]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/fork.c
sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK
[mirror_ubuntu-focal-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
163 {
164 #ifdef CONFIG_VMAP_STACK
165 void *stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
166 VMALLOC_START, VMALLOC_END,
167 THREADINFO_GFP | __GFP_HIGHMEM,
168 PAGE_KERNEL,
169 0, node,
170 __builtin_return_address(0));
171
172 /*
173 * We can't call find_vm_area() in interrupt context, and
174 * free_thread_stack() can be called in interrupt context,
175 * so cache the vm_struct.
176 */
177 if (stack)
178 tsk->stack_vm_area = find_vm_area(stack);
179 return stack;
180 #else
181 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
182 THREAD_SIZE_ORDER);
183
184 return page ? page_address(page) : NULL;
185 #endif
186 }
187
188 static inline void free_thread_stack(struct task_struct *tsk)
189 {
190 if (task_stack_vm_area(tsk))
191 vfree(tsk->stack);
192 else
193 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
194 }
195 # else
196 static struct kmem_cache *thread_stack_cache;
197
198 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
199 int node)
200 {
201 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
202 }
203
204 static void free_thread_stack(struct task_struct *tsk)
205 {
206 kmem_cache_free(thread_stack_cache, tsk->stack);
207 }
208
209 void thread_stack_cache_init(void)
210 {
211 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
212 THREAD_SIZE, 0, NULL);
213 BUG_ON(thread_stack_cache == NULL);
214 }
215 # endif
216 #endif
217
218 /* SLAB cache for signal_struct structures (tsk->signal) */
219 static struct kmem_cache *signal_cachep;
220
221 /* SLAB cache for sighand_struct structures (tsk->sighand) */
222 struct kmem_cache *sighand_cachep;
223
224 /* SLAB cache for files_struct structures (tsk->files) */
225 struct kmem_cache *files_cachep;
226
227 /* SLAB cache for fs_struct structures (tsk->fs) */
228 struct kmem_cache *fs_cachep;
229
230 /* SLAB cache for vm_area_struct structures */
231 struct kmem_cache *vm_area_cachep;
232
233 /* SLAB cache for mm_struct structures (tsk->mm) */
234 static struct kmem_cache *mm_cachep;
235
236 static void account_kernel_stack(struct task_struct *tsk, int account)
237 {
238 void *stack = task_stack_page(tsk);
239 struct vm_struct *vm = task_stack_vm_area(tsk);
240
241 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
242
243 if (vm) {
244 int i;
245
246 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
247
248 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
249 mod_zone_page_state(page_zone(vm->pages[i]),
250 NR_KERNEL_STACK_KB,
251 PAGE_SIZE / 1024 * account);
252 }
253
254 /* All stack pages belong to the same memcg. */
255 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
256 account * (THREAD_SIZE / 1024));
257 } else {
258 /*
259 * All stack pages are in the same zone and belong to the
260 * same memcg.
261 */
262 struct page *first_page = virt_to_page(stack);
263
264 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
265 THREAD_SIZE / 1024 * account);
266
267 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
268 account * (THREAD_SIZE / 1024));
269 }
270 }
271
272 static void release_task_stack(struct task_struct *tsk)
273 {
274 account_kernel_stack(tsk, -1);
275 arch_release_thread_stack(tsk->stack);
276 free_thread_stack(tsk);
277 tsk->stack = NULL;
278 #ifdef CONFIG_VMAP_STACK
279 tsk->stack_vm_area = NULL;
280 #endif
281 }
282
283 #ifdef CONFIG_THREAD_INFO_IN_TASK
284 void put_task_stack(struct task_struct *tsk)
285 {
286 if (atomic_dec_and_test(&tsk->stack_refcount))
287 release_task_stack(tsk);
288 }
289 #endif
290
291 void free_task(struct task_struct *tsk)
292 {
293 #ifndef CONFIG_THREAD_INFO_IN_TASK
294 /*
295 * The task is finally done with both the stack and thread_info,
296 * so free both.
297 */
298 release_task_stack(tsk);
299 #else
300 /*
301 * If the task had a separate stack allocation, it should be gone
302 * by now.
303 */
304 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
305 #endif
306 rt_mutex_debug_task_free(tsk);
307 ftrace_graph_exit_task(tsk);
308 put_seccomp_filter(tsk);
309 arch_release_task_struct(tsk);
310 free_task_struct(tsk);
311 }
312 EXPORT_SYMBOL(free_task);
313
314 static inline void free_signal_struct(struct signal_struct *sig)
315 {
316 taskstats_tgid_free(sig);
317 sched_autogroup_exit(sig);
318 kmem_cache_free(signal_cachep, sig);
319 }
320
321 static inline void put_signal_struct(struct signal_struct *sig)
322 {
323 if (atomic_dec_and_test(&sig->sigcnt))
324 free_signal_struct(sig);
325 }
326
327 void __put_task_struct(struct task_struct *tsk)
328 {
329 WARN_ON(!tsk->exit_state);
330 WARN_ON(atomic_read(&tsk->usage));
331 WARN_ON(tsk == current);
332
333 cgroup_free(tsk);
334 task_numa_free(tsk);
335 security_task_free(tsk);
336 exit_creds(tsk);
337 delayacct_tsk_free(tsk);
338 put_signal_struct(tsk->signal);
339
340 if (!profile_handoff_task(tsk))
341 free_task(tsk);
342 }
343 EXPORT_SYMBOL_GPL(__put_task_struct);
344
345 void __init __weak arch_task_cache_init(void) { }
346
347 /*
348 * set_max_threads
349 */
350 static void set_max_threads(unsigned int max_threads_suggested)
351 {
352 u64 threads;
353
354 /*
355 * The number of threads shall be limited such that the thread
356 * structures may only consume a small part of the available memory.
357 */
358 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
359 threads = MAX_THREADS;
360 else
361 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
362 (u64) THREAD_SIZE * 8UL);
363
364 if (threads > max_threads_suggested)
365 threads = max_threads_suggested;
366
367 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
368 }
369
370 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
371 /* Initialized by the architecture: */
372 int arch_task_struct_size __read_mostly;
373 #endif
374
375 void __init fork_init(void)
376 {
377 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
378 #ifndef ARCH_MIN_TASKALIGN
379 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
380 #endif
381 /* create a slab on which task_structs can be allocated */
382 task_struct_cachep = kmem_cache_create("task_struct",
383 arch_task_struct_size, ARCH_MIN_TASKALIGN,
384 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
385 #endif
386
387 /* do the arch specific task caches init */
388 arch_task_cache_init();
389
390 set_max_threads(MAX_THREADS);
391
392 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
393 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
394 init_task.signal->rlim[RLIMIT_SIGPENDING] =
395 init_task.signal->rlim[RLIMIT_NPROC];
396 }
397
398 int __weak arch_dup_task_struct(struct task_struct *dst,
399 struct task_struct *src)
400 {
401 *dst = *src;
402 return 0;
403 }
404
405 void set_task_stack_end_magic(struct task_struct *tsk)
406 {
407 unsigned long *stackend;
408
409 stackend = end_of_stack(tsk);
410 *stackend = STACK_END_MAGIC; /* for overflow detection */
411 }
412
413 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
414 {
415 struct task_struct *tsk;
416 unsigned long *stack;
417 struct vm_struct *stack_vm_area;
418 int err;
419
420 if (node == NUMA_NO_NODE)
421 node = tsk_fork_get_node(orig);
422 tsk = alloc_task_struct_node(node);
423 if (!tsk)
424 return NULL;
425
426 stack = alloc_thread_stack_node(tsk, node);
427 if (!stack)
428 goto free_tsk;
429
430 stack_vm_area = task_stack_vm_area(tsk);
431
432 err = arch_dup_task_struct(tsk, orig);
433
434 /*
435 * arch_dup_task_struct() clobbers the stack-related fields. Make
436 * sure they're properly initialized before using any stack-related
437 * functions again.
438 */
439 tsk->stack = stack;
440 #ifdef CONFIG_VMAP_STACK
441 tsk->stack_vm_area = stack_vm_area;
442 #endif
443 #ifdef CONFIG_THREAD_INFO_IN_TASK
444 atomic_set(&tsk->stack_refcount, 1);
445 #endif
446
447 if (err)
448 goto free_stack;
449
450 #ifdef CONFIG_SECCOMP
451 /*
452 * We must handle setting up seccomp filters once we're under
453 * the sighand lock in case orig has changed between now and
454 * then. Until then, filter must be NULL to avoid messing up
455 * the usage counts on the error path calling free_task.
456 */
457 tsk->seccomp.filter = NULL;
458 #endif
459
460 setup_thread_stack(tsk, orig);
461 clear_user_return_notifier(tsk);
462 clear_tsk_need_resched(tsk);
463 set_task_stack_end_magic(tsk);
464
465 #ifdef CONFIG_CC_STACKPROTECTOR
466 tsk->stack_canary = get_random_int();
467 #endif
468
469 /*
470 * One for us, one for whoever does the "release_task()" (usually
471 * parent)
472 */
473 atomic_set(&tsk->usage, 2);
474 #ifdef CONFIG_BLK_DEV_IO_TRACE
475 tsk->btrace_seq = 0;
476 #endif
477 tsk->splice_pipe = NULL;
478 tsk->task_frag.page = NULL;
479 tsk->wake_q.next = NULL;
480
481 account_kernel_stack(tsk, 1);
482
483 kcov_task_init(tsk);
484
485 return tsk;
486
487 free_stack:
488 free_thread_stack(tsk);
489 free_tsk:
490 free_task_struct(tsk);
491 return NULL;
492 }
493
494 #ifdef CONFIG_MMU
495 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
496 {
497 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
498 struct rb_node **rb_link, *rb_parent;
499 int retval;
500 unsigned long charge;
501
502 uprobe_start_dup_mmap();
503 if (down_write_killable(&oldmm->mmap_sem)) {
504 retval = -EINTR;
505 goto fail_uprobe_end;
506 }
507 flush_cache_dup_mm(oldmm);
508 uprobe_dup_mmap(oldmm, mm);
509 /*
510 * Not linked in yet - no deadlock potential:
511 */
512 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
513
514 /* No ordering required: file already has been exposed. */
515 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
516
517 mm->total_vm = oldmm->total_vm;
518 mm->data_vm = oldmm->data_vm;
519 mm->exec_vm = oldmm->exec_vm;
520 mm->stack_vm = oldmm->stack_vm;
521
522 rb_link = &mm->mm_rb.rb_node;
523 rb_parent = NULL;
524 pprev = &mm->mmap;
525 retval = ksm_fork(mm, oldmm);
526 if (retval)
527 goto out;
528 retval = khugepaged_fork(mm, oldmm);
529 if (retval)
530 goto out;
531
532 prev = NULL;
533 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
534 struct file *file;
535
536 if (mpnt->vm_flags & VM_DONTCOPY) {
537 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
538 continue;
539 }
540 charge = 0;
541 if (mpnt->vm_flags & VM_ACCOUNT) {
542 unsigned long len = vma_pages(mpnt);
543
544 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
545 goto fail_nomem;
546 charge = len;
547 }
548 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
549 if (!tmp)
550 goto fail_nomem;
551 *tmp = *mpnt;
552 INIT_LIST_HEAD(&tmp->anon_vma_chain);
553 retval = vma_dup_policy(mpnt, tmp);
554 if (retval)
555 goto fail_nomem_policy;
556 tmp->vm_mm = mm;
557 if (anon_vma_fork(tmp, mpnt))
558 goto fail_nomem_anon_vma_fork;
559 tmp->vm_flags &=
560 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
561 tmp->vm_next = tmp->vm_prev = NULL;
562 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
563 file = tmp->vm_file;
564 if (file) {
565 struct inode *inode = file_inode(file);
566 struct address_space *mapping = file->f_mapping;
567
568 get_file(file);
569 if (tmp->vm_flags & VM_DENYWRITE)
570 atomic_dec(&inode->i_writecount);
571 i_mmap_lock_write(mapping);
572 if (tmp->vm_flags & VM_SHARED)
573 atomic_inc(&mapping->i_mmap_writable);
574 flush_dcache_mmap_lock(mapping);
575 /* insert tmp into the share list, just after mpnt */
576 vma_interval_tree_insert_after(tmp, mpnt,
577 &mapping->i_mmap);
578 flush_dcache_mmap_unlock(mapping);
579 i_mmap_unlock_write(mapping);
580 }
581
582 /*
583 * Clear hugetlb-related page reserves for children. This only
584 * affects MAP_PRIVATE mappings. Faults generated by the child
585 * are not guaranteed to succeed, even if read-only
586 */
587 if (is_vm_hugetlb_page(tmp))
588 reset_vma_resv_huge_pages(tmp);
589
590 /*
591 * Link in the new vma and copy the page table entries.
592 */
593 *pprev = tmp;
594 pprev = &tmp->vm_next;
595 tmp->vm_prev = prev;
596 prev = tmp;
597
598 __vma_link_rb(mm, tmp, rb_link, rb_parent);
599 rb_link = &tmp->vm_rb.rb_right;
600 rb_parent = &tmp->vm_rb;
601
602 mm->map_count++;
603 retval = copy_page_range(mm, oldmm, mpnt);
604
605 if (tmp->vm_ops && tmp->vm_ops->open)
606 tmp->vm_ops->open(tmp);
607
608 if (retval)
609 goto out;
610 }
611 /* a new mm has just been created */
612 arch_dup_mmap(oldmm, mm);
613 retval = 0;
614 out:
615 up_write(&mm->mmap_sem);
616 flush_tlb_mm(oldmm);
617 up_write(&oldmm->mmap_sem);
618 fail_uprobe_end:
619 uprobe_end_dup_mmap();
620 return retval;
621 fail_nomem_anon_vma_fork:
622 mpol_put(vma_policy(tmp));
623 fail_nomem_policy:
624 kmem_cache_free(vm_area_cachep, tmp);
625 fail_nomem:
626 retval = -ENOMEM;
627 vm_unacct_memory(charge);
628 goto out;
629 }
630
631 static inline int mm_alloc_pgd(struct mm_struct *mm)
632 {
633 mm->pgd = pgd_alloc(mm);
634 if (unlikely(!mm->pgd))
635 return -ENOMEM;
636 return 0;
637 }
638
639 static inline void mm_free_pgd(struct mm_struct *mm)
640 {
641 pgd_free(mm, mm->pgd);
642 }
643 #else
644 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
645 {
646 down_write(&oldmm->mmap_sem);
647 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
648 up_write(&oldmm->mmap_sem);
649 return 0;
650 }
651 #define mm_alloc_pgd(mm) (0)
652 #define mm_free_pgd(mm)
653 #endif /* CONFIG_MMU */
654
655 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
656
657 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
658 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
659
660 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
661
662 static int __init coredump_filter_setup(char *s)
663 {
664 default_dump_filter =
665 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
666 MMF_DUMP_FILTER_MASK;
667 return 1;
668 }
669
670 __setup("coredump_filter=", coredump_filter_setup);
671
672 #include <linux/init_task.h>
673
674 static void mm_init_aio(struct mm_struct *mm)
675 {
676 #ifdef CONFIG_AIO
677 spin_lock_init(&mm->ioctx_lock);
678 mm->ioctx_table = NULL;
679 #endif
680 }
681
682 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
683 {
684 #ifdef CONFIG_MEMCG
685 mm->owner = p;
686 #endif
687 }
688
689 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
690 {
691 mm->mmap = NULL;
692 mm->mm_rb = RB_ROOT;
693 mm->vmacache_seqnum = 0;
694 atomic_set(&mm->mm_users, 1);
695 atomic_set(&mm->mm_count, 1);
696 init_rwsem(&mm->mmap_sem);
697 INIT_LIST_HEAD(&mm->mmlist);
698 mm->core_state = NULL;
699 atomic_long_set(&mm->nr_ptes, 0);
700 mm_nr_pmds_init(mm);
701 mm->map_count = 0;
702 mm->locked_vm = 0;
703 mm->pinned_vm = 0;
704 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
705 spin_lock_init(&mm->page_table_lock);
706 mm_init_cpumask(mm);
707 mm_init_aio(mm);
708 mm_init_owner(mm, p);
709 mmu_notifier_mm_init(mm);
710 clear_tlb_flush_pending(mm);
711 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
712 mm->pmd_huge_pte = NULL;
713 #endif
714
715 if (current->mm) {
716 mm->flags = current->mm->flags & MMF_INIT_MASK;
717 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
718 } else {
719 mm->flags = default_dump_filter;
720 mm->def_flags = 0;
721 }
722
723 if (mm_alloc_pgd(mm))
724 goto fail_nopgd;
725
726 if (init_new_context(p, mm))
727 goto fail_nocontext;
728
729 return mm;
730
731 fail_nocontext:
732 mm_free_pgd(mm);
733 fail_nopgd:
734 free_mm(mm);
735 return NULL;
736 }
737
738 static void check_mm(struct mm_struct *mm)
739 {
740 int i;
741
742 for (i = 0; i < NR_MM_COUNTERS; i++) {
743 long x = atomic_long_read(&mm->rss_stat.count[i]);
744
745 if (unlikely(x))
746 printk(KERN_ALERT "BUG: Bad rss-counter state "
747 "mm:%p idx:%d val:%ld\n", mm, i, x);
748 }
749
750 if (atomic_long_read(&mm->nr_ptes))
751 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
752 atomic_long_read(&mm->nr_ptes));
753 if (mm_nr_pmds(mm))
754 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
755 mm_nr_pmds(mm));
756
757 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
758 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
759 #endif
760 }
761
762 /*
763 * Allocate and initialize an mm_struct.
764 */
765 struct mm_struct *mm_alloc(void)
766 {
767 struct mm_struct *mm;
768
769 mm = allocate_mm();
770 if (!mm)
771 return NULL;
772
773 memset(mm, 0, sizeof(*mm));
774 return mm_init(mm, current);
775 }
776
777 /*
778 * Called when the last reference to the mm
779 * is dropped: either by a lazy thread or by
780 * mmput. Free the page directory and the mm.
781 */
782 void __mmdrop(struct mm_struct *mm)
783 {
784 BUG_ON(mm == &init_mm);
785 mm_free_pgd(mm);
786 destroy_context(mm);
787 mmu_notifier_mm_destroy(mm);
788 check_mm(mm);
789 free_mm(mm);
790 }
791 EXPORT_SYMBOL_GPL(__mmdrop);
792
793 static inline void __mmput(struct mm_struct *mm)
794 {
795 VM_BUG_ON(atomic_read(&mm->mm_users));
796
797 uprobe_clear_state(mm);
798 exit_aio(mm);
799 ksm_exit(mm);
800 khugepaged_exit(mm); /* must run before exit_mmap */
801 exit_mmap(mm);
802 set_mm_exe_file(mm, NULL);
803 if (!list_empty(&mm->mmlist)) {
804 spin_lock(&mmlist_lock);
805 list_del(&mm->mmlist);
806 spin_unlock(&mmlist_lock);
807 }
808 if (mm->binfmt)
809 module_put(mm->binfmt->module);
810 mmdrop(mm);
811 }
812
813 /*
814 * Decrement the use count and release all resources for an mm.
815 */
816 void mmput(struct mm_struct *mm)
817 {
818 might_sleep();
819
820 if (atomic_dec_and_test(&mm->mm_users))
821 __mmput(mm);
822 }
823 EXPORT_SYMBOL_GPL(mmput);
824
825 #ifdef CONFIG_MMU
826 static void mmput_async_fn(struct work_struct *work)
827 {
828 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
829 __mmput(mm);
830 }
831
832 void mmput_async(struct mm_struct *mm)
833 {
834 if (atomic_dec_and_test(&mm->mm_users)) {
835 INIT_WORK(&mm->async_put_work, mmput_async_fn);
836 schedule_work(&mm->async_put_work);
837 }
838 }
839 #endif
840
841 /**
842 * set_mm_exe_file - change a reference to the mm's executable file
843 *
844 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
845 *
846 * Main users are mmput() and sys_execve(). Callers prevent concurrent
847 * invocations: in mmput() nobody alive left, in execve task is single
848 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
849 * mm->exe_file, but does so without using set_mm_exe_file() in order
850 * to do avoid the need for any locks.
851 */
852 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
853 {
854 struct file *old_exe_file;
855
856 /*
857 * It is safe to dereference the exe_file without RCU as
858 * this function is only called if nobody else can access
859 * this mm -- see comment above for justification.
860 */
861 old_exe_file = rcu_dereference_raw(mm->exe_file);
862
863 if (new_exe_file)
864 get_file(new_exe_file);
865 rcu_assign_pointer(mm->exe_file, new_exe_file);
866 if (old_exe_file)
867 fput(old_exe_file);
868 }
869
870 /**
871 * get_mm_exe_file - acquire a reference to the mm's executable file
872 *
873 * Returns %NULL if mm has no associated executable file.
874 * User must release file via fput().
875 */
876 struct file *get_mm_exe_file(struct mm_struct *mm)
877 {
878 struct file *exe_file;
879
880 rcu_read_lock();
881 exe_file = rcu_dereference(mm->exe_file);
882 if (exe_file && !get_file_rcu(exe_file))
883 exe_file = NULL;
884 rcu_read_unlock();
885 return exe_file;
886 }
887 EXPORT_SYMBOL(get_mm_exe_file);
888
889 /**
890 * get_task_exe_file - acquire a reference to the task's executable file
891 *
892 * Returns %NULL if task's mm (if any) has no associated executable file or
893 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
894 * User must release file via fput().
895 */
896 struct file *get_task_exe_file(struct task_struct *task)
897 {
898 struct file *exe_file = NULL;
899 struct mm_struct *mm;
900
901 task_lock(task);
902 mm = task->mm;
903 if (mm) {
904 if (!(task->flags & PF_KTHREAD))
905 exe_file = get_mm_exe_file(mm);
906 }
907 task_unlock(task);
908 return exe_file;
909 }
910 EXPORT_SYMBOL(get_task_exe_file);
911
912 /**
913 * get_task_mm - acquire a reference to the task's mm
914 *
915 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
916 * this kernel workthread has transiently adopted a user mm with use_mm,
917 * to do its AIO) is not set and if so returns a reference to it, after
918 * bumping up the use count. User must release the mm via mmput()
919 * after use. Typically used by /proc and ptrace.
920 */
921 struct mm_struct *get_task_mm(struct task_struct *task)
922 {
923 struct mm_struct *mm;
924
925 task_lock(task);
926 mm = task->mm;
927 if (mm) {
928 if (task->flags & PF_KTHREAD)
929 mm = NULL;
930 else
931 atomic_inc(&mm->mm_users);
932 }
933 task_unlock(task);
934 return mm;
935 }
936 EXPORT_SYMBOL_GPL(get_task_mm);
937
938 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
939 {
940 struct mm_struct *mm;
941 int err;
942
943 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
944 if (err)
945 return ERR_PTR(err);
946
947 mm = get_task_mm(task);
948 if (mm && mm != current->mm &&
949 !ptrace_may_access(task, mode)) {
950 mmput(mm);
951 mm = ERR_PTR(-EACCES);
952 }
953 mutex_unlock(&task->signal->cred_guard_mutex);
954
955 return mm;
956 }
957
958 static void complete_vfork_done(struct task_struct *tsk)
959 {
960 struct completion *vfork;
961
962 task_lock(tsk);
963 vfork = tsk->vfork_done;
964 if (likely(vfork)) {
965 tsk->vfork_done = NULL;
966 complete(vfork);
967 }
968 task_unlock(tsk);
969 }
970
971 static int wait_for_vfork_done(struct task_struct *child,
972 struct completion *vfork)
973 {
974 int killed;
975
976 freezer_do_not_count();
977 killed = wait_for_completion_killable(vfork);
978 freezer_count();
979
980 if (killed) {
981 task_lock(child);
982 child->vfork_done = NULL;
983 task_unlock(child);
984 }
985
986 put_task_struct(child);
987 return killed;
988 }
989
990 /* Please note the differences between mmput and mm_release.
991 * mmput is called whenever we stop holding onto a mm_struct,
992 * error success whatever.
993 *
994 * mm_release is called after a mm_struct has been removed
995 * from the current process.
996 *
997 * This difference is important for error handling, when we
998 * only half set up a mm_struct for a new process and need to restore
999 * the old one. Because we mmput the new mm_struct before
1000 * restoring the old one. . .
1001 * Eric Biederman 10 January 1998
1002 */
1003 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1004 {
1005 /* Get rid of any futexes when releasing the mm */
1006 #ifdef CONFIG_FUTEX
1007 if (unlikely(tsk->robust_list)) {
1008 exit_robust_list(tsk);
1009 tsk->robust_list = NULL;
1010 }
1011 #ifdef CONFIG_COMPAT
1012 if (unlikely(tsk->compat_robust_list)) {
1013 compat_exit_robust_list(tsk);
1014 tsk->compat_robust_list = NULL;
1015 }
1016 #endif
1017 if (unlikely(!list_empty(&tsk->pi_state_list)))
1018 exit_pi_state_list(tsk);
1019 #endif
1020
1021 uprobe_free_utask(tsk);
1022
1023 /* Get rid of any cached register state */
1024 deactivate_mm(tsk, mm);
1025
1026 /*
1027 * Signal userspace if we're not exiting with a core dump
1028 * because we want to leave the value intact for debugging
1029 * purposes.
1030 */
1031 if (tsk->clear_child_tid) {
1032 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1033 atomic_read(&mm->mm_users) > 1) {
1034 /*
1035 * We don't check the error code - if userspace has
1036 * not set up a proper pointer then tough luck.
1037 */
1038 put_user(0, tsk->clear_child_tid);
1039 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1040 1, NULL, NULL, 0);
1041 }
1042 tsk->clear_child_tid = NULL;
1043 }
1044
1045 /*
1046 * All done, finally we can wake up parent and return this mm to him.
1047 * Also kthread_stop() uses this completion for synchronization.
1048 */
1049 if (tsk->vfork_done)
1050 complete_vfork_done(tsk);
1051 }
1052
1053 /*
1054 * Allocate a new mm structure and copy contents from the
1055 * mm structure of the passed in task structure.
1056 */
1057 static struct mm_struct *dup_mm(struct task_struct *tsk)
1058 {
1059 struct mm_struct *mm, *oldmm = current->mm;
1060 int err;
1061
1062 mm = allocate_mm();
1063 if (!mm)
1064 goto fail_nomem;
1065
1066 memcpy(mm, oldmm, sizeof(*mm));
1067
1068 if (!mm_init(mm, tsk))
1069 goto fail_nomem;
1070
1071 err = dup_mmap(mm, oldmm);
1072 if (err)
1073 goto free_pt;
1074
1075 mm->hiwater_rss = get_mm_rss(mm);
1076 mm->hiwater_vm = mm->total_vm;
1077
1078 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1079 goto free_pt;
1080
1081 return mm;
1082
1083 free_pt:
1084 /* don't put binfmt in mmput, we haven't got module yet */
1085 mm->binfmt = NULL;
1086 mmput(mm);
1087
1088 fail_nomem:
1089 return NULL;
1090 }
1091
1092 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1093 {
1094 struct mm_struct *mm, *oldmm;
1095 int retval;
1096
1097 tsk->min_flt = tsk->maj_flt = 0;
1098 tsk->nvcsw = tsk->nivcsw = 0;
1099 #ifdef CONFIG_DETECT_HUNG_TASK
1100 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1101 #endif
1102
1103 tsk->mm = NULL;
1104 tsk->active_mm = NULL;
1105
1106 /*
1107 * Are we cloning a kernel thread?
1108 *
1109 * We need to steal a active VM for that..
1110 */
1111 oldmm = current->mm;
1112 if (!oldmm)
1113 return 0;
1114
1115 /* initialize the new vmacache entries */
1116 vmacache_flush(tsk);
1117
1118 if (clone_flags & CLONE_VM) {
1119 atomic_inc(&oldmm->mm_users);
1120 mm = oldmm;
1121 goto good_mm;
1122 }
1123
1124 retval = -ENOMEM;
1125 mm = dup_mm(tsk);
1126 if (!mm)
1127 goto fail_nomem;
1128
1129 good_mm:
1130 tsk->mm = mm;
1131 tsk->active_mm = mm;
1132 return 0;
1133
1134 fail_nomem:
1135 return retval;
1136 }
1137
1138 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1139 {
1140 struct fs_struct *fs = current->fs;
1141 if (clone_flags & CLONE_FS) {
1142 /* tsk->fs is already what we want */
1143 spin_lock(&fs->lock);
1144 if (fs->in_exec) {
1145 spin_unlock(&fs->lock);
1146 return -EAGAIN;
1147 }
1148 fs->users++;
1149 spin_unlock(&fs->lock);
1150 return 0;
1151 }
1152 tsk->fs = copy_fs_struct(fs);
1153 if (!tsk->fs)
1154 return -ENOMEM;
1155 return 0;
1156 }
1157
1158 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1159 {
1160 struct files_struct *oldf, *newf;
1161 int error = 0;
1162
1163 /*
1164 * A background process may not have any files ...
1165 */
1166 oldf = current->files;
1167 if (!oldf)
1168 goto out;
1169
1170 if (clone_flags & CLONE_FILES) {
1171 atomic_inc(&oldf->count);
1172 goto out;
1173 }
1174
1175 newf = dup_fd(oldf, &error);
1176 if (!newf)
1177 goto out;
1178
1179 tsk->files = newf;
1180 error = 0;
1181 out:
1182 return error;
1183 }
1184
1185 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1186 {
1187 #ifdef CONFIG_BLOCK
1188 struct io_context *ioc = current->io_context;
1189 struct io_context *new_ioc;
1190
1191 if (!ioc)
1192 return 0;
1193 /*
1194 * Share io context with parent, if CLONE_IO is set
1195 */
1196 if (clone_flags & CLONE_IO) {
1197 ioc_task_link(ioc);
1198 tsk->io_context = ioc;
1199 } else if (ioprio_valid(ioc->ioprio)) {
1200 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1201 if (unlikely(!new_ioc))
1202 return -ENOMEM;
1203
1204 new_ioc->ioprio = ioc->ioprio;
1205 put_io_context(new_ioc);
1206 }
1207 #endif
1208 return 0;
1209 }
1210
1211 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1212 {
1213 struct sighand_struct *sig;
1214
1215 if (clone_flags & CLONE_SIGHAND) {
1216 atomic_inc(&current->sighand->count);
1217 return 0;
1218 }
1219 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1220 rcu_assign_pointer(tsk->sighand, sig);
1221 if (!sig)
1222 return -ENOMEM;
1223
1224 atomic_set(&sig->count, 1);
1225 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1226 return 0;
1227 }
1228
1229 void __cleanup_sighand(struct sighand_struct *sighand)
1230 {
1231 if (atomic_dec_and_test(&sighand->count)) {
1232 signalfd_cleanup(sighand);
1233 /*
1234 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1235 * without an RCU grace period, see __lock_task_sighand().
1236 */
1237 kmem_cache_free(sighand_cachep, sighand);
1238 }
1239 }
1240
1241 /*
1242 * Initialize POSIX timer handling for a thread group.
1243 */
1244 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1245 {
1246 unsigned long cpu_limit;
1247
1248 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1249 if (cpu_limit != RLIM_INFINITY) {
1250 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1251 sig->cputimer.running = true;
1252 }
1253
1254 /* The timer lists. */
1255 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1256 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1257 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1258 }
1259
1260 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1261 {
1262 struct signal_struct *sig;
1263
1264 if (clone_flags & CLONE_THREAD)
1265 return 0;
1266
1267 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1268 tsk->signal = sig;
1269 if (!sig)
1270 return -ENOMEM;
1271
1272 sig->nr_threads = 1;
1273 atomic_set(&sig->live, 1);
1274 atomic_set(&sig->sigcnt, 1);
1275
1276 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1277 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1278 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1279
1280 init_waitqueue_head(&sig->wait_chldexit);
1281 sig->curr_target = tsk;
1282 init_sigpending(&sig->shared_pending);
1283 INIT_LIST_HEAD(&sig->posix_timers);
1284 seqlock_init(&sig->stats_lock);
1285 prev_cputime_init(&sig->prev_cputime);
1286
1287 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1288 sig->real_timer.function = it_real_fn;
1289
1290 task_lock(current->group_leader);
1291 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1292 task_unlock(current->group_leader);
1293
1294 posix_cpu_timers_init_group(sig);
1295
1296 tty_audit_fork(sig);
1297 sched_autogroup_fork(sig);
1298
1299 sig->oom_score_adj = current->signal->oom_score_adj;
1300 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1301
1302 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1303 current->signal->is_child_subreaper;
1304
1305 mutex_init(&sig->cred_guard_mutex);
1306
1307 return 0;
1308 }
1309
1310 static void copy_seccomp(struct task_struct *p)
1311 {
1312 #ifdef CONFIG_SECCOMP
1313 /*
1314 * Must be called with sighand->lock held, which is common to
1315 * all threads in the group. Holding cred_guard_mutex is not
1316 * needed because this new task is not yet running and cannot
1317 * be racing exec.
1318 */
1319 assert_spin_locked(&current->sighand->siglock);
1320
1321 /* Ref-count the new filter user, and assign it. */
1322 get_seccomp_filter(current);
1323 p->seccomp = current->seccomp;
1324
1325 /*
1326 * Explicitly enable no_new_privs here in case it got set
1327 * between the task_struct being duplicated and holding the
1328 * sighand lock. The seccomp state and nnp must be in sync.
1329 */
1330 if (task_no_new_privs(current))
1331 task_set_no_new_privs(p);
1332
1333 /*
1334 * If the parent gained a seccomp mode after copying thread
1335 * flags and between before we held the sighand lock, we have
1336 * to manually enable the seccomp thread flag here.
1337 */
1338 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1339 set_tsk_thread_flag(p, TIF_SECCOMP);
1340 #endif
1341 }
1342
1343 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1344 {
1345 current->clear_child_tid = tidptr;
1346
1347 return task_pid_vnr(current);
1348 }
1349
1350 static void rt_mutex_init_task(struct task_struct *p)
1351 {
1352 raw_spin_lock_init(&p->pi_lock);
1353 #ifdef CONFIG_RT_MUTEXES
1354 p->pi_waiters = RB_ROOT;
1355 p->pi_waiters_leftmost = NULL;
1356 p->pi_blocked_on = NULL;
1357 #endif
1358 }
1359
1360 /*
1361 * Initialize POSIX timer handling for a single task.
1362 */
1363 static void posix_cpu_timers_init(struct task_struct *tsk)
1364 {
1365 tsk->cputime_expires.prof_exp = 0;
1366 tsk->cputime_expires.virt_exp = 0;
1367 tsk->cputime_expires.sched_exp = 0;
1368 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1369 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1370 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1371 }
1372
1373 static inline void
1374 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1375 {
1376 task->pids[type].pid = pid;
1377 }
1378
1379 /*
1380 * This creates a new process as a copy of the old one,
1381 * but does not actually start it yet.
1382 *
1383 * It copies the registers, and all the appropriate
1384 * parts of the process environment (as per the clone
1385 * flags). The actual kick-off is left to the caller.
1386 */
1387 static struct task_struct *copy_process(unsigned long clone_flags,
1388 unsigned long stack_start,
1389 unsigned long stack_size,
1390 int __user *child_tidptr,
1391 struct pid *pid,
1392 int trace,
1393 unsigned long tls,
1394 int node)
1395 {
1396 int retval;
1397 struct task_struct *p;
1398
1399 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1400 return ERR_PTR(-EINVAL);
1401
1402 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1403 return ERR_PTR(-EINVAL);
1404
1405 /*
1406 * Thread groups must share signals as well, and detached threads
1407 * can only be started up within the thread group.
1408 */
1409 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1410 return ERR_PTR(-EINVAL);
1411
1412 /*
1413 * Shared signal handlers imply shared VM. By way of the above,
1414 * thread groups also imply shared VM. Blocking this case allows
1415 * for various simplifications in other code.
1416 */
1417 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1418 return ERR_PTR(-EINVAL);
1419
1420 /*
1421 * Siblings of global init remain as zombies on exit since they are
1422 * not reaped by their parent (swapper). To solve this and to avoid
1423 * multi-rooted process trees, prevent global and container-inits
1424 * from creating siblings.
1425 */
1426 if ((clone_flags & CLONE_PARENT) &&
1427 current->signal->flags & SIGNAL_UNKILLABLE)
1428 return ERR_PTR(-EINVAL);
1429
1430 /*
1431 * If the new process will be in a different pid or user namespace
1432 * do not allow it to share a thread group with the forking task.
1433 */
1434 if (clone_flags & CLONE_THREAD) {
1435 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1436 (task_active_pid_ns(current) !=
1437 current->nsproxy->pid_ns_for_children))
1438 return ERR_PTR(-EINVAL);
1439 }
1440
1441 retval = security_task_create(clone_flags);
1442 if (retval)
1443 goto fork_out;
1444
1445 retval = -ENOMEM;
1446 p = dup_task_struct(current, node);
1447 if (!p)
1448 goto fork_out;
1449
1450 ftrace_graph_init_task(p);
1451
1452 rt_mutex_init_task(p);
1453
1454 #ifdef CONFIG_PROVE_LOCKING
1455 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1456 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1457 #endif
1458 retval = -EAGAIN;
1459 if (atomic_read(&p->real_cred->user->processes) >=
1460 task_rlimit(p, RLIMIT_NPROC)) {
1461 if (p->real_cred->user != INIT_USER &&
1462 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1463 goto bad_fork_free;
1464 }
1465 current->flags &= ~PF_NPROC_EXCEEDED;
1466
1467 retval = copy_creds(p, clone_flags);
1468 if (retval < 0)
1469 goto bad_fork_free;
1470
1471 /*
1472 * If multiple threads are within copy_process(), then this check
1473 * triggers too late. This doesn't hurt, the check is only there
1474 * to stop root fork bombs.
1475 */
1476 retval = -EAGAIN;
1477 if (nr_threads >= max_threads)
1478 goto bad_fork_cleanup_count;
1479
1480 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1481 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1482 p->flags |= PF_FORKNOEXEC;
1483 INIT_LIST_HEAD(&p->children);
1484 INIT_LIST_HEAD(&p->sibling);
1485 rcu_copy_process(p);
1486 p->vfork_done = NULL;
1487 spin_lock_init(&p->alloc_lock);
1488
1489 init_sigpending(&p->pending);
1490
1491 p->utime = p->stime = p->gtime = 0;
1492 p->utimescaled = p->stimescaled = 0;
1493 prev_cputime_init(&p->prev_cputime);
1494
1495 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1496 seqcount_init(&p->vtime_seqcount);
1497 p->vtime_snap = 0;
1498 p->vtime_snap_whence = VTIME_INACTIVE;
1499 #endif
1500
1501 #if defined(SPLIT_RSS_COUNTING)
1502 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1503 #endif
1504
1505 p->default_timer_slack_ns = current->timer_slack_ns;
1506
1507 task_io_accounting_init(&p->ioac);
1508 acct_clear_integrals(p);
1509
1510 posix_cpu_timers_init(p);
1511
1512 p->start_time = ktime_get_ns();
1513 p->real_start_time = ktime_get_boot_ns();
1514 p->io_context = NULL;
1515 p->audit_context = NULL;
1516 cgroup_fork(p);
1517 #ifdef CONFIG_NUMA
1518 p->mempolicy = mpol_dup(p->mempolicy);
1519 if (IS_ERR(p->mempolicy)) {
1520 retval = PTR_ERR(p->mempolicy);
1521 p->mempolicy = NULL;
1522 goto bad_fork_cleanup_threadgroup_lock;
1523 }
1524 #endif
1525 #ifdef CONFIG_CPUSETS
1526 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1527 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1528 seqcount_init(&p->mems_allowed_seq);
1529 #endif
1530 #ifdef CONFIG_TRACE_IRQFLAGS
1531 p->irq_events = 0;
1532 p->hardirqs_enabled = 0;
1533 p->hardirq_enable_ip = 0;
1534 p->hardirq_enable_event = 0;
1535 p->hardirq_disable_ip = _THIS_IP_;
1536 p->hardirq_disable_event = 0;
1537 p->softirqs_enabled = 1;
1538 p->softirq_enable_ip = _THIS_IP_;
1539 p->softirq_enable_event = 0;
1540 p->softirq_disable_ip = 0;
1541 p->softirq_disable_event = 0;
1542 p->hardirq_context = 0;
1543 p->softirq_context = 0;
1544 #endif
1545
1546 p->pagefault_disabled = 0;
1547
1548 #ifdef CONFIG_LOCKDEP
1549 p->lockdep_depth = 0; /* no locks held yet */
1550 p->curr_chain_key = 0;
1551 p->lockdep_recursion = 0;
1552 #endif
1553
1554 #ifdef CONFIG_DEBUG_MUTEXES
1555 p->blocked_on = NULL; /* not blocked yet */
1556 #endif
1557 #ifdef CONFIG_BCACHE
1558 p->sequential_io = 0;
1559 p->sequential_io_avg = 0;
1560 #endif
1561
1562 /* Perform scheduler related setup. Assign this task to a CPU. */
1563 retval = sched_fork(clone_flags, p);
1564 if (retval)
1565 goto bad_fork_cleanup_policy;
1566
1567 retval = perf_event_init_task(p);
1568 if (retval)
1569 goto bad_fork_cleanup_policy;
1570 retval = audit_alloc(p);
1571 if (retval)
1572 goto bad_fork_cleanup_perf;
1573 /* copy all the process information */
1574 shm_init_task(p);
1575 retval = copy_semundo(clone_flags, p);
1576 if (retval)
1577 goto bad_fork_cleanup_audit;
1578 retval = copy_files(clone_flags, p);
1579 if (retval)
1580 goto bad_fork_cleanup_semundo;
1581 retval = copy_fs(clone_flags, p);
1582 if (retval)
1583 goto bad_fork_cleanup_files;
1584 retval = copy_sighand(clone_flags, p);
1585 if (retval)
1586 goto bad_fork_cleanup_fs;
1587 retval = copy_signal(clone_flags, p);
1588 if (retval)
1589 goto bad_fork_cleanup_sighand;
1590 retval = copy_mm(clone_flags, p);
1591 if (retval)
1592 goto bad_fork_cleanup_signal;
1593 retval = copy_namespaces(clone_flags, p);
1594 if (retval)
1595 goto bad_fork_cleanup_mm;
1596 retval = copy_io(clone_flags, p);
1597 if (retval)
1598 goto bad_fork_cleanup_namespaces;
1599 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1600 if (retval)
1601 goto bad_fork_cleanup_io;
1602
1603 if (pid != &init_struct_pid) {
1604 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1605 if (IS_ERR(pid)) {
1606 retval = PTR_ERR(pid);
1607 goto bad_fork_cleanup_thread;
1608 }
1609 }
1610
1611 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1612 /*
1613 * Clear TID on mm_release()?
1614 */
1615 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1616 #ifdef CONFIG_BLOCK
1617 p->plug = NULL;
1618 #endif
1619 #ifdef CONFIG_FUTEX
1620 p->robust_list = NULL;
1621 #ifdef CONFIG_COMPAT
1622 p->compat_robust_list = NULL;
1623 #endif
1624 INIT_LIST_HEAD(&p->pi_state_list);
1625 p->pi_state_cache = NULL;
1626 #endif
1627 /*
1628 * sigaltstack should be cleared when sharing the same VM
1629 */
1630 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1631 sas_ss_reset(p);
1632
1633 /*
1634 * Syscall tracing and stepping should be turned off in the
1635 * child regardless of CLONE_PTRACE.
1636 */
1637 user_disable_single_step(p);
1638 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1639 #ifdef TIF_SYSCALL_EMU
1640 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1641 #endif
1642 clear_all_latency_tracing(p);
1643
1644 /* ok, now we should be set up.. */
1645 p->pid = pid_nr(pid);
1646 if (clone_flags & CLONE_THREAD) {
1647 p->exit_signal = -1;
1648 p->group_leader = current->group_leader;
1649 p->tgid = current->tgid;
1650 } else {
1651 if (clone_flags & CLONE_PARENT)
1652 p->exit_signal = current->group_leader->exit_signal;
1653 else
1654 p->exit_signal = (clone_flags & CSIGNAL);
1655 p->group_leader = p;
1656 p->tgid = p->pid;
1657 }
1658
1659 p->nr_dirtied = 0;
1660 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1661 p->dirty_paused_when = 0;
1662
1663 p->pdeath_signal = 0;
1664 INIT_LIST_HEAD(&p->thread_group);
1665 p->task_works = NULL;
1666
1667 threadgroup_change_begin(current);
1668 /*
1669 * Ensure that the cgroup subsystem policies allow the new process to be
1670 * forked. It should be noted the the new process's css_set can be changed
1671 * between here and cgroup_post_fork() if an organisation operation is in
1672 * progress.
1673 */
1674 retval = cgroup_can_fork(p);
1675 if (retval)
1676 goto bad_fork_free_pid;
1677
1678 /*
1679 * Make it visible to the rest of the system, but dont wake it up yet.
1680 * Need tasklist lock for parent etc handling!
1681 */
1682 write_lock_irq(&tasklist_lock);
1683
1684 /* CLONE_PARENT re-uses the old parent */
1685 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1686 p->real_parent = current->real_parent;
1687 p->parent_exec_id = current->parent_exec_id;
1688 } else {
1689 p->real_parent = current;
1690 p->parent_exec_id = current->self_exec_id;
1691 }
1692
1693 spin_lock(&current->sighand->siglock);
1694
1695 /*
1696 * Copy seccomp details explicitly here, in case they were changed
1697 * before holding sighand lock.
1698 */
1699 copy_seccomp(p);
1700
1701 /*
1702 * Process group and session signals need to be delivered to just the
1703 * parent before the fork or both the parent and the child after the
1704 * fork. Restart if a signal comes in before we add the new process to
1705 * it's process group.
1706 * A fatal signal pending means that current will exit, so the new
1707 * thread can't slip out of an OOM kill (or normal SIGKILL).
1708 */
1709 recalc_sigpending();
1710 if (signal_pending(current)) {
1711 spin_unlock(&current->sighand->siglock);
1712 write_unlock_irq(&tasklist_lock);
1713 retval = -ERESTARTNOINTR;
1714 goto bad_fork_cancel_cgroup;
1715 }
1716
1717 if (likely(p->pid)) {
1718 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1719
1720 init_task_pid(p, PIDTYPE_PID, pid);
1721 if (thread_group_leader(p)) {
1722 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1723 init_task_pid(p, PIDTYPE_SID, task_session(current));
1724
1725 if (is_child_reaper(pid)) {
1726 ns_of_pid(pid)->child_reaper = p;
1727 p->signal->flags |= SIGNAL_UNKILLABLE;
1728 }
1729
1730 p->signal->leader_pid = pid;
1731 p->signal->tty = tty_kref_get(current->signal->tty);
1732 list_add_tail(&p->sibling, &p->real_parent->children);
1733 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1734 attach_pid(p, PIDTYPE_PGID);
1735 attach_pid(p, PIDTYPE_SID);
1736 __this_cpu_inc(process_counts);
1737 } else {
1738 current->signal->nr_threads++;
1739 atomic_inc(&current->signal->live);
1740 atomic_inc(&current->signal->sigcnt);
1741 list_add_tail_rcu(&p->thread_group,
1742 &p->group_leader->thread_group);
1743 list_add_tail_rcu(&p->thread_node,
1744 &p->signal->thread_head);
1745 }
1746 attach_pid(p, PIDTYPE_PID);
1747 nr_threads++;
1748 }
1749
1750 total_forks++;
1751 spin_unlock(&current->sighand->siglock);
1752 syscall_tracepoint_update(p);
1753 write_unlock_irq(&tasklist_lock);
1754
1755 proc_fork_connector(p);
1756 cgroup_post_fork(p);
1757 threadgroup_change_end(current);
1758 perf_event_fork(p);
1759
1760 trace_task_newtask(p, clone_flags);
1761 uprobe_copy_process(p, clone_flags);
1762
1763 return p;
1764
1765 bad_fork_cancel_cgroup:
1766 cgroup_cancel_fork(p);
1767 bad_fork_free_pid:
1768 threadgroup_change_end(current);
1769 if (pid != &init_struct_pid)
1770 free_pid(pid);
1771 bad_fork_cleanup_thread:
1772 exit_thread(p);
1773 bad_fork_cleanup_io:
1774 if (p->io_context)
1775 exit_io_context(p);
1776 bad_fork_cleanup_namespaces:
1777 exit_task_namespaces(p);
1778 bad_fork_cleanup_mm:
1779 if (p->mm)
1780 mmput(p->mm);
1781 bad_fork_cleanup_signal:
1782 if (!(clone_flags & CLONE_THREAD))
1783 free_signal_struct(p->signal);
1784 bad_fork_cleanup_sighand:
1785 __cleanup_sighand(p->sighand);
1786 bad_fork_cleanup_fs:
1787 exit_fs(p); /* blocking */
1788 bad_fork_cleanup_files:
1789 exit_files(p); /* blocking */
1790 bad_fork_cleanup_semundo:
1791 exit_sem(p);
1792 bad_fork_cleanup_audit:
1793 audit_free(p);
1794 bad_fork_cleanup_perf:
1795 perf_event_free_task(p);
1796 bad_fork_cleanup_policy:
1797 #ifdef CONFIG_NUMA
1798 mpol_put(p->mempolicy);
1799 bad_fork_cleanup_threadgroup_lock:
1800 #endif
1801 delayacct_tsk_free(p);
1802 bad_fork_cleanup_count:
1803 atomic_dec(&p->cred->user->processes);
1804 exit_creds(p);
1805 bad_fork_free:
1806 put_task_stack(p);
1807 free_task(p);
1808 fork_out:
1809 return ERR_PTR(retval);
1810 }
1811
1812 static inline void init_idle_pids(struct pid_link *links)
1813 {
1814 enum pid_type type;
1815
1816 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1817 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1818 links[type].pid = &init_struct_pid;
1819 }
1820 }
1821
1822 struct task_struct *fork_idle(int cpu)
1823 {
1824 struct task_struct *task;
1825 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1826 cpu_to_node(cpu));
1827 if (!IS_ERR(task)) {
1828 init_idle_pids(task->pids);
1829 init_idle(task, cpu);
1830 }
1831
1832 return task;
1833 }
1834
1835 /*
1836 * Ok, this is the main fork-routine.
1837 *
1838 * It copies the process, and if successful kick-starts
1839 * it and waits for it to finish using the VM if required.
1840 */
1841 long _do_fork(unsigned long clone_flags,
1842 unsigned long stack_start,
1843 unsigned long stack_size,
1844 int __user *parent_tidptr,
1845 int __user *child_tidptr,
1846 unsigned long tls)
1847 {
1848 struct task_struct *p;
1849 int trace = 0;
1850 long nr;
1851
1852 /*
1853 * Determine whether and which event to report to ptracer. When
1854 * called from kernel_thread or CLONE_UNTRACED is explicitly
1855 * requested, no event is reported; otherwise, report if the event
1856 * for the type of forking is enabled.
1857 */
1858 if (!(clone_flags & CLONE_UNTRACED)) {
1859 if (clone_flags & CLONE_VFORK)
1860 trace = PTRACE_EVENT_VFORK;
1861 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1862 trace = PTRACE_EVENT_CLONE;
1863 else
1864 trace = PTRACE_EVENT_FORK;
1865
1866 if (likely(!ptrace_event_enabled(current, trace)))
1867 trace = 0;
1868 }
1869
1870 p = copy_process(clone_flags, stack_start, stack_size,
1871 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1872 /*
1873 * Do this prior waking up the new thread - the thread pointer
1874 * might get invalid after that point, if the thread exits quickly.
1875 */
1876 if (!IS_ERR(p)) {
1877 struct completion vfork;
1878 struct pid *pid;
1879
1880 trace_sched_process_fork(current, p);
1881
1882 pid = get_task_pid(p, PIDTYPE_PID);
1883 nr = pid_vnr(pid);
1884
1885 if (clone_flags & CLONE_PARENT_SETTID)
1886 put_user(nr, parent_tidptr);
1887
1888 if (clone_flags & CLONE_VFORK) {
1889 p->vfork_done = &vfork;
1890 init_completion(&vfork);
1891 get_task_struct(p);
1892 }
1893
1894 wake_up_new_task(p);
1895
1896 /* forking complete and child started to run, tell ptracer */
1897 if (unlikely(trace))
1898 ptrace_event_pid(trace, pid);
1899
1900 if (clone_flags & CLONE_VFORK) {
1901 if (!wait_for_vfork_done(p, &vfork))
1902 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1903 }
1904
1905 put_pid(pid);
1906 } else {
1907 nr = PTR_ERR(p);
1908 }
1909 return nr;
1910 }
1911
1912 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1913 /* For compatibility with architectures that call do_fork directly rather than
1914 * using the syscall entry points below. */
1915 long do_fork(unsigned long clone_flags,
1916 unsigned long stack_start,
1917 unsigned long stack_size,
1918 int __user *parent_tidptr,
1919 int __user *child_tidptr)
1920 {
1921 return _do_fork(clone_flags, stack_start, stack_size,
1922 parent_tidptr, child_tidptr, 0);
1923 }
1924 #endif
1925
1926 /*
1927 * Create a kernel thread.
1928 */
1929 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1930 {
1931 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1932 (unsigned long)arg, NULL, NULL, 0);
1933 }
1934
1935 #ifdef __ARCH_WANT_SYS_FORK
1936 SYSCALL_DEFINE0(fork)
1937 {
1938 #ifdef CONFIG_MMU
1939 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1940 #else
1941 /* can not support in nommu mode */
1942 return -EINVAL;
1943 #endif
1944 }
1945 #endif
1946
1947 #ifdef __ARCH_WANT_SYS_VFORK
1948 SYSCALL_DEFINE0(vfork)
1949 {
1950 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1951 0, NULL, NULL, 0);
1952 }
1953 #endif
1954
1955 #ifdef __ARCH_WANT_SYS_CLONE
1956 #ifdef CONFIG_CLONE_BACKWARDS
1957 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1958 int __user *, parent_tidptr,
1959 unsigned long, tls,
1960 int __user *, child_tidptr)
1961 #elif defined(CONFIG_CLONE_BACKWARDS2)
1962 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1963 int __user *, parent_tidptr,
1964 int __user *, child_tidptr,
1965 unsigned long, tls)
1966 #elif defined(CONFIG_CLONE_BACKWARDS3)
1967 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1968 int, stack_size,
1969 int __user *, parent_tidptr,
1970 int __user *, child_tidptr,
1971 unsigned long, tls)
1972 #else
1973 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1974 int __user *, parent_tidptr,
1975 int __user *, child_tidptr,
1976 unsigned long, tls)
1977 #endif
1978 {
1979 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1980 }
1981 #endif
1982
1983 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1984 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1985 #endif
1986
1987 static void sighand_ctor(void *data)
1988 {
1989 struct sighand_struct *sighand = data;
1990
1991 spin_lock_init(&sighand->siglock);
1992 init_waitqueue_head(&sighand->signalfd_wqh);
1993 }
1994
1995 void __init proc_caches_init(void)
1996 {
1997 sighand_cachep = kmem_cache_create("sighand_cache",
1998 sizeof(struct sighand_struct), 0,
1999 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2000 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2001 signal_cachep = kmem_cache_create("signal_cache",
2002 sizeof(struct signal_struct), 0,
2003 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2004 NULL);
2005 files_cachep = kmem_cache_create("files_cache",
2006 sizeof(struct files_struct), 0,
2007 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2008 NULL);
2009 fs_cachep = kmem_cache_create("fs_cache",
2010 sizeof(struct fs_struct), 0,
2011 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2012 NULL);
2013 /*
2014 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2015 * whole struct cpumask for the OFFSTACK case. We could change
2016 * this to *only* allocate as much of it as required by the
2017 * maximum number of CPU's we can ever have. The cpumask_allocation
2018 * is at the end of the structure, exactly for that reason.
2019 */
2020 mm_cachep = kmem_cache_create("mm_struct",
2021 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2022 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2023 NULL);
2024 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2025 mmap_init();
2026 nsproxy_cache_init();
2027 }
2028
2029 /*
2030 * Check constraints on flags passed to the unshare system call.
2031 */
2032 static int check_unshare_flags(unsigned long unshare_flags)
2033 {
2034 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2035 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2036 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2037 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2038 return -EINVAL;
2039 /*
2040 * Not implemented, but pretend it works if there is nothing
2041 * to unshare. Note that unsharing the address space or the
2042 * signal handlers also need to unshare the signal queues (aka
2043 * CLONE_THREAD).
2044 */
2045 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2046 if (!thread_group_empty(current))
2047 return -EINVAL;
2048 }
2049 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2050 if (atomic_read(&current->sighand->count) > 1)
2051 return -EINVAL;
2052 }
2053 if (unshare_flags & CLONE_VM) {
2054 if (!current_is_single_threaded())
2055 return -EINVAL;
2056 }
2057
2058 return 0;
2059 }
2060
2061 /*
2062 * Unshare the filesystem structure if it is being shared
2063 */
2064 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2065 {
2066 struct fs_struct *fs = current->fs;
2067
2068 if (!(unshare_flags & CLONE_FS) || !fs)
2069 return 0;
2070
2071 /* don't need lock here; in the worst case we'll do useless copy */
2072 if (fs->users == 1)
2073 return 0;
2074
2075 *new_fsp = copy_fs_struct(fs);
2076 if (!*new_fsp)
2077 return -ENOMEM;
2078
2079 return 0;
2080 }
2081
2082 /*
2083 * Unshare file descriptor table if it is being shared
2084 */
2085 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2086 {
2087 struct files_struct *fd = current->files;
2088 int error = 0;
2089
2090 if ((unshare_flags & CLONE_FILES) &&
2091 (fd && atomic_read(&fd->count) > 1)) {
2092 *new_fdp = dup_fd(fd, &error);
2093 if (!*new_fdp)
2094 return error;
2095 }
2096
2097 return 0;
2098 }
2099
2100 /*
2101 * unshare allows a process to 'unshare' part of the process
2102 * context which was originally shared using clone. copy_*
2103 * functions used by do_fork() cannot be used here directly
2104 * because they modify an inactive task_struct that is being
2105 * constructed. Here we are modifying the current, active,
2106 * task_struct.
2107 */
2108 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2109 {
2110 struct fs_struct *fs, *new_fs = NULL;
2111 struct files_struct *fd, *new_fd = NULL;
2112 struct cred *new_cred = NULL;
2113 struct nsproxy *new_nsproxy = NULL;
2114 int do_sysvsem = 0;
2115 int err;
2116
2117 /*
2118 * If unsharing a user namespace must also unshare the thread group
2119 * and unshare the filesystem root and working directories.
2120 */
2121 if (unshare_flags & CLONE_NEWUSER)
2122 unshare_flags |= CLONE_THREAD | CLONE_FS;
2123 /*
2124 * If unsharing vm, must also unshare signal handlers.
2125 */
2126 if (unshare_flags & CLONE_VM)
2127 unshare_flags |= CLONE_SIGHAND;
2128 /*
2129 * If unsharing a signal handlers, must also unshare the signal queues.
2130 */
2131 if (unshare_flags & CLONE_SIGHAND)
2132 unshare_flags |= CLONE_THREAD;
2133 /*
2134 * If unsharing namespace, must also unshare filesystem information.
2135 */
2136 if (unshare_flags & CLONE_NEWNS)
2137 unshare_flags |= CLONE_FS;
2138
2139 err = check_unshare_flags(unshare_flags);
2140 if (err)
2141 goto bad_unshare_out;
2142 /*
2143 * CLONE_NEWIPC must also detach from the undolist: after switching
2144 * to a new ipc namespace, the semaphore arrays from the old
2145 * namespace are unreachable.
2146 */
2147 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2148 do_sysvsem = 1;
2149 err = unshare_fs(unshare_flags, &new_fs);
2150 if (err)
2151 goto bad_unshare_out;
2152 err = unshare_fd(unshare_flags, &new_fd);
2153 if (err)
2154 goto bad_unshare_cleanup_fs;
2155 err = unshare_userns(unshare_flags, &new_cred);
2156 if (err)
2157 goto bad_unshare_cleanup_fd;
2158 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2159 new_cred, new_fs);
2160 if (err)
2161 goto bad_unshare_cleanup_cred;
2162
2163 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2164 if (do_sysvsem) {
2165 /*
2166 * CLONE_SYSVSEM is equivalent to sys_exit().
2167 */
2168 exit_sem(current);
2169 }
2170 if (unshare_flags & CLONE_NEWIPC) {
2171 /* Orphan segments in old ns (see sem above). */
2172 exit_shm(current);
2173 shm_init_task(current);
2174 }
2175
2176 if (new_nsproxy)
2177 switch_task_namespaces(current, new_nsproxy);
2178
2179 task_lock(current);
2180
2181 if (new_fs) {
2182 fs = current->fs;
2183 spin_lock(&fs->lock);
2184 current->fs = new_fs;
2185 if (--fs->users)
2186 new_fs = NULL;
2187 else
2188 new_fs = fs;
2189 spin_unlock(&fs->lock);
2190 }
2191
2192 if (new_fd) {
2193 fd = current->files;
2194 current->files = new_fd;
2195 new_fd = fd;
2196 }
2197
2198 task_unlock(current);
2199
2200 if (new_cred) {
2201 /* Install the new user namespace */
2202 commit_creds(new_cred);
2203 new_cred = NULL;
2204 }
2205 }
2206
2207 bad_unshare_cleanup_cred:
2208 if (new_cred)
2209 put_cred(new_cred);
2210 bad_unshare_cleanup_fd:
2211 if (new_fd)
2212 put_files_struct(new_fd);
2213
2214 bad_unshare_cleanup_fs:
2215 if (new_fs)
2216 free_fs_struct(new_fs);
2217
2218 bad_unshare_out:
2219 return err;
2220 }
2221
2222 /*
2223 * Helper to unshare the files of the current task.
2224 * We don't want to expose copy_files internals to
2225 * the exec layer of the kernel.
2226 */
2227
2228 int unshare_files(struct files_struct **displaced)
2229 {
2230 struct task_struct *task = current;
2231 struct files_struct *copy = NULL;
2232 int error;
2233
2234 error = unshare_fd(CLONE_FILES, &copy);
2235 if (error || !copy) {
2236 *displaced = NULL;
2237 return error;
2238 }
2239 *displaced = task->files;
2240 task_lock(task);
2241 task->files = copy;
2242 task_unlock(task);
2243 return 0;
2244 }
2245
2246 int sysctl_max_threads(struct ctl_table *table, int write,
2247 void __user *buffer, size_t *lenp, loff_t *ppos)
2248 {
2249 struct ctl_table t;
2250 int ret;
2251 int threads = max_threads;
2252 int min = MIN_THREADS;
2253 int max = MAX_THREADS;
2254
2255 t = *table;
2256 t.data = &threads;
2257 t.extra1 = &min;
2258 t.extra2 = &max;
2259
2260 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2261 if (ret || !write)
2262 return ret;
2263
2264 set_max_threads(threads);
2265
2266 return 0;
2267 }