]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge branch 'core-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/acct.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/freezer.h>
56 #include <linux/delayacct.h>
57 #include <linux/taskstats_kern.h>
58 #include <linux/random.h>
59 #include <linux/tty.h>
60 #include <linux/proc_fs.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_counter.h>
65
66 #include <asm/pgtable.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/cacheflush.h>
71 #include <asm/tlbflush.h>
72
73 #include <trace/events/sched.h>
74
75 /*
76 * Protected counters by write_lock_irq(&tasklist_lock)
77 */
78 unsigned long total_forks; /* Handle normal Linux uptimes. */
79 int nr_threads; /* The idle threads do not count.. */
80
81 int max_threads; /* tunable limit on nr_threads */
82
83 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
84
85 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
86
87 int nr_processes(void)
88 {
89 int cpu;
90 int total = 0;
91
92 for_each_online_cpu(cpu)
93 total += per_cpu(process_counts, cpu);
94
95 return total;
96 }
97
98 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
99 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
100 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
101 static struct kmem_cache *task_struct_cachep;
102 #endif
103
104 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
105 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
106 {
107 #ifdef CONFIG_DEBUG_STACK_USAGE
108 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
109 #else
110 gfp_t mask = GFP_KERNEL;
111 #endif
112 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
113 }
114
115 static inline void free_thread_info(struct thread_info *ti)
116 {
117 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
118 }
119 #endif
120
121 /* SLAB cache for signal_struct structures (tsk->signal) */
122 static struct kmem_cache *signal_cachep;
123
124 /* SLAB cache for sighand_struct structures (tsk->sighand) */
125 struct kmem_cache *sighand_cachep;
126
127 /* SLAB cache for files_struct structures (tsk->files) */
128 struct kmem_cache *files_cachep;
129
130 /* SLAB cache for fs_struct structures (tsk->fs) */
131 struct kmem_cache *fs_cachep;
132
133 /* SLAB cache for vm_area_struct structures */
134 struct kmem_cache *vm_area_cachep;
135
136 /* SLAB cache for mm_struct structures (tsk->mm) */
137 static struct kmem_cache *mm_cachep;
138
139 void free_task(struct task_struct *tsk)
140 {
141 prop_local_destroy_single(&tsk->dirties);
142 free_thread_info(tsk->stack);
143 rt_mutex_debug_task_free(tsk);
144 ftrace_graph_exit_task(tsk);
145 free_task_struct(tsk);
146 }
147 EXPORT_SYMBOL(free_task);
148
149 void __put_task_struct(struct task_struct *tsk)
150 {
151 WARN_ON(!tsk->exit_state);
152 WARN_ON(atomic_read(&tsk->usage));
153 WARN_ON(tsk == current);
154
155 exit_creds(tsk);
156 delayacct_tsk_free(tsk);
157
158 if (!profile_handoff_task(tsk))
159 free_task(tsk);
160 }
161
162 /*
163 * macro override instead of weak attribute alias, to workaround
164 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
165 */
166 #ifndef arch_task_cache_init
167 #define arch_task_cache_init()
168 #endif
169
170 void __init fork_init(unsigned long mempages)
171 {
172 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
173 #ifndef ARCH_MIN_TASKALIGN
174 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
175 #endif
176 /* create a slab on which task_structs can be allocated */
177 task_struct_cachep =
178 kmem_cache_create("task_struct", sizeof(struct task_struct),
179 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
180 #endif
181
182 /* do the arch specific task caches init */
183 arch_task_cache_init();
184
185 /*
186 * The default maximum number of threads is set to a safe
187 * value: the thread structures can take up at most half
188 * of memory.
189 */
190 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
191
192 /*
193 * we need to allow at least 20 threads to boot a system
194 */
195 if(max_threads < 20)
196 max_threads = 20;
197
198 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
199 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
200 init_task.signal->rlim[RLIMIT_SIGPENDING] =
201 init_task.signal->rlim[RLIMIT_NPROC];
202 }
203
204 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
205 struct task_struct *src)
206 {
207 *dst = *src;
208 return 0;
209 }
210
211 static struct task_struct *dup_task_struct(struct task_struct *orig)
212 {
213 struct task_struct *tsk;
214 struct thread_info *ti;
215 unsigned long *stackend;
216
217 int err;
218
219 prepare_to_copy(orig);
220
221 tsk = alloc_task_struct();
222 if (!tsk)
223 return NULL;
224
225 ti = alloc_thread_info(tsk);
226 if (!ti) {
227 free_task_struct(tsk);
228 return NULL;
229 }
230
231 err = arch_dup_task_struct(tsk, orig);
232 if (err)
233 goto out;
234
235 tsk->stack = ti;
236
237 err = prop_local_init_single(&tsk->dirties);
238 if (err)
239 goto out;
240
241 setup_thread_stack(tsk, orig);
242 stackend = end_of_stack(tsk);
243 *stackend = STACK_END_MAGIC; /* for overflow detection */
244
245 #ifdef CONFIG_CC_STACKPROTECTOR
246 tsk->stack_canary = get_random_int();
247 #endif
248
249 /* One for us, one for whoever does the "release_task()" (usually parent) */
250 atomic_set(&tsk->usage,2);
251 atomic_set(&tsk->fs_excl, 0);
252 #ifdef CONFIG_BLK_DEV_IO_TRACE
253 tsk->btrace_seq = 0;
254 #endif
255 tsk->splice_pipe = NULL;
256 return tsk;
257
258 out:
259 free_thread_info(ti);
260 free_task_struct(tsk);
261 return NULL;
262 }
263
264 #ifdef CONFIG_MMU
265 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
266 {
267 struct vm_area_struct *mpnt, *tmp, **pprev;
268 struct rb_node **rb_link, *rb_parent;
269 int retval;
270 unsigned long charge;
271 struct mempolicy *pol;
272
273 down_write(&oldmm->mmap_sem);
274 flush_cache_dup_mm(oldmm);
275 /*
276 * Not linked in yet - no deadlock potential:
277 */
278 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
279
280 mm->locked_vm = 0;
281 mm->mmap = NULL;
282 mm->mmap_cache = NULL;
283 mm->free_area_cache = oldmm->mmap_base;
284 mm->cached_hole_size = ~0UL;
285 mm->map_count = 0;
286 cpumask_clear(mm_cpumask(mm));
287 mm->mm_rb = RB_ROOT;
288 rb_link = &mm->mm_rb.rb_node;
289 rb_parent = NULL;
290 pprev = &mm->mmap;
291
292 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
293 struct file *file;
294
295 if (mpnt->vm_flags & VM_DONTCOPY) {
296 long pages = vma_pages(mpnt);
297 mm->total_vm -= pages;
298 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
299 -pages);
300 continue;
301 }
302 charge = 0;
303 if (mpnt->vm_flags & VM_ACCOUNT) {
304 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
305 if (security_vm_enough_memory(len))
306 goto fail_nomem;
307 charge = len;
308 }
309 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
310 if (!tmp)
311 goto fail_nomem;
312 *tmp = *mpnt;
313 pol = mpol_dup(vma_policy(mpnt));
314 retval = PTR_ERR(pol);
315 if (IS_ERR(pol))
316 goto fail_nomem_policy;
317 vma_set_policy(tmp, pol);
318 tmp->vm_flags &= ~VM_LOCKED;
319 tmp->vm_mm = mm;
320 tmp->vm_next = NULL;
321 anon_vma_link(tmp);
322 file = tmp->vm_file;
323 if (file) {
324 struct inode *inode = file->f_path.dentry->d_inode;
325 struct address_space *mapping = file->f_mapping;
326
327 get_file(file);
328 if (tmp->vm_flags & VM_DENYWRITE)
329 atomic_dec(&inode->i_writecount);
330 spin_lock(&mapping->i_mmap_lock);
331 if (tmp->vm_flags & VM_SHARED)
332 mapping->i_mmap_writable++;
333 tmp->vm_truncate_count = mpnt->vm_truncate_count;
334 flush_dcache_mmap_lock(mapping);
335 /* insert tmp into the share list, just after mpnt */
336 vma_prio_tree_add(tmp, mpnt);
337 flush_dcache_mmap_unlock(mapping);
338 spin_unlock(&mapping->i_mmap_lock);
339 }
340
341 /*
342 * Clear hugetlb-related page reserves for children. This only
343 * affects MAP_PRIVATE mappings. Faults generated by the child
344 * are not guaranteed to succeed, even if read-only
345 */
346 if (is_vm_hugetlb_page(tmp))
347 reset_vma_resv_huge_pages(tmp);
348
349 /*
350 * Link in the new vma and copy the page table entries.
351 */
352 *pprev = tmp;
353 pprev = &tmp->vm_next;
354
355 __vma_link_rb(mm, tmp, rb_link, rb_parent);
356 rb_link = &tmp->vm_rb.rb_right;
357 rb_parent = &tmp->vm_rb;
358
359 mm->map_count++;
360 retval = copy_page_range(mm, oldmm, mpnt);
361
362 if (tmp->vm_ops && tmp->vm_ops->open)
363 tmp->vm_ops->open(tmp);
364
365 if (retval)
366 goto out;
367 }
368 /* a new mm has just been created */
369 arch_dup_mmap(oldmm, mm);
370 retval = 0;
371 out:
372 up_write(&mm->mmap_sem);
373 flush_tlb_mm(oldmm);
374 up_write(&oldmm->mmap_sem);
375 return retval;
376 fail_nomem_policy:
377 kmem_cache_free(vm_area_cachep, tmp);
378 fail_nomem:
379 retval = -ENOMEM;
380 vm_unacct_memory(charge);
381 goto out;
382 }
383
384 static inline int mm_alloc_pgd(struct mm_struct * mm)
385 {
386 mm->pgd = pgd_alloc(mm);
387 if (unlikely(!mm->pgd))
388 return -ENOMEM;
389 return 0;
390 }
391
392 static inline void mm_free_pgd(struct mm_struct * mm)
393 {
394 pgd_free(mm, mm->pgd);
395 }
396 #else
397 #define dup_mmap(mm, oldmm) (0)
398 #define mm_alloc_pgd(mm) (0)
399 #define mm_free_pgd(mm)
400 #endif /* CONFIG_MMU */
401
402 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
403
404 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
405 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
406
407 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
408
409 static int __init coredump_filter_setup(char *s)
410 {
411 default_dump_filter =
412 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
413 MMF_DUMP_FILTER_MASK;
414 return 1;
415 }
416
417 __setup("coredump_filter=", coredump_filter_setup);
418
419 #include <linux/init_task.h>
420
421 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
422 {
423 atomic_set(&mm->mm_users, 1);
424 atomic_set(&mm->mm_count, 1);
425 init_rwsem(&mm->mmap_sem);
426 INIT_LIST_HEAD(&mm->mmlist);
427 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
428 mm->core_state = NULL;
429 mm->nr_ptes = 0;
430 set_mm_counter(mm, file_rss, 0);
431 set_mm_counter(mm, anon_rss, 0);
432 spin_lock_init(&mm->page_table_lock);
433 spin_lock_init(&mm->ioctx_lock);
434 INIT_HLIST_HEAD(&mm->ioctx_list);
435 mm->free_area_cache = TASK_UNMAPPED_BASE;
436 mm->cached_hole_size = ~0UL;
437 mm_init_owner(mm, p);
438
439 if (likely(!mm_alloc_pgd(mm))) {
440 mm->def_flags = 0;
441 mmu_notifier_mm_init(mm);
442 return mm;
443 }
444
445 free_mm(mm);
446 return NULL;
447 }
448
449 /*
450 * Allocate and initialize an mm_struct.
451 */
452 struct mm_struct * mm_alloc(void)
453 {
454 struct mm_struct * mm;
455
456 mm = allocate_mm();
457 if (mm) {
458 memset(mm, 0, sizeof(*mm));
459 mm = mm_init(mm, current);
460 }
461 return mm;
462 }
463
464 /*
465 * Called when the last reference to the mm
466 * is dropped: either by a lazy thread or by
467 * mmput. Free the page directory and the mm.
468 */
469 void __mmdrop(struct mm_struct *mm)
470 {
471 BUG_ON(mm == &init_mm);
472 mm_free_pgd(mm);
473 destroy_context(mm);
474 mmu_notifier_mm_destroy(mm);
475 free_mm(mm);
476 }
477 EXPORT_SYMBOL_GPL(__mmdrop);
478
479 /*
480 * Decrement the use count and release all resources for an mm.
481 */
482 void mmput(struct mm_struct *mm)
483 {
484 might_sleep();
485
486 if (atomic_dec_and_test(&mm->mm_users)) {
487 exit_aio(mm);
488 exit_mmap(mm);
489 set_mm_exe_file(mm, NULL);
490 if (!list_empty(&mm->mmlist)) {
491 spin_lock(&mmlist_lock);
492 list_del(&mm->mmlist);
493 spin_unlock(&mmlist_lock);
494 }
495 put_swap_token(mm);
496 mmdrop(mm);
497 }
498 }
499 EXPORT_SYMBOL_GPL(mmput);
500
501 /**
502 * get_task_mm - acquire a reference to the task's mm
503 *
504 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
505 * this kernel workthread has transiently adopted a user mm with use_mm,
506 * to do its AIO) is not set and if so returns a reference to it, after
507 * bumping up the use count. User must release the mm via mmput()
508 * after use. Typically used by /proc and ptrace.
509 */
510 struct mm_struct *get_task_mm(struct task_struct *task)
511 {
512 struct mm_struct *mm;
513
514 task_lock(task);
515 mm = task->mm;
516 if (mm) {
517 if (task->flags & PF_KTHREAD)
518 mm = NULL;
519 else
520 atomic_inc(&mm->mm_users);
521 }
522 task_unlock(task);
523 return mm;
524 }
525 EXPORT_SYMBOL_GPL(get_task_mm);
526
527 /* Please note the differences between mmput and mm_release.
528 * mmput is called whenever we stop holding onto a mm_struct,
529 * error success whatever.
530 *
531 * mm_release is called after a mm_struct has been removed
532 * from the current process.
533 *
534 * This difference is important for error handling, when we
535 * only half set up a mm_struct for a new process and need to restore
536 * the old one. Because we mmput the new mm_struct before
537 * restoring the old one. . .
538 * Eric Biederman 10 January 1998
539 */
540 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
541 {
542 struct completion *vfork_done = tsk->vfork_done;
543
544 /* Get rid of any futexes when releasing the mm */
545 #ifdef CONFIG_FUTEX
546 if (unlikely(tsk->robust_list))
547 exit_robust_list(tsk);
548 #ifdef CONFIG_COMPAT
549 if (unlikely(tsk->compat_robust_list))
550 compat_exit_robust_list(tsk);
551 #endif
552 #endif
553
554 /* Get rid of any cached register state */
555 deactivate_mm(tsk, mm);
556
557 /* notify parent sleeping on vfork() */
558 if (vfork_done) {
559 tsk->vfork_done = NULL;
560 complete(vfork_done);
561 }
562
563 /*
564 * If we're exiting normally, clear a user-space tid field if
565 * requested. We leave this alone when dying by signal, to leave
566 * the value intact in a core dump, and to save the unnecessary
567 * trouble otherwise. Userland only wants this done for a sys_exit.
568 */
569 if (tsk->clear_child_tid) {
570 if (!(tsk->flags & PF_SIGNALED) &&
571 atomic_read(&mm->mm_users) > 1) {
572 /*
573 * We don't check the error code - if userspace has
574 * not set up a proper pointer then tough luck.
575 */
576 put_user(0, tsk->clear_child_tid);
577 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
578 1, NULL, NULL, 0);
579 }
580 tsk->clear_child_tid = NULL;
581 }
582 }
583
584 /*
585 * Allocate a new mm structure and copy contents from the
586 * mm structure of the passed in task structure.
587 */
588 struct mm_struct *dup_mm(struct task_struct *tsk)
589 {
590 struct mm_struct *mm, *oldmm = current->mm;
591 int err;
592
593 if (!oldmm)
594 return NULL;
595
596 mm = allocate_mm();
597 if (!mm)
598 goto fail_nomem;
599
600 memcpy(mm, oldmm, sizeof(*mm));
601
602 /* Initializing for Swap token stuff */
603 mm->token_priority = 0;
604 mm->last_interval = 0;
605
606 if (!mm_init(mm, tsk))
607 goto fail_nomem;
608
609 if (init_new_context(tsk, mm))
610 goto fail_nocontext;
611
612 dup_mm_exe_file(oldmm, mm);
613
614 err = dup_mmap(mm, oldmm);
615 if (err)
616 goto free_pt;
617
618 mm->hiwater_rss = get_mm_rss(mm);
619 mm->hiwater_vm = mm->total_vm;
620
621 return mm;
622
623 free_pt:
624 mmput(mm);
625
626 fail_nomem:
627 return NULL;
628
629 fail_nocontext:
630 /*
631 * If init_new_context() failed, we cannot use mmput() to free the mm
632 * because it calls destroy_context()
633 */
634 mm_free_pgd(mm);
635 free_mm(mm);
636 return NULL;
637 }
638
639 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
640 {
641 struct mm_struct * mm, *oldmm;
642 int retval;
643
644 tsk->min_flt = tsk->maj_flt = 0;
645 tsk->nvcsw = tsk->nivcsw = 0;
646 #ifdef CONFIG_DETECT_HUNG_TASK
647 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
648 #endif
649
650 tsk->mm = NULL;
651 tsk->active_mm = NULL;
652
653 /*
654 * Are we cloning a kernel thread?
655 *
656 * We need to steal a active VM for that..
657 */
658 oldmm = current->mm;
659 if (!oldmm)
660 return 0;
661
662 if (clone_flags & CLONE_VM) {
663 atomic_inc(&oldmm->mm_users);
664 mm = oldmm;
665 goto good_mm;
666 }
667
668 retval = -ENOMEM;
669 mm = dup_mm(tsk);
670 if (!mm)
671 goto fail_nomem;
672
673 good_mm:
674 /* Initializing for Swap token stuff */
675 mm->token_priority = 0;
676 mm->last_interval = 0;
677
678 tsk->mm = mm;
679 tsk->active_mm = mm;
680 return 0;
681
682 fail_nomem:
683 return retval;
684 }
685
686 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
687 {
688 struct fs_struct *fs = current->fs;
689 if (clone_flags & CLONE_FS) {
690 /* tsk->fs is already what we want */
691 write_lock(&fs->lock);
692 if (fs->in_exec) {
693 write_unlock(&fs->lock);
694 return -EAGAIN;
695 }
696 fs->users++;
697 write_unlock(&fs->lock);
698 return 0;
699 }
700 tsk->fs = copy_fs_struct(fs);
701 if (!tsk->fs)
702 return -ENOMEM;
703 return 0;
704 }
705
706 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
707 {
708 struct files_struct *oldf, *newf;
709 int error = 0;
710
711 /*
712 * A background process may not have any files ...
713 */
714 oldf = current->files;
715 if (!oldf)
716 goto out;
717
718 if (clone_flags & CLONE_FILES) {
719 atomic_inc(&oldf->count);
720 goto out;
721 }
722
723 newf = dup_fd(oldf, &error);
724 if (!newf)
725 goto out;
726
727 tsk->files = newf;
728 error = 0;
729 out:
730 return error;
731 }
732
733 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
734 {
735 #ifdef CONFIG_BLOCK
736 struct io_context *ioc = current->io_context;
737
738 if (!ioc)
739 return 0;
740 /*
741 * Share io context with parent, if CLONE_IO is set
742 */
743 if (clone_flags & CLONE_IO) {
744 tsk->io_context = ioc_task_link(ioc);
745 if (unlikely(!tsk->io_context))
746 return -ENOMEM;
747 } else if (ioprio_valid(ioc->ioprio)) {
748 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
749 if (unlikely(!tsk->io_context))
750 return -ENOMEM;
751
752 tsk->io_context->ioprio = ioc->ioprio;
753 }
754 #endif
755 return 0;
756 }
757
758 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
759 {
760 struct sighand_struct *sig;
761
762 if (clone_flags & CLONE_SIGHAND) {
763 atomic_inc(&current->sighand->count);
764 return 0;
765 }
766 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
767 rcu_assign_pointer(tsk->sighand, sig);
768 if (!sig)
769 return -ENOMEM;
770 atomic_set(&sig->count, 1);
771 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
772 return 0;
773 }
774
775 void __cleanup_sighand(struct sighand_struct *sighand)
776 {
777 if (atomic_dec_and_test(&sighand->count))
778 kmem_cache_free(sighand_cachep, sighand);
779 }
780
781
782 /*
783 * Initialize POSIX timer handling for a thread group.
784 */
785 static void posix_cpu_timers_init_group(struct signal_struct *sig)
786 {
787 /* Thread group counters. */
788 thread_group_cputime_init(sig);
789
790 /* Expiration times and increments. */
791 sig->it_virt_expires = cputime_zero;
792 sig->it_virt_incr = cputime_zero;
793 sig->it_prof_expires = cputime_zero;
794 sig->it_prof_incr = cputime_zero;
795
796 /* Cached expiration times. */
797 sig->cputime_expires.prof_exp = cputime_zero;
798 sig->cputime_expires.virt_exp = cputime_zero;
799 sig->cputime_expires.sched_exp = 0;
800
801 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
802 sig->cputime_expires.prof_exp =
803 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
804 sig->cputimer.running = 1;
805 }
806
807 /* The timer lists. */
808 INIT_LIST_HEAD(&sig->cpu_timers[0]);
809 INIT_LIST_HEAD(&sig->cpu_timers[1]);
810 INIT_LIST_HEAD(&sig->cpu_timers[2]);
811 }
812
813 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
814 {
815 struct signal_struct *sig;
816
817 if (clone_flags & CLONE_THREAD)
818 return 0;
819
820 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
821 tsk->signal = sig;
822 if (!sig)
823 return -ENOMEM;
824
825 atomic_set(&sig->count, 1);
826 atomic_set(&sig->live, 1);
827 init_waitqueue_head(&sig->wait_chldexit);
828 sig->flags = 0;
829 if (clone_flags & CLONE_NEWPID)
830 sig->flags |= SIGNAL_UNKILLABLE;
831 sig->group_exit_code = 0;
832 sig->group_exit_task = NULL;
833 sig->group_stop_count = 0;
834 sig->curr_target = tsk;
835 init_sigpending(&sig->shared_pending);
836 INIT_LIST_HEAD(&sig->posix_timers);
837
838 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
839 sig->it_real_incr.tv64 = 0;
840 sig->real_timer.function = it_real_fn;
841
842 sig->leader = 0; /* session leadership doesn't inherit */
843 sig->tty_old_pgrp = NULL;
844 sig->tty = NULL;
845
846 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
847 sig->gtime = cputime_zero;
848 sig->cgtime = cputime_zero;
849 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
850 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
851 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
852 task_io_accounting_init(&sig->ioac);
853 sig->sum_sched_runtime = 0;
854 taskstats_tgid_init(sig);
855
856 task_lock(current->group_leader);
857 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
858 task_unlock(current->group_leader);
859
860 posix_cpu_timers_init_group(sig);
861
862 acct_init_pacct(&sig->pacct);
863
864 tty_audit_fork(sig);
865
866 return 0;
867 }
868
869 void __cleanup_signal(struct signal_struct *sig)
870 {
871 thread_group_cputime_free(sig);
872 tty_kref_put(sig->tty);
873 kmem_cache_free(signal_cachep, sig);
874 }
875
876 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
877 {
878 unsigned long new_flags = p->flags;
879
880 new_flags &= ~PF_SUPERPRIV;
881 new_flags |= PF_FORKNOEXEC;
882 new_flags |= PF_STARTING;
883 p->flags = new_flags;
884 clear_freeze_flag(p);
885 }
886
887 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
888 {
889 current->clear_child_tid = tidptr;
890
891 return task_pid_vnr(current);
892 }
893
894 static void rt_mutex_init_task(struct task_struct *p)
895 {
896 spin_lock_init(&p->pi_lock);
897 #ifdef CONFIG_RT_MUTEXES
898 plist_head_init(&p->pi_waiters, &p->pi_lock);
899 p->pi_blocked_on = NULL;
900 #endif
901 }
902
903 #ifdef CONFIG_MM_OWNER
904 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
905 {
906 mm->owner = p;
907 }
908 #endif /* CONFIG_MM_OWNER */
909
910 /*
911 * Initialize POSIX timer handling for a single task.
912 */
913 static void posix_cpu_timers_init(struct task_struct *tsk)
914 {
915 tsk->cputime_expires.prof_exp = cputime_zero;
916 tsk->cputime_expires.virt_exp = cputime_zero;
917 tsk->cputime_expires.sched_exp = 0;
918 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
919 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
920 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
921 }
922
923 /*
924 * This creates a new process as a copy of the old one,
925 * but does not actually start it yet.
926 *
927 * It copies the registers, and all the appropriate
928 * parts of the process environment (as per the clone
929 * flags). The actual kick-off is left to the caller.
930 */
931 static struct task_struct *copy_process(unsigned long clone_flags,
932 unsigned long stack_start,
933 struct pt_regs *regs,
934 unsigned long stack_size,
935 int __user *child_tidptr,
936 struct pid *pid,
937 int trace)
938 {
939 int retval;
940 struct task_struct *p;
941 int cgroup_callbacks_done = 0;
942
943 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
944 return ERR_PTR(-EINVAL);
945
946 /*
947 * Thread groups must share signals as well, and detached threads
948 * can only be started up within the thread group.
949 */
950 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
951 return ERR_PTR(-EINVAL);
952
953 /*
954 * Shared signal handlers imply shared VM. By way of the above,
955 * thread groups also imply shared VM. Blocking this case allows
956 * for various simplifications in other code.
957 */
958 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
959 return ERR_PTR(-EINVAL);
960
961 retval = security_task_create(clone_flags);
962 if (retval)
963 goto fork_out;
964
965 retval = -ENOMEM;
966 p = dup_task_struct(current);
967 if (!p)
968 goto fork_out;
969
970 ftrace_graph_init_task(p);
971
972 rt_mutex_init_task(p);
973
974 #ifdef CONFIG_PROVE_LOCKING
975 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
976 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
977 #endif
978 retval = -EAGAIN;
979 if (atomic_read(&p->real_cred->user->processes) >=
980 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
981 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
982 p->real_cred->user != INIT_USER)
983 goto bad_fork_free;
984 }
985
986 retval = copy_creds(p, clone_flags);
987 if (retval < 0)
988 goto bad_fork_free;
989
990 /*
991 * If multiple threads are within copy_process(), then this check
992 * triggers too late. This doesn't hurt, the check is only there
993 * to stop root fork bombs.
994 */
995 retval = -EAGAIN;
996 if (nr_threads >= max_threads)
997 goto bad_fork_cleanup_count;
998
999 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1000 goto bad_fork_cleanup_count;
1001
1002 if (p->binfmt && !try_module_get(p->binfmt->module))
1003 goto bad_fork_cleanup_put_domain;
1004
1005 p->did_exec = 0;
1006 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1007 copy_flags(clone_flags, p);
1008 INIT_LIST_HEAD(&p->children);
1009 INIT_LIST_HEAD(&p->sibling);
1010 #ifdef CONFIG_PREEMPT_RCU
1011 p->rcu_read_lock_nesting = 0;
1012 p->rcu_flipctr_idx = 0;
1013 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1014 p->vfork_done = NULL;
1015 spin_lock_init(&p->alloc_lock);
1016
1017 init_sigpending(&p->pending);
1018
1019 p->utime = cputime_zero;
1020 p->stime = cputime_zero;
1021 p->gtime = cputime_zero;
1022 p->utimescaled = cputime_zero;
1023 p->stimescaled = cputime_zero;
1024 p->prev_utime = cputime_zero;
1025 p->prev_stime = cputime_zero;
1026
1027 p->default_timer_slack_ns = current->timer_slack_ns;
1028
1029 task_io_accounting_init(&p->ioac);
1030 acct_clear_integrals(p);
1031
1032 posix_cpu_timers_init(p);
1033
1034 p->lock_depth = -1; /* -1 = no lock */
1035 do_posix_clock_monotonic_gettime(&p->start_time);
1036 p->real_start_time = p->start_time;
1037 monotonic_to_bootbased(&p->real_start_time);
1038 p->io_context = NULL;
1039 p->audit_context = NULL;
1040 cgroup_fork(p);
1041 #ifdef CONFIG_NUMA
1042 p->mempolicy = mpol_dup(p->mempolicy);
1043 if (IS_ERR(p->mempolicy)) {
1044 retval = PTR_ERR(p->mempolicy);
1045 p->mempolicy = NULL;
1046 goto bad_fork_cleanup_cgroup;
1047 }
1048 mpol_fix_fork_child_flag(p);
1049 #endif
1050 #ifdef CONFIG_TRACE_IRQFLAGS
1051 p->irq_events = 0;
1052 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1053 p->hardirqs_enabled = 1;
1054 #else
1055 p->hardirqs_enabled = 0;
1056 #endif
1057 p->hardirq_enable_ip = 0;
1058 p->hardirq_enable_event = 0;
1059 p->hardirq_disable_ip = _THIS_IP_;
1060 p->hardirq_disable_event = 0;
1061 p->softirqs_enabled = 1;
1062 p->softirq_enable_ip = _THIS_IP_;
1063 p->softirq_enable_event = 0;
1064 p->softirq_disable_ip = 0;
1065 p->softirq_disable_event = 0;
1066 p->hardirq_context = 0;
1067 p->softirq_context = 0;
1068 #endif
1069 #ifdef CONFIG_LOCKDEP
1070 p->lockdep_depth = 0; /* no locks held yet */
1071 p->curr_chain_key = 0;
1072 p->lockdep_recursion = 0;
1073 #endif
1074
1075 #ifdef CONFIG_DEBUG_MUTEXES
1076 p->blocked_on = NULL; /* not blocked yet */
1077 #endif
1078
1079 p->bts = NULL;
1080
1081 /* Perform scheduler related setup. Assign this task to a CPU. */
1082 sched_fork(p, clone_flags);
1083
1084 retval = perf_counter_init_task(p);
1085 if (retval)
1086 goto bad_fork_cleanup_policy;
1087
1088 if ((retval = audit_alloc(p)))
1089 goto bad_fork_cleanup_policy;
1090 /* copy all the process information */
1091 if ((retval = copy_semundo(clone_flags, p)))
1092 goto bad_fork_cleanup_audit;
1093 if ((retval = copy_files(clone_flags, p)))
1094 goto bad_fork_cleanup_semundo;
1095 if ((retval = copy_fs(clone_flags, p)))
1096 goto bad_fork_cleanup_files;
1097 if ((retval = copy_sighand(clone_flags, p)))
1098 goto bad_fork_cleanup_fs;
1099 if ((retval = copy_signal(clone_flags, p)))
1100 goto bad_fork_cleanup_sighand;
1101 if ((retval = copy_mm(clone_flags, p)))
1102 goto bad_fork_cleanup_signal;
1103 if ((retval = copy_namespaces(clone_flags, p)))
1104 goto bad_fork_cleanup_mm;
1105 if ((retval = copy_io(clone_flags, p)))
1106 goto bad_fork_cleanup_namespaces;
1107 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1108 if (retval)
1109 goto bad_fork_cleanup_io;
1110
1111 if (pid != &init_struct_pid) {
1112 retval = -ENOMEM;
1113 pid = alloc_pid(p->nsproxy->pid_ns);
1114 if (!pid)
1115 goto bad_fork_cleanup_io;
1116
1117 if (clone_flags & CLONE_NEWPID) {
1118 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1119 if (retval < 0)
1120 goto bad_fork_free_pid;
1121 }
1122 }
1123
1124 p->pid = pid_nr(pid);
1125 p->tgid = p->pid;
1126 if (clone_flags & CLONE_THREAD)
1127 p->tgid = current->tgid;
1128
1129 if (current->nsproxy != p->nsproxy) {
1130 retval = ns_cgroup_clone(p, pid);
1131 if (retval)
1132 goto bad_fork_free_pid;
1133 }
1134
1135 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1136 /*
1137 * Clear TID on mm_release()?
1138 */
1139 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1140 #ifdef CONFIG_FUTEX
1141 p->robust_list = NULL;
1142 #ifdef CONFIG_COMPAT
1143 p->compat_robust_list = NULL;
1144 #endif
1145 INIT_LIST_HEAD(&p->pi_state_list);
1146 p->pi_state_cache = NULL;
1147 #endif
1148 /*
1149 * sigaltstack should be cleared when sharing the same VM
1150 */
1151 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1152 p->sas_ss_sp = p->sas_ss_size = 0;
1153
1154 /*
1155 * Syscall tracing should be turned off in the child regardless
1156 * of CLONE_PTRACE.
1157 */
1158 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1159 #ifdef TIF_SYSCALL_EMU
1160 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1161 #endif
1162 clear_all_latency_tracing(p);
1163
1164 /* ok, now we should be set up.. */
1165 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1166 p->pdeath_signal = 0;
1167 p->exit_state = 0;
1168
1169 /*
1170 * Ok, make it visible to the rest of the system.
1171 * We dont wake it up yet.
1172 */
1173 p->group_leader = p;
1174 INIT_LIST_HEAD(&p->thread_group);
1175
1176 /* Now that the task is set up, run cgroup callbacks if
1177 * necessary. We need to run them before the task is visible
1178 * on the tasklist. */
1179 cgroup_fork_callbacks(p);
1180 cgroup_callbacks_done = 1;
1181
1182 /* Need tasklist lock for parent etc handling! */
1183 write_lock_irq(&tasklist_lock);
1184
1185 /*
1186 * The task hasn't been attached yet, so its cpus_allowed mask will
1187 * not be changed, nor will its assigned CPU.
1188 *
1189 * The cpus_allowed mask of the parent may have changed after it was
1190 * copied first time - so re-copy it here, then check the child's CPU
1191 * to ensure it is on a valid CPU (and if not, just force it back to
1192 * parent's CPU). This avoids alot of nasty races.
1193 */
1194 p->cpus_allowed = current->cpus_allowed;
1195 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1196 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1197 !cpu_online(task_cpu(p))))
1198 set_task_cpu(p, smp_processor_id());
1199
1200 /* CLONE_PARENT re-uses the old parent */
1201 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1202 p->real_parent = current->real_parent;
1203 p->parent_exec_id = current->parent_exec_id;
1204 } else {
1205 p->real_parent = current;
1206 p->parent_exec_id = current->self_exec_id;
1207 }
1208
1209 spin_lock(&current->sighand->siglock);
1210
1211 /*
1212 * Process group and session signals need to be delivered to just the
1213 * parent before the fork or both the parent and the child after the
1214 * fork. Restart if a signal comes in before we add the new process to
1215 * it's process group.
1216 * A fatal signal pending means that current will exit, so the new
1217 * thread can't slip out of an OOM kill (or normal SIGKILL).
1218 */
1219 recalc_sigpending();
1220 if (signal_pending(current)) {
1221 spin_unlock(&current->sighand->siglock);
1222 write_unlock_irq(&tasklist_lock);
1223 retval = -ERESTARTNOINTR;
1224 goto bad_fork_free_pid;
1225 }
1226
1227 if (clone_flags & CLONE_THREAD) {
1228 atomic_inc(&current->signal->count);
1229 atomic_inc(&current->signal->live);
1230 p->group_leader = current->group_leader;
1231 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1232 }
1233
1234 if (likely(p->pid)) {
1235 list_add_tail(&p->sibling, &p->real_parent->children);
1236 tracehook_finish_clone(p, clone_flags, trace);
1237
1238 if (thread_group_leader(p)) {
1239 if (clone_flags & CLONE_NEWPID)
1240 p->nsproxy->pid_ns->child_reaper = p;
1241
1242 p->signal->leader_pid = pid;
1243 tty_kref_put(p->signal->tty);
1244 p->signal->tty = tty_kref_get(current->signal->tty);
1245 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1246 attach_pid(p, PIDTYPE_SID, task_session(current));
1247 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1248 __get_cpu_var(process_counts)++;
1249 }
1250 attach_pid(p, PIDTYPE_PID, pid);
1251 nr_threads++;
1252 }
1253
1254 total_forks++;
1255 spin_unlock(&current->sighand->siglock);
1256 write_unlock_irq(&tasklist_lock);
1257 proc_fork_connector(p);
1258 cgroup_post_fork(p);
1259 perf_counter_fork(p);
1260 return p;
1261
1262 bad_fork_free_pid:
1263 if (pid != &init_struct_pid)
1264 free_pid(pid);
1265 bad_fork_cleanup_io:
1266 put_io_context(p->io_context);
1267 bad_fork_cleanup_namespaces:
1268 exit_task_namespaces(p);
1269 bad_fork_cleanup_mm:
1270 if (p->mm)
1271 mmput(p->mm);
1272 bad_fork_cleanup_signal:
1273 if (!(clone_flags & CLONE_THREAD))
1274 __cleanup_signal(p->signal);
1275 bad_fork_cleanup_sighand:
1276 __cleanup_sighand(p->sighand);
1277 bad_fork_cleanup_fs:
1278 exit_fs(p); /* blocking */
1279 bad_fork_cleanup_files:
1280 exit_files(p); /* blocking */
1281 bad_fork_cleanup_semundo:
1282 exit_sem(p);
1283 bad_fork_cleanup_audit:
1284 audit_free(p);
1285 bad_fork_cleanup_policy:
1286 perf_counter_free_task(p);
1287 #ifdef CONFIG_NUMA
1288 mpol_put(p->mempolicy);
1289 bad_fork_cleanup_cgroup:
1290 #endif
1291 cgroup_exit(p, cgroup_callbacks_done);
1292 delayacct_tsk_free(p);
1293 if (p->binfmt)
1294 module_put(p->binfmt->module);
1295 bad_fork_cleanup_put_domain:
1296 module_put(task_thread_info(p)->exec_domain->module);
1297 bad_fork_cleanup_count:
1298 atomic_dec(&p->cred->user->processes);
1299 exit_creds(p);
1300 bad_fork_free:
1301 free_task(p);
1302 fork_out:
1303 return ERR_PTR(retval);
1304 }
1305
1306 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1307 {
1308 memset(regs, 0, sizeof(struct pt_regs));
1309 return regs;
1310 }
1311
1312 struct task_struct * __cpuinit fork_idle(int cpu)
1313 {
1314 struct task_struct *task;
1315 struct pt_regs regs;
1316
1317 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1318 &init_struct_pid, 0);
1319 if (!IS_ERR(task))
1320 init_idle(task, cpu);
1321
1322 return task;
1323 }
1324
1325 /*
1326 * Ok, this is the main fork-routine.
1327 *
1328 * It copies the process, and if successful kick-starts
1329 * it and waits for it to finish using the VM if required.
1330 */
1331 long do_fork(unsigned long clone_flags,
1332 unsigned long stack_start,
1333 struct pt_regs *regs,
1334 unsigned long stack_size,
1335 int __user *parent_tidptr,
1336 int __user *child_tidptr)
1337 {
1338 struct task_struct *p;
1339 int trace = 0;
1340 long nr;
1341
1342 /*
1343 * Do some preliminary argument and permissions checking before we
1344 * actually start allocating stuff
1345 */
1346 if (clone_flags & CLONE_NEWUSER) {
1347 if (clone_flags & CLONE_THREAD)
1348 return -EINVAL;
1349 /* hopefully this check will go away when userns support is
1350 * complete
1351 */
1352 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1353 !capable(CAP_SETGID))
1354 return -EPERM;
1355 }
1356
1357 /*
1358 * We hope to recycle these flags after 2.6.26
1359 */
1360 if (unlikely(clone_flags & CLONE_STOPPED)) {
1361 static int __read_mostly count = 100;
1362
1363 if (count > 0 && printk_ratelimit()) {
1364 char comm[TASK_COMM_LEN];
1365
1366 count--;
1367 printk(KERN_INFO "fork(): process `%s' used deprecated "
1368 "clone flags 0x%lx\n",
1369 get_task_comm(comm, current),
1370 clone_flags & CLONE_STOPPED);
1371 }
1372 }
1373
1374 /*
1375 * When called from kernel_thread, don't do user tracing stuff.
1376 */
1377 if (likely(user_mode(regs)))
1378 trace = tracehook_prepare_clone(clone_flags);
1379
1380 p = copy_process(clone_flags, stack_start, regs, stack_size,
1381 child_tidptr, NULL, trace);
1382 /*
1383 * Do this prior waking up the new thread - the thread pointer
1384 * might get invalid after that point, if the thread exits quickly.
1385 */
1386 if (!IS_ERR(p)) {
1387 struct completion vfork;
1388
1389 trace_sched_process_fork(current, p);
1390
1391 nr = task_pid_vnr(p);
1392
1393 if (clone_flags & CLONE_PARENT_SETTID)
1394 put_user(nr, parent_tidptr);
1395
1396 if (clone_flags & CLONE_VFORK) {
1397 p->vfork_done = &vfork;
1398 init_completion(&vfork);
1399 }
1400
1401 audit_finish_fork(p);
1402 tracehook_report_clone(regs, clone_flags, nr, p);
1403
1404 /*
1405 * We set PF_STARTING at creation in case tracing wants to
1406 * use this to distinguish a fully live task from one that
1407 * hasn't gotten to tracehook_report_clone() yet. Now we
1408 * clear it and set the child going.
1409 */
1410 p->flags &= ~PF_STARTING;
1411
1412 if (unlikely(clone_flags & CLONE_STOPPED)) {
1413 /*
1414 * We'll start up with an immediate SIGSTOP.
1415 */
1416 sigaddset(&p->pending.signal, SIGSTOP);
1417 set_tsk_thread_flag(p, TIF_SIGPENDING);
1418 __set_task_state(p, TASK_STOPPED);
1419 } else {
1420 wake_up_new_task(p, clone_flags);
1421 }
1422
1423 tracehook_report_clone_complete(trace, regs,
1424 clone_flags, nr, p);
1425
1426 if (clone_flags & CLONE_VFORK) {
1427 freezer_do_not_count();
1428 wait_for_completion(&vfork);
1429 freezer_count();
1430 tracehook_report_vfork_done(p, nr);
1431 }
1432 } else {
1433 nr = PTR_ERR(p);
1434 }
1435 return nr;
1436 }
1437
1438 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1439 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1440 #endif
1441
1442 static void sighand_ctor(void *data)
1443 {
1444 struct sighand_struct *sighand = data;
1445
1446 spin_lock_init(&sighand->siglock);
1447 init_waitqueue_head(&sighand->signalfd_wqh);
1448 }
1449
1450 void __init proc_caches_init(void)
1451 {
1452 sighand_cachep = kmem_cache_create("sighand_cache",
1453 sizeof(struct sighand_struct), 0,
1454 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1455 SLAB_NOTRACK, sighand_ctor);
1456 signal_cachep = kmem_cache_create("signal_cache",
1457 sizeof(struct signal_struct), 0,
1458 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1459 files_cachep = kmem_cache_create("files_cache",
1460 sizeof(struct files_struct), 0,
1461 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1462 fs_cachep = kmem_cache_create("fs_cache",
1463 sizeof(struct fs_struct), 0,
1464 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1465 mm_cachep = kmem_cache_create("mm_struct",
1466 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1468 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1469 mmap_init();
1470 }
1471
1472 /*
1473 * Check constraints on flags passed to the unshare system call and
1474 * force unsharing of additional process context as appropriate.
1475 */
1476 static void check_unshare_flags(unsigned long *flags_ptr)
1477 {
1478 /*
1479 * If unsharing a thread from a thread group, must also
1480 * unshare vm.
1481 */
1482 if (*flags_ptr & CLONE_THREAD)
1483 *flags_ptr |= CLONE_VM;
1484
1485 /*
1486 * If unsharing vm, must also unshare signal handlers.
1487 */
1488 if (*flags_ptr & CLONE_VM)
1489 *flags_ptr |= CLONE_SIGHAND;
1490
1491 /*
1492 * If unsharing signal handlers and the task was created
1493 * using CLONE_THREAD, then must unshare the thread
1494 */
1495 if ((*flags_ptr & CLONE_SIGHAND) &&
1496 (atomic_read(&current->signal->count) > 1))
1497 *flags_ptr |= CLONE_THREAD;
1498
1499 /*
1500 * If unsharing namespace, must also unshare filesystem information.
1501 */
1502 if (*flags_ptr & CLONE_NEWNS)
1503 *flags_ptr |= CLONE_FS;
1504 }
1505
1506 /*
1507 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1508 */
1509 static int unshare_thread(unsigned long unshare_flags)
1510 {
1511 if (unshare_flags & CLONE_THREAD)
1512 return -EINVAL;
1513
1514 return 0;
1515 }
1516
1517 /*
1518 * Unshare the filesystem structure if it is being shared
1519 */
1520 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1521 {
1522 struct fs_struct *fs = current->fs;
1523
1524 if (!(unshare_flags & CLONE_FS) || !fs)
1525 return 0;
1526
1527 /* don't need lock here; in the worst case we'll do useless copy */
1528 if (fs->users == 1)
1529 return 0;
1530
1531 *new_fsp = copy_fs_struct(fs);
1532 if (!*new_fsp)
1533 return -ENOMEM;
1534
1535 return 0;
1536 }
1537
1538 /*
1539 * Unsharing of sighand is not supported yet
1540 */
1541 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1542 {
1543 struct sighand_struct *sigh = current->sighand;
1544
1545 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1546 return -EINVAL;
1547 else
1548 return 0;
1549 }
1550
1551 /*
1552 * Unshare vm if it is being shared
1553 */
1554 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1555 {
1556 struct mm_struct *mm = current->mm;
1557
1558 if ((unshare_flags & CLONE_VM) &&
1559 (mm && atomic_read(&mm->mm_users) > 1)) {
1560 return -EINVAL;
1561 }
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * Unshare file descriptor table if it is being shared
1568 */
1569 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1570 {
1571 struct files_struct *fd = current->files;
1572 int error = 0;
1573
1574 if ((unshare_flags & CLONE_FILES) &&
1575 (fd && atomic_read(&fd->count) > 1)) {
1576 *new_fdp = dup_fd(fd, &error);
1577 if (!*new_fdp)
1578 return error;
1579 }
1580
1581 return 0;
1582 }
1583
1584 /*
1585 * unshare allows a process to 'unshare' part of the process
1586 * context which was originally shared using clone. copy_*
1587 * functions used by do_fork() cannot be used here directly
1588 * because they modify an inactive task_struct that is being
1589 * constructed. Here we are modifying the current, active,
1590 * task_struct.
1591 */
1592 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1593 {
1594 int err = 0;
1595 struct fs_struct *fs, *new_fs = NULL;
1596 struct sighand_struct *new_sigh = NULL;
1597 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1598 struct files_struct *fd, *new_fd = NULL;
1599 struct nsproxy *new_nsproxy = NULL;
1600 int do_sysvsem = 0;
1601
1602 check_unshare_flags(&unshare_flags);
1603
1604 /* Return -EINVAL for all unsupported flags */
1605 err = -EINVAL;
1606 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1607 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1608 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1609 goto bad_unshare_out;
1610
1611 /*
1612 * CLONE_NEWIPC must also detach from the undolist: after switching
1613 * to a new ipc namespace, the semaphore arrays from the old
1614 * namespace are unreachable.
1615 */
1616 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1617 do_sysvsem = 1;
1618 if ((err = unshare_thread(unshare_flags)))
1619 goto bad_unshare_out;
1620 if ((err = unshare_fs(unshare_flags, &new_fs)))
1621 goto bad_unshare_cleanup_thread;
1622 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1623 goto bad_unshare_cleanup_fs;
1624 if ((err = unshare_vm(unshare_flags, &new_mm)))
1625 goto bad_unshare_cleanup_sigh;
1626 if ((err = unshare_fd(unshare_flags, &new_fd)))
1627 goto bad_unshare_cleanup_vm;
1628 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1629 new_fs)))
1630 goto bad_unshare_cleanup_fd;
1631
1632 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1633 if (do_sysvsem) {
1634 /*
1635 * CLONE_SYSVSEM is equivalent to sys_exit().
1636 */
1637 exit_sem(current);
1638 }
1639
1640 if (new_nsproxy) {
1641 switch_task_namespaces(current, new_nsproxy);
1642 new_nsproxy = NULL;
1643 }
1644
1645 task_lock(current);
1646
1647 if (new_fs) {
1648 fs = current->fs;
1649 write_lock(&fs->lock);
1650 current->fs = new_fs;
1651 if (--fs->users)
1652 new_fs = NULL;
1653 else
1654 new_fs = fs;
1655 write_unlock(&fs->lock);
1656 }
1657
1658 if (new_mm) {
1659 mm = current->mm;
1660 active_mm = current->active_mm;
1661 current->mm = new_mm;
1662 current->active_mm = new_mm;
1663 activate_mm(active_mm, new_mm);
1664 new_mm = mm;
1665 }
1666
1667 if (new_fd) {
1668 fd = current->files;
1669 current->files = new_fd;
1670 new_fd = fd;
1671 }
1672
1673 task_unlock(current);
1674 }
1675
1676 if (new_nsproxy)
1677 put_nsproxy(new_nsproxy);
1678
1679 bad_unshare_cleanup_fd:
1680 if (new_fd)
1681 put_files_struct(new_fd);
1682
1683 bad_unshare_cleanup_vm:
1684 if (new_mm)
1685 mmput(new_mm);
1686
1687 bad_unshare_cleanup_sigh:
1688 if (new_sigh)
1689 if (atomic_dec_and_test(&new_sigh->count))
1690 kmem_cache_free(sighand_cachep, new_sigh);
1691
1692 bad_unshare_cleanup_fs:
1693 if (new_fs)
1694 free_fs_struct(new_fs);
1695
1696 bad_unshare_cleanup_thread:
1697 bad_unshare_out:
1698 return err;
1699 }
1700
1701 /*
1702 * Helper to unshare the files of the current task.
1703 * We don't want to expose copy_files internals to
1704 * the exec layer of the kernel.
1705 */
1706
1707 int unshare_files(struct files_struct **displaced)
1708 {
1709 struct task_struct *task = current;
1710 struct files_struct *copy = NULL;
1711 int error;
1712
1713 error = unshare_fd(CLONE_FILES, &copy);
1714 if (error || !copy) {
1715 *displaced = NULL;
1716 return error;
1717 }
1718 *displaced = task->files;
1719 task_lock(task);
1720 task->files = copy;
1721 task_unlock(task);
1722 return 0;
1723 }