1540 uprobe_copy_process(p, clone_flags);
1541
1542 return p;
1543
1544 bad_fork_free_pid:
1545 if (pid != &init_struct_pid)
1546 free_pid(pid);
1547 bad_fork_cleanup_io:
1548 if (p->io_context)
1549 exit_io_context(p);
1550 bad_fork_cleanup_namespaces:
1551 exit_task_namespaces(p);
1552 bad_fork_cleanup_mm:
1553 if (p->mm)
1554 mmput(p->mm);
1555 bad_fork_cleanup_signal:
1556 if (!(clone_flags & CLONE_THREAD))
1557 free_signal_struct(p->signal);
1558 bad_fork_cleanup_sighand:
1559 __cleanup_sighand(p->sighand);
1560 bad_fork_cleanup_fs:
1561 exit_fs(p); /* blocking */
1562 bad_fork_cleanup_files:
1563 exit_files(p); /* blocking */
1564 bad_fork_cleanup_semundo:
1565 exit_sem(p);
1566 bad_fork_cleanup_audit:
1567 audit_free(p);
1568 bad_fork_cleanup_policy:
1569 perf_event_free_task(p);
1570 #ifdef CONFIG_NUMA
1571 mpol_put(p->mempolicy);
1572 bad_fork_cleanup_threadgroup_lock:
1573 #endif
1574 if (clone_flags & CLONE_THREAD)
1575 threadgroup_change_end(current);
1576 delayacct_tsk_free(p);
1577 module_put(task_thread_info(p)->exec_domain->module);
1578 bad_fork_cleanup_count:
1579 atomic_dec(&p->cred->user->processes);
1580 exit_creds(p);
1581 bad_fork_free:
1582 free_task(p);
1583 fork_out:
1584 return ERR_PTR(retval);
1585 }
1586
1587 static inline void init_idle_pids(struct pid_link *links)
1588 {
1589 enum pid_type type;
1590
1591 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1592 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1593 links[type].pid = &init_struct_pid;
1594 }
1595 }
1596
1597 struct task_struct *fork_idle(int cpu)
1598 {
1599 struct task_struct *task;
1600 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1601 if (!IS_ERR(task)) {
1602 init_idle_pids(task->pids);
1603 init_idle(task, cpu);
1604 }
1605
1606 return task;
1607 }
1608
1609 /*
1610 * Ok, this is the main fork-routine.
1611 *
1612 * It copies the process, and if successful kick-starts
1613 * it and waits for it to finish using the VM if required.
1614 */
1615 long do_fork(unsigned long clone_flags,
1616 unsigned long stack_start,
1617 unsigned long stack_size,
1618 int __user *parent_tidptr,
1619 int __user *child_tidptr)
1620 {
1621 struct task_struct *p;
1622 int trace = 0;
1623 long nr;
1624
1625 /*
1626 * Determine whether and which event to report to ptracer. When
1627 * called from kernel_thread or CLONE_UNTRACED is explicitly
1628 * requested, no event is reported; otherwise, report if the event
1629 * for the type of forking is enabled.
1630 */
1631 if (!(clone_flags & CLONE_UNTRACED)) {
1632 if (clone_flags & CLONE_VFORK)
1633 trace = PTRACE_EVENT_VFORK;
1634 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1635 trace = PTRACE_EVENT_CLONE;
1636 else
1637 trace = PTRACE_EVENT_FORK;
1638
1639 if (likely(!ptrace_event_enabled(current, trace)))
1640 trace = 0;
1641 }
1642
1643 p = copy_process(clone_flags, stack_start, stack_size,
1644 child_tidptr, NULL, trace);
1645 /*
1646 * Do this prior waking up the new thread - the thread pointer
1647 * might get invalid after that point, if the thread exits quickly.
1648 */
1649 if (!IS_ERR(p)) {
1650 struct completion vfork;
1651 struct pid *pid;
1652
1653 trace_sched_process_fork(current, p);
1654
1655 pid = get_task_pid(p, PIDTYPE_PID);
1656 nr = pid_vnr(pid);
1657
1658 if (clone_flags & CLONE_PARENT_SETTID)
1659 put_user(nr, parent_tidptr);
1660
1661 if (clone_flags & CLONE_VFORK) {
1662 p->vfork_done = &vfork;
1663 init_completion(&vfork);
1664 get_task_struct(p);
1665 }
1666
1667 wake_up_new_task(p);
1668
1669 /* forking complete and child started to run, tell ptracer */
1670 if (unlikely(trace))
1671 ptrace_event_pid(trace, pid);
1672
1673 if (clone_flags & CLONE_VFORK) {
1674 if (!wait_for_vfork_done(p, &vfork))
1675 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1676 }
1677
1678 put_pid(pid);
1679 } else {
1680 nr = PTR_ERR(p);
1681 }
1682 return nr;
1683 }
1684
1685 /*
1686 * Create a kernel thread.
1687 */
1688 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1689 {
1690 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1691 (unsigned long)arg, NULL, NULL);
1692 }
1693
1694 #ifdef __ARCH_WANT_SYS_FORK
1695 SYSCALL_DEFINE0(fork)
1696 {
1697 #ifdef CONFIG_MMU
1698 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1699 #else
1700 /* can not support in nommu mode */
1701 return -EINVAL;
1702 #endif
1703 }
1704 #endif
1705
1706 #ifdef __ARCH_WANT_SYS_VFORK
1707 SYSCALL_DEFINE0(vfork)
1708 {
1709 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1710 0, NULL, NULL);
1711 }
1712 #endif
1713
1714 #ifdef __ARCH_WANT_SYS_CLONE
1715 #ifdef CONFIG_CLONE_BACKWARDS
1716 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1717 int __user *, parent_tidptr,
1718 int, tls_val,
1719 int __user *, child_tidptr)
1720 #elif defined(CONFIG_CLONE_BACKWARDS2)
1721 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1722 int __user *, parent_tidptr,
1723 int __user *, child_tidptr,
1724 int, tls_val)
1725 #elif defined(CONFIG_CLONE_BACKWARDS3)
1726 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1727 int, stack_size,
1728 int __user *, parent_tidptr,
1729 int __user *, child_tidptr,
1730 int, tls_val)
1731 #else
1732 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1733 int __user *, parent_tidptr,
1734 int __user *, child_tidptr,
1735 int, tls_val)
1736 #endif
1737 {
1738 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1739 }
1740 #endif
1741
1742 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1743 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1744 #endif
1745
1746 static void sighand_ctor(void *data)
1747 {
1748 struct sighand_struct *sighand = data;
1749
1750 spin_lock_init(&sighand->siglock);
1751 init_waitqueue_head(&sighand->signalfd_wqh);
1752 }
1753
1754 void __init proc_caches_init(void)
1755 {
1756 sighand_cachep = kmem_cache_create("sighand_cache",
1757 sizeof(struct sighand_struct), 0,
1758 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1759 SLAB_NOTRACK, sighand_ctor);
1760 signal_cachep = kmem_cache_create("signal_cache",
1761 sizeof(struct signal_struct), 0,
1762 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1763 files_cachep = kmem_cache_create("files_cache",
1764 sizeof(struct files_struct), 0,
1765 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1766 fs_cachep = kmem_cache_create("fs_cache",
1767 sizeof(struct fs_struct), 0,
1768 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1769 /*
1770 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1771 * whole struct cpumask for the OFFSTACK case. We could change
1772 * this to *only* allocate as much of it as required by the
1773 * maximum number of CPU's we can ever have. The cpumask_allocation
1774 * is at the end of the structure, exactly for that reason.
1775 */
1776 mm_cachep = kmem_cache_create("mm_struct",
1777 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1778 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1779 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1780 mmap_init();
1781 nsproxy_cache_init();
1782 }
1783
1784 /*
1785 * Check constraints on flags passed to the unshare system call.
1786 */
1787 static int check_unshare_flags(unsigned long unshare_flags)
1788 {
1789 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1790 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1791 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1792 CLONE_NEWUSER|CLONE_NEWPID))
1793 return -EINVAL;
1794 /*
1795 * Not implemented, but pretend it works if there is nothing to
1796 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1797 * needs to unshare vm.
1798 */
1799 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1800 /* FIXME: get_task_mm() increments ->mm_users */
1801 if (atomic_read(&current->mm->mm_users) > 1)
1802 return -EINVAL;
1803 }
1804
1805 return 0;
1806 }
1807
1808 /*
1809 * Unshare the filesystem structure if it is being shared
1810 */
1811 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1812 {
1813 struct fs_struct *fs = current->fs;
1814
1815 if (!(unshare_flags & CLONE_FS) || !fs)
1816 return 0;
1817
1818 /* don't need lock here; in the worst case we'll do useless copy */
1819 if (fs->users == 1)
1820 return 0;
1821
1822 *new_fsp = copy_fs_struct(fs);
1823 if (!*new_fsp)
1824 return -ENOMEM;
1825
1826 return 0;
1827 }
1828
1829 /*
1830 * Unshare file descriptor table if it is being shared
1831 */
1832 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1833 {
1834 struct files_struct *fd = current->files;
1835 int error = 0;
1836
1837 if ((unshare_flags & CLONE_FILES) &&
1838 (fd && atomic_read(&fd->count) > 1)) {
1839 *new_fdp = dup_fd(fd, &error);
1840 if (!*new_fdp)
1841 return error;
1842 }
1843
1844 return 0;
1845 }
1846
1847 /*
1848 * unshare allows a process to 'unshare' part of the process
1849 * context which was originally shared using clone. copy_*
1850 * functions used by do_fork() cannot be used here directly
1851 * because they modify an inactive task_struct that is being
1852 * constructed. Here we are modifying the current, active,
1853 * task_struct.
1854 */
1855 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1856 {
1857 struct fs_struct *fs, *new_fs = NULL;
1858 struct files_struct *fd, *new_fd = NULL;
1859 struct cred *new_cred = NULL;
1860 struct nsproxy *new_nsproxy = NULL;
1861 int do_sysvsem = 0;
1862 int err;
1863
1864 /*
1865 * If unsharing a user namespace must also unshare the thread.
1866 */
1867 if (unshare_flags & CLONE_NEWUSER)
1868 unshare_flags |= CLONE_THREAD | CLONE_FS;
1869 /*
1870 * If unsharing a thread from a thread group, must also unshare vm.
1871 */
1872 if (unshare_flags & CLONE_THREAD)
1873 unshare_flags |= CLONE_VM;
1874 /*
1875 * If unsharing vm, must also unshare signal handlers.
1876 */
1877 if (unshare_flags & CLONE_VM)
1878 unshare_flags |= CLONE_SIGHAND;
1879 /*
1880 * If unsharing namespace, must also unshare filesystem information.
1881 */
1882 if (unshare_flags & CLONE_NEWNS)
1883 unshare_flags |= CLONE_FS;
1884
1885 err = check_unshare_flags(unshare_flags);
1886 if (err)
1887 goto bad_unshare_out;
1888 /*
1889 * CLONE_NEWIPC must also detach from the undolist: after switching
1890 * to a new ipc namespace, the semaphore arrays from the old
1891 * namespace are unreachable.
1892 */
1893 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1894 do_sysvsem = 1;
1895 err = unshare_fs(unshare_flags, &new_fs);
1896 if (err)
1897 goto bad_unshare_out;
1898 err = unshare_fd(unshare_flags, &new_fd);
1899 if (err)
1900 goto bad_unshare_cleanup_fs;
1901 err = unshare_userns(unshare_flags, &new_cred);
1902 if (err)
1903 goto bad_unshare_cleanup_fd;
1904 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1905 new_cred, new_fs);
1906 if (err)
1907 goto bad_unshare_cleanup_cred;
1908
1909 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1910 if (do_sysvsem) {
1911 /*
1912 * CLONE_SYSVSEM is equivalent to sys_exit().
1913 */
1914 exit_sem(current);
1915 }
1916
1917 if (new_nsproxy)
1918 switch_task_namespaces(current, new_nsproxy);
1919
1920 task_lock(current);
1921
1922 if (new_fs) {
1923 fs = current->fs;
1924 spin_lock(&fs->lock);
1925 current->fs = new_fs;
1926 if (--fs->users)
1927 new_fs = NULL;
1928 else
1929 new_fs = fs;
1930 spin_unlock(&fs->lock);
1931 }
1932
1933 if (new_fd) {
1934 fd = current->files;
1935 current->files = new_fd;
1936 new_fd = fd;
1937 }
1938
1939 task_unlock(current);
1940
1941 if (new_cred) {
1942 /* Install the new user namespace */
1943 commit_creds(new_cred);
1944 new_cred = NULL;
1945 }
1946 }
1947
1948 bad_unshare_cleanup_cred:
1949 if (new_cred)
1950 put_cred(new_cred);
1951 bad_unshare_cleanup_fd:
1952 if (new_fd)
1953 put_files_struct(new_fd);
1954
1955 bad_unshare_cleanup_fs:
1956 if (new_fs)
1957 free_fs_struct(new_fs);
1958
1959 bad_unshare_out:
1960 return err;
1961 }
1962
1963 /*
1964 * Helper to unshare the files of the current task.
1965 * We don't want to expose copy_files internals to
1966 * the exec layer of the kernel.
1967 */
1968
1969 int unshare_files(struct files_struct **displaced)
1970 {
1971 struct task_struct *task = current;
1972 struct files_struct *copy = NULL;
1973 int error;
1974
1975 error = unshare_fd(CLONE_FILES, &copy);
1976 if (error || !copy) {
1977 *displaced = NULL;
1978 return error;
1979 }
1980 *displaced = task->files;
1981 task_lock(task);
1982 task->files = copy;
1983 task_unlock(task);
1984 return 0;
1985 }