]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162
163 #ifdef CONFIG_VMAP_STACK
164 /*
165 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
166 * flush. Try to minimize the number of calls by caching stacks.
167 */
168 #define NR_CACHED_STACKS 2
169 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
170 #endif
171
172 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
173 {
174 #ifdef CONFIG_VMAP_STACK
175 void *stack;
176 int i;
177
178 local_irq_disable();
179 for (i = 0; i < NR_CACHED_STACKS; i++) {
180 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
181
182 if (!s)
183 continue;
184 this_cpu_write(cached_stacks[i], NULL);
185
186 tsk->stack_vm_area = s;
187 local_irq_enable();
188 return s->addr;
189 }
190 local_irq_enable();
191
192 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
193 VMALLOC_START, VMALLOC_END,
194 THREADINFO_GFP | __GFP_HIGHMEM,
195 PAGE_KERNEL,
196 0, node, __builtin_return_address(0));
197
198 /*
199 * We can't call find_vm_area() in interrupt context, and
200 * free_thread_stack() can be called in interrupt context,
201 * so cache the vm_struct.
202 */
203 if (stack)
204 tsk->stack_vm_area = find_vm_area(stack);
205 return stack;
206 #else
207 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
208 THREAD_SIZE_ORDER);
209
210 return page ? page_address(page) : NULL;
211 #endif
212 }
213
214 static inline void free_thread_stack(struct task_struct *tsk)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 if (task_stack_vm_area(tsk)) {
218 unsigned long flags;
219 int i;
220
221 local_irq_save(flags);
222 for (i = 0; i < NR_CACHED_STACKS; i++) {
223 if (this_cpu_read(cached_stacks[i]))
224 continue;
225
226 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
227 local_irq_restore(flags);
228 return;
229 }
230 local_irq_restore(flags);
231
232 vfree(tsk->stack);
233 return;
234 }
235 #endif
236
237 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
238 }
239 # else
240 static struct kmem_cache *thread_stack_cache;
241
242 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
243 int node)
244 {
245 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
246 }
247
248 static void free_thread_stack(struct task_struct *tsk)
249 {
250 kmem_cache_free(thread_stack_cache, tsk->stack);
251 }
252
253 void thread_stack_cache_init(void)
254 {
255 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
256 THREAD_SIZE, 0, NULL);
257 BUG_ON(thread_stack_cache == NULL);
258 }
259 # endif
260 #endif
261
262 /* SLAB cache for signal_struct structures (tsk->signal) */
263 static struct kmem_cache *signal_cachep;
264
265 /* SLAB cache for sighand_struct structures (tsk->sighand) */
266 struct kmem_cache *sighand_cachep;
267
268 /* SLAB cache for files_struct structures (tsk->files) */
269 struct kmem_cache *files_cachep;
270
271 /* SLAB cache for fs_struct structures (tsk->fs) */
272 struct kmem_cache *fs_cachep;
273
274 /* SLAB cache for vm_area_struct structures */
275 struct kmem_cache *vm_area_cachep;
276
277 /* SLAB cache for mm_struct structures (tsk->mm) */
278 static struct kmem_cache *mm_cachep;
279
280 static void account_kernel_stack(struct task_struct *tsk, int account)
281 {
282 void *stack = task_stack_page(tsk);
283 struct vm_struct *vm = task_stack_vm_area(tsk);
284
285 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
286
287 if (vm) {
288 int i;
289
290 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
291
292 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
293 mod_zone_page_state(page_zone(vm->pages[i]),
294 NR_KERNEL_STACK_KB,
295 PAGE_SIZE / 1024 * account);
296 }
297
298 /* All stack pages belong to the same memcg. */
299 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
300 account * (THREAD_SIZE / 1024));
301 } else {
302 /*
303 * All stack pages are in the same zone and belong to the
304 * same memcg.
305 */
306 struct page *first_page = virt_to_page(stack);
307
308 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
309 THREAD_SIZE / 1024 * account);
310
311 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
312 account * (THREAD_SIZE / 1024));
313 }
314 }
315
316 static void release_task_stack(struct task_struct *tsk)
317 {
318 if (WARN_ON(tsk->state != TASK_DEAD))
319 return; /* Better to leak the stack than to free prematurely */
320
321 account_kernel_stack(tsk, -1);
322 arch_release_thread_stack(tsk->stack);
323 free_thread_stack(tsk);
324 tsk->stack = NULL;
325 #ifdef CONFIG_VMAP_STACK
326 tsk->stack_vm_area = NULL;
327 #endif
328 }
329
330 #ifdef CONFIG_THREAD_INFO_IN_TASK
331 void put_task_stack(struct task_struct *tsk)
332 {
333 if (atomic_dec_and_test(&tsk->stack_refcount))
334 release_task_stack(tsk);
335 }
336 #endif
337
338 void free_task(struct task_struct *tsk)
339 {
340 #ifndef CONFIG_THREAD_INFO_IN_TASK
341 /*
342 * The task is finally done with both the stack and thread_info,
343 * so free both.
344 */
345 release_task_stack(tsk);
346 #else
347 /*
348 * If the task had a separate stack allocation, it should be gone
349 * by now.
350 */
351 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
352 #endif
353 rt_mutex_debug_task_free(tsk);
354 ftrace_graph_exit_task(tsk);
355 put_seccomp_filter(tsk);
356 arch_release_task_struct(tsk);
357 if (tsk->flags & PF_KTHREAD)
358 free_kthread_struct(tsk);
359 free_task_struct(tsk);
360 }
361 EXPORT_SYMBOL(free_task);
362
363 static inline void free_signal_struct(struct signal_struct *sig)
364 {
365 taskstats_tgid_free(sig);
366 sched_autogroup_exit(sig);
367 /*
368 * __mmdrop is not safe to call from softirq context on x86 due to
369 * pgd_dtor so postpone it to the async context
370 */
371 if (sig->oom_mm)
372 mmdrop_async(sig->oom_mm);
373 kmem_cache_free(signal_cachep, sig);
374 }
375
376 static inline void put_signal_struct(struct signal_struct *sig)
377 {
378 if (atomic_dec_and_test(&sig->sigcnt))
379 free_signal_struct(sig);
380 }
381
382 void __put_task_struct(struct task_struct *tsk)
383 {
384 WARN_ON(!tsk->exit_state);
385 WARN_ON(atomic_read(&tsk->usage));
386 WARN_ON(tsk == current);
387
388 cgroup_free(tsk);
389 task_numa_free(tsk);
390 security_task_free(tsk);
391 exit_creds(tsk);
392 delayacct_tsk_free(tsk);
393 put_signal_struct(tsk->signal);
394
395 if (!profile_handoff_task(tsk))
396 free_task(tsk);
397 }
398 EXPORT_SYMBOL_GPL(__put_task_struct);
399
400 void __init __weak arch_task_cache_init(void) { }
401
402 /*
403 * set_max_threads
404 */
405 static void set_max_threads(unsigned int max_threads_suggested)
406 {
407 u64 threads;
408
409 /*
410 * The number of threads shall be limited such that the thread
411 * structures may only consume a small part of the available memory.
412 */
413 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
414 threads = MAX_THREADS;
415 else
416 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
417 (u64) THREAD_SIZE * 8UL);
418
419 if (threads > max_threads_suggested)
420 threads = max_threads_suggested;
421
422 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
423 }
424
425 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
426 /* Initialized by the architecture: */
427 int arch_task_struct_size __read_mostly;
428 #endif
429
430 void __init fork_init(void)
431 {
432 int i;
433 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
434 #ifndef ARCH_MIN_TASKALIGN
435 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
436 #endif
437 /* create a slab on which task_structs can be allocated */
438 task_struct_cachep = kmem_cache_create("task_struct",
439 arch_task_struct_size, ARCH_MIN_TASKALIGN,
440 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
441 #endif
442
443 /* do the arch specific task caches init */
444 arch_task_cache_init();
445
446 set_max_threads(MAX_THREADS);
447
448 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
449 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
450 init_task.signal->rlim[RLIMIT_SIGPENDING] =
451 init_task.signal->rlim[RLIMIT_NPROC];
452
453 for (i = 0; i < UCOUNT_COUNTS; i++) {
454 init_user_ns.ucount_max[i] = max_threads/2;
455 }
456 }
457
458 int __weak arch_dup_task_struct(struct task_struct *dst,
459 struct task_struct *src)
460 {
461 *dst = *src;
462 return 0;
463 }
464
465 void set_task_stack_end_magic(struct task_struct *tsk)
466 {
467 unsigned long *stackend;
468
469 stackend = end_of_stack(tsk);
470 *stackend = STACK_END_MAGIC; /* for overflow detection */
471 }
472
473 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
474 {
475 struct task_struct *tsk;
476 unsigned long *stack;
477 struct vm_struct *stack_vm_area;
478 int err;
479
480 if (node == NUMA_NO_NODE)
481 node = tsk_fork_get_node(orig);
482 tsk = alloc_task_struct_node(node);
483 if (!tsk)
484 return NULL;
485
486 stack = alloc_thread_stack_node(tsk, node);
487 if (!stack)
488 goto free_tsk;
489
490 stack_vm_area = task_stack_vm_area(tsk);
491
492 err = arch_dup_task_struct(tsk, orig);
493
494 /*
495 * arch_dup_task_struct() clobbers the stack-related fields. Make
496 * sure they're properly initialized before using any stack-related
497 * functions again.
498 */
499 tsk->stack = stack;
500 #ifdef CONFIG_VMAP_STACK
501 tsk->stack_vm_area = stack_vm_area;
502 #endif
503 #ifdef CONFIG_THREAD_INFO_IN_TASK
504 atomic_set(&tsk->stack_refcount, 1);
505 #endif
506
507 if (err)
508 goto free_stack;
509
510 #ifdef CONFIG_SECCOMP
511 /*
512 * We must handle setting up seccomp filters once we're under
513 * the sighand lock in case orig has changed between now and
514 * then. Until then, filter must be NULL to avoid messing up
515 * the usage counts on the error path calling free_task.
516 */
517 tsk->seccomp.filter = NULL;
518 #endif
519
520 setup_thread_stack(tsk, orig);
521 clear_user_return_notifier(tsk);
522 clear_tsk_need_resched(tsk);
523 set_task_stack_end_magic(tsk);
524
525 #ifdef CONFIG_CC_STACKPROTECTOR
526 tsk->stack_canary = get_random_int();
527 #endif
528
529 /*
530 * One for us, one for whoever does the "release_task()" (usually
531 * parent)
532 */
533 atomic_set(&tsk->usage, 2);
534 #ifdef CONFIG_BLK_DEV_IO_TRACE
535 tsk->btrace_seq = 0;
536 #endif
537 tsk->splice_pipe = NULL;
538 tsk->task_frag.page = NULL;
539 tsk->wake_q.next = NULL;
540
541 account_kernel_stack(tsk, 1);
542
543 kcov_task_init(tsk);
544
545 return tsk;
546
547 free_stack:
548 free_thread_stack(tsk);
549 free_tsk:
550 free_task_struct(tsk);
551 return NULL;
552 }
553
554 #ifdef CONFIG_MMU
555 static __latent_entropy int dup_mmap(struct mm_struct *mm,
556 struct mm_struct *oldmm)
557 {
558 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
559 struct rb_node **rb_link, *rb_parent;
560 int retval;
561 unsigned long charge;
562
563 uprobe_start_dup_mmap();
564 if (down_write_killable(&oldmm->mmap_sem)) {
565 retval = -EINTR;
566 goto fail_uprobe_end;
567 }
568 flush_cache_dup_mm(oldmm);
569 uprobe_dup_mmap(oldmm, mm);
570 /*
571 * Not linked in yet - no deadlock potential:
572 */
573 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
574
575 /* No ordering required: file already has been exposed. */
576 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
577
578 mm->total_vm = oldmm->total_vm;
579 mm->data_vm = oldmm->data_vm;
580 mm->exec_vm = oldmm->exec_vm;
581 mm->stack_vm = oldmm->stack_vm;
582
583 rb_link = &mm->mm_rb.rb_node;
584 rb_parent = NULL;
585 pprev = &mm->mmap;
586 retval = ksm_fork(mm, oldmm);
587 if (retval)
588 goto out;
589 retval = khugepaged_fork(mm, oldmm);
590 if (retval)
591 goto out;
592
593 prev = NULL;
594 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
595 struct file *file;
596
597 if (mpnt->vm_flags & VM_DONTCOPY) {
598 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
599 continue;
600 }
601 charge = 0;
602 if (mpnt->vm_flags & VM_ACCOUNT) {
603 unsigned long len = vma_pages(mpnt);
604
605 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
606 goto fail_nomem;
607 charge = len;
608 }
609 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
610 if (!tmp)
611 goto fail_nomem;
612 *tmp = *mpnt;
613 INIT_LIST_HEAD(&tmp->anon_vma_chain);
614 retval = vma_dup_policy(mpnt, tmp);
615 if (retval)
616 goto fail_nomem_policy;
617 tmp->vm_mm = mm;
618 if (anon_vma_fork(tmp, mpnt))
619 goto fail_nomem_anon_vma_fork;
620 tmp->vm_flags &=
621 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
622 tmp->vm_next = tmp->vm_prev = NULL;
623 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
624 file = tmp->vm_file;
625 if (file) {
626 struct inode *inode = file_inode(file);
627 struct address_space *mapping = file->f_mapping;
628
629 get_file(file);
630 if (tmp->vm_flags & VM_DENYWRITE)
631 atomic_dec(&inode->i_writecount);
632 i_mmap_lock_write(mapping);
633 if (tmp->vm_flags & VM_SHARED)
634 atomic_inc(&mapping->i_mmap_writable);
635 flush_dcache_mmap_lock(mapping);
636 /* insert tmp into the share list, just after mpnt */
637 vma_interval_tree_insert_after(tmp, mpnt,
638 &mapping->i_mmap);
639 flush_dcache_mmap_unlock(mapping);
640 i_mmap_unlock_write(mapping);
641 }
642
643 /*
644 * Clear hugetlb-related page reserves for children. This only
645 * affects MAP_PRIVATE mappings. Faults generated by the child
646 * are not guaranteed to succeed, even if read-only
647 */
648 if (is_vm_hugetlb_page(tmp))
649 reset_vma_resv_huge_pages(tmp);
650
651 /*
652 * Link in the new vma and copy the page table entries.
653 */
654 *pprev = tmp;
655 pprev = &tmp->vm_next;
656 tmp->vm_prev = prev;
657 prev = tmp;
658
659 __vma_link_rb(mm, tmp, rb_link, rb_parent);
660 rb_link = &tmp->vm_rb.rb_right;
661 rb_parent = &tmp->vm_rb;
662
663 mm->map_count++;
664 retval = copy_page_range(mm, oldmm, mpnt);
665
666 if (tmp->vm_ops && tmp->vm_ops->open)
667 tmp->vm_ops->open(tmp);
668
669 if (retval)
670 goto out;
671 }
672 /* a new mm has just been created */
673 arch_dup_mmap(oldmm, mm);
674 retval = 0;
675 out:
676 up_write(&mm->mmap_sem);
677 flush_tlb_mm(oldmm);
678 up_write(&oldmm->mmap_sem);
679 fail_uprobe_end:
680 uprobe_end_dup_mmap();
681 return retval;
682 fail_nomem_anon_vma_fork:
683 mpol_put(vma_policy(tmp));
684 fail_nomem_policy:
685 kmem_cache_free(vm_area_cachep, tmp);
686 fail_nomem:
687 retval = -ENOMEM;
688 vm_unacct_memory(charge);
689 goto out;
690 }
691
692 static inline int mm_alloc_pgd(struct mm_struct *mm)
693 {
694 mm->pgd = pgd_alloc(mm);
695 if (unlikely(!mm->pgd))
696 return -ENOMEM;
697 return 0;
698 }
699
700 static inline void mm_free_pgd(struct mm_struct *mm)
701 {
702 pgd_free(mm, mm->pgd);
703 }
704 #else
705 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
706 {
707 down_write(&oldmm->mmap_sem);
708 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
709 up_write(&oldmm->mmap_sem);
710 return 0;
711 }
712 #define mm_alloc_pgd(mm) (0)
713 #define mm_free_pgd(mm)
714 #endif /* CONFIG_MMU */
715
716 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
717
718 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
719 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
720
721 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
722
723 static int __init coredump_filter_setup(char *s)
724 {
725 default_dump_filter =
726 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
727 MMF_DUMP_FILTER_MASK;
728 return 1;
729 }
730
731 __setup("coredump_filter=", coredump_filter_setup);
732
733 #include <linux/init_task.h>
734
735 static void mm_init_aio(struct mm_struct *mm)
736 {
737 #ifdef CONFIG_AIO
738 spin_lock_init(&mm->ioctx_lock);
739 mm->ioctx_table = NULL;
740 #endif
741 }
742
743 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
744 {
745 #ifdef CONFIG_MEMCG
746 mm->owner = p;
747 #endif
748 }
749
750 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
751 {
752 mm->mmap = NULL;
753 mm->mm_rb = RB_ROOT;
754 mm->vmacache_seqnum = 0;
755 atomic_set(&mm->mm_users, 1);
756 atomic_set(&mm->mm_count, 1);
757 init_rwsem(&mm->mmap_sem);
758 INIT_LIST_HEAD(&mm->mmlist);
759 mm->core_state = NULL;
760 atomic_long_set(&mm->nr_ptes, 0);
761 mm_nr_pmds_init(mm);
762 mm->map_count = 0;
763 mm->locked_vm = 0;
764 mm->pinned_vm = 0;
765 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
766 spin_lock_init(&mm->page_table_lock);
767 mm_init_cpumask(mm);
768 mm_init_aio(mm);
769 mm_init_owner(mm, p);
770 mmu_notifier_mm_init(mm);
771 clear_tlb_flush_pending(mm);
772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
773 mm->pmd_huge_pte = NULL;
774 #endif
775
776 if (current->mm) {
777 mm->flags = current->mm->flags & MMF_INIT_MASK;
778 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
779 } else {
780 mm->flags = default_dump_filter;
781 mm->def_flags = 0;
782 }
783
784 if (mm_alloc_pgd(mm))
785 goto fail_nopgd;
786
787 if (init_new_context(p, mm))
788 goto fail_nocontext;
789
790 return mm;
791
792 fail_nocontext:
793 mm_free_pgd(mm);
794 fail_nopgd:
795 free_mm(mm);
796 return NULL;
797 }
798
799 static void check_mm(struct mm_struct *mm)
800 {
801 int i;
802
803 for (i = 0; i < NR_MM_COUNTERS; i++) {
804 long x = atomic_long_read(&mm->rss_stat.count[i]);
805
806 if (unlikely(x))
807 printk(KERN_ALERT "BUG: Bad rss-counter state "
808 "mm:%p idx:%d val:%ld\n", mm, i, x);
809 }
810
811 if (atomic_long_read(&mm->nr_ptes))
812 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
813 atomic_long_read(&mm->nr_ptes));
814 if (mm_nr_pmds(mm))
815 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
816 mm_nr_pmds(mm));
817
818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
819 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
820 #endif
821 }
822
823 /*
824 * Allocate and initialize an mm_struct.
825 */
826 struct mm_struct *mm_alloc(void)
827 {
828 struct mm_struct *mm;
829
830 mm = allocate_mm();
831 if (!mm)
832 return NULL;
833
834 memset(mm, 0, sizeof(*mm));
835 return mm_init(mm, current);
836 }
837
838 /*
839 * Called when the last reference to the mm
840 * is dropped: either by a lazy thread or by
841 * mmput. Free the page directory and the mm.
842 */
843 void __mmdrop(struct mm_struct *mm)
844 {
845 BUG_ON(mm == &init_mm);
846 mm_free_pgd(mm);
847 destroy_context(mm);
848 mmu_notifier_mm_destroy(mm);
849 check_mm(mm);
850 free_mm(mm);
851 }
852 EXPORT_SYMBOL_GPL(__mmdrop);
853
854 static inline void __mmput(struct mm_struct *mm)
855 {
856 VM_BUG_ON(atomic_read(&mm->mm_users));
857
858 uprobe_clear_state(mm);
859 exit_aio(mm);
860 ksm_exit(mm);
861 khugepaged_exit(mm); /* must run before exit_mmap */
862 exit_mmap(mm);
863 mm_put_huge_zero_page(mm);
864 set_mm_exe_file(mm, NULL);
865 if (!list_empty(&mm->mmlist)) {
866 spin_lock(&mmlist_lock);
867 list_del(&mm->mmlist);
868 spin_unlock(&mmlist_lock);
869 }
870 if (mm->binfmt)
871 module_put(mm->binfmt->module);
872 set_bit(MMF_OOM_SKIP, &mm->flags);
873 mmdrop(mm);
874 }
875
876 /*
877 * Decrement the use count and release all resources for an mm.
878 */
879 void mmput(struct mm_struct *mm)
880 {
881 might_sleep();
882
883 if (atomic_dec_and_test(&mm->mm_users))
884 __mmput(mm);
885 }
886 EXPORT_SYMBOL_GPL(mmput);
887
888 #ifdef CONFIG_MMU
889 static void mmput_async_fn(struct work_struct *work)
890 {
891 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
892 __mmput(mm);
893 }
894
895 void mmput_async(struct mm_struct *mm)
896 {
897 if (atomic_dec_and_test(&mm->mm_users)) {
898 INIT_WORK(&mm->async_put_work, mmput_async_fn);
899 schedule_work(&mm->async_put_work);
900 }
901 }
902 #endif
903
904 /**
905 * set_mm_exe_file - change a reference to the mm's executable file
906 *
907 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
908 *
909 * Main users are mmput() and sys_execve(). Callers prevent concurrent
910 * invocations: in mmput() nobody alive left, in execve task is single
911 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
912 * mm->exe_file, but does so without using set_mm_exe_file() in order
913 * to do avoid the need for any locks.
914 */
915 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
916 {
917 struct file *old_exe_file;
918
919 /*
920 * It is safe to dereference the exe_file without RCU as
921 * this function is only called if nobody else can access
922 * this mm -- see comment above for justification.
923 */
924 old_exe_file = rcu_dereference_raw(mm->exe_file);
925
926 if (new_exe_file)
927 get_file(new_exe_file);
928 rcu_assign_pointer(mm->exe_file, new_exe_file);
929 if (old_exe_file)
930 fput(old_exe_file);
931 }
932
933 /**
934 * get_mm_exe_file - acquire a reference to the mm's executable file
935 *
936 * Returns %NULL if mm has no associated executable file.
937 * User must release file via fput().
938 */
939 struct file *get_mm_exe_file(struct mm_struct *mm)
940 {
941 struct file *exe_file;
942
943 rcu_read_lock();
944 exe_file = rcu_dereference(mm->exe_file);
945 if (exe_file && !get_file_rcu(exe_file))
946 exe_file = NULL;
947 rcu_read_unlock();
948 return exe_file;
949 }
950 EXPORT_SYMBOL(get_mm_exe_file);
951
952 /**
953 * get_task_exe_file - acquire a reference to the task's executable file
954 *
955 * Returns %NULL if task's mm (if any) has no associated executable file or
956 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
957 * User must release file via fput().
958 */
959 struct file *get_task_exe_file(struct task_struct *task)
960 {
961 struct file *exe_file = NULL;
962 struct mm_struct *mm;
963
964 task_lock(task);
965 mm = task->mm;
966 if (mm) {
967 if (!(task->flags & PF_KTHREAD))
968 exe_file = get_mm_exe_file(mm);
969 }
970 task_unlock(task);
971 return exe_file;
972 }
973 EXPORT_SYMBOL(get_task_exe_file);
974
975 /**
976 * get_task_mm - acquire a reference to the task's mm
977 *
978 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
979 * this kernel workthread has transiently adopted a user mm with use_mm,
980 * to do its AIO) is not set and if so returns a reference to it, after
981 * bumping up the use count. User must release the mm via mmput()
982 * after use. Typically used by /proc and ptrace.
983 */
984 struct mm_struct *get_task_mm(struct task_struct *task)
985 {
986 struct mm_struct *mm;
987
988 task_lock(task);
989 mm = task->mm;
990 if (mm) {
991 if (task->flags & PF_KTHREAD)
992 mm = NULL;
993 else
994 atomic_inc(&mm->mm_users);
995 }
996 task_unlock(task);
997 return mm;
998 }
999 EXPORT_SYMBOL_GPL(get_task_mm);
1000
1001 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1002 {
1003 struct mm_struct *mm;
1004 int err;
1005
1006 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1007 if (err)
1008 return ERR_PTR(err);
1009
1010 mm = get_task_mm(task);
1011 if (mm && mm != current->mm &&
1012 !ptrace_may_access(task, mode)) {
1013 mmput(mm);
1014 mm = ERR_PTR(-EACCES);
1015 }
1016 mutex_unlock(&task->signal->cred_guard_mutex);
1017
1018 return mm;
1019 }
1020
1021 static void complete_vfork_done(struct task_struct *tsk)
1022 {
1023 struct completion *vfork;
1024
1025 task_lock(tsk);
1026 vfork = tsk->vfork_done;
1027 if (likely(vfork)) {
1028 tsk->vfork_done = NULL;
1029 complete(vfork);
1030 }
1031 task_unlock(tsk);
1032 }
1033
1034 static int wait_for_vfork_done(struct task_struct *child,
1035 struct completion *vfork)
1036 {
1037 int killed;
1038
1039 freezer_do_not_count();
1040 killed = wait_for_completion_killable(vfork);
1041 freezer_count();
1042
1043 if (killed) {
1044 task_lock(child);
1045 child->vfork_done = NULL;
1046 task_unlock(child);
1047 }
1048
1049 put_task_struct(child);
1050 return killed;
1051 }
1052
1053 /* Please note the differences between mmput and mm_release.
1054 * mmput is called whenever we stop holding onto a mm_struct,
1055 * error success whatever.
1056 *
1057 * mm_release is called after a mm_struct has been removed
1058 * from the current process.
1059 *
1060 * This difference is important for error handling, when we
1061 * only half set up a mm_struct for a new process and need to restore
1062 * the old one. Because we mmput the new mm_struct before
1063 * restoring the old one. . .
1064 * Eric Biederman 10 January 1998
1065 */
1066 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1067 {
1068 /* Get rid of any futexes when releasing the mm */
1069 #ifdef CONFIG_FUTEX
1070 if (unlikely(tsk->robust_list)) {
1071 exit_robust_list(tsk);
1072 tsk->robust_list = NULL;
1073 }
1074 #ifdef CONFIG_COMPAT
1075 if (unlikely(tsk->compat_robust_list)) {
1076 compat_exit_robust_list(tsk);
1077 tsk->compat_robust_list = NULL;
1078 }
1079 #endif
1080 if (unlikely(!list_empty(&tsk->pi_state_list)))
1081 exit_pi_state_list(tsk);
1082 #endif
1083
1084 uprobe_free_utask(tsk);
1085
1086 /* Get rid of any cached register state */
1087 deactivate_mm(tsk, mm);
1088
1089 /*
1090 * Signal userspace if we're not exiting with a core dump
1091 * because we want to leave the value intact for debugging
1092 * purposes.
1093 */
1094 if (tsk->clear_child_tid) {
1095 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1096 atomic_read(&mm->mm_users) > 1) {
1097 /*
1098 * We don't check the error code - if userspace has
1099 * not set up a proper pointer then tough luck.
1100 */
1101 put_user(0, tsk->clear_child_tid);
1102 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1103 1, NULL, NULL, 0);
1104 }
1105 tsk->clear_child_tid = NULL;
1106 }
1107
1108 /*
1109 * All done, finally we can wake up parent and return this mm to him.
1110 * Also kthread_stop() uses this completion for synchronization.
1111 */
1112 if (tsk->vfork_done)
1113 complete_vfork_done(tsk);
1114 }
1115
1116 /*
1117 * Allocate a new mm structure and copy contents from the
1118 * mm structure of the passed in task structure.
1119 */
1120 static struct mm_struct *dup_mm(struct task_struct *tsk)
1121 {
1122 struct mm_struct *mm, *oldmm = current->mm;
1123 int err;
1124
1125 mm = allocate_mm();
1126 if (!mm)
1127 goto fail_nomem;
1128
1129 memcpy(mm, oldmm, sizeof(*mm));
1130
1131 if (!mm_init(mm, tsk))
1132 goto fail_nomem;
1133
1134 err = dup_mmap(mm, oldmm);
1135 if (err)
1136 goto free_pt;
1137
1138 mm->hiwater_rss = get_mm_rss(mm);
1139 mm->hiwater_vm = mm->total_vm;
1140
1141 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1142 goto free_pt;
1143
1144 return mm;
1145
1146 free_pt:
1147 /* don't put binfmt in mmput, we haven't got module yet */
1148 mm->binfmt = NULL;
1149 mmput(mm);
1150
1151 fail_nomem:
1152 return NULL;
1153 }
1154
1155 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1156 {
1157 struct mm_struct *mm, *oldmm;
1158 int retval;
1159
1160 tsk->min_flt = tsk->maj_flt = 0;
1161 tsk->nvcsw = tsk->nivcsw = 0;
1162 #ifdef CONFIG_DETECT_HUNG_TASK
1163 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1164 #endif
1165
1166 tsk->mm = NULL;
1167 tsk->active_mm = NULL;
1168
1169 /*
1170 * Are we cloning a kernel thread?
1171 *
1172 * We need to steal a active VM for that..
1173 */
1174 oldmm = current->mm;
1175 if (!oldmm)
1176 return 0;
1177
1178 /* initialize the new vmacache entries */
1179 vmacache_flush(tsk);
1180
1181 if (clone_flags & CLONE_VM) {
1182 atomic_inc(&oldmm->mm_users);
1183 mm = oldmm;
1184 goto good_mm;
1185 }
1186
1187 retval = -ENOMEM;
1188 mm = dup_mm(tsk);
1189 if (!mm)
1190 goto fail_nomem;
1191
1192 good_mm:
1193 tsk->mm = mm;
1194 tsk->active_mm = mm;
1195 return 0;
1196
1197 fail_nomem:
1198 return retval;
1199 }
1200
1201 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1202 {
1203 struct fs_struct *fs = current->fs;
1204 if (clone_flags & CLONE_FS) {
1205 /* tsk->fs is already what we want */
1206 spin_lock(&fs->lock);
1207 if (fs->in_exec) {
1208 spin_unlock(&fs->lock);
1209 return -EAGAIN;
1210 }
1211 fs->users++;
1212 spin_unlock(&fs->lock);
1213 return 0;
1214 }
1215 tsk->fs = copy_fs_struct(fs);
1216 if (!tsk->fs)
1217 return -ENOMEM;
1218 return 0;
1219 }
1220
1221 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1222 {
1223 struct files_struct *oldf, *newf;
1224 int error = 0;
1225
1226 /*
1227 * A background process may not have any files ...
1228 */
1229 oldf = current->files;
1230 if (!oldf)
1231 goto out;
1232
1233 if (clone_flags & CLONE_FILES) {
1234 atomic_inc(&oldf->count);
1235 goto out;
1236 }
1237
1238 newf = dup_fd(oldf, &error);
1239 if (!newf)
1240 goto out;
1241
1242 tsk->files = newf;
1243 error = 0;
1244 out:
1245 return error;
1246 }
1247
1248 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1249 {
1250 #ifdef CONFIG_BLOCK
1251 struct io_context *ioc = current->io_context;
1252 struct io_context *new_ioc;
1253
1254 if (!ioc)
1255 return 0;
1256 /*
1257 * Share io context with parent, if CLONE_IO is set
1258 */
1259 if (clone_flags & CLONE_IO) {
1260 ioc_task_link(ioc);
1261 tsk->io_context = ioc;
1262 } else if (ioprio_valid(ioc->ioprio)) {
1263 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1264 if (unlikely(!new_ioc))
1265 return -ENOMEM;
1266
1267 new_ioc->ioprio = ioc->ioprio;
1268 put_io_context(new_ioc);
1269 }
1270 #endif
1271 return 0;
1272 }
1273
1274 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1275 {
1276 struct sighand_struct *sig;
1277
1278 if (clone_flags & CLONE_SIGHAND) {
1279 atomic_inc(&current->sighand->count);
1280 return 0;
1281 }
1282 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1283 rcu_assign_pointer(tsk->sighand, sig);
1284 if (!sig)
1285 return -ENOMEM;
1286
1287 atomic_set(&sig->count, 1);
1288 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1289 return 0;
1290 }
1291
1292 void __cleanup_sighand(struct sighand_struct *sighand)
1293 {
1294 if (atomic_dec_and_test(&sighand->count)) {
1295 signalfd_cleanup(sighand);
1296 /*
1297 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1298 * without an RCU grace period, see __lock_task_sighand().
1299 */
1300 kmem_cache_free(sighand_cachep, sighand);
1301 }
1302 }
1303
1304 /*
1305 * Initialize POSIX timer handling for a thread group.
1306 */
1307 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1308 {
1309 unsigned long cpu_limit;
1310
1311 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1312 if (cpu_limit != RLIM_INFINITY) {
1313 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1314 sig->cputimer.running = true;
1315 }
1316
1317 /* The timer lists. */
1318 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1319 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1320 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1321 }
1322
1323 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1324 {
1325 struct signal_struct *sig;
1326
1327 if (clone_flags & CLONE_THREAD)
1328 return 0;
1329
1330 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1331 tsk->signal = sig;
1332 if (!sig)
1333 return -ENOMEM;
1334
1335 sig->nr_threads = 1;
1336 atomic_set(&sig->live, 1);
1337 atomic_set(&sig->sigcnt, 1);
1338
1339 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1340 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1341 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1342
1343 init_waitqueue_head(&sig->wait_chldexit);
1344 sig->curr_target = tsk;
1345 init_sigpending(&sig->shared_pending);
1346 INIT_LIST_HEAD(&sig->posix_timers);
1347 seqlock_init(&sig->stats_lock);
1348 prev_cputime_init(&sig->prev_cputime);
1349
1350 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1351 sig->real_timer.function = it_real_fn;
1352
1353 task_lock(current->group_leader);
1354 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1355 task_unlock(current->group_leader);
1356
1357 posix_cpu_timers_init_group(sig);
1358
1359 tty_audit_fork(sig);
1360 sched_autogroup_fork(sig);
1361
1362 sig->oom_score_adj = current->signal->oom_score_adj;
1363 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1364
1365 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1366 current->signal->is_child_subreaper;
1367
1368 mutex_init(&sig->cred_guard_mutex);
1369
1370 return 0;
1371 }
1372
1373 static void copy_seccomp(struct task_struct *p)
1374 {
1375 #ifdef CONFIG_SECCOMP
1376 /*
1377 * Must be called with sighand->lock held, which is common to
1378 * all threads in the group. Holding cred_guard_mutex is not
1379 * needed because this new task is not yet running and cannot
1380 * be racing exec.
1381 */
1382 assert_spin_locked(&current->sighand->siglock);
1383
1384 /* Ref-count the new filter user, and assign it. */
1385 get_seccomp_filter(current);
1386 p->seccomp = current->seccomp;
1387
1388 /*
1389 * Explicitly enable no_new_privs here in case it got set
1390 * between the task_struct being duplicated and holding the
1391 * sighand lock. The seccomp state and nnp must be in sync.
1392 */
1393 if (task_no_new_privs(current))
1394 task_set_no_new_privs(p);
1395
1396 /*
1397 * If the parent gained a seccomp mode after copying thread
1398 * flags and between before we held the sighand lock, we have
1399 * to manually enable the seccomp thread flag here.
1400 */
1401 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1402 set_tsk_thread_flag(p, TIF_SECCOMP);
1403 #endif
1404 }
1405
1406 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1407 {
1408 current->clear_child_tid = tidptr;
1409
1410 return task_pid_vnr(current);
1411 }
1412
1413 static void rt_mutex_init_task(struct task_struct *p)
1414 {
1415 raw_spin_lock_init(&p->pi_lock);
1416 #ifdef CONFIG_RT_MUTEXES
1417 p->pi_waiters = RB_ROOT;
1418 p->pi_waiters_leftmost = NULL;
1419 p->pi_blocked_on = NULL;
1420 #endif
1421 }
1422
1423 /*
1424 * Initialize POSIX timer handling for a single task.
1425 */
1426 static void posix_cpu_timers_init(struct task_struct *tsk)
1427 {
1428 tsk->cputime_expires.prof_exp = 0;
1429 tsk->cputime_expires.virt_exp = 0;
1430 tsk->cputime_expires.sched_exp = 0;
1431 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1432 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1433 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1434 }
1435
1436 static inline void
1437 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1438 {
1439 task->pids[type].pid = pid;
1440 }
1441
1442 /*
1443 * This creates a new process as a copy of the old one,
1444 * but does not actually start it yet.
1445 *
1446 * It copies the registers, and all the appropriate
1447 * parts of the process environment (as per the clone
1448 * flags). The actual kick-off is left to the caller.
1449 */
1450 static __latent_entropy struct task_struct *copy_process(
1451 unsigned long clone_flags,
1452 unsigned long stack_start,
1453 unsigned long stack_size,
1454 int __user *child_tidptr,
1455 struct pid *pid,
1456 int trace,
1457 unsigned long tls,
1458 int node)
1459 {
1460 int retval;
1461 struct task_struct *p;
1462
1463 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1464 return ERR_PTR(-EINVAL);
1465
1466 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1467 return ERR_PTR(-EINVAL);
1468
1469 /*
1470 * Thread groups must share signals as well, and detached threads
1471 * can only be started up within the thread group.
1472 */
1473 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1474 return ERR_PTR(-EINVAL);
1475
1476 /*
1477 * Shared signal handlers imply shared VM. By way of the above,
1478 * thread groups also imply shared VM. Blocking this case allows
1479 * for various simplifications in other code.
1480 */
1481 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1482 return ERR_PTR(-EINVAL);
1483
1484 /*
1485 * Siblings of global init remain as zombies on exit since they are
1486 * not reaped by their parent (swapper). To solve this and to avoid
1487 * multi-rooted process trees, prevent global and container-inits
1488 * from creating siblings.
1489 */
1490 if ((clone_flags & CLONE_PARENT) &&
1491 current->signal->flags & SIGNAL_UNKILLABLE)
1492 return ERR_PTR(-EINVAL);
1493
1494 /*
1495 * If the new process will be in a different pid or user namespace
1496 * do not allow it to share a thread group with the forking task.
1497 */
1498 if (clone_flags & CLONE_THREAD) {
1499 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1500 (task_active_pid_ns(current) !=
1501 current->nsproxy->pid_ns_for_children))
1502 return ERR_PTR(-EINVAL);
1503 }
1504
1505 retval = security_task_create(clone_flags);
1506 if (retval)
1507 goto fork_out;
1508
1509 retval = -ENOMEM;
1510 p = dup_task_struct(current, node);
1511 if (!p)
1512 goto fork_out;
1513
1514 ftrace_graph_init_task(p);
1515
1516 rt_mutex_init_task(p);
1517
1518 #ifdef CONFIG_PROVE_LOCKING
1519 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1520 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1521 #endif
1522 retval = -EAGAIN;
1523 if (atomic_read(&p->real_cred->user->processes) >=
1524 task_rlimit(p, RLIMIT_NPROC)) {
1525 if (p->real_cred->user != INIT_USER &&
1526 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1527 goto bad_fork_free;
1528 }
1529 current->flags &= ~PF_NPROC_EXCEEDED;
1530
1531 retval = copy_creds(p, clone_flags);
1532 if (retval < 0)
1533 goto bad_fork_free;
1534
1535 /*
1536 * If multiple threads are within copy_process(), then this check
1537 * triggers too late. This doesn't hurt, the check is only there
1538 * to stop root fork bombs.
1539 */
1540 retval = -EAGAIN;
1541 if (nr_threads >= max_threads)
1542 goto bad_fork_cleanup_count;
1543
1544 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1545 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1546 p->flags |= PF_FORKNOEXEC;
1547 INIT_LIST_HEAD(&p->children);
1548 INIT_LIST_HEAD(&p->sibling);
1549 rcu_copy_process(p);
1550 p->vfork_done = NULL;
1551 spin_lock_init(&p->alloc_lock);
1552
1553 init_sigpending(&p->pending);
1554
1555 p->utime = p->stime = p->gtime = 0;
1556 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1557 p->utimescaled = p->stimescaled = 0;
1558 #endif
1559 prev_cputime_init(&p->prev_cputime);
1560
1561 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1562 seqcount_init(&p->vtime_seqcount);
1563 p->vtime_snap = 0;
1564 p->vtime_snap_whence = VTIME_INACTIVE;
1565 #endif
1566
1567 #if defined(SPLIT_RSS_COUNTING)
1568 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1569 #endif
1570
1571 p->default_timer_slack_ns = current->timer_slack_ns;
1572
1573 task_io_accounting_init(&p->ioac);
1574 acct_clear_integrals(p);
1575
1576 posix_cpu_timers_init(p);
1577
1578 p->start_time = ktime_get_ns();
1579 p->real_start_time = ktime_get_boot_ns();
1580 p->io_context = NULL;
1581 p->audit_context = NULL;
1582 cgroup_fork(p);
1583 #ifdef CONFIG_NUMA
1584 p->mempolicy = mpol_dup(p->mempolicy);
1585 if (IS_ERR(p->mempolicy)) {
1586 retval = PTR_ERR(p->mempolicy);
1587 p->mempolicy = NULL;
1588 goto bad_fork_cleanup_threadgroup_lock;
1589 }
1590 #endif
1591 #ifdef CONFIG_CPUSETS
1592 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1593 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1594 seqcount_init(&p->mems_allowed_seq);
1595 #endif
1596 #ifdef CONFIG_TRACE_IRQFLAGS
1597 p->irq_events = 0;
1598 p->hardirqs_enabled = 0;
1599 p->hardirq_enable_ip = 0;
1600 p->hardirq_enable_event = 0;
1601 p->hardirq_disable_ip = _THIS_IP_;
1602 p->hardirq_disable_event = 0;
1603 p->softirqs_enabled = 1;
1604 p->softirq_enable_ip = _THIS_IP_;
1605 p->softirq_enable_event = 0;
1606 p->softirq_disable_ip = 0;
1607 p->softirq_disable_event = 0;
1608 p->hardirq_context = 0;
1609 p->softirq_context = 0;
1610 #endif
1611
1612 p->pagefault_disabled = 0;
1613
1614 #ifdef CONFIG_LOCKDEP
1615 p->lockdep_depth = 0; /* no locks held yet */
1616 p->curr_chain_key = 0;
1617 p->lockdep_recursion = 0;
1618 #endif
1619
1620 #ifdef CONFIG_DEBUG_MUTEXES
1621 p->blocked_on = NULL; /* not blocked yet */
1622 #endif
1623 #ifdef CONFIG_BCACHE
1624 p->sequential_io = 0;
1625 p->sequential_io_avg = 0;
1626 #endif
1627
1628 /* Perform scheduler related setup. Assign this task to a CPU. */
1629 retval = sched_fork(clone_flags, p);
1630 if (retval)
1631 goto bad_fork_cleanup_policy;
1632
1633 retval = perf_event_init_task(p);
1634 if (retval)
1635 goto bad_fork_cleanup_policy;
1636 retval = audit_alloc(p);
1637 if (retval)
1638 goto bad_fork_cleanup_perf;
1639 /* copy all the process information */
1640 shm_init_task(p);
1641 retval = copy_semundo(clone_flags, p);
1642 if (retval)
1643 goto bad_fork_cleanup_audit;
1644 retval = copy_files(clone_flags, p);
1645 if (retval)
1646 goto bad_fork_cleanup_semundo;
1647 retval = copy_fs(clone_flags, p);
1648 if (retval)
1649 goto bad_fork_cleanup_files;
1650 retval = copy_sighand(clone_flags, p);
1651 if (retval)
1652 goto bad_fork_cleanup_fs;
1653 retval = copy_signal(clone_flags, p);
1654 if (retval)
1655 goto bad_fork_cleanup_sighand;
1656 retval = copy_mm(clone_flags, p);
1657 if (retval)
1658 goto bad_fork_cleanup_signal;
1659 retval = copy_namespaces(clone_flags, p);
1660 if (retval)
1661 goto bad_fork_cleanup_mm;
1662 retval = copy_io(clone_flags, p);
1663 if (retval)
1664 goto bad_fork_cleanup_namespaces;
1665 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1666 if (retval)
1667 goto bad_fork_cleanup_io;
1668
1669 if (pid != &init_struct_pid) {
1670 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1671 if (IS_ERR(pid)) {
1672 retval = PTR_ERR(pid);
1673 goto bad_fork_cleanup_thread;
1674 }
1675 }
1676
1677 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1678 /*
1679 * Clear TID on mm_release()?
1680 */
1681 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1682 #ifdef CONFIG_BLOCK
1683 p->plug = NULL;
1684 #endif
1685 #ifdef CONFIG_FUTEX
1686 p->robust_list = NULL;
1687 #ifdef CONFIG_COMPAT
1688 p->compat_robust_list = NULL;
1689 #endif
1690 INIT_LIST_HEAD(&p->pi_state_list);
1691 p->pi_state_cache = NULL;
1692 #endif
1693 /*
1694 * sigaltstack should be cleared when sharing the same VM
1695 */
1696 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1697 sas_ss_reset(p);
1698
1699 /*
1700 * Syscall tracing and stepping should be turned off in the
1701 * child regardless of CLONE_PTRACE.
1702 */
1703 user_disable_single_step(p);
1704 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1705 #ifdef TIF_SYSCALL_EMU
1706 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1707 #endif
1708 clear_all_latency_tracing(p);
1709
1710 /* ok, now we should be set up.. */
1711 p->pid = pid_nr(pid);
1712 if (clone_flags & CLONE_THREAD) {
1713 p->exit_signal = -1;
1714 p->group_leader = current->group_leader;
1715 p->tgid = current->tgid;
1716 } else {
1717 if (clone_flags & CLONE_PARENT)
1718 p->exit_signal = current->group_leader->exit_signal;
1719 else
1720 p->exit_signal = (clone_flags & CSIGNAL);
1721 p->group_leader = p;
1722 p->tgid = p->pid;
1723 }
1724
1725 p->nr_dirtied = 0;
1726 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1727 p->dirty_paused_when = 0;
1728
1729 p->pdeath_signal = 0;
1730 INIT_LIST_HEAD(&p->thread_group);
1731 p->task_works = NULL;
1732
1733 threadgroup_change_begin(current);
1734 /*
1735 * Ensure that the cgroup subsystem policies allow the new process to be
1736 * forked. It should be noted the the new process's css_set can be changed
1737 * between here and cgroup_post_fork() if an organisation operation is in
1738 * progress.
1739 */
1740 retval = cgroup_can_fork(p);
1741 if (retval)
1742 goto bad_fork_free_pid;
1743
1744 /*
1745 * Make it visible to the rest of the system, but dont wake it up yet.
1746 * Need tasklist lock for parent etc handling!
1747 */
1748 write_lock_irq(&tasklist_lock);
1749
1750 /* CLONE_PARENT re-uses the old parent */
1751 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1752 p->real_parent = current->real_parent;
1753 p->parent_exec_id = current->parent_exec_id;
1754 } else {
1755 p->real_parent = current;
1756 p->parent_exec_id = current->self_exec_id;
1757 }
1758
1759 spin_lock(&current->sighand->siglock);
1760
1761 /*
1762 * Copy seccomp details explicitly here, in case they were changed
1763 * before holding sighand lock.
1764 */
1765 copy_seccomp(p);
1766
1767 /*
1768 * Process group and session signals need to be delivered to just the
1769 * parent before the fork or both the parent and the child after the
1770 * fork. Restart if a signal comes in before we add the new process to
1771 * it's process group.
1772 * A fatal signal pending means that current will exit, so the new
1773 * thread can't slip out of an OOM kill (or normal SIGKILL).
1774 */
1775 recalc_sigpending();
1776 if (signal_pending(current)) {
1777 spin_unlock(&current->sighand->siglock);
1778 write_unlock_irq(&tasklist_lock);
1779 retval = -ERESTARTNOINTR;
1780 goto bad_fork_cancel_cgroup;
1781 }
1782
1783 if (likely(p->pid)) {
1784 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1785
1786 init_task_pid(p, PIDTYPE_PID, pid);
1787 if (thread_group_leader(p)) {
1788 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1789 init_task_pid(p, PIDTYPE_SID, task_session(current));
1790
1791 if (is_child_reaper(pid)) {
1792 ns_of_pid(pid)->child_reaper = p;
1793 p->signal->flags |= SIGNAL_UNKILLABLE;
1794 }
1795
1796 p->signal->leader_pid = pid;
1797 p->signal->tty = tty_kref_get(current->signal->tty);
1798 list_add_tail(&p->sibling, &p->real_parent->children);
1799 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1800 attach_pid(p, PIDTYPE_PGID);
1801 attach_pid(p, PIDTYPE_SID);
1802 __this_cpu_inc(process_counts);
1803 } else {
1804 current->signal->nr_threads++;
1805 atomic_inc(&current->signal->live);
1806 atomic_inc(&current->signal->sigcnt);
1807 list_add_tail_rcu(&p->thread_group,
1808 &p->group_leader->thread_group);
1809 list_add_tail_rcu(&p->thread_node,
1810 &p->signal->thread_head);
1811 }
1812 attach_pid(p, PIDTYPE_PID);
1813 nr_threads++;
1814 }
1815
1816 total_forks++;
1817 spin_unlock(&current->sighand->siglock);
1818 syscall_tracepoint_update(p);
1819 write_unlock_irq(&tasklist_lock);
1820
1821 proc_fork_connector(p);
1822 cgroup_post_fork(p);
1823 threadgroup_change_end(current);
1824 perf_event_fork(p);
1825
1826 trace_task_newtask(p, clone_flags);
1827 uprobe_copy_process(p, clone_flags);
1828
1829 return p;
1830
1831 bad_fork_cancel_cgroup:
1832 cgroup_cancel_fork(p);
1833 bad_fork_free_pid:
1834 threadgroup_change_end(current);
1835 if (pid != &init_struct_pid)
1836 free_pid(pid);
1837 bad_fork_cleanup_thread:
1838 exit_thread(p);
1839 bad_fork_cleanup_io:
1840 if (p->io_context)
1841 exit_io_context(p);
1842 bad_fork_cleanup_namespaces:
1843 exit_task_namespaces(p);
1844 bad_fork_cleanup_mm:
1845 if (p->mm)
1846 mmput(p->mm);
1847 bad_fork_cleanup_signal:
1848 if (!(clone_flags & CLONE_THREAD))
1849 free_signal_struct(p->signal);
1850 bad_fork_cleanup_sighand:
1851 __cleanup_sighand(p->sighand);
1852 bad_fork_cleanup_fs:
1853 exit_fs(p); /* blocking */
1854 bad_fork_cleanup_files:
1855 exit_files(p); /* blocking */
1856 bad_fork_cleanup_semundo:
1857 exit_sem(p);
1858 bad_fork_cleanup_audit:
1859 audit_free(p);
1860 bad_fork_cleanup_perf:
1861 perf_event_free_task(p);
1862 bad_fork_cleanup_policy:
1863 #ifdef CONFIG_NUMA
1864 mpol_put(p->mempolicy);
1865 bad_fork_cleanup_threadgroup_lock:
1866 #endif
1867 delayacct_tsk_free(p);
1868 bad_fork_cleanup_count:
1869 atomic_dec(&p->cred->user->processes);
1870 exit_creds(p);
1871 bad_fork_free:
1872 p->state = TASK_DEAD;
1873 put_task_stack(p);
1874 free_task(p);
1875 fork_out:
1876 return ERR_PTR(retval);
1877 }
1878
1879 static inline void init_idle_pids(struct pid_link *links)
1880 {
1881 enum pid_type type;
1882
1883 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1884 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1885 links[type].pid = &init_struct_pid;
1886 }
1887 }
1888
1889 struct task_struct *fork_idle(int cpu)
1890 {
1891 struct task_struct *task;
1892 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1893 cpu_to_node(cpu));
1894 if (!IS_ERR(task)) {
1895 init_idle_pids(task->pids);
1896 init_idle(task, cpu);
1897 }
1898
1899 return task;
1900 }
1901
1902 /*
1903 * Ok, this is the main fork-routine.
1904 *
1905 * It copies the process, and if successful kick-starts
1906 * it and waits for it to finish using the VM if required.
1907 */
1908 long _do_fork(unsigned long clone_flags,
1909 unsigned long stack_start,
1910 unsigned long stack_size,
1911 int __user *parent_tidptr,
1912 int __user *child_tidptr,
1913 unsigned long tls)
1914 {
1915 struct task_struct *p;
1916 int trace = 0;
1917 long nr;
1918
1919 /*
1920 * Determine whether and which event to report to ptracer. When
1921 * called from kernel_thread or CLONE_UNTRACED is explicitly
1922 * requested, no event is reported; otherwise, report if the event
1923 * for the type of forking is enabled.
1924 */
1925 if (!(clone_flags & CLONE_UNTRACED)) {
1926 if (clone_flags & CLONE_VFORK)
1927 trace = PTRACE_EVENT_VFORK;
1928 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1929 trace = PTRACE_EVENT_CLONE;
1930 else
1931 trace = PTRACE_EVENT_FORK;
1932
1933 if (likely(!ptrace_event_enabled(current, trace)))
1934 trace = 0;
1935 }
1936
1937 p = copy_process(clone_flags, stack_start, stack_size,
1938 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1939 add_latent_entropy();
1940 /*
1941 * Do this prior waking up the new thread - the thread pointer
1942 * might get invalid after that point, if the thread exits quickly.
1943 */
1944 if (!IS_ERR(p)) {
1945 struct completion vfork;
1946 struct pid *pid;
1947
1948 trace_sched_process_fork(current, p);
1949
1950 pid = get_task_pid(p, PIDTYPE_PID);
1951 nr = pid_vnr(pid);
1952
1953 if (clone_flags & CLONE_PARENT_SETTID)
1954 put_user(nr, parent_tidptr);
1955
1956 if (clone_flags & CLONE_VFORK) {
1957 p->vfork_done = &vfork;
1958 init_completion(&vfork);
1959 get_task_struct(p);
1960 }
1961
1962 wake_up_new_task(p);
1963
1964 /* forking complete and child started to run, tell ptracer */
1965 if (unlikely(trace))
1966 ptrace_event_pid(trace, pid);
1967
1968 if (clone_flags & CLONE_VFORK) {
1969 if (!wait_for_vfork_done(p, &vfork))
1970 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1971 }
1972
1973 put_pid(pid);
1974 } else {
1975 nr = PTR_ERR(p);
1976 }
1977 return nr;
1978 }
1979
1980 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1981 /* For compatibility with architectures that call do_fork directly rather than
1982 * using the syscall entry points below. */
1983 long do_fork(unsigned long clone_flags,
1984 unsigned long stack_start,
1985 unsigned long stack_size,
1986 int __user *parent_tidptr,
1987 int __user *child_tidptr)
1988 {
1989 return _do_fork(clone_flags, stack_start, stack_size,
1990 parent_tidptr, child_tidptr, 0);
1991 }
1992 #endif
1993
1994 /*
1995 * Create a kernel thread.
1996 */
1997 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1998 {
1999 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2000 (unsigned long)arg, NULL, NULL, 0);
2001 }
2002
2003 #ifdef __ARCH_WANT_SYS_FORK
2004 SYSCALL_DEFINE0(fork)
2005 {
2006 #ifdef CONFIG_MMU
2007 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2008 #else
2009 /* can not support in nommu mode */
2010 return -EINVAL;
2011 #endif
2012 }
2013 #endif
2014
2015 #ifdef __ARCH_WANT_SYS_VFORK
2016 SYSCALL_DEFINE0(vfork)
2017 {
2018 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2019 0, NULL, NULL, 0);
2020 }
2021 #endif
2022
2023 #ifdef __ARCH_WANT_SYS_CLONE
2024 #ifdef CONFIG_CLONE_BACKWARDS
2025 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2026 int __user *, parent_tidptr,
2027 unsigned long, tls,
2028 int __user *, child_tidptr)
2029 #elif defined(CONFIG_CLONE_BACKWARDS2)
2030 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2031 int __user *, parent_tidptr,
2032 int __user *, child_tidptr,
2033 unsigned long, tls)
2034 #elif defined(CONFIG_CLONE_BACKWARDS3)
2035 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2036 int, stack_size,
2037 int __user *, parent_tidptr,
2038 int __user *, child_tidptr,
2039 unsigned long, tls)
2040 #else
2041 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2042 int __user *, parent_tidptr,
2043 int __user *, child_tidptr,
2044 unsigned long, tls)
2045 #endif
2046 {
2047 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2048 }
2049 #endif
2050
2051 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2052 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2053 #endif
2054
2055 static void sighand_ctor(void *data)
2056 {
2057 struct sighand_struct *sighand = data;
2058
2059 spin_lock_init(&sighand->siglock);
2060 init_waitqueue_head(&sighand->signalfd_wqh);
2061 }
2062
2063 void __init proc_caches_init(void)
2064 {
2065 sighand_cachep = kmem_cache_create("sighand_cache",
2066 sizeof(struct sighand_struct), 0,
2067 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2068 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2069 signal_cachep = kmem_cache_create("signal_cache",
2070 sizeof(struct signal_struct), 0,
2071 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2072 NULL);
2073 files_cachep = kmem_cache_create("files_cache",
2074 sizeof(struct files_struct), 0,
2075 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2076 NULL);
2077 fs_cachep = kmem_cache_create("fs_cache",
2078 sizeof(struct fs_struct), 0,
2079 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2080 NULL);
2081 /*
2082 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2083 * whole struct cpumask for the OFFSTACK case. We could change
2084 * this to *only* allocate as much of it as required by the
2085 * maximum number of CPU's we can ever have. The cpumask_allocation
2086 * is at the end of the structure, exactly for that reason.
2087 */
2088 mm_cachep = kmem_cache_create("mm_struct",
2089 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2090 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2091 NULL);
2092 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2093 mmap_init();
2094 nsproxy_cache_init();
2095 }
2096
2097 /*
2098 * Check constraints on flags passed to the unshare system call.
2099 */
2100 static int check_unshare_flags(unsigned long unshare_flags)
2101 {
2102 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2103 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2104 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2105 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2106 return -EINVAL;
2107 /*
2108 * Not implemented, but pretend it works if there is nothing
2109 * to unshare. Note that unsharing the address space or the
2110 * signal handlers also need to unshare the signal queues (aka
2111 * CLONE_THREAD).
2112 */
2113 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2114 if (!thread_group_empty(current))
2115 return -EINVAL;
2116 }
2117 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2118 if (atomic_read(&current->sighand->count) > 1)
2119 return -EINVAL;
2120 }
2121 if (unshare_flags & CLONE_VM) {
2122 if (!current_is_single_threaded())
2123 return -EINVAL;
2124 }
2125
2126 return 0;
2127 }
2128
2129 /*
2130 * Unshare the filesystem structure if it is being shared
2131 */
2132 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2133 {
2134 struct fs_struct *fs = current->fs;
2135
2136 if (!(unshare_flags & CLONE_FS) || !fs)
2137 return 0;
2138
2139 /* don't need lock here; in the worst case we'll do useless copy */
2140 if (fs->users == 1)
2141 return 0;
2142
2143 *new_fsp = copy_fs_struct(fs);
2144 if (!*new_fsp)
2145 return -ENOMEM;
2146
2147 return 0;
2148 }
2149
2150 /*
2151 * Unshare file descriptor table if it is being shared
2152 */
2153 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2154 {
2155 struct files_struct *fd = current->files;
2156 int error = 0;
2157
2158 if ((unshare_flags & CLONE_FILES) &&
2159 (fd && atomic_read(&fd->count) > 1)) {
2160 *new_fdp = dup_fd(fd, &error);
2161 if (!*new_fdp)
2162 return error;
2163 }
2164
2165 return 0;
2166 }
2167
2168 /*
2169 * unshare allows a process to 'unshare' part of the process
2170 * context which was originally shared using clone. copy_*
2171 * functions used by do_fork() cannot be used here directly
2172 * because they modify an inactive task_struct that is being
2173 * constructed. Here we are modifying the current, active,
2174 * task_struct.
2175 */
2176 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2177 {
2178 struct fs_struct *fs, *new_fs = NULL;
2179 struct files_struct *fd, *new_fd = NULL;
2180 struct cred *new_cred = NULL;
2181 struct nsproxy *new_nsproxy = NULL;
2182 int do_sysvsem = 0;
2183 int err;
2184
2185 /*
2186 * If unsharing a user namespace must also unshare the thread group
2187 * and unshare the filesystem root and working directories.
2188 */
2189 if (unshare_flags & CLONE_NEWUSER)
2190 unshare_flags |= CLONE_THREAD | CLONE_FS;
2191 /*
2192 * If unsharing vm, must also unshare signal handlers.
2193 */
2194 if (unshare_flags & CLONE_VM)
2195 unshare_flags |= CLONE_SIGHAND;
2196 /*
2197 * If unsharing a signal handlers, must also unshare the signal queues.
2198 */
2199 if (unshare_flags & CLONE_SIGHAND)
2200 unshare_flags |= CLONE_THREAD;
2201 /*
2202 * If unsharing namespace, must also unshare filesystem information.
2203 */
2204 if (unshare_flags & CLONE_NEWNS)
2205 unshare_flags |= CLONE_FS;
2206
2207 err = check_unshare_flags(unshare_flags);
2208 if (err)
2209 goto bad_unshare_out;
2210 /*
2211 * CLONE_NEWIPC must also detach from the undolist: after switching
2212 * to a new ipc namespace, the semaphore arrays from the old
2213 * namespace are unreachable.
2214 */
2215 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2216 do_sysvsem = 1;
2217 err = unshare_fs(unshare_flags, &new_fs);
2218 if (err)
2219 goto bad_unshare_out;
2220 err = unshare_fd(unshare_flags, &new_fd);
2221 if (err)
2222 goto bad_unshare_cleanup_fs;
2223 err = unshare_userns(unshare_flags, &new_cred);
2224 if (err)
2225 goto bad_unshare_cleanup_fd;
2226 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2227 new_cred, new_fs);
2228 if (err)
2229 goto bad_unshare_cleanup_cred;
2230
2231 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2232 if (do_sysvsem) {
2233 /*
2234 * CLONE_SYSVSEM is equivalent to sys_exit().
2235 */
2236 exit_sem(current);
2237 }
2238 if (unshare_flags & CLONE_NEWIPC) {
2239 /* Orphan segments in old ns (see sem above). */
2240 exit_shm(current);
2241 shm_init_task(current);
2242 }
2243
2244 if (new_nsproxy)
2245 switch_task_namespaces(current, new_nsproxy);
2246
2247 task_lock(current);
2248
2249 if (new_fs) {
2250 fs = current->fs;
2251 spin_lock(&fs->lock);
2252 current->fs = new_fs;
2253 if (--fs->users)
2254 new_fs = NULL;
2255 else
2256 new_fs = fs;
2257 spin_unlock(&fs->lock);
2258 }
2259
2260 if (new_fd) {
2261 fd = current->files;
2262 current->files = new_fd;
2263 new_fd = fd;
2264 }
2265
2266 task_unlock(current);
2267
2268 if (new_cred) {
2269 /* Install the new user namespace */
2270 commit_creds(new_cred);
2271 new_cred = NULL;
2272 }
2273 }
2274
2275 bad_unshare_cleanup_cred:
2276 if (new_cred)
2277 put_cred(new_cred);
2278 bad_unshare_cleanup_fd:
2279 if (new_fd)
2280 put_files_struct(new_fd);
2281
2282 bad_unshare_cleanup_fs:
2283 if (new_fs)
2284 free_fs_struct(new_fs);
2285
2286 bad_unshare_out:
2287 return err;
2288 }
2289
2290 /*
2291 * Helper to unshare the files of the current task.
2292 * We don't want to expose copy_files internals to
2293 * the exec layer of the kernel.
2294 */
2295
2296 int unshare_files(struct files_struct **displaced)
2297 {
2298 struct task_struct *task = current;
2299 struct files_struct *copy = NULL;
2300 int error;
2301
2302 error = unshare_fd(CLONE_FILES, &copy);
2303 if (error || !copy) {
2304 *displaced = NULL;
2305 return error;
2306 }
2307 *displaced = task->files;
2308 task_lock(task);
2309 task->files = copy;
2310 task_unlock(task);
2311 return 0;
2312 }
2313
2314 int sysctl_max_threads(struct ctl_table *table, int write,
2315 void __user *buffer, size_t *lenp, loff_t *ppos)
2316 {
2317 struct ctl_table t;
2318 int ret;
2319 int threads = max_threads;
2320 int min = MIN_THREADS;
2321 int max = MAX_THREADS;
2322
2323 t = *table;
2324 t.data = &threads;
2325 t.extra1 = &min;
2326 t.extra2 = &max;
2327
2328 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2329 if (ret || !write)
2330 return ret;
2331
2332 set_max_threads(threads);
2333
2334 return 0;
2335 }