]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/fork.c
Merge branch 'next/dt' into HEAD
[mirror_ubuntu-jammy-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87 * Protected counters by write_lock_irq(&tasklist_lock)
88 */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91
92 int max_threads; /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108 int cpu;
109 int total = 0;
110
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
113
114 return total;
115 }
116
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140
141 /*
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
144 */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 int node)
148 {
149 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 THREAD_SIZE_ORDER);
151
152 return page ? page_address(page) : NULL;
153 }
154
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
164 {
165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167
168 static void free_thread_info(struct thread_info *ti)
169 {
170 kmem_cache_free(thread_info_cache, ti);
171 }
172
173 void thread_info_cache_init(void)
174 {
175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 THREAD_SIZE, 0, NULL);
177 BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 struct zone *zone = page_zone(virt_to_page(ti));
203
204 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206
207 void free_task(struct task_struct *tsk)
208 {
209 account_kernel_stack(tsk->stack, -1);
210 arch_release_thread_info(tsk->stack);
211 free_thread_info(tsk->stack);
212 rt_mutex_debug_task_free(tsk);
213 ftrace_graph_exit_task(tsk);
214 put_seccomp_filter(tsk);
215 arch_release_task_struct(tsk);
216 free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 taskstats_tgid_free(sig);
223 sched_autogroup_exit(sig);
224 kmem_cache_free(signal_cachep, sig);
225 }
226
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 if (atomic_dec_and_test(&sig->sigcnt))
230 free_signal_struct(sig);
231 }
232
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 WARN_ON(!tsk->exit_state);
236 WARN_ON(atomic_read(&tsk->usage));
237 WARN_ON(tsk == current);
238
239 security_task_free(tsk);
240 exit_creds(tsk);
241 delayacct_tsk_free(tsk);
242 put_signal_struct(tsk->signal);
243
244 if (!profile_handoff_task(tsk))
245 free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248
249 void __init __weak arch_task_cache_init(void) { }
250
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
256 #endif
257 /* create a slab on which task_structs can be allocated */
258 task_struct_cachep =
259 kmem_cache_create("task_struct", sizeof(struct task_struct),
260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
265
266 /*
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
269 * of memory.
270 */
271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272
273 /*
274 * we need to allow at least 20 threads to boot a system
275 */
276 if (max_threads < 20)
277 max_threads = 20;
278
279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 init_task.signal->rlim[RLIMIT_NPROC];
283 }
284
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 struct task_struct *src)
287 {
288 *dst = *src;
289 return 0;
290 }
291
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 struct task_struct *tsk;
295 struct thread_info *ti;
296 unsigned long *stackend;
297 int node = tsk_fork_get_node(orig);
298 int err;
299
300 tsk = alloc_task_struct_node(node);
301 if (!tsk)
302 return NULL;
303
304 ti = alloc_thread_info_node(tsk, node);
305 if (!ti)
306 goto free_tsk;
307
308 err = arch_dup_task_struct(tsk, orig);
309 if (err)
310 goto free_ti;
311
312 tsk->stack = ti;
313
314 setup_thread_stack(tsk, orig);
315 clear_user_return_notifier(tsk);
316 clear_tsk_need_resched(tsk);
317 stackend = end_of_stack(tsk);
318 *stackend = STACK_END_MAGIC; /* for overflow detection */
319
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk->stack_canary = get_random_int();
322 #endif
323
324 /*
325 * One for us, one for whoever does the "release_task()" (usually
326 * parent)
327 */
328 atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 tsk->btrace_seq = 0;
331 #endif
332 tsk->splice_pipe = NULL;
333
334 account_kernel_stack(ti, 1);
335
336 return tsk;
337
338 free_ti:
339 free_thread_info(ti);
340 free_tsk:
341 free_task_struct(tsk);
342 return NULL;
343 }
344
345 #ifdef CONFIG_MMU
346 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
347 {
348 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
349 struct rb_node **rb_link, *rb_parent;
350 int retval;
351 unsigned long charge;
352 struct mempolicy *pol;
353
354 down_write(&oldmm->mmap_sem);
355 flush_cache_dup_mm(oldmm);
356 uprobe_dup_mmap(oldmm, mm);
357 /*
358 * Not linked in yet - no deadlock potential:
359 */
360 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
361
362 mm->locked_vm = 0;
363 mm->mmap = NULL;
364 mm->mmap_cache = NULL;
365 mm->free_area_cache = oldmm->mmap_base;
366 mm->cached_hole_size = ~0UL;
367 mm->map_count = 0;
368 cpumask_clear(mm_cpumask(mm));
369 mm->mm_rb = RB_ROOT;
370 rb_link = &mm->mm_rb.rb_node;
371 rb_parent = NULL;
372 pprev = &mm->mmap;
373 retval = ksm_fork(mm, oldmm);
374 if (retval)
375 goto out;
376 retval = khugepaged_fork(mm, oldmm);
377 if (retval)
378 goto out;
379
380 prev = NULL;
381 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382 struct file *file;
383
384 if (mpnt->vm_flags & VM_DONTCOPY) {
385 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386 -vma_pages(mpnt));
387 continue;
388 }
389 charge = 0;
390 if (mpnt->vm_flags & VM_ACCOUNT) {
391 unsigned long len = vma_pages(mpnt);
392
393 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394 goto fail_nomem;
395 charge = len;
396 }
397 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398 if (!tmp)
399 goto fail_nomem;
400 *tmp = *mpnt;
401 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 pol = mpol_dup(vma_policy(mpnt));
403 retval = PTR_ERR(pol);
404 if (IS_ERR(pol))
405 goto fail_nomem_policy;
406 vma_set_policy(tmp, pol);
407 tmp->vm_mm = mm;
408 if (anon_vma_fork(tmp, mpnt))
409 goto fail_nomem_anon_vma_fork;
410 tmp->vm_flags &= ~VM_LOCKED;
411 tmp->vm_next = tmp->vm_prev = NULL;
412 file = tmp->vm_file;
413 if (file) {
414 struct inode *inode = file->f_path.dentry->d_inode;
415 struct address_space *mapping = file->f_mapping;
416
417 get_file(file);
418 if (tmp->vm_flags & VM_DENYWRITE)
419 atomic_dec(&inode->i_writecount);
420 mutex_lock(&mapping->i_mmap_mutex);
421 if (tmp->vm_flags & VM_SHARED)
422 mapping->i_mmap_writable++;
423 flush_dcache_mmap_lock(mapping);
424 /* insert tmp into the share list, just after mpnt */
425 vma_prio_tree_add(tmp, mpnt);
426 flush_dcache_mmap_unlock(mapping);
427 mutex_unlock(&mapping->i_mmap_mutex);
428 }
429
430 /*
431 * Clear hugetlb-related page reserves for children. This only
432 * affects MAP_PRIVATE mappings. Faults generated by the child
433 * are not guaranteed to succeed, even if read-only
434 */
435 if (is_vm_hugetlb_page(tmp))
436 reset_vma_resv_huge_pages(tmp);
437
438 /*
439 * Link in the new vma and copy the page table entries.
440 */
441 *pprev = tmp;
442 pprev = &tmp->vm_next;
443 tmp->vm_prev = prev;
444 prev = tmp;
445
446 __vma_link_rb(mm, tmp, rb_link, rb_parent);
447 rb_link = &tmp->vm_rb.rb_right;
448 rb_parent = &tmp->vm_rb;
449
450 mm->map_count++;
451 retval = copy_page_range(mm, oldmm, mpnt);
452
453 if (tmp->vm_ops && tmp->vm_ops->open)
454 tmp->vm_ops->open(tmp);
455
456 if (retval)
457 goto out;
458 }
459 /* a new mm has just been created */
460 arch_dup_mmap(oldmm, mm);
461 retval = 0;
462 out:
463 up_write(&mm->mmap_sem);
464 flush_tlb_mm(oldmm);
465 up_write(&oldmm->mmap_sem);
466 return retval;
467 fail_nomem_anon_vma_fork:
468 mpol_put(pol);
469 fail_nomem_policy:
470 kmem_cache_free(vm_area_cachep, tmp);
471 fail_nomem:
472 retval = -ENOMEM;
473 vm_unacct_memory(charge);
474 goto out;
475 }
476
477 static inline int mm_alloc_pgd(struct mm_struct *mm)
478 {
479 mm->pgd = pgd_alloc(mm);
480 if (unlikely(!mm->pgd))
481 return -ENOMEM;
482 return 0;
483 }
484
485 static inline void mm_free_pgd(struct mm_struct *mm)
486 {
487 pgd_free(mm, mm->pgd);
488 }
489 #else
490 #define dup_mmap(mm, oldmm) (0)
491 #define mm_alloc_pgd(mm) (0)
492 #define mm_free_pgd(mm)
493 #endif /* CONFIG_MMU */
494
495 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
496
497 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
498 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
499
500 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
501
502 static int __init coredump_filter_setup(char *s)
503 {
504 default_dump_filter =
505 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
506 MMF_DUMP_FILTER_MASK;
507 return 1;
508 }
509
510 __setup("coredump_filter=", coredump_filter_setup);
511
512 #include <linux/init_task.h>
513
514 static void mm_init_aio(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_AIO
517 spin_lock_init(&mm->ioctx_lock);
518 INIT_HLIST_HEAD(&mm->ioctx_list);
519 #endif
520 }
521
522 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
523 {
524 atomic_set(&mm->mm_users, 1);
525 atomic_set(&mm->mm_count, 1);
526 init_rwsem(&mm->mmap_sem);
527 INIT_LIST_HEAD(&mm->mmlist);
528 mm->flags = (current->mm) ?
529 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
530 mm->core_state = NULL;
531 mm->nr_ptes = 0;
532 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
533 spin_lock_init(&mm->page_table_lock);
534 mm->free_area_cache = TASK_UNMAPPED_BASE;
535 mm->cached_hole_size = ~0UL;
536 mm_init_aio(mm);
537 mm_init_owner(mm, p);
538
539 if (likely(!mm_alloc_pgd(mm))) {
540 mm->def_flags = 0;
541 mmu_notifier_mm_init(mm);
542 return mm;
543 }
544
545 free_mm(mm);
546 return NULL;
547 }
548
549 static void check_mm(struct mm_struct *mm)
550 {
551 int i;
552
553 for (i = 0; i < NR_MM_COUNTERS; i++) {
554 long x = atomic_long_read(&mm->rss_stat.count[i]);
555
556 if (unlikely(x))
557 printk(KERN_ALERT "BUG: Bad rss-counter state "
558 "mm:%p idx:%d val:%ld\n", mm, i, x);
559 }
560
561 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
562 VM_BUG_ON(mm->pmd_huge_pte);
563 #endif
564 }
565
566 /*
567 * Allocate and initialize an mm_struct.
568 */
569 struct mm_struct *mm_alloc(void)
570 {
571 struct mm_struct *mm;
572
573 mm = allocate_mm();
574 if (!mm)
575 return NULL;
576
577 memset(mm, 0, sizeof(*mm));
578 mm_init_cpumask(mm);
579 return mm_init(mm, current);
580 }
581
582 /*
583 * Called when the last reference to the mm
584 * is dropped: either by a lazy thread or by
585 * mmput. Free the page directory and the mm.
586 */
587 void __mmdrop(struct mm_struct *mm)
588 {
589 BUG_ON(mm == &init_mm);
590 mm_free_pgd(mm);
591 destroy_context(mm);
592 mmu_notifier_mm_destroy(mm);
593 check_mm(mm);
594 free_mm(mm);
595 }
596 EXPORT_SYMBOL_GPL(__mmdrop);
597
598 /*
599 * Decrement the use count and release all resources for an mm.
600 */
601 void mmput(struct mm_struct *mm)
602 {
603 might_sleep();
604
605 if (atomic_dec_and_test(&mm->mm_users)) {
606 uprobe_clear_state(mm);
607 exit_aio(mm);
608 ksm_exit(mm);
609 khugepaged_exit(mm); /* must run before exit_mmap */
610 exit_mmap(mm);
611 set_mm_exe_file(mm, NULL);
612 if (!list_empty(&mm->mmlist)) {
613 spin_lock(&mmlist_lock);
614 list_del(&mm->mmlist);
615 spin_unlock(&mmlist_lock);
616 }
617 if (mm->binfmt)
618 module_put(mm->binfmt->module);
619 mmdrop(mm);
620 }
621 }
622 EXPORT_SYMBOL_GPL(mmput);
623
624 /*
625 * We added or removed a vma mapping the executable. The vmas are only mapped
626 * during exec and are not mapped with the mmap system call.
627 * Callers must hold down_write() on the mm's mmap_sem for these
628 */
629 void added_exe_file_vma(struct mm_struct *mm)
630 {
631 mm->num_exe_file_vmas++;
632 }
633
634 void removed_exe_file_vma(struct mm_struct *mm)
635 {
636 mm->num_exe_file_vmas--;
637 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
638 fput(mm->exe_file);
639 mm->exe_file = NULL;
640 }
641
642 }
643
644 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
645 {
646 if (new_exe_file)
647 get_file(new_exe_file);
648 if (mm->exe_file)
649 fput(mm->exe_file);
650 mm->exe_file = new_exe_file;
651 mm->num_exe_file_vmas = 0;
652 }
653
654 struct file *get_mm_exe_file(struct mm_struct *mm)
655 {
656 struct file *exe_file;
657
658 /* We need mmap_sem to protect against races with removal of
659 * VM_EXECUTABLE vmas */
660 down_read(&mm->mmap_sem);
661 exe_file = mm->exe_file;
662 if (exe_file)
663 get_file(exe_file);
664 up_read(&mm->mmap_sem);
665 return exe_file;
666 }
667
668 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
669 {
670 /* It's safe to write the exe_file pointer without exe_file_lock because
671 * this is called during fork when the task is not yet in /proc */
672 newmm->exe_file = get_mm_exe_file(oldmm);
673 }
674
675 /**
676 * get_task_mm - acquire a reference to the task's mm
677 *
678 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
679 * this kernel workthread has transiently adopted a user mm with use_mm,
680 * to do its AIO) is not set and if so returns a reference to it, after
681 * bumping up the use count. User must release the mm via mmput()
682 * after use. Typically used by /proc and ptrace.
683 */
684 struct mm_struct *get_task_mm(struct task_struct *task)
685 {
686 struct mm_struct *mm;
687
688 task_lock(task);
689 mm = task->mm;
690 if (mm) {
691 if (task->flags & PF_KTHREAD)
692 mm = NULL;
693 else
694 atomic_inc(&mm->mm_users);
695 }
696 task_unlock(task);
697 return mm;
698 }
699 EXPORT_SYMBOL_GPL(get_task_mm);
700
701 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
702 {
703 struct mm_struct *mm;
704 int err;
705
706 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
707 if (err)
708 return ERR_PTR(err);
709
710 mm = get_task_mm(task);
711 if (mm && mm != current->mm &&
712 !ptrace_may_access(task, mode)) {
713 mmput(mm);
714 mm = ERR_PTR(-EACCES);
715 }
716 mutex_unlock(&task->signal->cred_guard_mutex);
717
718 return mm;
719 }
720
721 static void complete_vfork_done(struct task_struct *tsk)
722 {
723 struct completion *vfork;
724
725 task_lock(tsk);
726 vfork = tsk->vfork_done;
727 if (likely(vfork)) {
728 tsk->vfork_done = NULL;
729 complete(vfork);
730 }
731 task_unlock(tsk);
732 }
733
734 static int wait_for_vfork_done(struct task_struct *child,
735 struct completion *vfork)
736 {
737 int killed;
738
739 freezer_do_not_count();
740 killed = wait_for_completion_killable(vfork);
741 freezer_count();
742
743 if (killed) {
744 task_lock(child);
745 child->vfork_done = NULL;
746 task_unlock(child);
747 }
748
749 put_task_struct(child);
750 return killed;
751 }
752
753 /* Please note the differences between mmput and mm_release.
754 * mmput is called whenever we stop holding onto a mm_struct,
755 * error success whatever.
756 *
757 * mm_release is called after a mm_struct has been removed
758 * from the current process.
759 *
760 * This difference is important for error handling, when we
761 * only half set up a mm_struct for a new process and need to restore
762 * the old one. Because we mmput the new mm_struct before
763 * restoring the old one. . .
764 * Eric Biederman 10 January 1998
765 */
766 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
767 {
768 /* Get rid of any futexes when releasing the mm */
769 #ifdef CONFIG_FUTEX
770 if (unlikely(tsk->robust_list)) {
771 exit_robust_list(tsk);
772 tsk->robust_list = NULL;
773 }
774 #ifdef CONFIG_COMPAT
775 if (unlikely(tsk->compat_robust_list)) {
776 compat_exit_robust_list(tsk);
777 tsk->compat_robust_list = NULL;
778 }
779 #endif
780 if (unlikely(!list_empty(&tsk->pi_state_list)))
781 exit_pi_state_list(tsk);
782 #endif
783
784 uprobe_free_utask(tsk);
785
786 /* Get rid of any cached register state */
787 deactivate_mm(tsk, mm);
788
789 /*
790 * If we're exiting normally, clear a user-space tid field if
791 * requested. We leave this alone when dying by signal, to leave
792 * the value intact in a core dump, and to save the unnecessary
793 * trouble, say, a killed vfork parent shouldn't touch this mm.
794 * Userland only wants this done for a sys_exit.
795 */
796 if (tsk->clear_child_tid) {
797 if (!(tsk->flags & PF_SIGNALED) &&
798 atomic_read(&mm->mm_users) > 1) {
799 /*
800 * We don't check the error code - if userspace has
801 * not set up a proper pointer then tough luck.
802 */
803 put_user(0, tsk->clear_child_tid);
804 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
805 1, NULL, NULL, 0);
806 }
807 tsk->clear_child_tid = NULL;
808 }
809
810 /*
811 * All done, finally we can wake up parent and return this mm to him.
812 * Also kthread_stop() uses this completion for synchronization.
813 */
814 if (tsk->vfork_done)
815 complete_vfork_done(tsk);
816 }
817
818 /*
819 * Allocate a new mm structure and copy contents from the
820 * mm structure of the passed in task structure.
821 */
822 struct mm_struct *dup_mm(struct task_struct *tsk)
823 {
824 struct mm_struct *mm, *oldmm = current->mm;
825 int err;
826
827 if (!oldmm)
828 return NULL;
829
830 mm = allocate_mm();
831 if (!mm)
832 goto fail_nomem;
833
834 memcpy(mm, oldmm, sizeof(*mm));
835 mm_init_cpumask(mm);
836
837 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
838 mm->pmd_huge_pte = NULL;
839 #endif
840 if (!mm_init(mm, tsk))
841 goto fail_nomem;
842
843 if (init_new_context(tsk, mm))
844 goto fail_nocontext;
845
846 dup_mm_exe_file(oldmm, mm);
847
848 err = dup_mmap(mm, oldmm);
849 if (err)
850 goto free_pt;
851
852 mm->hiwater_rss = get_mm_rss(mm);
853 mm->hiwater_vm = mm->total_vm;
854
855 if (mm->binfmt && !try_module_get(mm->binfmt->module))
856 goto free_pt;
857
858 return mm;
859
860 free_pt:
861 /* don't put binfmt in mmput, we haven't got module yet */
862 mm->binfmt = NULL;
863 mmput(mm);
864
865 fail_nomem:
866 return NULL;
867
868 fail_nocontext:
869 /*
870 * If init_new_context() failed, we cannot use mmput() to free the mm
871 * because it calls destroy_context()
872 */
873 mm_free_pgd(mm);
874 free_mm(mm);
875 return NULL;
876 }
877
878 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
879 {
880 struct mm_struct *mm, *oldmm;
881 int retval;
882
883 tsk->min_flt = tsk->maj_flt = 0;
884 tsk->nvcsw = tsk->nivcsw = 0;
885 #ifdef CONFIG_DETECT_HUNG_TASK
886 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
887 #endif
888
889 tsk->mm = NULL;
890 tsk->active_mm = NULL;
891
892 /*
893 * Are we cloning a kernel thread?
894 *
895 * We need to steal a active VM for that..
896 */
897 oldmm = current->mm;
898 if (!oldmm)
899 return 0;
900
901 if (clone_flags & CLONE_VM) {
902 atomic_inc(&oldmm->mm_users);
903 mm = oldmm;
904 goto good_mm;
905 }
906
907 retval = -ENOMEM;
908 mm = dup_mm(tsk);
909 if (!mm)
910 goto fail_nomem;
911
912 good_mm:
913 tsk->mm = mm;
914 tsk->active_mm = mm;
915 return 0;
916
917 fail_nomem:
918 return retval;
919 }
920
921 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
922 {
923 struct fs_struct *fs = current->fs;
924 if (clone_flags & CLONE_FS) {
925 /* tsk->fs is already what we want */
926 spin_lock(&fs->lock);
927 if (fs->in_exec) {
928 spin_unlock(&fs->lock);
929 return -EAGAIN;
930 }
931 fs->users++;
932 spin_unlock(&fs->lock);
933 return 0;
934 }
935 tsk->fs = copy_fs_struct(fs);
936 if (!tsk->fs)
937 return -ENOMEM;
938 return 0;
939 }
940
941 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
942 {
943 struct files_struct *oldf, *newf;
944 int error = 0;
945
946 /*
947 * A background process may not have any files ...
948 */
949 oldf = current->files;
950 if (!oldf)
951 goto out;
952
953 if (clone_flags & CLONE_FILES) {
954 atomic_inc(&oldf->count);
955 goto out;
956 }
957
958 newf = dup_fd(oldf, &error);
959 if (!newf)
960 goto out;
961
962 tsk->files = newf;
963 error = 0;
964 out:
965 return error;
966 }
967
968 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
969 {
970 #ifdef CONFIG_BLOCK
971 struct io_context *ioc = current->io_context;
972 struct io_context *new_ioc;
973
974 if (!ioc)
975 return 0;
976 /*
977 * Share io context with parent, if CLONE_IO is set
978 */
979 if (clone_flags & CLONE_IO) {
980 ioc_task_link(ioc);
981 tsk->io_context = ioc;
982 } else if (ioprio_valid(ioc->ioprio)) {
983 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
984 if (unlikely(!new_ioc))
985 return -ENOMEM;
986
987 new_ioc->ioprio = ioc->ioprio;
988 put_io_context(new_ioc);
989 }
990 #endif
991 return 0;
992 }
993
994 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
995 {
996 struct sighand_struct *sig;
997
998 if (clone_flags & CLONE_SIGHAND) {
999 atomic_inc(&current->sighand->count);
1000 return 0;
1001 }
1002 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1003 rcu_assign_pointer(tsk->sighand, sig);
1004 if (!sig)
1005 return -ENOMEM;
1006 atomic_set(&sig->count, 1);
1007 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1008 return 0;
1009 }
1010
1011 void __cleanup_sighand(struct sighand_struct *sighand)
1012 {
1013 if (atomic_dec_and_test(&sighand->count)) {
1014 signalfd_cleanup(sighand);
1015 kmem_cache_free(sighand_cachep, sighand);
1016 }
1017 }
1018
1019
1020 /*
1021 * Initialize POSIX timer handling for a thread group.
1022 */
1023 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1024 {
1025 unsigned long cpu_limit;
1026
1027 /* Thread group counters. */
1028 thread_group_cputime_init(sig);
1029
1030 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1031 if (cpu_limit != RLIM_INFINITY) {
1032 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1033 sig->cputimer.running = 1;
1034 }
1035
1036 /* The timer lists. */
1037 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1038 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1039 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1040 }
1041
1042 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1043 {
1044 struct signal_struct *sig;
1045
1046 if (clone_flags & CLONE_THREAD)
1047 return 0;
1048
1049 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1050 tsk->signal = sig;
1051 if (!sig)
1052 return -ENOMEM;
1053
1054 sig->nr_threads = 1;
1055 atomic_set(&sig->live, 1);
1056 atomic_set(&sig->sigcnt, 1);
1057 init_waitqueue_head(&sig->wait_chldexit);
1058 if (clone_flags & CLONE_NEWPID)
1059 sig->flags |= SIGNAL_UNKILLABLE;
1060 sig->curr_target = tsk;
1061 init_sigpending(&sig->shared_pending);
1062 INIT_LIST_HEAD(&sig->posix_timers);
1063
1064 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1065 sig->real_timer.function = it_real_fn;
1066
1067 task_lock(current->group_leader);
1068 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1069 task_unlock(current->group_leader);
1070
1071 posix_cpu_timers_init_group(sig);
1072
1073 tty_audit_fork(sig);
1074 sched_autogroup_fork(sig);
1075
1076 #ifdef CONFIG_CGROUPS
1077 init_rwsem(&sig->group_rwsem);
1078 #endif
1079
1080 sig->oom_adj = current->signal->oom_adj;
1081 sig->oom_score_adj = current->signal->oom_score_adj;
1082 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1083
1084 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1085 current->signal->is_child_subreaper;
1086
1087 mutex_init(&sig->cred_guard_mutex);
1088
1089 return 0;
1090 }
1091
1092 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1093 {
1094 unsigned long new_flags = p->flags;
1095
1096 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1097 new_flags |= PF_FORKNOEXEC;
1098 p->flags = new_flags;
1099 }
1100
1101 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1102 {
1103 current->clear_child_tid = tidptr;
1104
1105 return task_pid_vnr(current);
1106 }
1107
1108 static void rt_mutex_init_task(struct task_struct *p)
1109 {
1110 raw_spin_lock_init(&p->pi_lock);
1111 #ifdef CONFIG_RT_MUTEXES
1112 plist_head_init(&p->pi_waiters);
1113 p->pi_blocked_on = NULL;
1114 #endif
1115 }
1116
1117 #ifdef CONFIG_MM_OWNER
1118 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1119 {
1120 mm->owner = p;
1121 }
1122 #endif /* CONFIG_MM_OWNER */
1123
1124 /*
1125 * Initialize POSIX timer handling for a single task.
1126 */
1127 static void posix_cpu_timers_init(struct task_struct *tsk)
1128 {
1129 tsk->cputime_expires.prof_exp = 0;
1130 tsk->cputime_expires.virt_exp = 0;
1131 tsk->cputime_expires.sched_exp = 0;
1132 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1133 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1134 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1135 }
1136
1137 /*
1138 * This creates a new process as a copy of the old one,
1139 * but does not actually start it yet.
1140 *
1141 * It copies the registers, and all the appropriate
1142 * parts of the process environment (as per the clone
1143 * flags). The actual kick-off is left to the caller.
1144 */
1145 static struct task_struct *copy_process(unsigned long clone_flags,
1146 unsigned long stack_start,
1147 struct pt_regs *regs,
1148 unsigned long stack_size,
1149 int __user *child_tidptr,
1150 struct pid *pid,
1151 int trace)
1152 {
1153 int retval;
1154 struct task_struct *p;
1155 int cgroup_callbacks_done = 0;
1156
1157 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1158 return ERR_PTR(-EINVAL);
1159
1160 /*
1161 * Thread groups must share signals as well, and detached threads
1162 * can only be started up within the thread group.
1163 */
1164 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1165 return ERR_PTR(-EINVAL);
1166
1167 /*
1168 * Shared signal handlers imply shared VM. By way of the above,
1169 * thread groups also imply shared VM. Blocking this case allows
1170 * for various simplifications in other code.
1171 */
1172 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1173 return ERR_PTR(-EINVAL);
1174
1175 /*
1176 * Siblings of global init remain as zombies on exit since they are
1177 * not reaped by their parent (swapper). To solve this and to avoid
1178 * multi-rooted process trees, prevent global and container-inits
1179 * from creating siblings.
1180 */
1181 if ((clone_flags & CLONE_PARENT) &&
1182 current->signal->flags & SIGNAL_UNKILLABLE)
1183 return ERR_PTR(-EINVAL);
1184
1185 retval = security_task_create(clone_flags);
1186 if (retval)
1187 goto fork_out;
1188
1189 retval = -ENOMEM;
1190 p = dup_task_struct(current);
1191 if (!p)
1192 goto fork_out;
1193
1194 ftrace_graph_init_task(p);
1195 get_seccomp_filter(p);
1196
1197 rt_mutex_init_task(p);
1198
1199 #ifdef CONFIG_PROVE_LOCKING
1200 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1201 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1202 #endif
1203 retval = -EAGAIN;
1204 if (atomic_read(&p->real_cred->user->processes) >=
1205 task_rlimit(p, RLIMIT_NPROC)) {
1206 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1207 p->real_cred->user != INIT_USER)
1208 goto bad_fork_free;
1209 }
1210 current->flags &= ~PF_NPROC_EXCEEDED;
1211
1212 retval = copy_creds(p, clone_flags);
1213 if (retval < 0)
1214 goto bad_fork_free;
1215
1216 /*
1217 * If multiple threads are within copy_process(), then this check
1218 * triggers too late. This doesn't hurt, the check is only there
1219 * to stop root fork bombs.
1220 */
1221 retval = -EAGAIN;
1222 if (nr_threads >= max_threads)
1223 goto bad_fork_cleanup_count;
1224
1225 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1226 goto bad_fork_cleanup_count;
1227
1228 p->did_exec = 0;
1229 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1230 copy_flags(clone_flags, p);
1231 INIT_LIST_HEAD(&p->children);
1232 INIT_LIST_HEAD(&p->sibling);
1233 rcu_copy_process(p);
1234 p->vfork_done = NULL;
1235 spin_lock_init(&p->alloc_lock);
1236
1237 init_sigpending(&p->pending);
1238
1239 p->utime = p->stime = p->gtime = 0;
1240 p->utimescaled = p->stimescaled = 0;
1241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1242 p->prev_utime = p->prev_stime = 0;
1243 #endif
1244 #if defined(SPLIT_RSS_COUNTING)
1245 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1246 #endif
1247
1248 p->default_timer_slack_ns = current->timer_slack_ns;
1249
1250 task_io_accounting_init(&p->ioac);
1251 acct_clear_integrals(p);
1252
1253 posix_cpu_timers_init(p);
1254
1255 do_posix_clock_monotonic_gettime(&p->start_time);
1256 p->real_start_time = p->start_time;
1257 monotonic_to_bootbased(&p->real_start_time);
1258 p->io_context = NULL;
1259 p->audit_context = NULL;
1260 if (clone_flags & CLONE_THREAD)
1261 threadgroup_change_begin(current);
1262 cgroup_fork(p);
1263 #ifdef CONFIG_NUMA
1264 p->mempolicy = mpol_dup(p->mempolicy);
1265 if (IS_ERR(p->mempolicy)) {
1266 retval = PTR_ERR(p->mempolicy);
1267 p->mempolicy = NULL;
1268 goto bad_fork_cleanup_cgroup;
1269 }
1270 mpol_fix_fork_child_flag(p);
1271 #endif
1272 #ifdef CONFIG_CPUSETS
1273 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1274 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1275 seqcount_init(&p->mems_allowed_seq);
1276 #endif
1277 #ifdef CONFIG_TRACE_IRQFLAGS
1278 p->irq_events = 0;
1279 p->hardirqs_enabled = 0;
1280 p->hardirq_enable_ip = 0;
1281 p->hardirq_enable_event = 0;
1282 p->hardirq_disable_ip = _THIS_IP_;
1283 p->hardirq_disable_event = 0;
1284 p->softirqs_enabled = 1;
1285 p->softirq_enable_ip = _THIS_IP_;
1286 p->softirq_enable_event = 0;
1287 p->softirq_disable_ip = 0;
1288 p->softirq_disable_event = 0;
1289 p->hardirq_context = 0;
1290 p->softirq_context = 0;
1291 #endif
1292 #ifdef CONFIG_LOCKDEP
1293 p->lockdep_depth = 0; /* no locks held yet */
1294 p->curr_chain_key = 0;
1295 p->lockdep_recursion = 0;
1296 #endif
1297
1298 #ifdef CONFIG_DEBUG_MUTEXES
1299 p->blocked_on = NULL; /* not blocked yet */
1300 #endif
1301 #ifdef CONFIG_MEMCG
1302 p->memcg_batch.do_batch = 0;
1303 p->memcg_batch.memcg = NULL;
1304 #endif
1305
1306 /* Perform scheduler related setup. Assign this task to a CPU. */
1307 sched_fork(p);
1308
1309 retval = perf_event_init_task(p);
1310 if (retval)
1311 goto bad_fork_cleanup_policy;
1312 retval = audit_alloc(p);
1313 if (retval)
1314 goto bad_fork_cleanup_policy;
1315 /* copy all the process information */
1316 retval = copy_semundo(clone_flags, p);
1317 if (retval)
1318 goto bad_fork_cleanup_audit;
1319 retval = copy_files(clone_flags, p);
1320 if (retval)
1321 goto bad_fork_cleanup_semundo;
1322 retval = copy_fs(clone_flags, p);
1323 if (retval)
1324 goto bad_fork_cleanup_files;
1325 retval = copy_sighand(clone_flags, p);
1326 if (retval)
1327 goto bad_fork_cleanup_fs;
1328 retval = copy_signal(clone_flags, p);
1329 if (retval)
1330 goto bad_fork_cleanup_sighand;
1331 retval = copy_mm(clone_flags, p);
1332 if (retval)
1333 goto bad_fork_cleanup_signal;
1334 retval = copy_namespaces(clone_flags, p);
1335 if (retval)
1336 goto bad_fork_cleanup_mm;
1337 retval = copy_io(clone_flags, p);
1338 if (retval)
1339 goto bad_fork_cleanup_namespaces;
1340 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1341 if (retval)
1342 goto bad_fork_cleanup_io;
1343
1344 if (pid != &init_struct_pid) {
1345 retval = -ENOMEM;
1346 pid = alloc_pid(p->nsproxy->pid_ns);
1347 if (!pid)
1348 goto bad_fork_cleanup_io;
1349 }
1350
1351 p->pid = pid_nr(pid);
1352 p->tgid = p->pid;
1353 if (clone_flags & CLONE_THREAD)
1354 p->tgid = current->tgid;
1355
1356 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1357 /*
1358 * Clear TID on mm_release()?
1359 */
1360 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1361 #ifdef CONFIG_BLOCK
1362 p->plug = NULL;
1363 #endif
1364 #ifdef CONFIG_FUTEX
1365 p->robust_list = NULL;
1366 #ifdef CONFIG_COMPAT
1367 p->compat_robust_list = NULL;
1368 #endif
1369 INIT_LIST_HEAD(&p->pi_state_list);
1370 p->pi_state_cache = NULL;
1371 #endif
1372 uprobe_copy_process(p);
1373 /*
1374 * sigaltstack should be cleared when sharing the same VM
1375 */
1376 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1377 p->sas_ss_sp = p->sas_ss_size = 0;
1378
1379 /*
1380 * Syscall tracing and stepping should be turned off in the
1381 * child regardless of CLONE_PTRACE.
1382 */
1383 user_disable_single_step(p);
1384 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1385 #ifdef TIF_SYSCALL_EMU
1386 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1387 #endif
1388 clear_all_latency_tracing(p);
1389
1390 /* ok, now we should be set up.. */
1391 if (clone_flags & CLONE_THREAD)
1392 p->exit_signal = -1;
1393 else if (clone_flags & CLONE_PARENT)
1394 p->exit_signal = current->group_leader->exit_signal;
1395 else
1396 p->exit_signal = (clone_flags & CSIGNAL);
1397
1398 p->pdeath_signal = 0;
1399 p->exit_state = 0;
1400
1401 p->nr_dirtied = 0;
1402 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1403 p->dirty_paused_when = 0;
1404
1405 /*
1406 * Ok, make it visible to the rest of the system.
1407 * We dont wake it up yet.
1408 */
1409 p->group_leader = p;
1410 INIT_LIST_HEAD(&p->thread_group);
1411 p->task_works = NULL;
1412
1413 /* Now that the task is set up, run cgroup callbacks if
1414 * necessary. We need to run them before the task is visible
1415 * on the tasklist. */
1416 cgroup_fork_callbacks(p);
1417 cgroup_callbacks_done = 1;
1418
1419 /* Need tasklist lock for parent etc handling! */
1420 write_lock_irq(&tasklist_lock);
1421
1422 /* CLONE_PARENT re-uses the old parent */
1423 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1424 p->real_parent = current->real_parent;
1425 p->parent_exec_id = current->parent_exec_id;
1426 } else {
1427 p->real_parent = current;
1428 p->parent_exec_id = current->self_exec_id;
1429 }
1430
1431 spin_lock(&current->sighand->siglock);
1432
1433 /*
1434 * Process group and session signals need to be delivered to just the
1435 * parent before the fork or both the parent and the child after the
1436 * fork. Restart if a signal comes in before we add the new process to
1437 * it's process group.
1438 * A fatal signal pending means that current will exit, so the new
1439 * thread can't slip out of an OOM kill (or normal SIGKILL).
1440 */
1441 recalc_sigpending();
1442 if (signal_pending(current)) {
1443 spin_unlock(&current->sighand->siglock);
1444 write_unlock_irq(&tasklist_lock);
1445 retval = -ERESTARTNOINTR;
1446 goto bad_fork_free_pid;
1447 }
1448
1449 if (clone_flags & CLONE_THREAD) {
1450 current->signal->nr_threads++;
1451 atomic_inc(&current->signal->live);
1452 atomic_inc(&current->signal->sigcnt);
1453 p->group_leader = current->group_leader;
1454 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1455 }
1456
1457 if (likely(p->pid)) {
1458 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1459
1460 if (thread_group_leader(p)) {
1461 if (is_child_reaper(pid))
1462 p->nsproxy->pid_ns->child_reaper = p;
1463
1464 p->signal->leader_pid = pid;
1465 p->signal->tty = tty_kref_get(current->signal->tty);
1466 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1467 attach_pid(p, PIDTYPE_SID, task_session(current));
1468 list_add_tail(&p->sibling, &p->real_parent->children);
1469 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1470 __this_cpu_inc(process_counts);
1471 }
1472 attach_pid(p, PIDTYPE_PID, pid);
1473 nr_threads++;
1474 }
1475
1476 total_forks++;
1477 spin_unlock(&current->sighand->siglock);
1478 write_unlock_irq(&tasklist_lock);
1479 proc_fork_connector(p);
1480 cgroup_post_fork(p);
1481 if (clone_flags & CLONE_THREAD)
1482 threadgroup_change_end(current);
1483 perf_event_fork(p);
1484
1485 trace_task_newtask(p, clone_flags);
1486
1487 return p;
1488
1489 bad_fork_free_pid:
1490 if (pid != &init_struct_pid)
1491 free_pid(pid);
1492 bad_fork_cleanup_io:
1493 if (p->io_context)
1494 exit_io_context(p);
1495 bad_fork_cleanup_namespaces:
1496 if (unlikely(clone_flags & CLONE_NEWPID))
1497 pid_ns_release_proc(p->nsproxy->pid_ns);
1498 exit_task_namespaces(p);
1499 bad_fork_cleanup_mm:
1500 if (p->mm)
1501 mmput(p->mm);
1502 bad_fork_cleanup_signal:
1503 if (!(clone_flags & CLONE_THREAD))
1504 free_signal_struct(p->signal);
1505 bad_fork_cleanup_sighand:
1506 __cleanup_sighand(p->sighand);
1507 bad_fork_cleanup_fs:
1508 exit_fs(p); /* blocking */
1509 bad_fork_cleanup_files:
1510 exit_files(p); /* blocking */
1511 bad_fork_cleanup_semundo:
1512 exit_sem(p);
1513 bad_fork_cleanup_audit:
1514 audit_free(p);
1515 bad_fork_cleanup_policy:
1516 perf_event_free_task(p);
1517 #ifdef CONFIG_NUMA
1518 mpol_put(p->mempolicy);
1519 bad_fork_cleanup_cgroup:
1520 #endif
1521 if (clone_flags & CLONE_THREAD)
1522 threadgroup_change_end(current);
1523 cgroup_exit(p, cgroup_callbacks_done);
1524 delayacct_tsk_free(p);
1525 module_put(task_thread_info(p)->exec_domain->module);
1526 bad_fork_cleanup_count:
1527 atomic_dec(&p->cred->user->processes);
1528 exit_creds(p);
1529 bad_fork_free:
1530 free_task(p);
1531 fork_out:
1532 return ERR_PTR(retval);
1533 }
1534
1535 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1536 {
1537 memset(regs, 0, sizeof(struct pt_regs));
1538 return regs;
1539 }
1540
1541 static inline void init_idle_pids(struct pid_link *links)
1542 {
1543 enum pid_type type;
1544
1545 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1546 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1547 links[type].pid = &init_struct_pid;
1548 }
1549 }
1550
1551 struct task_struct * __cpuinit fork_idle(int cpu)
1552 {
1553 struct task_struct *task;
1554 struct pt_regs regs;
1555
1556 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1557 &init_struct_pid, 0);
1558 if (!IS_ERR(task)) {
1559 init_idle_pids(task->pids);
1560 init_idle(task, cpu);
1561 }
1562
1563 return task;
1564 }
1565
1566 /*
1567 * Ok, this is the main fork-routine.
1568 *
1569 * It copies the process, and if successful kick-starts
1570 * it and waits for it to finish using the VM if required.
1571 */
1572 long do_fork(unsigned long clone_flags,
1573 unsigned long stack_start,
1574 struct pt_regs *regs,
1575 unsigned long stack_size,
1576 int __user *parent_tidptr,
1577 int __user *child_tidptr)
1578 {
1579 struct task_struct *p;
1580 int trace = 0;
1581 long nr;
1582
1583 /*
1584 * Do some preliminary argument and permissions checking before we
1585 * actually start allocating stuff
1586 */
1587 if (clone_flags & CLONE_NEWUSER) {
1588 if (clone_flags & CLONE_THREAD)
1589 return -EINVAL;
1590 /* hopefully this check will go away when userns support is
1591 * complete
1592 */
1593 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1594 !capable(CAP_SETGID))
1595 return -EPERM;
1596 }
1597
1598 /*
1599 * Determine whether and which event to report to ptracer. When
1600 * called from kernel_thread or CLONE_UNTRACED is explicitly
1601 * requested, no event is reported; otherwise, report if the event
1602 * for the type of forking is enabled.
1603 */
1604 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1605 if (clone_flags & CLONE_VFORK)
1606 trace = PTRACE_EVENT_VFORK;
1607 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1608 trace = PTRACE_EVENT_CLONE;
1609 else
1610 trace = PTRACE_EVENT_FORK;
1611
1612 if (likely(!ptrace_event_enabled(current, trace)))
1613 trace = 0;
1614 }
1615
1616 p = copy_process(clone_flags, stack_start, regs, stack_size,
1617 child_tidptr, NULL, trace);
1618 /*
1619 * Do this prior waking up the new thread - the thread pointer
1620 * might get invalid after that point, if the thread exits quickly.
1621 */
1622 if (!IS_ERR(p)) {
1623 struct completion vfork;
1624
1625 trace_sched_process_fork(current, p);
1626
1627 nr = task_pid_vnr(p);
1628
1629 if (clone_flags & CLONE_PARENT_SETTID)
1630 put_user(nr, parent_tidptr);
1631
1632 if (clone_flags & CLONE_VFORK) {
1633 p->vfork_done = &vfork;
1634 init_completion(&vfork);
1635 get_task_struct(p);
1636 }
1637
1638 wake_up_new_task(p);
1639
1640 /* forking complete and child started to run, tell ptracer */
1641 if (unlikely(trace))
1642 ptrace_event(trace, nr);
1643
1644 if (clone_flags & CLONE_VFORK) {
1645 if (!wait_for_vfork_done(p, &vfork))
1646 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1647 }
1648 } else {
1649 nr = PTR_ERR(p);
1650 }
1651 return nr;
1652 }
1653
1654 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1655 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1656 #endif
1657
1658 static void sighand_ctor(void *data)
1659 {
1660 struct sighand_struct *sighand = data;
1661
1662 spin_lock_init(&sighand->siglock);
1663 init_waitqueue_head(&sighand->signalfd_wqh);
1664 }
1665
1666 void __init proc_caches_init(void)
1667 {
1668 sighand_cachep = kmem_cache_create("sighand_cache",
1669 sizeof(struct sighand_struct), 0,
1670 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1671 SLAB_NOTRACK, sighand_ctor);
1672 signal_cachep = kmem_cache_create("signal_cache",
1673 sizeof(struct signal_struct), 0,
1674 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1675 files_cachep = kmem_cache_create("files_cache",
1676 sizeof(struct files_struct), 0,
1677 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1678 fs_cachep = kmem_cache_create("fs_cache",
1679 sizeof(struct fs_struct), 0,
1680 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1681 /*
1682 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1683 * whole struct cpumask for the OFFSTACK case. We could change
1684 * this to *only* allocate as much of it as required by the
1685 * maximum number of CPU's we can ever have. The cpumask_allocation
1686 * is at the end of the structure, exactly for that reason.
1687 */
1688 mm_cachep = kmem_cache_create("mm_struct",
1689 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1690 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1691 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1692 mmap_init();
1693 nsproxy_cache_init();
1694 }
1695
1696 /*
1697 * Check constraints on flags passed to the unshare system call.
1698 */
1699 static int check_unshare_flags(unsigned long unshare_flags)
1700 {
1701 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1702 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1703 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1704 return -EINVAL;
1705 /*
1706 * Not implemented, but pretend it works if there is nothing to
1707 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1708 * needs to unshare vm.
1709 */
1710 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1711 /* FIXME: get_task_mm() increments ->mm_users */
1712 if (atomic_read(&current->mm->mm_users) > 1)
1713 return -EINVAL;
1714 }
1715
1716 return 0;
1717 }
1718
1719 /*
1720 * Unshare the filesystem structure if it is being shared
1721 */
1722 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1723 {
1724 struct fs_struct *fs = current->fs;
1725
1726 if (!(unshare_flags & CLONE_FS) || !fs)
1727 return 0;
1728
1729 /* don't need lock here; in the worst case we'll do useless copy */
1730 if (fs->users == 1)
1731 return 0;
1732
1733 *new_fsp = copy_fs_struct(fs);
1734 if (!*new_fsp)
1735 return -ENOMEM;
1736
1737 return 0;
1738 }
1739
1740 /*
1741 * Unshare file descriptor table if it is being shared
1742 */
1743 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1744 {
1745 struct files_struct *fd = current->files;
1746 int error = 0;
1747
1748 if ((unshare_flags & CLONE_FILES) &&
1749 (fd && atomic_read(&fd->count) > 1)) {
1750 *new_fdp = dup_fd(fd, &error);
1751 if (!*new_fdp)
1752 return error;
1753 }
1754
1755 return 0;
1756 }
1757
1758 /*
1759 * unshare allows a process to 'unshare' part of the process
1760 * context which was originally shared using clone. copy_*
1761 * functions used by do_fork() cannot be used here directly
1762 * because they modify an inactive task_struct that is being
1763 * constructed. Here we are modifying the current, active,
1764 * task_struct.
1765 */
1766 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1767 {
1768 struct fs_struct *fs, *new_fs = NULL;
1769 struct files_struct *fd, *new_fd = NULL;
1770 struct nsproxy *new_nsproxy = NULL;
1771 int do_sysvsem = 0;
1772 int err;
1773
1774 err = check_unshare_flags(unshare_flags);
1775 if (err)
1776 goto bad_unshare_out;
1777
1778 /*
1779 * If unsharing namespace, must also unshare filesystem information.
1780 */
1781 if (unshare_flags & CLONE_NEWNS)
1782 unshare_flags |= CLONE_FS;
1783 /*
1784 * CLONE_NEWIPC must also detach from the undolist: after switching
1785 * to a new ipc namespace, the semaphore arrays from the old
1786 * namespace are unreachable.
1787 */
1788 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1789 do_sysvsem = 1;
1790 err = unshare_fs(unshare_flags, &new_fs);
1791 if (err)
1792 goto bad_unshare_out;
1793 err = unshare_fd(unshare_flags, &new_fd);
1794 if (err)
1795 goto bad_unshare_cleanup_fs;
1796 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1797 if (err)
1798 goto bad_unshare_cleanup_fd;
1799
1800 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1801 if (do_sysvsem) {
1802 /*
1803 * CLONE_SYSVSEM is equivalent to sys_exit().
1804 */
1805 exit_sem(current);
1806 }
1807
1808 if (new_nsproxy) {
1809 switch_task_namespaces(current, new_nsproxy);
1810 new_nsproxy = NULL;
1811 }
1812
1813 task_lock(current);
1814
1815 if (new_fs) {
1816 fs = current->fs;
1817 spin_lock(&fs->lock);
1818 current->fs = new_fs;
1819 if (--fs->users)
1820 new_fs = NULL;
1821 else
1822 new_fs = fs;
1823 spin_unlock(&fs->lock);
1824 }
1825
1826 if (new_fd) {
1827 fd = current->files;
1828 current->files = new_fd;
1829 new_fd = fd;
1830 }
1831
1832 task_unlock(current);
1833 }
1834
1835 if (new_nsproxy)
1836 put_nsproxy(new_nsproxy);
1837
1838 bad_unshare_cleanup_fd:
1839 if (new_fd)
1840 put_files_struct(new_fd);
1841
1842 bad_unshare_cleanup_fs:
1843 if (new_fs)
1844 free_fs_struct(new_fs);
1845
1846 bad_unshare_out:
1847 return err;
1848 }
1849
1850 /*
1851 * Helper to unshare the files of the current task.
1852 * We don't want to expose copy_files internals to
1853 * the exec layer of the kernel.
1854 */
1855
1856 int unshare_files(struct files_struct **displaced)
1857 {
1858 struct task_struct *task = current;
1859 struct files_struct *copy = NULL;
1860 int error;
1861
1862 error = unshare_fd(CLONE_FILES, &copy);
1863 if (error || !copy) {
1864 *displaced = NULL;
1865 return error;
1866 }
1867 *displaced = task->files;
1868 task_lock(task);
1869 task->files = copy;
1870 task_unlock(task);
1871 return 0;
1872 }