]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/fork.c
Merge tag 'sound-5.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-jammy-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105
106 #include <trace/events/sched.h>
107
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 static int max_threads; /* tunable limit on nr_threads */
128
129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
130
131 static const char * const resident_page_types[] = {
132 NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
141
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145 return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149
150 int nr_processes(void)
151 {
152 int cpu;
153 int total = 0;
154
155 for_each_possible_cpu(cpu)
156 total += per_cpu(process_counts, cpu);
157
158 return total;
159 }
160
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180
181 /*
182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183 * kmemcache based allocator.
184 */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186
187 #ifdef CONFIG_VMAP_STACK
188 /*
189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190 * flush. Try to minimize the number of calls by caching stacks.
191 */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 int i;
199
200 for (i = 0; i < NR_CACHED_STACKS; i++) {
201 struct vm_struct *vm_stack = cached_vm_stacks[i];
202
203 if (!vm_stack)
204 continue;
205
206 vfree(vm_stack->addr);
207 cached_vm_stacks[i] = NULL;
208 }
209
210 return 0;
211 }
212 #endif
213
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 void *stack;
218 int i;
219
220 for (i = 0; i < NR_CACHED_STACKS; i++) {
221 struct vm_struct *s;
222
223 s = this_cpu_xchg(cached_stacks[i], NULL);
224
225 if (!s)
226 continue;
227
228 /* Mark stack accessible for KASAN. */
229 kasan_unpoison_range(s->addr, THREAD_SIZE);
230
231 /* Clear stale pointers from reused stack. */
232 memset(s->addr, 0, THREAD_SIZE);
233
234 tsk->stack_vm_area = s;
235 tsk->stack = s->addr;
236 return s->addr;
237 }
238
239 /*
240 * Allocated stacks are cached and later reused by new threads,
241 * so memcg accounting is performed manually on assigning/releasing
242 * stacks to tasks. Drop __GFP_ACCOUNT.
243 */
244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 VMALLOC_START, VMALLOC_END,
246 THREADINFO_GFP & ~__GFP_ACCOUNT,
247 PAGE_KERNEL,
248 0, node, __builtin_return_address(0));
249
250 /*
251 * We can't call find_vm_area() in interrupt context, and
252 * free_thread_stack() can be called in interrupt context,
253 * so cache the vm_struct.
254 */
255 if (stack) {
256 tsk->stack_vm_area = find_vm_area(stack);
257 tsk->stack = stack;
258 }
259 return stack;
260 #else
261 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 THREAD_SIZE_ORDER);
263
264 if (likely(page)) {
265 tsk->stack = kasan_reset_tag(page_address(page));
266 return tsk->stack;
267 }
268 return NULL;
269 #endif
270 }
271
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 struct vm_struct *vm = task_stack_vm_area(tsk);
276
277 if (vm) {
278 int i;
279
280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 memcg_kmem_uncharge_page(vm->pages[i], 0);
282
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 if (this_cpu_cmpxchg(cached_stacks[i],
285 NULL, tsk->stack_vm_area) != NULL)
286 continue;
287
288 return;
289 }
290
291 vfree_atomic(tsk->stack);
292 return;
293 }
294 #endif
295
296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 int node)
303 {
304 unsigned long *stack;
305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 stack = kasan_reset_tag(stack);
307 tsk->stack = stack;
308 return stack;
309 }
310
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
316 void thread_stack_cache_init(void)
317 {
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352 }
353
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 /*
362 * orig->shared.rb may be modified concurrently, but the clone
363 * will be reinitialized.
364 */
365 *new = data_race(*orig);
366 INIT_LIST_HEAD(&new->anon_vma_chain);
367 new->vm_next = new->vm_prev = NULL;
368 }
369 return new;
370 }
371
372 void vm_area_free(struct vm_area_struct *vma)
373 {
374 kmem_cache_free(vm_area_cachep, vma);
375 }
376
377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379 void *stack = task_stack_page(tsk);
380 struct vm_struct *vm = task_stack_vm_area(tsk);
381
382
383 /* All stack pages are in the same node. */
384 if (vm)
385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 account * (THREAD_SIZE / 1024));
387 else
388 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
389 account * (THREAD_SIZE / 1024));
390 }
391
392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_VMAP_STACK
395 struct vm_struct *vm = task_stack_vm_area(tsk);
396 int ret;
397
398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399
400 if (vm) {
401 int i;
402
403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404
405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406 /*
407 * If memcg_kmem_charge_page() fails, page's
408 * memory cgroup pointer is NULL, and
409 * memcg_kmem_uncharge_page() in free_thread_stack()
410 * will ignore this page.
411 */
412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
413 0);
414 if (ret)
415 return ret;
416 }
417 }
418 #endif
419 return 0;
420 }
421
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 if (WARN_ON(tsk->state != TASK_DEAD))
425 return; /* Better to leak the stack than to free prematurely */
426
427 account_kernel_stack(tsk, -1);
428 free_thread_stack(tsk);
429 tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 tsk->stack_vm_area = NULL;
432 #endif
433 }
434
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 if (refcount_dec_and_test(&tsk->stack_refcount))
439 release_task_stack(tsk);
440 }
441 #endif
442
443 void free_task(struct task_struct *tsk)
444 {
445 scs_release(tsk);
446
447 #ifndef CONFIG_THREAD_INFO_IN_TASK
448 /*
449 * The task is finally done with both the stack and thread_info,
450 * so free both.
451 */
452 release_task_stack(tsk);
453 #else
454 /*
455 * If the task had a separate stack allocation, it should be gone
456 * by now.
457 */
458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
459 #endif
460 rt_mutex_debug_task_free(tsk);
461 ftrace_graph_exit_task(tsk);
462 arch_release_task_struct(tsk);
463 if (tsk->flags & PF_KTHREAD)
464 free_kthread_struct(tsk);
465 free_task_struct(tsk);
466 }
467 EXPORT_SYMBOL(free_task);
468
469 #ifdef CONFIG_MMU
470 static __latent_entropy int dup_mmap(struct mm_struct *mm,
471 struct mm_struct *oldmm)
472 {
473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
474 struct rb_node **rb_link, *rb_parent;
475 int retval;
476 unsigned long charge;
477 LIST_HEAD(uf);
478
479 uprobe_start_dup_mmap();
480 if (mmap_write_lock_killable(oldmm)) {
481 retval = -EINTR;
482 goto fail_uprobe_end;
483 }
484 flush_cache_dup_mm(oldmm);
485 uprobe_dup_mmap(oldmm, mm);
486 /*
487 * Not linked in yet - no deadlock potential:
488 */
489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
490
491 /* No ordering required: file already has been exposed. */
492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
493
494 mm->total_vm = oldmm->total_vm;
495 mm->data_vm = oldmm->data_vm;
496 mm->exec_vm = oldmm->exec_vm;
497 mm->stack_vm = oldmm->stack_vm;
498
499 rb_link = &mm->mm_rb.rb_node;
500 rb_parent = NULL;
501 pprev = &mm->mmap;
502 retval = ksm_fork(mm, oldmm);
503 if (retval)
504 goto out;
505 retval = khugepaged_fork(mm, oldmm);
506 if (retval)
507 goto out;
508
509 prev = NULL;
510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
511 struct file *file;
512
513 if (mpnt->vm_flags & VM_DONTCOPY) {
514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
515 continue;
516 }
517 charge = 0;
518 /*
519 * Don't duplicate many vmas if we've been oom-killed (for
520 * example)
521 */
522 if (fatal_signal_pending(current)) {
523 retval = -EINTR;
524 goto out;
525 }
526 if (mpnt->vm_flags & VM_ACCOUNT) {
527 unsigned long len = vma_pages(mpnt);
528
529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
530 goto fail_nomem;
531 charge = len;
532 }
533 tmp = vm_area_dup(mpnt);
534 if (!tmp)
535 goto fail_nomem;
536 retval = vma_dup_policy(mpnt, tmp);
537 if (retval)
538 goto fail_nomem_policy;
539 tmp->vm_mm = mm;
540 retval = dup_userfaultfd(tmp, &uf);
541 if (retval)
542 goto fail_nomem_anon_vma_fork;
543 if (tmp->vm_flags & VM_WIPEONFORK) {
544 /*
545 * VM_WIPEONFORK gets a clean slate in the child.
546 * Don't prepare anon_vma until fault since we don't
547 * copy page for current vma.
548 */
549 tmp->anon_vma = NULL;
550 } else if (anon_vma_fork(tmp, mpnt))
551 goto fail_nomem_anon_vma_fork;
552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
553 file = tmp->vm_file;
554 if (file) {
555 struct inode *inode = file_inode(file);
556 struct address_space *mapping = file->f_mapping;
557
558 get_file(file);
559 if (tmp->vm_flags & VM_DENYWRITE)
560 put_write_access(inode);
561 i_mmap_lock_write(mapping);
562 if (tmp->vm_flags & VM_SHARED)
563 mapping_allow_writable(mapping);
564 flush_dcache_mmap_lock(mapping);
565 /* insert tmp into the share list, just after mpnt */
566 vma_interval_tree_insert_after(tmp, mpnt,
567 &mapping->i_mmap);
568 flush_dcache_mmap_unlock(mapping);
569 i_mmap_unlock_write(mapping);
570 }
571
572 /*
573 * Clear hugetlb-related page reserves for children. This only
574 * affects MAP_PRIVATE mappings. Faults generated by the child
575 * are not guaranteed to succeed, even if read-only
576 */
577 if (is_vm_hugetlb_page(tmp))
578 reset_vma_resv_huge_pages(tmp);
579
580 /*
581 * Link in the new vma and copy the page table entries.
582 */
583 *pprev = tmp;
584 pprev = &tmp->vm_next;
585 tmp->vm_prev = prev;
586 prev = tmp;
587
588 __vma_link_rb(mm, tmp, rb_link, rb_parent);
589 rb_link = &tmp->vm_rb.rb_right;
590 rb_parent = &tmp->vm_rb;
591
592 mm->map_count++;
593 if (!(tmp->vm_flags & VM_WIPEONFORK))
594 retval = copy_page_range(tmp, mpnt);
595
596 if (tmp->vm_ops && tmp->vm_ops->open)
597 tmp->vm_ops->open(tmp);
598
599 if (retval)
600 goto out;
601 }
602 /* a new mm has just been created */
603 retval = arch_dup_mmap(oldmm, mm);
604 out:
605 mmap_write_unlock(mm);
606 flush_tlb_mm(oldmm);
607 mmap_write_unlock(oldmm);
608 dup_userfaultfd_complete(&uf);
609 fail_uprobe_end:
610 uprobe_end_dup_mmap();
611 return retval;
612 fail_nomem_anon_vma_fork:
613 mpol_put(vma_policy(tmp));
614 fail_nomem_policy:
615 vm_area_free(tmp);
616 fail_nomem:
617 retval = -ENOMEM;
618 vm_unacct_memory(charge);
619 goto out;
620 }
621
622 static inline int mm_alloc_pgd(struct mm_struct *mm)
623 {
624 mm->pgd = pgd_alloc(mm);
625 if (unlikely(!mm->pgd))
626 return -ENOMEM;
627 return 0;
628 }
629
630 static inline void mm_free_pgd(struct mm_struct *mm)
631 {
632 pgd_free(mm, mm->pgd);
633 }
634 #else
635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
636 {
637 mmap_write_lock(oldmm);
638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
639 mmap_write_unlock(oldmm);
640 return 0;
641 }
642 #define mm_alloc_pgd(mm) (0)
643 #define mm_free_pgd(mm)
644 #endif /* CONFIG_MMU */
645
646 static void check_mm(struct mm_struct *mm)
647 {
648 int i;
649
650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
651 "Please make sure 'struct resident_page_types[]' is updated as well");
652
653 for (i = 0; i < NR_MM_COUNTERS; i++) {
654 long x = atomic_long_read(&mm->rss_stat.count[i]);
655
656 if (unlikely(x))
657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
658 mm, resident_page_types[i], x);
659 }
660
661 if (mm_pgtables_bytes(mm))
662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
663 mm_pgtables_bytes(mm));
664
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667 #endif
668 }
669
670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
672
673 /*
674 * Called when the last reference to the mm
675 * is dropped: either by a lazy thread or by
676 * mmput. Free the page directory and the mm.
677 */
678 void __mmdrop(struct mm_struct *mm)
679 {
680 BUG_ON(mm == &init_mm);
681 WARN_ON_ONCE(mm == current->mm);
682 WARN_ON_ONCE(mm == current->active_mm);
683 mm_free_pgd(mm);
684 destroy_context(mm);
685 mmu_notifier_subscriptions_destroy(mm);
686 check_mm(mm);
687 put_user_ns(mm->user_ns);
688 free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691
692 static void mmdrop_async_fn(struct work_struct *work)
693 {
694 struct mm_struct *mm;
695
696 mm = container_of(work, struct mm_struct, async_put_work);
697 __mmdrop(mm);
698 }
699
700 static void mmdrop_async(struct mm_struct *mm)
701 {
702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
704 schedule_work(&mm->async_put_work);
705 }
706 }
707
708 static inline void free_signal_struct(struct signal_struct *sig)
709 {
710 taskstats_tgid_free(sig);
711 sched_autogroup_exit(sig);
712 /*
713 * __mmdrop is not safe to call from softirq context on x86 due to
714 * pgd_dtor so postpone it to the async context
715 */
716 if (sig->oom_mm)
717 mmdrop_async(sig->oom_mm);
718 kmem_cache_free(signal_cachep, sig);
719 }
720
721 static inline void put_signal_struct(struct signal_struct *sig)
722 {
723 if (refcount_dec_and_test(&sig->sigcnt))
724 free_signal_struct(sig);
725 }
726
727 void __put_task_struct(struct task_struct *tsk)
728 {
729 WARN_ON(!tsk->exit_state);
730 WARN_ON(refcount_read(&tsk->usage));
731 WARN_ON(tsk == current);
732
733 io_uring_free(tsk);
734 cgroup_free(tsk);
735 task_numa_free(tsk, true);
736 security_task_free(tsk);
737 exit_creds(tsk);
738 delayacct_tsk_free(tsk);
739 put_signal_struct(tsk->signal);
740
741 if (!profile_handoff_task(tsk))
742 free_task(tsk);
743 }
744 EXPORT_SYMBOL_GPL(__put_task_struct);
745
746 void __init __weak arch_task_cache_init(void) { }
747
748 /*
749 * set_max_threads
750 */
751 static void set_max_threads(unsigned int max_threads_suggested)
752 {
753 u64 threads;
754 unsigned long nr_pages = totalram_pages();
755
756 /*
757 * The number of threads shall be limited such that the thread
758 * structures may only consume a small part of the available memory.
759 */
760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
761 threads = MAX_THREADS;
762 else
763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
764 (u64) THREAD_SIZE * 8UL);
765
766 if (threads > max_threads_suggested)
767 threads = max_threads_suggested;
768
769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
770 }
771
772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
773 /* Initialized by the architecture: */
774 int arch_task_struct_size __read_mostly;
775 #endif
776
777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
779 {
780 /* Fetch thread_struct whitelist for the architecture. */
781 arch_thread_struct_whitelist(offset, size);
782
783 /*
784 * Handle zero-sized whitelist or empty thread_struct, otherwise
785 * adjust offset to position of thread_struct in task_struct.
786 */
787 if (unlikely(*size == 0))
788 *offset = 0;
789 else
790 *offset += offsetof(struct task_struct, thread);
791 }
792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
793
794 void __init fork_init(void)
795 {
796 int i;
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
798 #ifndef ARCH_MIN_TASKALIGN
799 #define ARCH_MIN_TASKALIGN 0
800 #endif
801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
802 unsigned long useroffset, usersize;
803
804 /* create a slab on which task_structs can be allocated */
805 task_struct_whitelist(&useroffset, &usersize);
806 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
807 arch_task_struct_size, align,
808 SLAB_PANIC|SLAB_ACCOUNT,
809 useroffset, usersize, NULL);
810 #endif
811
812 /* do the arch specific task caches init */
813 arch_task_cache_init();
814
815 set_max_threads(MAX_THREADS);
816
817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
819 init_task.signal->rlim[RLIMIT_SIGPENDING] =
820 init_task.signal->rlim[RLIMIT_NPROC];
821
822 for (i = 0; i < UCOUNT_COUNTS; i++)
823 init_user_ns.ucount_max[i] = max_threads/2;
824
825 #ifdef CONFIG_VMAP_STACK
826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827 NULL, free_vm_stack_cache);
828 #endif
829
830 scs_init();
831
832 lockdep_init_task(&init_task);
833 uprobes_init();
834 }
835
836 int __weak arch_dup_task_struct(struct task_struct *dst,
837 struct task_struct *src)
838 {
839 *dst = *src;
840 return 0;
841 }
842
843 void set_task_stack_end_magic(struct task_struct *tsk)
844 {
845 unsigned long *stackend;
846
847 stackend = end_of_stack(tsk);
848 *stackend = STACK_END_MAGIC; /* for overflow detection */
849 }
850
851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
852 {
853 struct task_struct *tsk;
854 unsigned long *stack;
855 struct vm_struct *stack_vm_area __maybe_unused;
856 int err;
857
858 if (node == NUMA_NO_NODE)
859 node = tsk_fork_get_node(orig);
860 tsk = alloc_task_struct_node(node);
861 if (!tsk)
862 return NULL;
863
864 stack = alloc_thread_stack_node(tsk, node);
865 if (!stack)
866 goto free_tsk;
867
868 if (memcg_charge_kernel_stack(tsk))
869 goto free_stack;
870
871 stack_vm_area = task_stack_vm_area(tsk);
872
873 err = arch_dup_task_struct(tsk, orig);
874
875 /*
876 * arch_dup_task_struct() clobbers the stack-related fields. Make
877 * sure they're properly initialized before using any stack-related
878 * functions again.
879 */
880 tsk->stack = stack;
881 #ifdef CONFIG_VMAP_STACK
882 tsk->stack_vm_area = stack_vm_area;
883 #endif
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 refcount_set(&tsk->stack_refcount, 1);
886 #endif
887
888 if (err)
889 goto free_stack;
890
891 err = scs_prepare(tsk, node);
892 if (err)
893 goto free_stack;
894
895 #ifdef CONFIG_SECCOMP
896 /*
897 * We must handle setting up seccomp filters once we're under
898 * the sighand lock in case orig has changed between now and
899 * then. Until then, filter must be NULL to avoid messing up
900 * the usage counts on the error path calling free_task.
901 */
902 tsk->seccomp.filter = NULL;
903 #endif
904
905 setup_thread_stack(tsk, orig);
906 clear_user_return_notifier(tsk);
907 clear_tsk_need_resched(tsk);
908 set_task_stack_end_magic(tsk);
909 clear_syscall_work_syscall_user_dispatch(tsk);
910
911 #ifdef CONFIG_STACKPROTECTOR
912 tsk->stack_canary = get_random_canary();
913 #endif
914 if (orig->cpus_ptr == &orig->cpus_mask)
915 tsk->cpus_ptr = &tsk->cpus_mask;
916
917 /*
918 * One for the user space visible state that goes away when reaped.
919 * One for the scheduler.
920 */
921 refcount_set(&tsk->rcu_users, 2);
922 /* One for the rcu users */
923 refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925 tsk->btrace_seq = 0;
926 #endif
927 tsk->splice_pipe = NULL;
928 tsk->task_frag.page = NULL;
929 tsk->wake_q.next = NULL;
930
931 account_kernel_stack(tsk, 1);
932
933 kcov_task_init(tsk);
934 kmap_local_fork(tsk);
935
936 #ifdef CONFIG_FAULT_INJECTION
937 tsk->fail_nth = 0;
938 #endif
939
940 #ifdef CONFIG_BLK_CGROUP
941 tsk->throttle_queue = NULL;
942 tsk->use_memdelay = 0;
943 #endif
944
945 #ifdef CONFIG_MEMCG
946 tsk->active_memcg = NULL;
947 #endif
948 return tsk;
949
950 free_stack:
951 free_thread_stack(tsk);
952 free_tsk:
953 free_task_struct(tsk);
954 return NULL;
955 }
956
957 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
958
959 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
960
961 static int __init coredump_filter_setup(char *s)
962 {
963 default_dump_filter =
964 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
965 MMF_DUMP_FILTER_MASK;
966 return 1;
967 }
968
969 __setup("coredump_filter=", coredump_filter_setup);
970
971 #include <linux/init_task.h>
972
973 static void mm_init_aio(struct mm_struct *mm)
974 {
975 #ifdef CONFIG_AIO
976 spin_lock_init(&mm->ioctx_lock);
977 mm->ioctx_table = NULL;
978 #endif
979 }
980
981 static __always_inline void mm_clear_owner(struct mm_struct *mm,
982 struct task_struct *p)
983 {
984 #ifdef CONFIG_MEMCG
985 if (mm->owner == p)
986 WRITE_ONCE(mm->owner, NULL);
987 #endif
988 }
989
990 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
991 {
992 #ifdef CONFIG_MEMCG
993 mm->owner = p;
994 #endif
995 }
996
997 static void mm_init_pasid(struct mm_struct *mm)
998 {
999 #ifdef CONFIG_IOMMU_SUPPORT
1000 mm->pasid = INIT_PASID;
1001 #endif
1002 }
1003
1004 static void mm_init_uprobes_state(struct mm_struct *mm)
1005 {
1006 #ifdef CONFIG_UPROBES
1007 mm->uprobes_state.xol_area = NULL;
1008 #endif
1009 }
1010
1011 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1012 struct user_namespace *user_ns)
1013 {
1014 mm->mmap = NULL;
1015 mm->mm_rb = RB_ROOT;
1016 mm->vmacache_seqnum = 0;
1017 atomic_set(&mm->mm_users, 1);
1018 atomic_set(&mm->mm_count, 1);
1019 seqcount_init(&mm->write_protect_seq);
1020 mmap_init_lock(mm);
1021 INIT_LIST_HEAD(&mm->mmlist);
1022 mm->core_state = NULL;
1023 mm_pgtables_bytes_init(mm);
1024 mm->map_count = 0;
1025 mm->locked_vm = 0;
1026 atomic_set(&mm->has_pinned, 0);
1027 atomic64_set(&mm->pinned_vm, 0);
1028 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1029 spin_lock_init(&mm->page_table_lock);
1030 spin_lock_init(&mm->arg_lock);
1031 mm_init_cpumask(mm);
1032 mm_init_aio(mm);
1033 mm_init_owner(mm, p);
1034 mm_init_pasid(mm);
1035 RCU_INIT_POINTER(mm->exe_file, NULL);
1036 mmu_notifier_subscriptions_init(mm);
1037 init_tlb_flush_pending(mm);
1038 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1039 mm->pmd_huge_pte = NULL;
1040 #endif
1041 mm_init_uprobes_state(mm);
1042
1043 if (current->mm) {
1044 mm->flags = current->mm->flags & MMF_INIT_MASK;
1045 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1046 } else {
1047 mm->flags = default_dump_filter;
1048 mm->def_flags = 0;
1049 }
1050
1051 if (mm_alloc_pgd(mm))
1052 goto fail_nopgd;
1053
1054 if (init_new_context(p, mm))
1055 goto fail_nocontext;
1056
1057 mm->user_ns = get_user_ns(user_ns);
1058 return mm;
1059
1060 fail_nocontext:
1061 mm_free_pgd(mm);
1062 fail_nopgd:
1063 free_mm(mm);
1064 return NULL;
1065 }
1066
1067 /*
1068 * Allocate and initialize an mm_struct.
1069 */
1070 struct mm_struct *mm_alloc(void)
1071 {
1072 struct mm_struct *mm;
1073
1074 mm = allocate_mm();
1075 if (!mm)
1076 return NULL;
1077
1078 memset(mm, 0, sizeof(*mm));
1079 return mm_init(mm, current, current_user_ns());
1080 }
1081
1082 static inline void __mmput(struct mm_struct *mm)
1083 {
1084 VM_BUG_ON(atomic_read(&mm->mm_users));
1085
1086 uprobe_clear_state(mm);
1087 exit_aio(mm);
1088 ksm_exit(mm);
1089 khugepaged_exit(mm); /* must run before exit_mmap */
1090 exit_mmap(mm);
1091 mm_put_huge_zero_page(mm);
1092 set_mm_exe_file(mm, NULL);
1093 if (!list_empty(&mm->mmlist)) {
1094 spin_lock(&mmlist_lock);
1095 list_del(&mm->mmlist);
1096 spin_unlock(&mmlist_lock);
1097 }
1098 if (mm->binfmt)
1099 module_put(mm->binfmt->module);
1100 mmdrop(mm);
1101 }
1102
1103 /*
1104 * Decrement the use count and release all resources for an mm.
1105 */
1106 void mmput(struct mm_struct *mm)
1107 {
1108 might_sleep();
1109
1110 if (atomic_dec_and_test(&mm->mm_users))
1111 __mmput(mm);
1112 }
1113 EXPORT_SYMBOL_GPL(mmput);
1114
1115 #ifdef CONFIG_MMU
1116 static void mmput_async_fn(struct work_struct *work)
1117 {
1118 struct mm_struct *mm = container_of(work, struct mm_struct,
1119 async_put_work);
1120
1121 __mmput(mm);
1122 }
1123
1124 void mmput_async(struct mm_struct *mm)
1125 {
1126 if (atomic_dec_and_test(&mm->mm_users)) {
1127 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1128 schedule_work(&mm->async_put_work);
1129 }
1130 }
1131 #endif
1132
1133 /**
1134 * set_mm_exe_file - change a reference to the mm's executable file
1135 *
1136 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1137 *
1138 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1139 * invocations: in mmput() nobody alive left, in execve task is single
1140 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1141 * mm->exe_file, but does so without using set_mm_exe_file() in order
1142 * to do avoid the need for any locks.
1143 */
1144 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1145 {
1146 struct file *old_exe_file;
1147
1148 /*
1149 * It is safe to dereference the exe_file without RCU as
1150 * this function is only called if nobody else can access
1151 * this mm -- see comment above for justification.
1152 */
1153 old_exe_file = rcu_dereference_raw(mm->exe_file);
1154
1155 if (new_exe_file)
1156 get_file(new_exe_file);
1157 rcu_assign_pointer(mm->exe_file, new_exe_file);
1158 if (old_exe_file)
1159 fput(old_exe_file);
1160 }
1161
1162 /**
1163 * get_mm_exe_file - acquire a reference to the mm's executable file
1164 *
1165 * Returns %NULL if mm has no associated executable file.
1166 * User must release file via fput().
1167 */
1168 struct file *get_mm_exe_file(struct mm_struct *mm)
1169 {
1170 struct file *exe_file;
1171
1172 rcu_read_lock();
1173 exe_file = rcu_dereference(mm->exe_file);
1174 if (exe_file && !get_file_rcu(exe_file))
1175 exe_file = NULL;
1176 rcu_read_unlock();
1177 return exe_file;
1178 }
1179 EXPORT_SYMBOL(get_mm_exe_file);
1180
1181 /**
1182 * get_task_exe_file - acquire a reference to the task's executable file
1183 *
1184 * Returns %NULL if task's mm (if any) has no associated executable file or
1185 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1186 * User must release file via fput().
1187 */
1188 struct file *get_task_exe_file(struct task_struct *task)
1189 {
1190 struct file *exe_file = NULL;
1191 struct mm_struct *mm;
1192
1193 task_lock(task);
1194 mm = task->mm;
1195 if (mm) {
1196 if (!(task->flags & PF_KTHREAD))
1197 exe_file = get_mm_exe_file(mm);
1198 }
1199 task_unlock(task);
1200 return exe_file;
1201 }
1202 EXPORT_SYMBOL(get_task_exe_file);
1203
1204 /**
1205 * get_task_mm - acquire a reference to the task's mm
1206 *
1207 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1208 * this kernel workthread has transiently adopted a user mm with use_mm,
1209 * to do its AIO) is not set and if so returns a reference to it, after
1210 * bumping up the use count. User must release the mm via mmput()
1211 * after use. Typically used by /proc and ptrace.
1212 */
1213 struct mm_struct *get_task_mm(struct task_struct *task)
1214 {
1215 struct mm_struct *mm;
1216
1217 task_lock(task);
1218 mm = task->mm;
1219 if (mm) {
1220 if (task->flags & PF_KTHREAD)
1221 mm = NULL;
1222 else
1223 mmget(mm);
1224 }
1225 task_unlock(task);
1226 return mm;
1227 }
1228 EXPORT_SYMBOL_GPL(get_task_mm);
1229
1230 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1231 {
1232 struct mm_struct *mm;
1233 int err;
1234
1235 err = down_read_killable(&task->signal->exec_update_lock);
1236 if (err)
1237 return ERR_PTR(err);
1238
1239 mm = get_task_mm(task);
1240 if (mm && mm != current->mm &&
1241 !ptrace_may_access(task, mode)) {
1242 mmput(mm);
1243 mm = ERR_PTR(-EACCES);
1244 }
1245 up_read(&task->signal->exec_update_lock);
1246
1247 return mm;
1248 }
1249
1250 static void complete_vfork_done(struct task_struct *tsk)
1251 {
1252 struct completion *vfork;
1253
1254 task_lock(tsk);
1255 vfork = tsk->vfork_done;
1256 if (likely(vfork)) {
1257 tsk->vfork_done = NULL;
1258 complete(vfork);
1259 }
1260 task_unlock(tsk);
1261 }
1262
1263 static int wait_for_vfork_done(struct task_struct *child,
1264 struct completion *vfork)
1265 {
1266 int killed;
1267
1268 freezer_do_not_count();
1269 cgroup_enter_frozen();
1270 killed = wait_for_completion_killable(vfork);
1271 cgroup_leave_frozen(false);
1272 freezer_count();
1273
1274 if (killed) {
1275 task_lock(child);
1276 child->vfork_done = NULL;
1277 task_unlock(child);
1278 }
1279
1280 put_task_struct(child);
1281 return killed;
1282 }
1283
1284 /* Please note the differences between mmput and mm_release.
1285 * mmput is called whenever we stop holding onto a mm_struct,
1286 * error success whatever.
1287 *
1288 * mm_release is called after a mm_struct has been removed
1289 * from the current process.
1290 *
1291 * This difference is important for error handling, when we
1292 * only half set up a mm_struct for a new process and need to restore
1293 * the old one. Because we mmput the new mm_struct before
1294 * restoring the old one. . .
1295 * Eric Biederman 10 January 1998
1296 */
1297 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1298 {
1299 uprobe_free_utask(tsk);
1300
1301 /* Get rid of any cached register state */
1302 deactivate_mm(tsk, mm);
1303
1304 /*
1305 * Signal userspace if we're not exiting with a core dump
1306 * because we want to leave the value intact for debugging
1307 * purposes.
1308 */
1309 if (tsk->clear_child_tid) {
1310 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1311 atomic_read(&mm->mm_users) > 1) {
1312 /*
1313 * We don't check the error code - if userspace has
1314 * not set up a proper pointer then tough luck.
1315 */
1316 put_user(0, tsk->clear_child_tid);
1317 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1318 1, NULL, NULL, 0, 0);
1319 }
1320 tsk->clear_child_tid = NULL;
1321 }
1322
1323 /*
1324 * All done, finally we can wake up parent and return this mm to him.
1325 * Also kthread_stop() uses this completion for synchronization.
1326 */
1327 if (tsk->vfork_done)
1328 complete_vfork_done(tsk);
1329 }
1330
1331 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1332 {
1333 futex_exit_release(tsk);
1334 mm_release(tsk, mm);
1335 }
1336
1337 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1338 {
1339 futex_exec_release(tsk);
1340 mm_release(tsk, mm);
1341 }
1342
1343 /**
1344 * dup_mm() - duplicates an existing mm structure
1345 * @tsk: the task_struct with which the new mm will be associated.
1346 * @oldmm: the mm to duplicate.
1347 *
1348 * Allocates a new mm structure and duplicates the provided @oldmm structure
1349 * content into it.
1350 *
1351 * Return: the duplicated mm or NULL on failure.
1352 */
1353 static struct mm_struct *dup_mm(struct task_struct *tsk,
1354 struct mm_struct *oldmm)
1355 {
1356 struct mm_struct *mm;
1357 int err;
1358
1359 mm = allocate_mm();
1360 if (!mm)
1361 goto fail_nomem;
1362
1363 memcpy(mm, oldmm, sizeof(*mm));
1364
1365 if (!mm_init(mm, tsk, mm->user_ns))
1366 goto fail_nomem;
1367
1368 err = dup_mmap(mm, oldmm);
1369 if (err)
1370 goto free_pt;
1371
1372 mm->hiwater_rss = get_mm_rss(mm);
1373 mm->hiwater_vm = mm->total_vm;
1374
1375 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1376 goto free_pt;
1377
1378 return mm;
1379
1380 free_pt:
1381 /* don't put binfmt in mmput, we haven't got module yet */
1382 mm->binfmt = NULL;
1383 mm_init_owner(mm, NULL);
1384 mmput(mm);
1385
1386 fail_nomem:
1387 return NULL;
1388 }
1389
1390 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1391 {
1392 struct mm_struct *mm, *oldmm;
1393 int retval;
1394
1395 tsk->min_flt = tsk->maj_flt = 0;
1396 tsk->nvcsw = tsk->nivcsw = 0;
1397 #ifdef CONFIG_DETECT_HUNG_TASK
1398 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1399 tsk->last_switch_time = 0;
1400 #endif
1401
1402 tsk->mm = NULL;
1403 tsk->active_mm = NULL;
1404
1405 /*
1406 * Are we cloning a kernel thread?
1407 *
1408 * We need to steal a active VM for that..
1409 */
1410 oldmm = current->mm;
1411 if (!oldmm)
1412 return 0;
1413
1414 /* initialize the new vmacache entries */
1415 vmacache_flush(tsk);
1416
1417 if (clone_flags & CLONE_VM) {
1418 mmget(oldmm);
1419 mm = oldmm;
1420 goto good_mm;
1421 }
1422
1423 retval = -ENOMEM;
1424 mm = dup_mm(tsk, current->mm);
1425 if (!mm)
1426 goto fail_nomem;
1427
1428 good_mm:
1429 tsk->mm = mm;
1430 tsk->active_mm = mm;
1431 return 0;
1432
1433 fail_nomem:
1434 return retval;
1435 }
1436
1437 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1438 {
1439 struct fs_struct *fs = current->fs;
1440 if (clone_flags & CLONE_FS) {
1441 /* tsk->fs is already what we want */
1442 spin_lock(&fs->lock);
1443 if (fs->in_exec) {
1444 spin_unlock(&fs->lock);
1445 return -EAGAIN;
1446 }
1447 fs->users++;
1448 spin_unlock(&fs->lock);
1449 return 0;
1450 }
1451 tsk->fs = copy_fs_struct(fs);
1452 if (!tsk->fs)
1453 return -ENOMEM;
1454 return 0;
1455 }
1456
1457 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1458 {
1459 struct files_struct *oldf, *newf;
1460 int error = 0;
1461
1462 /*
1463 * A background process may not have any files ...
1464 */
1465 oldf = current->files;
1466 if (!oldf)
1467 goto out;
1468
1469 if (clone_flags & CLONE_FILES) {
1470 atomic_inc(&oldf->count);
1471 goto out;
1472 }
1473
1474 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1475 if (!newf)
1476 goto out;
1477
1478 tsk->files = newf;
1479 error = 0;
1480 out:
1481 return error;
1482 }
1483
1484 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1485 {
1486 #ifdef CONFIG_BLOCK
1487 struct io_context *ioc = current->io_context;
1488 struct io_context *new_ioc;
1489
1490 if (!ioc)
1491 return 0;
1492 /*
1493 * Share io context with parent, if CLONE_IO is set
1494 */
1495 if (clone_flags & CLONE_IO) {
1496 ioc_task_link(ioc);
1497 tsk->io_context = ioc;
1498 } else if (ioprio_valid(ioc->ioprio)) {
1499 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1500 if (unlikely(!new_ioc))
1501 return -ENOMEM;
1502
1503 new_ioc->ioprio = ioc->ioprio;
1504 put_io_context(new_ioc);
1505 }
1506 #endif
1507 return 0;
1508 }
1509
1510 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1511 {
1512 struct sighand_struct *sig;
1513
1514 if (clone_flags & CLONE_SIGHAND) {
1515 refcount_inc(&current->sighand->count);
1516 return 0;
1517 }
1518 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1519 RCU_INIT_POINTER(tsk->sighand, sig);
1520 if (!sig)
1521 return -ENOMEM;
1522
1523 refcount_set(&sig->count, 1);
1524 spin_lock_irq(&current->sighand->siglock);
1525 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1526 spin_unlock_irq(&current->sighand->siglock);
1527
1528 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1529 if (clone_flags & CLONE_CLEAR_SIGHAND)
1530 flush_signal_handlers(tsk, 0);
1531
1532 return 0;
1533 }
1534
1535 void __cleanup_sighand(struct sighand_struct *sighand)
1536 {
1537 if (refcount_dec_and_test(&sighand->count)) {
1538 signalfd_cleanup(sighand);
1539 /*
1540 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1541 * without an RCU grace period, see __lock_task_sighand().
1542 */
1543 kmem_cache_free(sighand_cachep, sighand);
1544 }
1545 }
1546
1547 /*
1548 * Initialize POSIX timer handling for a thread group.
1549 */
1550 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1551 {
1552 struct posix_cputimers *pct = &sig->posix_cputimers;
1553 unsigned long cpu_limit;
1554
1555 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1556 posix_cputimers_group_init(pct, cpu_limit);
1557 }
1558
1559 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1560 {
1561 struct signal_struct *sig;
1562
1563 if (clone_flags & CLONE_THREAD)
1564 return 0;
1565
1566 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1567 tsk->signal = sig;
1568 if (!sig)
1569 return -ENOMEM;
1570
1571 sig->nr_threads = 1;
1572 atomic_set(&sig->live, 1);
1573 refcount_set(&sig->sigcnt, 1);
1574
1575 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1576 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1577 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1578
1579 init_waitqueue_head(&sig->wait_chldexit);
1580 sig->curr_target = tsk;
1581 init_sigpending(&sig->shared_pending);
1582 INIT_HLIST_HEAD(&sig->multiprocess);
1583 seqlock_init(&sig->stats_lock);
1584 prev_cputime_init(&sig->prev_cputime);
1585
1586 #ifdef CONFIG_POSIX_TIMERS
1587 INIT_LIST_HEAD(&sig->posix_timers);
1588 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1589 sig->real_timer.function = it_real_fn;
1590 #endif
1591
1592 task_lock(current->group_leader);
1593 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1594 task_unlock(current->group_leader);
1595
1596 posix_cpu_timers_init_group(sig);
1597
1598 tty_audit_fork(sig);
1599 sched_autogroup_fork(sig);
1600
1601 sig->oom_score_adj = current->signal->oom_score_adj;
1602 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1603
1604 mutex_init(&sig->cred_guard_mutex);
1605 init_rwsem(&sig->exec_update_lock);
1606
1607 return 0;
1608 }
1609
1610 static void copy_seccomp(struct task_struct *p)
1611 {
1612 #ifdef CONFIG_SECCOMP
1613 /*
1614 * Must be called with sighand->lock held, which is common to
1615 * all threads in the group. Holding cred_guard_mutex is not
1616 * needed because this new task is not yet running and cannot
1617 * be racing exec.
1618 */
1619 assert_spin_locked(&current->sighand->siglock);
1620
1621 /* Ref-count the new filter user, and assign it. */
1622 get_seccomp_filter(current);
1623 p->seccomp = current->seccomp;
1624
1625 /*
1626 * Explicitly enable no_new_privs here in case it got set
1627 * between the task_struct being duplicated and holding the
1628 * sighand lock. The seccomp state and nnp must be in sync.
1629 */
1630 if (task_no_new_privs(current))
1631 task_set_no_new_privs(p);
1632
1633 /*
1634 * If the parent gained a seccomp mode after copying thread
1635 * flags and between before we held the sighand lock, we have
1636 * to manually enable the seccomp thread flag here.
1637 */
1638 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1639 set_task_syscall_work(p, SECCOMP);
1640 #endif
1641 }
1642
1643 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1644 {
1645 current->clear_child_tid = tidptr;
1646
1647 return task_pid_vnr(current);
1648 }
1649
1650 static void rt_mutex_init_task(struct task_struct *p)
1651 {
1652 raw_spin_lock_init(&p->pi_lock);
1653 #ifdef CONFIG_RT_MUTEXES
1654 p->pi_waiters = RB_ROOT_CACHED;
1655 p->pi_top_task = NULL;
1656 p->pi_blocked_on = NULL;
1657 #endif
1658 }
1659
1660 static inline void init_task_pid_links(struct task_struct *task)
1661 {
1662 enum pid_type type;
1663
1664 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1665 INIT_HLIST_NODE(&task->pid_links[type]);
1666 }
1667
1668 static inline void
1669 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1670 {
1671 if (type == PIDTYPE_PID)
1672 task->thread_pid = pid;
1673 else
1674 task->signal->pids[type] = pid;
1675 }
1676
1677 static inline void rcu_copy_process(struct task_struct *p)
1678 {
1679 #ifdef CONFIG_PREEMPT_RCU
1680 p->rcu_read_lock_nesting = 0;
1681 p->rcu_read_unlock_special.s = 0;
1682 p->rcu_blocked_node = NULL;
1683 INIT_LIST_HEAD(&p->rcu_node_entry);
1684 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1685 #ifdef CONFIG_TASKS_RCU
1686 p->rcu_tasks_holdout = false;
1687 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1688 p->rcu_tasks_idle_cpu = -1;
1689 #endif /* #ifdef CONFIG_TASKS_RCU */
1690 #ifdef CONFIG_TASKS_TRACE_RCU
1691 p->trc_reader_nesting = 0;
1692 p->trc_reader_special.s = 0;
1693 INIT_LIST_HEAD(&p->trc_holdout_list);
1694 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1695 }
1696
1697 struct pid *pidfd_pid(const struct file *file)
1698 {
1699 if (file->f_op == &pidfd_fops)
1700 return file->private_data;
1701
1702 return ERR_PTR(-EBADF);
1703 }
1704
1705 static int pidfd_release(struct inode *inode, struct file *file)
1706 {
1707 struct pid *pid = file->private_data;
1708
1709 file->private_data = NULL;
1710 put_pid(pid);
1711 return 0;
1712 }
1713
1714 #ifdef CONFIG_PROC_FS
1715 /**
1716 * pidfd_show_fdinfo - print information about a pidfd
1717 * @m: proc fdinfo file
1718 * @f: file referencing a pidfd
1719 *
1720 * Pid:
1721 * This function will print the pid that a given pidfd refers to in the
1722 * pid namespace of the procfs instance.
1723 * If the pid namespace of the process is not a descendant of the pid
1724 * namespace of the procfs instance 0 will be shown as its pid. This is
1725 * similar to calling getppid() on a process whose parent is outside of
1726 * its pid namespace.
1727 *
1728 * NSpid:
1729 * If pid namespaces are supported then this function will also print
1730 * the pid of a given pidfd refers to for all descendant pid namespaces
1731 * starting from the current pid namespace of the instance, i.e. the
1732 * Pid field and the first entry in the NSpid field will be identical.
1733 * If the pid namespace of the process is not a descendant of the pid
1734 * namespace of the procfs instance 0 will be shown as its first NSpid
1735 * entry and no others will be shown.
1736 * Note that this differs from the Pid and NSpid fields in
1737 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1738 * the pid namespace of the procfs instance. The difference becomes
1739 * obvious when sending around a pidfd between pid namespaces from a
1740 * different branch of the tree, i.e. where no ancestoral relation is
1741 * present between the pid namespaces:
1742 * - create two new pid namespaces ns1 and ns2 in the initial pid
1743 * namespace (also take care to create new mount namespaces in the
1744 * new pid namespace and mount procfs)
1745 * - create a process with a pidfd in ns1
1746 * - send pidfd from ns1 to ns2
1747 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1748 * have exactly one entry, which is 0
1749 */
1750 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1751 {
1752 struct pid *pid = f->private_data;
1753 struct pid_namespace *ns;
1754 pid_t nr = -1;
1755
1756 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1757 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1758 nr = pid_nr_ns(pid, ns);
1759 }
1760
1761 seq_put_decimal_ll(m, "Pid:\t", nr);
1762
1763 #ifdef CONFIG_PID_NS
1764 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1765 if (nr > 0) {
1766 int i;
1767
1768 /* If nr is non-zero it means that 'pid' is valid and that
1769 * ns, i.e. the pid namespace associated with the procfs
1770 * instance, is in the pid namespace hierarchy of pid.
1771 * Start at one below the already printed level.
1772 */
1773 for (i = ns->level + 1; i <= pid->level; i++)
1774 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1775 }
1776 #endif
1777 seq_putc(m, '\n');
1778 }
1779 #endif
1780
1781 /*
1782 * Poll support for process exit notification.
1783 */
1784 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1785 {
1786 struct pid *pid = file->private_data;
1787 __poll_t poll_flags = 0;
1788
1789 poll_wait(file, &pid->wait_pidfd, pts);
1790
1791 /*
1792 * Inform pollers only when the whole thread group exits.
1793 * If the thread group leader exits before all other threads in the
1794 * group, then poll(2) should block, similar to the wait(2) family.
1795 */
1796 if (thread_group_exited(pid))
1797 poll_flags = EPOLLIN | EPOLLRDNORM;
1798
1799 return poll_flags;
1800 }
1801
1802 const struct file_operations pidfd_fops = {
1803 .release = pidfd_release,
1804 .poll = pidfd_poll,
1805 #ifdef CONFIG_PROC_FS
1806 .show_fdinfo = pidfd_show_fdinfo,
1807 #endif
1808 };
1809
1810 static void __delayed_free_task(struct rcu_head *rhp)
1811 {
1812 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1813
1814 free_task(tsk);
1815 }
1816
1817 static __always_inline void delayed_free_task(struct task_struct *tsk)
1818 {
1819 if (IS_ENABLED(CONFIG_MEMCG))
1820 call_rcu(&tsk->rcu, __delayed_free_task);
1821 else
1822 free_task(tsk);
1823 }
1824
1825 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1826 {
1827 /* Skip if kernel thread */
1828 if (!tsk->mm)
1829 return;
1830
1831 /* Skip if spawning a thread or using vfork */
1832 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1833 return;
1834
1835 /* We need to synchronize with __set_oom_adj */
1836 mutex_lock(&oom_adj_mutex);
1837 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1838 /* Update the values in case they were changed after copy_signal */
1839 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1840 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1841 mutex_unlock(&oom_adj_mutex);
1842 }
1843
1844 /*
1845 * This creates a new process as a copy of the old one,
1846 * but does not actually start it yet.
1847 *
1848 * It copies the registers, and all the appropriate
1849 * parts of the process environment (as per the clone
1850 * flags). The actual kick-off is left to the caller.
1851 */
1852 static __latent_entropy struct task_struct *copy_process(
1853 struct pid *pid,
1854 int trace,
1855 int node,
1856 struct kernel_clone_args *args)
1857 {
1858 int pidfd = -1, retval;
1859 struct task_struct *p;
1860 struct multiprocess_signals delayed;
1861 struct file *pidfile = NULL;
1862 u64 clone_flags = args->flags;
1863 struct nsproxy *nsp = current->nsproxy;
1864
1865 /*
1866 * Don't allow sharing the root directory with processes in a different
1867 * namespace
1868 */
1869 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1870 return ERR_PTR(-EINVAL);
1871
1872 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1873 return ERR_PTR(-EINVAL);
1874
1875 /*
1876 * Thread groups must share signals as well, and detached threads
1877 * can only be started up within the thread group.
1878 */
1879 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1880 return ERR_PTR(-EINVAL);
1881
1882 /*
1883 * Shared signal handlers imply shared VM. By way of the above,
1884 * thread groups also imply shared VM. Blocking this case allows
1885 * for various simplifications in other code.
1886 */
1887 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1888 return ERR_PTR(-EINVAL);
1889
1890 /*
1891 * Siblings of global init remain as zombies on exit since they are
1892 * not reaped by their parent (swapper). To solve this and to avoid
1893 * multi-rooted process trees, prevent global and container-inits
1894 * from creating siblings.
1895 */
1896 if ((clone_flags & CLONE_PARENT) &&
1897 current->signal->flags & SIGNAL_UNKILLABLE)
1898 return ERR_PTR(-EINVAL);
1899
1900 /*
1901 * If the new process will be in a different pid or user namespace
1902 * do not allow it to share a thread group with the forking task.
1903 */
1904 if (clone_flags & CLONE_THREAD) {
1905 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1906 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1907 return ERR_PTR(-EINVAL);
1908 }
1909
1910 /*
1911 * If the new process will be in a different time namespace
1912 * do not allow it to share VM or a thread group with the forking task.
1913 */
1914 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1915 if (nsp->time_ns != nsp->time_ns_for_children)
1916 return ERR_PTR(-EINVAL);
1917 }
1918
1919 if (clone_flags & CLONE_PIDFD) {
1920 /*
1921 * - CLONE_DETACHED is blocked so that we can potentially
1922 * reuse it later for CLONE_PIDFD.
1923 * - CLONE_THREAD is blocked until someone really needs it.
1924 */
1925 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1926 return ERR_PTR(-EINVAL);
1927 }
1928
1929 /*
1930 * Force any signals received before this point to be delivered
1931 * before the fork happens. Collect up signals sent to multiple
1932 * processes that happen during the fork and delay them so that
1933 * they appear to happen after the fork.
1934 */
1935 sigemptyset(&delayed.signal);
1936 INIT_HLIST_NODE(&delayed.node);
1937
1938 spin_lock_irq(&current->sighand->siglock);
1939 if (!(clone_flags & CLONE_THREAD))
1940 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1941 recalc_sigpending();
1942 spin_unlock_irq(&current->sighand->siglock);
1943 retval = -ERESTARTNOINTR;
1944 if (signal_pending(current))
1945 goto fork_out;
1946
1947 retval = -ENOMEM;
1948 p = dup_task_struct(current, node);
1949 if (!p)
1950 goto fork_out;
1951 if (args->io_thread)
1952 p->flags |= PF_IO_WORKER;
1953
1954 /*
1955 * This _must_ happen before we call free_task(), i.e. before we jump
1956 * to any of the bad_fork_* labels. This is to avoid freeing
1957 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1958 * kernel threads (PF_KTHREAD).
1959 */
1960 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1961 /*
1962 * Clear TID on mm_release()?
1963 */
1964 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1965
1966 ftrace_graph_init_task(p);
1967
1968 rt_mutex_init_task(p);
1969
1970 lockdep_assert_irqs_enabled();
1971 #ifdef CONFIG_PROVE_LOCKING
1972 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1973 #endif
1974 retval = -EAGAIN;
1975 if (atomic_read(&p->real_cred->user->processes) >=
1976 task_rlimit(p, RLIMIT_NPROC)) {
1977 if (p->real_cred->user != INIT_USER &&
1978 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1979 goto bad_fork_free;
1980 }
1981 current->flags &= ~PF_NPROC_EXCEEDED;
1982
1983 retval = copy_creds(p, clone_flags);
1984 if (retval < 0)
1985 goto bad_fork_free;
1986
1987 /*
1988 * If multiple threads are within copy_process(), then this check
1989 * triggers too late. This doesn't hurt, the check is only there
1990 * to stop root fork bombs.
1991 */
1992 retval = -EAGAIN;
1993 if (data_race(nr_threads >= max_threads))
1994 goto bad_fork_cleanup_count;
1995
1996 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1997 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1998 p->flags |= PF_FORKNOEXEC;
1999 INIT_LIST_HEAD(&p->children);
2000 INIT_LIST_HEAD(&p->sibling);
2001 rcu_copy_process(p);
2002 p->vfork_done = NULL;
2003 spin_lock_init(&p->alloc_lock);
2004
2005 init_sigpending(&p->pending);
2006
2007 p->utime = p->stime = p->gtime = 0;
2008 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2009 p->utimescaled = p->stimescaled = 0;
2010 #endif
2011 prev_cputime_init(&p->prev_cputime);
2012
2013 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2014 seqcount_init(&p->vtime.seqcount);
2015 p->vtime.starttime = 0;
2016 p->vtime.state = VTIME_INACTIVE;
2017 #endif
2018
2019 #ifdef CONFIG_IO_URING
2020 p->io_uring = NULL;
2021 #endif
2022
2023 #if defined(SPLIT_RSS_COUNTING)
2024 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2025 #endif
2026
2027 p->default_timer_slack_ns = current->timer_slack_ns;
2028
2029 #ifdef CONFIG_PSI
2030 p->psi_flags = 0;
2031 #endif
2032
2033 task_io_accounting_init(&p->ioac);
2034 acct_clear_integrals(p);
2035
2036 posix_cputimers_init(&p->posix_cputimers);
2037
2038 p->io_context = NULL;
2039 audit_set_context(p, NULL);
2040 cgroup_fork(p);
2041 #ifdef CONFIG_NUMA
2042 p->mempolicy = mpol_dup(p->mempolicy);
2043 if (IS_ERR(p->mempolicy)) {
2044 retval = PTR_ERR(p->mempolicy);
2045 p->mempolicy = NULL;
2046 goto bad_fork_cleanup_threadgroup_lock;
2047 }
2048 #endif
2049 #ifdef CONFIG_CPUSETS
2050 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2051 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2052 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2053 #endif
2054 #ifdef CONFIG_TRACE_IRQFLAGS
2055 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2056 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2057 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2058 p->softirqs_enabled = 1;
2059 p->softirq_context = 0;
2060 #endif
2061
2062 p->pagefault_disabled = 0;
2063
2064 #ifdef CONFIG_LOCKDEP
2065 lockdep_init_task(p);
2066 #endif
2067
2068 #ifdef CONFIG_DEBUG_MUTEXES
2069 p->blocked_on = NULL; /* not blocked yet */
2070 #endif
2071 #ifdef CONFIG_BCACHE
2072 p->sequential_io = 0;
2073 p->sequential_io_avg = 0;
2074 #endif
2075
2076 /* Perform scheduler related setup. Assign this task to a CPU. */
2077 retval = sched_fork(clone_flags, p);
2078 if (retval)
2079 goto bad_fork_cleanup_policy;
2080
2081 retval = perf_event_init_task(p);
2082 if (retval)
2083 goto bad_fork_cleanup_policy;
2084 retval = audit_alloc(p);
2085 if (retval)
2086 goto bad_fork_cleanup_perf;
2087 /* copy all the process information */
2088 shm_init_task(p);
2089 retval = security_task_alloc(p, clone_flags);
2090 if (retval)
2091 goto bad_fork_cleanup_audit;
2092 retval = copy_semundo(clone_flags, p);
2093 if (retval)
2094 goto bad_fork_cleanup_security;
2095 retval = copy_files(clone_flags, p);
2096 if (retval)
2097 goto bad_fork_cleanup_semundo;
2098 retval = copy_fs(clone_flags, p);
2099 if (retval)
2100 goto bad_fork_cleanup_files;
2101 retval = copy_sighand(clone_flags, p);
2102 if (retval)
2103 goto bad_fork_cleanup_fs;
2104 retval = copy_signal(clone_flags, p);
2105 if (retval)
2106 goto bad_fork_cleanup_sighand;
2107 retval = copy_mm(clone_flags, p);
2108 if (retval)
2109 goto bad_fork_cleanup_signal;
2110 retval = copy_namespaces(clone_flags, p);
2111 if (retval)
2112 goto bad_fork_cleanup_mm;
2113 retval = copy_io(clone_flags, p);
2114 if (retval)
2115 goto bad_fork_cleanup_namespaces;
2116 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2117 if (retval)
2118 goto bad_fork_cleanup_io;
2119
2120 stackleak_task_init(p);
2121
2122 if (pid != &init_struct_pid) {
2123 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2124 args->set_tid_size);
2125 if (IS_ERR(pid)) {
2126 retval = PTR_ERR(pid);
2127 goto bad_fork_cleanup_thread;
2128 }
2129 }
2130
2131 /*
2132 * This has to happen after we've potentially unshared the file
2133 * descriptor table (so that the pidfd doesn't leak into the child
2134 * if the fd table isn't shared).
2135 */
2136 if (clone_flags & CLONE_PIDFD) {
2137 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2138 if (retval < 0)
2139 goto bad_fork_free_pid;
2140
2141 pidfd = retval;
2142
2143 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2144 O_RDWR | O_CLOEXEC);
2145 if (IS_ERR(pidfile)) {
2146 put_unused_fd(pidfd);
2147 retval = PTR_ERR(pidfile);
2148 goto bad_fork_free_pid;
2149 }
2150 get_pid(pid); /* held by pidfile now */
2151
2152 retval = put_user(pidfd, args->pidfd);
2153 if (retval)
2154 goto bad_fork_put_pidfd;
2155 }
2156
2157 #ifdef CONFIG_BLOCK
2158 p->plug = NULL;
2159 #endif
2160 futex_init_task(p);
2161
2162 /*
2163 * sigaltstack should be cleared when sharing the same VM
2164 */
2165 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2166 sas_ss_reset(p);
2167
2168 /*
2169 * Syscall tracing and stepping should be turned off in the
2170 * child regardless of CLONE_PTRACE.
2171 */
2172 user_disable_single_step(p);
2173 clear_task_syscall_work(p, SYSCALL_TRACE);
2174 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2175 clear_task_syscall_work(p, SYSCALL_EMU);
2176 #endif
2177 clear_tsk_latency_tracing(p);
2178
2179 /* ok, now we should be set up.. */
2180 p->pid = pid_nr(pid);
2181 if (clone_flags & CLONE_THREAD) {
2182 p->group_leader = current->group_leader;
2183 p->tgid = current->tgid;
2184 } else {
2185 p->group_leader = p;
2186 p->tgid = p->pid;
2187 }
2188
2189 p->nr_dirtied = 0;
2190 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2191 p->dirty_paused_when = 0;
2192
2193 p->pdeath_signal = 0;
2194 INIT_LIST_HEAD(&p->thread_group);
2195 p->task_works = NULL;
2196
2197 #ifdef CONFIG_KRETPROBES
2198 p->kretprobe_instances.first = NULL;
2199 #endif
2200
2201 /*
2202 * Ensure that the cgroup subsystem policies allow the new process to be
2203 * forked. It should be noted that the new process's css_set can be changed
2204 * between here and cgroup_post_fork() if an organisation operation is in
2205 * progress.
2206 */
2207 retval = cgroup_can_fork(p, args);
2208 if (retval)
2209 goto bad_fork_put_pidfd;
2210
2211 /*
2212 * From this point on we must avoid any synchronous user-space
2213 * communication until we take the tasklist-lock. In particular, we do
2214 * not want user-space to be able to predict the process start-time by
2215 * stalling fork(2) after we recorded the start_time but before it is
2216 * visible to the system.
2217 */
2218
2219 p->start_time = ktime_get_ns();
2220 p->start_boottime = ktime_get_boottime_ns();
2221
2222 /*
2223 * Make it visible to the rest of the system, but dont wake it up yet.
2224 * Need tasklist lock for parent etc handling!
2225 */
2226 write_lock_irq(&tasklist_lock);
2227
2228 /* CLONE_PARENT re-uses the old parent */
2229 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2230 p->real_parent = current->real_parent;
2231 p->parent_exec_id = current->parent_exec_id;
2232 if (clone_flags & CLONE_THREAD)
2233 p->exit_signal = -1;
2234 else
2235 p->exit_signal = current->group_leader->exit_signal;
2236 } else {
2237 p->real_parent = current;
2238 p->parent_exec_id = current->self_exec_id;
2239 p->exit_signal = args->exit_signal;
2240 }
2241
2242 klp_copy_process(p);
2243
2244 spin_lock(&current->sighand->siglock);
2245
2246 /*
2247 * Copy seccomp details explicitly here, in case they were changed
2248 * before holding sighand lock.
2249 */
2250 copy_seccomp(p);
2251
2252 rseq_fork(p, clone_flags);
2253
2254 /* Don't start children in a dying pid namespace */
2255 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2256 retval = -ENOMEM;
2257 goto bad_fork_cancel_cgroup;
2258 }
2259
2260 /* Let kill terminate clone/fork in the middle */
2261 if (fatal_signal_pending(current)) {
2262 retval = -EINTR;
2263 goto bad_fork_cancel_cgroup;
2264 }
2265
2266 /* past the last point of failure */
2267 if (pidfile)
2268 fd_install(pidfd, pidfile);
2269
2270 init_task_pid_links(p);
2271 if (likely(p->pid)) {
2272 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2273
2274 init_task_pid(p, PIDTYPE_PID, pid);
2275 if (thread_group_leader(p)) {
2276 init_task_pid(p, PIDTYPE_TGID, pid);
2277 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2278 init_task_pid(p, PIDTYPE_SID, task_session(current));
2279
2280 if (is_child_reaper(pid)) {
2281 ns_of_pid(pid)->child_reaper = p;
2282 p->signal->flags |= SIGNAL_UNKILLABLE;
2283 }
2284 p->signal->shared_pending.signal = delayed.signal;
2285 p->signal->tty = tty_kref_get(current->signal->tty);
2286 /*
2287 * Inherit has_child_subreaper flag under the same
2288 * tasklist_lock with adding child to the process tree
2289 * for propagate_has_child_subreaper optimization.
2290 */
2291 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2292 p->real_parent->signal->is_child_subreaper;
2293 list_add_tail(&p->sibling, &p->real_parent->children);
2294 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2295 attach_pid(p, PIDTYPE_TGID);
2296 attach_pid(p, PIDTYPE_PGID);
2297 attach_pid(p, PIDTYPE_SID);
2298 __this_cpu_inc(process_counts);
2299 } else {
2300 current->signal->nr_threads++;
2301 atomic_inc(&current->signal->live);
2302 refcount_inc(&current->signal->sigcnt);
2303 task_join_group_stop(p);
2304 list_add_tail_rcu(&p->thread_group,
2305 &p->group_leader->thread_group);
2306 list_add_tail_rcu(&p->thread_node,
2307 &p->signal->thread_head);
2308 }
2309 attach_pid(p, PIDTYPE_PID);
2310 nr_threads++;
2311 }
2312 total_forks++;
2313 hlist_del_init(&delayed.node);
2314 spin_unlock(&current->sighand->siglock);
2315 syscall_tracepoint_update(p);
2316 write_unlock_irq(&tasklist_lock);
2317
2318 proc_fork_connector(p);
2319 sched_post_fork(p);
2320 cgroup_post_fork(p, args);
2321 perf_event_fork(p);
2322
2323 trace_task_newtask(p, clone_flags);
2324 uprobe_copy_process(p, clone_flags);
2325
2326 copy_oom_score_adj(clone_flags, p);
2327
2328 return p;
2329
2330 bad_fork_cancel_cgroup:
2331 spin_unlock(&current->sighand->siglock);
2332 write_unlock_irq(&tasklist_lock);
2333 cgroup_cancel_fork(p, args);
2334 bad_fork_put_pidfd:
2335 if (clone_flags & CLONE_PIDFD) {
2336 fput(pidfile);
2337 put_unused_fd(pidfd);
2338 }
2339 bad_fork_free_pid:
2340 if (pid != &init_struct_pid)
2341 free_pid(pid);
2342 bad_fork_cleanup_thread:
2343 exit_thread(p);
2344 bad_fork_cleanup_io:
2345 if (p->io_context)
2346 exit_io_context(p);
2347 bad_fork_cleanup_namespaces:
2348 exit_task_namespaces(p);
2349 bad_fork_cleanup_mm:
2350 if (p->mm) {
2351 mm_clear_owner(p->mm, p);
2352 mmput(p->mm);
2353 }
2354 bad_fork_cleanup_signal:
2355 if (!(clone_flags & CLONE_THREAD))
2356 free_signal_struct(p->signal);
2357 bad_fork_cleanup_sighand:
2358 __cleanup_sighand(p->sighand);
2359 bad_fork_cleanup_fs:
2360 exit_fs(p); /* blocking */
2361 bad_fork_cleanup_files:
2362 exit_files(p); /* blocking */
2363 bad_fork_cleanup_semundo:
2364 exit_sem(p);
2365 bad_fork_cleanup_security:
2366 security_task_free(p);
2367 bad_fork_cleanup_audit:
2368 audit_free(p);
2369 bad_fork_cleanup_perf:
2370 perf_event_free_task(p);
2371 bad_fork_cleanup_policy:
2372 lockdep_free_task(p);
2373 #ifdef CONFIG_NUMA
2374 mpol_put(p->mempolicy);
2375 bad_fork_cleanup_threadgroup_lock:
2376 #endif
2377 delayacct_tsk_free(p);
2378 bad_fork_cleanup_count:
2379 atomic_dec(&p->cred->user->processes);
2380 exit_creds(p);
2381 bad_fork_free:
2382 p->state = TASK_DEAD;
2383 put_task_stack(p);
2384 delayed_free_task(p);
2385 fork_out:
2386 spin_lock_irq(&current->sighand->siglock);
2387 hlist_del_init(&delayed.node);
2388 spin_unlock_irq(&current->sighand->siglock);
2389 return ERR_PTR(retval);
2390 }
2391
2392 static inline void init_idle_pids(struct task_struct *idle)
2393 {
2394 enum pid_type type;
2395
2396 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2397 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2398 init_task_pid(idle, type, &init_struct_pid);
2399 }
2400 }
2401
2402 struct task_struct *fork_idle(int cpu)
2403 {
2404 struct task_struct *task;
2405 struct kernel_clone_args args = {
2406 .flags = CLONE_VM,
2407 };
2408
2409 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2410 if (!IS_ERR(task)) {
2411 init_idle_pids(task);
2412 init_idle(task, cpu);
2413 }
2414
2415 return task;
2416 }
2417
2418 struct mm_struct *copy_init_mm(void)
2419 {
2420 return dup_mm(NULL, &init_mm);
2421 }
2422
2423 /*
2424 * This is like kernel_clone(), but shaved down and tailored to just
2425 * creating io_uring workers. It returns a created task, or an error pointer.
2426 * The returned task is inactive, and the caller must fire it up through
2427 * wake_up_new_task(p). All signals are blocked in the created task.
2428 */
2429 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2430 {
2431 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2432 CLONE_IO;
2433 struct kernel_clone_args args = {
2434 .flags = ((lower_32_bits(flags) | CLONE_VM |
2435 CLONE_UNTRACED) & ~CSIGNAL),
2436 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2437 .stack = (unsigned long)fn,
2438 .stack_size = (unsigned long)arg,
2439 .io_thread = 1,
2440 };
2441 struct task_struct *tsk;
2442
2443 tsk = copy_process(NULL, 0, node, &args);
2444 if (!IS_ERR(tsk)) {
2445 sigfillset(&tsk->blocked);
2446 sigdelsetmask(&tsk->blocked, sigmask(SIGKILL));
2447 tsk->flags |= PF_NOFREEZE;
2448 }
2449 return tsk;
2450 }
2451
2452 /*
2453 * Ok, this is the main fork-routine.
2454 *
2455 * It copies the process, and if successful kick-starts
2456 * it and waits for it to finish using the VM if required.
2457 *
2458 * args->exit_signal is expected to be checked for sanity by the caller.
2459 */
2460 pid_t kernel_clone(struct kernel_clone_args *args)
2461 {
2462 u64 clone_flags = args->flags;
2463 struct completion vfork;
2464 struct pid *pid;
2465 struct task_struct *p;
2466 int trace = 0;
2467 pid_t nr;
2468
2469 /*
2470 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2471 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2472 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2473 * field in struct clone_args and it still doesn't make sense to have
2474 * them both point at the same memory location. Performing this check
2475 * here has the advantage that we don't need to have a separate helper
2476 * to check for legacy clone().
2477 */
2478 if ((args->flags & CLONE_PIDFD) &&
2479 (args->flags & CLONE_PARENT_SETTID) &&
2480 (args->pidfd == args->parent_tid))
2481 return -EINVAL;
2482
2483 /*
2484 * Determine whether and which event to report to ptracer. When
2485 * called from kernel_thread or CLONE_UNTRACED is explicitly
2486 * requested, no event is reported; otherwise, report if the event
2487 * for the type of forking is enabled.
2488 */
2489 if (!(clone_flags & CLONE_UNTRACED)) {
2490 if (clone_flags & CLONE_VFORK)
2491 trace = PTRACE_EVENT_VFORK;
2492 else if (args->exit_signal != SIGCHLD)
2493 trace = PTRACE_EVENT_CLONE;
2494 else
2495 trace = PTRACE_EVENT_FORK;
2496
2497 if (likely(!ptrace_event_enabled(current, trace)))
2498 trace = 0;
2499 }
2500
2501 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2502 add_latent_entropy();
2503
2504 if (IS_ERR(p))
2505 return PTR_ERR(p);
2506
2507 /*
2508 * Do this prior waking up the new thread - the thread pointer
2509 * might get invalid after that point, if the thread exits quickly.
2510 */
2511 trace_sched_process_fork(current, p);
2512
2513 pid = get_task_pid(p, PIDTYPE_PID);
2514 nr = pid_vnr(pid);
2515
2516 if (clone_flags & CLONE_PARENT_SETTID)
2517 put_user(nr, args->parent_tid);
2518
2519 if (clone_flags & CLONE_VFORK) {
2520 p->vfork_done = &vfork;
2521 init_completion(&vfork);
2522 get_task_struct(p);
2523 }
2524
2525 wake_up_new_task(p);
2526
2527 /* forking complete and child started to run, tell ptracer */
2528 if (unlikely(trace))
2529 ptrace_event_pid(trace, pid);
2530
2531 if (clone_flags & CLONE_VFORK) {
2532 if (!wait_for_vfork_done(p, &vfork))
2533 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2534 }
2535
2536 put_pid(pid);
2537 return nr;
2538 }
2539
2540 /*
2541 * Create a kernel thread.
2542 */
2543 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2544 {
2545 struct kernel_clone_args args = {
2546 .flags = ((lower_32_bits(flags) | CLONE_VM |
2547 CLONE_UNTRACED) & ~CSIGNAL),
2548 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2549 .stack = (unsigned long)fn,
2550 .stack_size = (unsigned long)arg,
2551 };
2552
2553 return kernel_clone(&args);
2554 }
2555
2556 #ifdef __ARCH_WANT_SYS_FORK
2557 SYSCALL_DEFINE0(fork)
2558 {
2559 #ifdef CONFIG_MMU
2560 struct kernel_clone_args args = {
2561 .exit_signal = SIGCHLD,
2562 };
2563
2564 return kernel_clone(&args);
2565 #else
2566 /* can not support in nommu mode */
2567 return -EINVAL;
2568 #endif
2569 }
2570 #endif
2571
2572 #ifdef __ARCH_WANT_SYS_VFORK
2573 SYSCALL_DEFINE0(vfork)
2574 {
2575 struct kernel_clone_args args = {
2576 .flags = CLONE_VFORK | CLONE_VM,
2577 .exit_signal = SIGCHLD,
2578 };
2579
2580 return kernel_clone(&args);
2581 }
2582 #endif
2583
2584 #ifdef __ARCH_WANT_SYS_CLONE
2585 #ifdef CONFIG_CLONE_BACKWARDS
2586 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2587 int __user *, parent_tidptr,
2588 unsigned long, tls,
2589 int __user *, child_tidptr)
2590 #elif defined(CONFIG_CLONE_BACKWARDS2)
2591 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2592 int __user *, parent_tidptr,
2593 int __user *, child_tidptr,
2594 unsigned long, tls)
2595 #elif defined(CONFIG_CLONE_BACKWARDS3)
2596 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2597 int, stack_size,
2598 int __user *, parent_tidptr,
2599 int __user *, child_tidptr,
2600 unsigned long, tls)
2601 #else
2602 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2603 int __user *, parent_tidptr,
2604 int __user *, child_tidptr,
2605 unsigned long, tls)
2606 #endif
2607 {
2608 struct kernel_clone_args args = {
2609 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2610 .pidfd = parent_tidptr,
2611 .child_tid = child_tidptr,
2612 .parent_tid = parent_tidptr,
2613 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2614 .stack = newsp,
2615 .tls = tls,
2616 };
2617
2618 return kernel_clone(&args);
2619 }
2620 #endif
2621
2622 #ifdef __ARCH_WANT_SYS_CLONE3
2623
2624 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2625 struct clone_args __user *uargs,
2626 size_t usize)
2627 {
2628 int err;
2629 struct clone_args args;
2630 pid_t *kset_tid = kargs->set_tid;
2631
2632 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2633 CLONE_ARGS_SIZE_VER0);
2634 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2635 CLONE_ARGS_SIZE_VER1);
2636 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2637 CLONE_ARGS_SIZE_VER2);
2638 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2639
2640 if (unlikely(usize > PAGE_SIZE))
2641 return -E2BIG;
2642 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2643 return -EINVAL;
2644
2645 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2646 if (err)
2647 return err;
2648
2649 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2650 return -EINVAL;
2651
2652 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2653 return -EINVAL;
2654
2655 if (unlikely(args.set_tid && args.set_tid_size == 0))
2656 return -EINVAL;
2657
2658 /*
2659 * Verify that higher 32bits of exit_signal are unset and that
2660 * it is a valid signal
2661 */
2662 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2663 !valid_signal(args.exit_signal)))
2664 return -EINVAL;
2665
2666 if ((args.flags & CLONE_INTO_CGROUP) &&
2667 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2668 return -EINVAL;
2669
2670 *kargs = (struct kernel_clone_args){
2671 .flags = args.flags,
2672 .pidfd = u64_to_user_ptr(args.pidfd),
2673 .child_tid = u64_to_user_ptr(args.child_tid),
2674 .parent_tid = u64_to_user_ptr(args.parent_tid),
2675 .exit_signal = args.exit_signal,
2676 .stack = args.stack,
2677 .stack_size = args.stack_size,
2678 .tls = args.tls,
2679 .set_tid_size = args.set_tid_size,
2680 .cgroup = args.cgroup,
2681 };
2682
2683 if (args.set_tid &&
2684 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2685 (kargs->set_tid_size * sizeof(pid_t))))
2686 return -EFAULT;
2687
2688 kargs->set_tid = kset_tid;
2689
2690 return 0;
2691 }
2692
2693 /**
2694 * clone3_stack_valid - check and prepare stack
2695 * @kargs: kernel clone args
2696 *
2697 * Verify that the stack arguments userspace gave us are sane.
2698 * In addition, set the stack direction for userspace since it's easy for us to
2699 * determine.
2700 */
2701 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2702 {
2703 if (kargs->stack == 0) {
2704 if (kargs->stack_size > 0)
2705 return false;
2706 } else {
2707 if (kargs->stack_size == 0)
2708 return false;
2709
2710 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2711 return false;
2712
2713 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2714 kargs->stack += kargs->stack_size;
2715 #endif
2716 }
2717
2718 return true;
2719 }
2720
2721 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2722 {
2723 /* Verify that no unknown flags are passed along. */
2724 if (kargs->flags &
2725 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2726 return false;
2727
2728 /*
2729 * - make the CLONE_DETACHED bit reuseable for clone3
2730 * - make the CSIGNAL bits reuseable for clone3
2731 */
2732 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2733 return false;
2734
2735 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2736 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2737 return false;
2738
2739 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2740 kargs->exit_signal)
2741 return false;
2742
2743 if (!clone3_stack_valid(kargs))
2744 return false;
2745
2746 return true;
2747 }
2748
2749 /**
2750 * clone3 - create a new process with specific properties
2751 * @uargs: argument structure
2752 * @size: size of @uargs
2753 *
2754 * clone3() is the extensible successor to clone()/clone2().
2755 * It takes a struct as argument that is versioned by its size.
2756 *
2757 * Return: On success, a positive PID for the child process.
2758 * On error, a negative errno number.
2759 */
2760 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2761 {
2762 int err;
2763
2764 struct kernel_clone_args kargs;
2765 pid_t set_tid[MAX_PID_NS_LEVEL];
2766
2767 kargs.set_tid = set_tid;
2768
2769 err = copy_clone_args_from_user(&kargs, uargs, size);
2770 if (err)
2771 return err;
2772
2773 if (!clone3_args_valid(&kargs))
2774 return -EINVAL;
2775
2776 return kernel_clone(&kargs);
2777 }
2778 #endif
2779
2780 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2781 {
2782 struct task_struct *leader, *parent, *child;
2783 int res;
2784
2785 read_lock(&tasklist_lock);
2786 leader = top = top->group_leader;
2787 down:
2788 for_each_thread(leader, parent) {
2789 list_for_each_entry(child, &parent->children, sibling) {
2790 res = visitor(child, data);
2791 if (res) {
2792 if (res < 0)
2793 goto out;
2794 leader = child;
2795 goto down;
2796 }
2797 up:
2798 ;
2799 }
2800 }
2801
2802 if (leader != top) {
2803 child = leader;
2804 parent = child->real_parent;
2805 leader = parent->group_leader;
2806 goto up;
2807 }
2808 out:
2809 read_unlock(&tasklist_lock);
2810 }
2811
2812 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2813 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2814 #endif
2815
2816 static void sighand_ctor(void *data)
2817 {
2818 struct sighand_struct *sighand = data;
2819
2820 spin_lock_init(&sighand->siglock);
2821 init_waitqueue_head(&sighand->signalfd_wqh);
2822 }
2823
2824 void __init proc_caches_init(void)
2825 {
2826 unsigned int mm_size;
2827
2828 sighand_cachep = kmem_cache_create("sighand_cache",
2829 sizeof(struct sighand_struct), 0,
2830 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2831 SLAB_ACCOUNT, sighand_ctor);
2832 signal_cachep = kmem_cache_create("signal_cache",
2833 sizeof(struct signal_struct), 0,
2834 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2835 NULL);
2836 files_cachep = kmem_cache_create("files_cache",
2837 sizeof(struct files_struct), 0,
2838 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2839 NULL);
2840 fs_cachep = kmem_cache_create("fs_cache",
2841 sizeof(struct fs_struct), 0,
2842 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2843 NULL);
2844
2845 /*
2846 * The mm_cpumask is located at the end of mm_struct, and is
2847 * dynamically sized based on the maximum CPU number this system
2848 * can have, taking hotplug into account (nr_cpu_ids).
2849 */
2850 mm_size = sizeof(struct mm_struct) + cpumask_size();
2851
2852 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2853 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2854 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2855 offsetof(struct mm_struct, saved_auxv),
2856 sizeof_field(struct mm_struct, saved_auxv),
2857 NULL);
2858 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2859 mmap_init();
2860 nsproxy_cache_init();
2861 }
2862
2863 /*
2864 * Check constraints on flags passed to the unshare system call.
2865 */
2866 static int check_unshare_flags(unsigned long unshare_flags)
2867 {
2868 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2869 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2870 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2871 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2872 CLONE_NEWTIME))
2873 return -EINVAL;
2874 /*
2875 * Not implemented, but pretend it works if there is nothing
2876 * to unshare. Note that unsharing the address space or the
2877 * signal handlers also need to unshare the signal queues (aka
2878 * CLONE_THREAD).
2879 */
2880 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2881 if (!thread_group_empty(current))
2882 return -EINVAL;
2883 }
2884 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2885 if (refcount_read(&current->sighand->count) > 1)
2886 return -EINVAL;
2887 }
2888 if (unshare_flags & CLONE_VM) {
2889 if (!current_is_single_threaded())
2890 return -EINVAL;
2891 }
2892
2893 return 0;
2894 }
2895
2896 /*
2897 * Unshare the filesystem structure if it is being shared
2898 */
2899 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2900 {
2901 struct fs_struct *fs = current->fs;
2902
2903 if (!(unshare_flags & CLONE_FS) || !fs)
2904 return 0;
2905
2906 /* don't need lock here; in the worst case we'll do useless copy */
2907 if (fs->users == 1)
2908 return 0;
2909
2910 *new_fsp = copy_fs_struct(fs);
2911 if (!*new_fsp)
2912 return -ENOMEM;
2913
2914 return 0;
2915 }
2916
2917 /*
2918 * Unshare file descriptor table if it is being shared
2919 */
2920 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2921 struct files_struct **new_fdp)
2922 {
2923 struct files_struct *fd = current->files;
2924 int error = 0;
2925
2926 if ((unshare_flags & CLONE_FILES) &&
2927 (fd && atomic_read(&fd->count) > 1)) {
2928 *new_fdp = dup_fd(fd, max_fds, &error);
2929 if (!*new_fdp)
2930 return error;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /*
2937 * unshare allows a process to 'unshare' part of the process
2938 * context which was originally shared using clone. copy_*
2939 * functions used by kernel_clone() cannot be used here directly
2940 * because they modify an inactive task_struct that is being
2941 * constructed. Here we are modifying the current, active,
2942 * task_struct.
2943 */
2944 int ksys_unshare(unsigned long unshare_flags)
2945 {
2946 struct fs_struct *fs, *new_fs = NULL;
2947 struct files_struct *fd, *new_fd = NULL;
2948 struct cred *new_cred = NULL;
2949 struct nsproxy *new_nsproxy = NULL;
2950 int do_sysvsem = 0;
2951 int err;
2952
2953 /*
2954 * If unsharing a user namespace must also unshare the thread group
2955 * and unshare the filesystem root and working directories.
2956 */
2957 if (unshare_flags & CLONE_NEWUSER)
2958 unshare_flags |= CLONE_THREAD | CLONE_FS;
2959 /*
2960 * If unsharing vm, must also unshare signal handlers.
2961 */
2962 if (unshare_flags & CLONE_VM)
2963 unshare_flags |= CLONE_SIGHAND;
2964 /*
2965 * If unsharing a signal handlers, must also unshare the signal queues.
2966 */
2967 if (unshare_flags & CLONE_SIGHAND)
2968 unshare_flags |= CLONE_THREAD;
2969 /*
2970 * If unsharing namespace, must also unshare filesystem information.
2971 */
2972 if (unshare_flags & CLONE_NEWNS)
2973 unshare_flags |= CLONE_FS;
2974
2975 err = check_unshare_flags(unshare_flags);
2976 if (err)
2977 goto bad_unshare_out;
2978 /*
2979 * CLONE_NEWIPC must also detach from the undolist: after switching
2980 * to a new ipc namespace, the semaphore arrays from the old
2981 * namespace are unreachable.
2982 */
2983 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2984 do_sysvsem = 1;
2985 err = unshare_fs(unshare_flags, &new_fs);
2986 if (err)
2987 goto bad_unshare_out;
2988 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2989 if (err)
2990 goto bad_unshare_cleanup_fs;
2991 err = unshare_userns(unshare_flags, &new_cred);
2992 if (err)
2993 goto bad_unshare_cleanup_fd;
2994 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2995 new_cred, new_fs);
2996 if (err)
2997 goto bad_unshare_cleanup_cred;
2998
2999 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3000 if (do_sysvsem) {
3001 /*
3002 * CLONE_SYSVSEM is equivalent to sys_exit().
3003 */
3004 exit_sem(current);
3005 }
3006 if (unshare_flags & CLONE_NEWIPC) {
3007 /* Orphan segments in old ns (see sem above). */
3008 exit_shm(current);
3009 shm_init_task(current);
3010 }
3011
3012 if (new_nsproxy)
3013 switch_task_namespaces(current, new_nsproxy);
3014
3015 task_lock(current);
3016
3017 if (new_fs) {
3018 fs = current->fs;
3019 spin_lock(&fs->lock);
3020 current->fs = new_fs;
3021 if (--fs->users)
3022 new_fs = NULL;
3023 else
3024 new_fs = fs;
3025 spin_unlock(&fs->lock);
3026 }
3027
3028 if (new_fd) {
3029 fd = current->files;
3030 current->files = new_fd;
3031 new_fd = fd;
3032 }
3033
3034 task_unlock(current);
3035
3036 if (new_cred) {
3037 /* Install the new user namespace */
3038 commit_creds(new_cred);
3039 new_cred = NULL;
3040 }
3041 }
3042
3043 perf_event_namespaces(current);
3044
3045 bad_unshare_cleanup_cred:
3046 if (new_cred)
3047 put_cred(new_cred);
3048 bad_unshare_cleanup_fd:
3049 if (new_fd)
3050 put_files_struct(new_fd);
3051
3052 bad_unshare_cleanup_fs:
3053 if (new_fs)
3054 free_fs_struct(new_fs);
3055
3056 bad_unshare_out:
3057 return err;
3058 }
3059
3060 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3061 {
3062 return ksys_unshare(unshare_flags);
3063 }
3064
3065 /*
3066 * Helper to unshare the files of the current task.
3067 * We don't want to expose copy_files internals to
3068 * the exec layer of the kernel.
3069 */
3070
3071 int unshare_files(void)
3072 {
3073 struct task_struct *task = current;
3074 struct files_struct *old, *copy = NULL;
3075 int error;
3076
3077 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3078 if (error || !copy)
3079 return error;
3080
3081 old = task->files;
3082 task_lock(task);
3083 task->files = copy;
3084 task_unlock(task);
3085 put_files_struct(old);
3086 return 0;
3087 }
3088
3089 int sysctl_max_threads(struct ctl_table *table, int write,
3090 void *buffer, size_t *lenp, loff_t *ppos)
3091 {
3092 struct ctl_table t;
3093 int ret;
3094 int threads = max_threads;
3095 int min = 1;
3096 int max = MAX_THREADS;
3097
3098 t = *table;
3099 t.data = &threads;
3100 t.extra1 = &min;
3101 t.extra2 = &max;
3102
3103 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3104 if (ret || !write)
3105 return ret;
3106
3107 max_threads = threads;
3108
3109 return 0;
3110 }