]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Revert "[PATCH] fix Data Acess error in dup_fd"
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
51
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
58
59 /*
60 * Protected counters by write_lock_irq(&tasklist_lock)
61 */
62 unsigned long total_forks; /* Handle normal Linux uptimes. */
63 int nr_threads; /* The idle threads do not count.. */
64
65 int max_threads; /* tunable limit on nr_threads */
66
67 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
68
69 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
70
71 int nr_processes(void)
72 {
73 int cpu;
74 int total = 0;
75
76 for_each_online_cpu(cpu)
77 total += per_cpu(process_counts, cpu);
78
79 return total;
80 }
81
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
85 static kmem_cache_t *task_struct_cachep;
86 #endif
87
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static kmem_cache_t *signal_cachep;
90
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 kmem_cache_t *sighand_cachep;
93
94 /* SLAB cache for files_struct structures (tsk->files) */
95 kmem_cache_t *files_cachep;
96
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 kmem_cache_t *fs_cachep;
99
100 /* SLAB cache for vm_area_struct structures */
101 kmem_cache_t *vm_area_cachep;
102
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static kmem_cache_t *mm_cachep;
105
106 void free_task(struct task_struct *tsk)
107 {
108 free_thread_info(tsk->thread_info);
109 rt_mutex_debug_task_free(tsk);
110 free_task_struct(tsk);
111 }
112 EXPORT_SYMBOL(free_task);
113
114 void __put_task_struct(struct task_struct *tsk)
115 {
116 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
117 WARN_ON(atomic_read(&tsk->usage));
118 WARN_ON(tsk == current);
119
120 security_task_free(tsk);
121 free_uid(tsk->user);
122 put_group_info(tsk->group_info);
123 delayacct_tsk_free(tsk);
124
125 if (!profile_handoff_task(tsk))
126 free_task(tsk);
127 }
128
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
134 #endif
135 /* create a slab on which task_structs can be allocated */
136 task_struct_cachep =
137 kmem_cache_create("task_struct", sizeof(struct task_struct),
138 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140
141 /*
142 * The default maximum number of threads is set to a safe
143 * value: the thread structures can take up at most half
144 * of memory.
145 */
146 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147
148 /*
149 * we need to allow at least 20 threads to boot a system
150 */
151 if(max_threads < 20)
152 max_threads = 20;
153
154 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 init_task.signal->rlim[RLIMIT_NPROC];
158 }
159
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162 struct task_struct *tsk;
163 struct thread_info *ti;
164
165 prepare_to_copy(orig);
166
167 tsk = alloc_task_struct();
168 if (!tsk)
169 return NULL;
170
171 ti = alloc_thread_info(tsk);
172 if (!ti) {
173 free_task_struct(tsk);
174 return NULL;
175 }
176
177 *tsk = *orig;
178 tsk->thread_info = ti;
179 setup_thread_stack(tsk, orig);
180
181 #ifdef CONFIG_CC_STACKPROTECTOR
182 tsk->stack_canary = get_random_int();
183 #endif
184
185 /* One for us, one for whoever does the "release_task()" (usually parent) */
186 atomic_set(&tsk->usage,2);
187 atomic_set(&tsk->fs_excl, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
189 tsk->btrace_seq = 0;
190 #endif
191 tsk->splice_pipe = NULL;
192 return tsk;
193 }
194
195 #ifdef CONFIG_MMU
196 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
197 {
198 struct vm_area_struct *mpnt, *tmp, **pprev;
199 struct rb_node **rb_link, *rb_parent;
200 int retval;
201 unsigned long charge;
202 struct mempolicy *pol;
203
204 down_write(&oldmm->mmap_sem);
205 flush_cache_mm(oldmm);
206 /*
207 * Not linked in yet - no deadlock potential:
208 */
209 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
210
211 mm->locked_vm = 0;
212 mm->mmap = NULL;
213 mm->mmap_cache = NULL;
214 mm->free_area_cache = oldmm->mmap_base;
215 mm->cached_hole_size = ~0UL;
216 mm->map_count = 0;
217 cpus_clear(mm->cpu_vm_mask);
218 mm->mm_rb = RB_ROOT;
219 rb_link = &mm->mm_rb.rb_node;
220 rb_parent = NULL;
221 pprev = &mm->mmap;
222
223 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
224 struct file *file;
225
226 if (mpnt->vm_flags & VM_DONTCOPY) {
227 long pages = vma_pages(mpnt);
228 mm->total_vm -= pages;
229 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
230 -pages);
231 continue;
232 }
233 charge = 0;
234 if (mpnt->vm_flags & VM_ACCOUNT) {
235 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
236 if (security_vm_enough_memory(len))
237 goto fail_nomem;
238 charge = len;
239 }
240 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
241 if (!tmp)
242 goto fail_nomem;
243 *tmp = *mpnt;
244 pol = mpol_copy(vma_policy(mpnt));
245 retval = PTR_ERR(pol);
246 if (IS_ERR(pol))
247 goto fail_nomem_policy;
248 vma_set_policy(tmp, pol);
249 tmp->vm_flags &= ~VM_LOCKED;
250 tmp->vm_mm = mm;
251 tmp->vm_next = NULL;
252 anon_vma_link(tmp);
253 file = tmp->vm_file;
254 if (file) {
255 struct inode *inode = file->f_dentry->d_inode;
256 get_file(file);
257 if (tmp->vm_flags & VM_DENYWRITE)
258 atomic_dec(&inode->i_writecount);
259
260 /* insert tmp into the share list, just after mpnt */
261 spin_lock(&file->f_mapping->i_mmap_lock);
262 tmp->vm_truncate_count = mpnt->vm_truncate_count;
263 flush_dcache_mmap_lock(file->f_mapping);
264 vma_prio_tree_add(tmp, mpnt);
265 flush_dcache_mmap_unlock(file->f_mapping);
266 spin_unlock(&file->f_mapping->i_mmap_lock);
267 }
268
269 /*
270 * Link in the new vma and copy the page table entries.
271 */
272 *pprev = tmp;
273 pprev = &tmp->vm_next;
274
275 __vma_link_rb(mm, tmp, rb_link, rb_parent);
276 rb_link = &tmp->vm_rb.rb_right;
277 rb_parent = &tmp->vm_rb;
278
279 mm->map_count++;
280 retval = copy_page_range(mm, oldmm, mpnt);
281
282 if (tmp->vm_ops && tmp->vm_ops->open)
283 tmp->vm_ops->open(tmp);
284
285 if (retval)
286 goto out;
287 }
288 retval = 0;
289 out:
290 up_write(&mm->mmap_sem);
291 flush_tlb_mm(oldmm);
292 up_write(&oldmm->mmap_sem);
293 return retval;
294 fail_nomem_policy:
295 kmem_cache_free(vm_area_cachep, tmp);
296 fail_nomem:
297 retval = -ENOMEM;
298 vm_unacct_memory(charge);
299 goto out;
300 }
301
302 static inline int mm_alloc_pgd(struct mm_struct * mm)
303 {
304 mm->pgd = pgd_alloc(mm);
305 if (unlikely(!mm->pgd))
306 return -ENOMEM;
307 return 0;
308 }
309
310 static inline void mm_free_pgd(struct mm_struct * mm)
311 {
312 pgd_free(mm->pgd);
313 }
314 #else
315 #define dup_mmap(mm, oldmm) (0)
316 #define mm_alloc_pgd(mm) (0)
317 #define mm_free_pgd(mm)
318 #endif /* CONFIG_MMU */
319
320 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
321
322 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
323 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
324
325 #include <linux/init_task.h>
326
327 static struct mm_struct * mm_init(struct mm_struct * mm)
328 {
329 atomic_set(&mm->mm_users, 1);
330 atomic_set(&mm->mm_count, 1);
331 init_rwsem(&mm->mmap_sem);
332 INIT_LIST_HEAD(&mm->mmlist);
333 mm->core_waiters = 0;
334 mm->nr_ptes = 0;
335 set_mm_counter(mm, file_rss, 0);
336 set_mm_counter(mm, anon_rss, 0);
337 spin_lock_init(&mm->page_table_lock);
338 rwlock_init(&mm->ioctx_list_lock);
339 mm->ioctx_list = NULL;
340 mm->free_area_cache = TASK_UNMAPPED_BASE;
341 mm->cached_hole_size = ~0UL;
342
343 if (likely(!mm_alloc_pgd(mm))) {
344 mm->def_flags = 0;
345 return mm;
346 }
347 free_mm(mm);
348 return NULL;
349 }
350
351 /*
352 * Allocate and initialize an mm_struct.
353 */
354 struct mm_struct * mm_alloc(void)
355 {
356 struct mm_struct * mm;
357
358 mm = allocate_mm();
359 if (mm) {
360 memset(mm, 0, sizeof(*mm));
361 mm = mm_init(mm);
362 }
363 return mm;
364 }
365
366 /*
367 * Called when the last reference to the mm
368 * is dropped: either by a lazy thread or by
369 * mmput. Free the page directory and the mm.
370 */
371 void fastcall __mmdrop(struct mm_struct *mm)
372 {
373 BUG_ON(mm == &init_mm);
374 mm_free_pgd(mm);
375 destroy_context(mm);
376 free_mm(mm);
377 }
378
379 /*
380 * Decrement the use count and release all resources for an mm.
381 */
382 void mmput(struct mm_struct *mm)
383 {
384 might_sleep();
385
386 if (atomic_dec_and_test(&mm->mm_users)) {
387 exit_aio(mm);
388 exit_mmap(mm);
389 if (!list_empty(&mm->mmlist)) {
390 spin_lock(&mmlist_lock);
391 list_del(&mm->mmlist);
392 spin_unlock(&mmlist_lock);
393 }
394 put_swap_token(mm);
395 mmdrop(mm);
396 }
397 }
398 EXPORT_SYMBOL_GPL(mmput);
399
400 /**
401 * get_task_mm - acquire a reference to the task's mm
402 *
403 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
404 * this kernel workthread has transiently adopted a user mm with use_mm,
405 * to do its AIO) is not set and if so returns a reference to it, after
406 * bumping up the use count. User must release the mm via mmput()
407 * after use. Typically used by /proc and ptrace.
408 */
409 struct mm_struct *get_task_mm(struct task_struct *task)
410 {
411 struct mm_struct *mm;
412
413 task_lock(task);
414 mm = task->mm;
415 if (mm) {
416 if (task->flags & PF_BORROWED_MM)
417 mm = NULL;
418 else
419 atomic_inc(&mm->mm_users);
420 }
421 task_unlock(task);
422 return mm;
423 }
424 EXPORT_SYMBOL_GPL(get_task_mm);
425
426 /* Please note the differences between mmput and mm_release.
427 * mmput is called whenever we stop holding onto a mm_struct,
428 * error success whatever.
429 *
430 * mm_release is called after a mm_struct has been removed
431 * from the current process.
432 *
433 * This difference is important for error handling, when we
434 * only half set up a mm_struct for a new process and need to restore
435 * the old one. Because we mmput the new mm_struct before
436 * restoring the old one. . .
437 * Eric Biederman 10 January 1998
438 */
439 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
440 {
441 struct completion *vfork_done = tsk->vfork_done;
442
443 /* Get rid of any cached register state */
444 deactivate_mm(tsk, mm);
445
446 /* notify parent sleeping on vfork() */
447 if (vfork_done) {
448 tsk->vfork_done = NULL;
449 complete(vfork_done);
450 }
451 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
452 u32 __user * tidptr = tsk->clear_child_tid;
453 tsk->clear_child_tid = NULL;
454
455 /*
456 * We don't check the error code - if userspace has
457 * not set up a proper pointer then tough luck.
458 */
459 put_user(0, tidptr);
460 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
461 }
462 }
463
464 /*
465 * Allocate a new mm structure and copy contents from the
466 * mm structure of the passed in task structure.
467 */
468 static struct mm_struct *dup_mm(struct task_struct *tsk)
469 {
470 struct mm_struct *mm, *oldmm = current->mm;
471 int err;
472
473 if (!oldmm)
474 return NULL;
475
476 mm = allocate_mm();
477 if (!mm)
478 goto fail_nomem;
479
480 memcpy(mm, oldmm, sizeof(*mm));
481
482 if (!mm_init(mm))
483 goto fail_nomem;
484
485 if (init_new_context(tsk, mm))
486 goto fail_nocontext;
487
488 err = dup_mmap(mm, oldmm);
489 if (err)
490 goto free_pt;
491
492 mm->hiwater_rss = get_mm_rss(mm);
493 mm->hiwater_vm = mm->total_vm;
494
495 return mm;
496
497 free_pt:
498 mmput(mm);
499
500 fail_nomem:
501 return NULL;
502
503 fail_nocontext:
504 /*
505 * If init_new_context() failed, we cannot use mmput() to free the mm
506 * because it calls destroy_context()
507 */
508 mm_free_pgd(mm);
509 free_mm(mm);
510 return NULL;
511 }
512
513 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
514 {
515 struct mm_struct * mm, *oldmm;
516 int retval;
517
518 tsk->min_flt = tsk->maj_flt = 0;
519 tsk->nvcsw = tsk->nivcsw = 0;
520
521 tsk->mm = NULL;
522 tsk->active_mm = NULL;
523
524 /*
525 * Are we cloning a kernel thread?
526 *
527 * We need to steal a active VM for that..
528 */
529 oldmm = current->mm;
530 if (!oldmm)
531 return 0;
532
533 if (clone_flags & CLONE_VM) {
534 atomic_inc(&oldmm->mm_users);
535 mm = oldmm;
536 goto good_mm;
537 }
538
539 retval = -ENOMEM;
540 mm = dup_mm(tsk);
541 if (!mm)
542 goto fail_nomem;
543
544 good_mm:
545 tsk->mm = mm;
546 tsk->active_mm = mm;
547 return 0;
548
549 fail_nomem:
550 return retval;
551 }
552
553 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
554 {
555 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
556 /* We don't need to lock fs - think why ;-) */
557 if (fs) {
558 atomic_set(&fs->count, 1);
559 rwlock_init(&fs->lock);
560 fs->umask = old->umask;
561 read_lock(&old->lock);
562 fs->rootmnt = mntget(old->rootmnt);
563 fs->root = dget(old->root);
564 fs->pwdmnt = mntget(old->pwdmnt);
565 fs->pwd = dget(old->pwd);
566 if (old->altroot) {
567 fs->altrootmnt = mntget(old->altrootmnt);
568 fs->altroot = dget(old->altroot);
569 } else {
570 fs->altrootmnt = NULL;
571 fs->altroot = NULL;
572 }
573 read_unlock(&old->lock);
574 }
575 return fs;
576 }
577
578 struct fs_struct *copy_fs_struct(struct fs_struct *old)
579 {
580 return __copy_fs_struct(old);
581 }
582
583 EXPORT_SYMBOL_GPL(copy_fs_struct);
584
585 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
586 {
587 if (clone_flags & CLONE_FS) {
588 atomic_inc(&current->fs->count);
589 return 0;
590 }
591 tsk->fs = __copy_fs_struct(current->fs);
592 if (!tsk->fs)
593 return -ENOMEM;
594 return 0;
595 }
596
597 static int count_open_files(struct fdtable *fdt)
598 {
599 int size = fdt->max_fdset;
600 int i;
601
602 /* Find the last open fd */
603 for (i = size/(8*sizeof(long)); i > 0; ) {
604 if (fdt->open_fds->fds_bits[--i])
605 break;
606 }
607 i = (i+1) * 8 * sizeof(long);
608 return i;
609 }
610
611 static struct files_struct *alloc_files(void)
612 {
613 struct files_struct *newf;
614 struct fdtable *fdt;
615
616 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
617 if (!newf)
618 goto out;
619
620 atomic_set(&newf->count, 1);
621
622 spin_lock_init(&newf->file_lock);
623 newf->next_fd = 0;
624 fdt = &newf->fdtab;
625 fdt->max_fds = NR_OPEN_DEFAULT;
626 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
627 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
628 fdt->open_fds = (fd_set *)&newf->open_fds_init;
629 fdt->fd = &newf->fd_array[0];
630 INIT_RCU_HEAD(&fdt->rcu);
631 fdt->free_files = NULL;
632 fdt->next = NULL;
633 rcu_assign_pointer(newf->fdt, fdt);
634 out:
635 return newf;
636 }
637
638 /*
639 * Allocate a new files structure and copy contents from the
640 * passed in files structure.
641 * errorp will be valid only when the returned files_struct is NULL.
642 */
643 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
644 {
645 struct files_struct *newf;
646 struct file **old_fds, **new_fds;
647 int open_files, size, i, expand;
648 struct fdtable *old_fdt, *new_fdt;
649
650 *errorp = -ENOMEM;
651 newf = alloc_files();
652 if (!newf)
653 goto out;
654
655 spin_lock(&oldf->file_lock);
656 old_fdt = files_fdtable(oldf);
657 new_fdt = files_fdtable(newf);
658 size = old_fdt->max_fdset;
659 open_files = count_open_files(old_fdt);
660 expand = 0;
661
662 /*
663 * Check whether we need to allocate a larger fd array or fd set.
664 * Note: we're not a clone task, so the open count won't change.
665 */
666 if (open_files > new_fdt->max_fdset) {
667 new_fdt->max_fdset = 0;
668 expand = 1;
669 }
670 if (open_files > new_fdt->max_fds) {
671 new_fdt->max_fds = 0;
672 expand = 1;
673 }
674
675 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
676 if (expand) {
677 spin_unlock(&oldf->file_lock);
678 spin_lock(&newf->file_lock);
679 *errorp = expand_files(newf, open_files-1);
680 spin_unlock(&newf->file_lock);
681 if (*errorp < 0)
682 goto out_release;
683 new_fdt = files_fdtable(newf);
684 /*
685 * Reacquire the oldf lock and a pointer to its fd table
686 * who knows it may have a new bigger fd table. We need
687 * the latest pointer.
688 */
689 spin_lock(&oldf->file_lock);
690 old_fdt = files_fdtable(oldf);
691 }
692
693 old_fds = old_fdt->fd;
694 new_fds = new_fdt->fd;
695
696 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
697 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
698
699 for (i = open_files; i != 0; i--) {
700 struct file *f = *old_fds++;
701 if (f) {
702 get_file(f);
703 } else {
704 /*
705 * The fd may be claimed in the fd bitmap but not yet
706 * instantiated in the files array if a sibling thread
707 * is partway through open(). So make sure that this
708 * fd is available to the new process.
709 */
710 FD_CLR(open_files - i, new_fdt->open_fds);
711 }
712 rcu_assign_pointer(*new_fds++, f);
713 }
714 spin_unlock(&oldf->file_lock);
715
716 /* compute the remainder to be cleared */
717 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
718
719 /* This is long word aligned thus could use a optimized version */
720 memset(new_fds, 0, size);
721
722 if (new_fdt->max_fdset > open_files) {
723 int left = (new_fdt->max_fdset-open_files)/8;
724 int start = open_files / (8 * sizeof(unsigned long));
725
726 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
727 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
728 }
729
730 out:
731 return newf;
732
733 out_release:
734 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
735 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
736 free_fd_array(new_fdt->fd, new_fdt->max_fds);
737 kmem_cache_free(files_cachep, newf);
738 return NULL;
739 }
740
741 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
742 {
743 struct files_struct *oldf, *newf;
744 int error = 0;
745
746 /*
747 * A background process may not have any files ...
748 */
749 oldf = current->files;
750 if (!oldf)
751 goto out;
752
753 if (clone_flags & CLONE_FILES) {
754 atomic_inc(&oldf->count);
755 goto out;
756 }
757
758 /*
759 * Note: we may be using current for both targets (See exec.c)
760 * This works because we cache current->files (old) as oldf. Don't
761 * break this.
762 */
763 tsk->files = NULL;
764 newf = dup_fd(oldf, &error);
765 if (!newf)
766 goto out;
767
768 tsk->files = newf;
769 error = 0;
770 out:
771 return error;
772 }
773
774 /*
775 * Helper to unshare the files of the current task.
776 * We don't want to expose copy_files internals to
777 * the exec layer of the kernel.
778 */
779
780 int unshare_files(void)
781 {
782 struct files_struct *files = current->files;
783 int rc;
784
785 BUG_ON(!files);
786
787 /* This can race but the race causes us to copy when we don't
788 need to and drop the copy */
789 if(atomic_read(&files->count) == 1)
790 {
791 atomic_inc(&files->count);
792 return 0;
793 }
794 rc = copy_files(0, current);
795 if(rc)
796 current->files = files;
797 return rc;
798 }
799
800 EXPORT_SYMBOL(unshare_files);
801
802 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
803 {
804 struct sighand_struct *sig;
805
806 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
807 atomic_inc(&current->sighand->count);
808 return 0;
809 }
810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
811 rcu_assign_pointer(tsk->sighand, sig);
812 if (!sig)
813 return -ENOMEM;
814 atomic_set(&sig->count, 1);
815 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
816 return 0;
817 }
818
819 void __cleanup_sighand(struct sighand_struct *sighand)
820 {
821 if (atomic_dec_and_test(&sighand->count))
822 kmem_cache_free(sighand_cachep, sighand);
823 }
824
825 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
826 {
827 struct signal_struct *sig;
828 int ret;
829
830 if (clone_flags & CLONE_THREAD) {
831 atomic_inc(&current->signal->count);
832 atomic_inc(&current->signal->live);
833 taskstats_tgid_alloc(current);
834 return 0;
835 }
836 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
837 tsk->signal = sig;
838 if (!sig)
839 return -ENOMEM;
840
841 ret = copy_thread_group_keys(tsk);
842 if (ret < 0) {
843 kmem_cache_free(signal_cachep, sig);
844 return ret;
845 }
846
847 atomic_set(&sig->count, 1);
848 atomic_set(&sig->live, 1);
849 init_waitqueue_head(&sig->wait_chldexit);
850 sig->flags = 0;
851 sig->group_exit_code = 0;
852 sig->group_exit_task = NULL;
853 sig->group_stop_count = 0;
854 sig->curr_target = NULL;
855 init_sigpending(&sig->shared_pending);
856 INIT_LIST_HEAD(&sig->posix_timers);
857
858 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
859 sig->it_real_incr.tv64 = 0;
860 sig->real_timer.function = it_real_fn;
861 sig->tsk = tsk;
862
863 sig->it_virt_expires = cputime_zero;
864 sig->it_virt_incr = cputime_zero;
865 sig->it_prof_expires = cputime_zero;
866 sig->it_prof_incr = cputime_zero;
867
868 sig->leader = 0; /* session leadership doesn't inherit */
869 sig->tty_old_pgrp = 0;
870
871 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
872 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
873 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
874 sig->sched_time = 0;
875 INIT_LIST_HEAD(&sig->cpu_timers[0]);
876 INIT_LIST_HEAD(&sig->cpu_timers[1]);
877 INIT_LIST_HEAD(&sig->cpu_timers[2]);
878 taskstats_tgid_init(sig);
879
880 task_lock(current->group_leader);
881 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
882 task_unlock(current->group_leader);
883
884 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
885 /*
886 * New sole thread in the process gets an expiry time
887 * of the whole CPU time limit.
888 */
889 tsk->it_prof_expires =
890 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
891 }
892 acct_init_pacct(&sig->pacct);
893
894 return 0;
895 }
896
897 void __cleanup_signal(struct signal_struct *sig)
898 {
899 exit_thread_group_keys(sig);
900 kmem_cache_free(signal_cachep, sig);
901 }
902
903 static inline void cleanup_signal(struct task_struct *tsk)
904 {
905 struct signal_struct *sig = tsk->signal;
906
907 atomic_dec(&sig->live);
908
909 if (atomic_dec_and_test(&sig->count))
910 __cleanup_signal(sig);
911 }
912
913 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
914 {
915 unsigned long new_flags = p->flags;
916
917 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
918 new_flags |= PF_FORKNOEXEC;
919 if (!(clone_flags & CLONE_PTRACE))
920 p->ptrace = 0;
921 p->flags = new_flags;
922 }
923
924 asmlinkage long sys_set_tid_address(int __user *tidptr)
925 {
926 current->clear_child_tid = tidptr;
927
928 return current->pid;
929 }
930
931 static inline void rt_mutex_init_task(struct task_struct *p)
932 {
933 #ifdef CONFIG_RT_MUTEXES
934 spin_lock_init(&p->pi_lock);
935 plist_head_init(&p->pi_waiters, &p->pi_lock);
936 p->pi_blocked_on = NULL;
937 #endif
938 }
939
940 /*
941 * This creates a new process as a copy of the old one,
942 * but does not actually start it yet.
943 *
944 * It copies the registers, and all the appropriate
945 * parts of the process environment (as per the clone
946 * flags). The actual kick-off is left to the caller.
947 */
948 static struct task_struct *copy_process(unsigned long clone_flags,
949 unsigned long stack_start,
950 struct pt_regs *regs,
951 unsigned long stack_size,
952 int __user *parent_tidptr,
953 int __user *child_tidptr,
954 int pid)
955 {
956 int retval;
957 struct task_struct *p = NULL;
958
959 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
960 return ERR_PTR(-EINVAL);
961
962 /*
963 * Thread groups must share signals as well, and detached threads
964 * can only be started up within the thread group.
965 */
966 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
967 return ERR_PTR(-EINVAL);
968
969 /*
970 * Shared signal handlers imply shared VM. By way of the above,
971 * thread groups also imply shared VM. Blocking this case allows
972 * for various simplifications in other code.
973 */
974 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
975 return ERR_PTR(-EINVAL);
976
977 retval = security_task_create(clone_flags);
978 if (retval)
979 goto fork_out;
980
981 retval = -ENOMEM;
982 p = dup_task_struct(current);
983 if (!p)
984 goto fork_out;
985
986 rt_mutex_init_task(p);
987
988 #ifdef CONFIG_TRACE_IRQFLAGS
989 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
990 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
991 #endif
992 retval = -EAGAIN;
993 if (atomic_read(&p->user->processes) >=
994 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
995 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
996 p->user != &root_user)
997 goto bad_fork_free;
998 }
999
1000 atomic_inc(&p->user->__count);
1001 atomic_inc(&p->user->processes);
1002 get_group_info(p->group_info);
1003
1004 /*
1005 * If multiple threads are within copy_process(), then this check
1006 * triggers too late. This doesn't hurt, the check is only there
1007 * to stop root fork bombs.
1008 */
1009 if (nr_threads >= max_threads)
1010 goto bad_fork_cleanup_count;
1011
1012 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1013 goto bad_fork_cleanup_count;
1014
1015 if (p->binfmt && !try_module_get(p->binfmt->module))
1016 goto bad_fork_cleanup_put_domain;
1017
1018 p->did_exec = 0;
1019 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1020 copy_flags(clone_flags, p);
1021 p->pid = pid;
1022 retval = -EFAULT;
1023 if (clone_flags & CLONE_PARENT_SETTID)
1024 if (put_user(p->pid, parent_tidptr))
1025 goto bad_fork_cleanup_delays_binfmt;
1026
1027 INIT_LIST_HEAD(&p->children);
1028 INIT_LIST_HEAD(&p->sibling);
1029 p->vfork_done = NULL;
1030 spin_lock_init(&p->alloc_lock);
1031
1032 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1033 init_sigpending(&p->pending);
1034
1035 p->utime = cputime_zero;
1036 p->stime = cputime_zero;
1037 p->sched_time = 0;
1038 p->rchar = 0; /* I/O counter: bytes read */
1039 p->wchar = 0; /* I/O counter: bytes written */
1040 p->syscr = 0; /* I/O counter: read syscalls */
1041 p->syscw = 0; /* I/O counter: write syscalls */
1042 acct_clear_integrals(p);
1043
1044 p->it_virt_expires = cputime_zero;
1045 p->it_prof_expires = cputime_zero;
1046 p->it_sched_expires = 0;
1047 INIT_LIST_HEAD(&p->cpu_timers[0]);
1048 INIT_LIST_HEAD(&p->cpu_timers[1]);
1049 INIT_LIST_HEAD(&p->cpu_timers[2]);
1050
1051 p->lock_depth = -1; /* -1 = no lock */
1052 do_posix_clock_monotonic_gettime(&p->start_time);
1053 p->security = NULL;
1054 p->io_context = NULL;
1055 p->io_wait = NULL;
1056 p->audit_context = NULL;
1057 cpuset_fork(p);
1058 #ifdef CONFIG_NUMA
1059 p->mempolicy = mpol_copy(p->mempolicy);
1060 if (IS_ERR(p->mempolicy)) {
1061 retval = PTR_ERR(p->mempolicy);
1062 p->mempolicy = NULL;
1063 goto bad_fork_cleanup_cpuset;
1064 }
1065 mpol_fix_fork_child_flag(p);
1066 #endif
1067 #ifdef CONFIG_TRACE_IRQFLAGS
1068 p->irq_events = 0;
1069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 p->hardirqs_enabled = 1;
1071 #else
1072 p->hardirqs_enabled = 0;
1073 #endif
1074 p->hardirq_enable_ip = 0;
1075 p->hardirq_enable_event = 0;
1076 p->hardirq_disable_ip = _THIS_IP_;
1077 p->hardirq_disable_event = 0;
1078 p->softirqs_enabled = 1;
1079 p->softirq_enable_ip = _THIS_IP_;
1080 p->softirq_enable_event = 0;
1081 p->softirq_disable_ip = 0;
1082 p->softirq_disable_event = 0;
1083 p->hardirq_context = 0;
1084 p->softirq_context = 0;
1085 #endif
1086 #ifdef CONFIG_LOCKDEP
1087 p->lockdep_depth = 0; /* no locks held yet */
1088 p->curr_chain_key = 0;
1089 p->lockdep_recursion = 0;
1090 #endif
1091
1092 #ifdef CONFIG_DEBUG_MUTEXES
1093 p->blocked_on = NULL; /* not blocked yet */
1094 #endif
1095
1096 p->tgid = p->pid;
1097 if (clone_flags & CLONE_THREAD)
1098 p->tgid = current->tgid;
1099
1100 if ((retval = security_task_alloc(p)))
1101 goto bad_fork_cleanup_policy;
1102 if ((retval = audit_alloc(p)))
1103 goto bad_fork_cleanup_security;
1104 /* copy all the process information */
1105 if ((retval = copy_semundo(clone_flags, p)))
1106 goto bad_fork_cleanup_audit;
1107 if ((retval = copy_files(clone_flags, p)))
1108 goto bad_fork_cleanup_semundo;
1109 if ((retval = copy_fs(clone_flags, p)))
1110 goto bad_fork_cleanup_files;
1111 if ((retval = copy_sighand(clone_flags, p)))
1112 goto bad_fork_cleanup_fs;
1113 if ((retval = copy_signal(clone_flags, p)))
1114 goto bad_fork_cleanup_sighand;
1115 if ((retval = copy_mm(clone_flags, p)))
1116 goto bad_fork_cleanup_signal;
1117 if ((retval = copy_keys(clone_flags, p)))
1118 goto bad_fork_cleanup_mm;
1119 if ((retval = copy_namespaces(clone_flags, p)))
1120 goto bad_fork_cleanup_keys;
1121 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1122 if (retval)
1123 goto bad_fork_cleanup_namespaces;
1124
1125 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1126 /*
1127 * Clear TID on mm_release()?
1128 */
1129 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1130 p->robust_list = NULL;
1131 #ifdef CONFIG_COMPAT
1132 p->compat_robust_list = NULL;
1133 #endif
1134 INIT_LIST_HEAD(&p->pi_state_list);
1135 p->pi_state_cache = NULL;
1136
1137 /*
1138 * sigaltstack should be cleared when sharing the same VM
1139 */
1140 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1141 p->sas_ss_sp = p->sas_ss_size = 0;
1142
1143 /*
1144 * Syscall tracing should be turned off in the child regardless
1145 * of CLONE_PTRACE.
1146 */
1147 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1148 #ifdef TIF_SYSCALL_EMU
1149 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1150 #endif
1151
1152 /* Our parent execution domain becomes current domain
1153 These must match for thread signalling to apply */
1154 p->parent_exec_id = p->self_exec_id;
1155
1156 /* ok, now we should be set up.. */
1157 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1158 p->pdeath_signal = 0;
1159 p->exit_state = 0;
1160
1161 /*
1162 * Ok, make it visible to the rest of the system.
1163 * We dont wake it up yet.
1164 */
1165 p->group_leader = p;
1166 INIT_LIST_HEAD(&p->thread_group);
1167 INIT_LIST_HEAD(&p->ptrace_children);
1168 INIT_LIST_HEAD(&p->ptrace_list);
1169
1170 /* Perform scheduler related setup. Assign this task to a CPU. */
1171 sched_fork(p, clone_flags);
1172
1173 /* Need tasklist lock for parent etc handling! */
1174 write_lock_irq(&tasklist_lock);
1175
1176 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1177 p->ioprio = current->ioprio;
1178
1179 /*
1180 * The task hasn't been attached yet, so its cpus_allowed mask will
1181 * not be changed, nor will its assigned CPU.
1182 *
1183 * The cpus_allowed mask of the parent may have changed after it was
1184 * copied first time - so re-copy it here, then check the child's CPU
1185 * to ensure it is on a valid CPU (and if not, just force it back to
1186 * parent's CPU). This avoids alot of nasty races.
1187 */
1188 p->cpus_allowed = current->cpus_allowed;
1189 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1190 !cpu_online(task_cpu(p))))
1191 set_task_cpu(p, smp_processor_id());
1192
1193 /* CLONE_PARENT re-uses the old parent */
1194 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1195 p->real_parent = current->real_parent;
1196 else
1197 p->real_parent = current;
1198 p->parent = p->real_parent;
1199
1200 spin_lock(&current->sighand->siglock);
1201
1202 /*
1203 * Process group and session signals need to be delivered to just the
1204 * parent before the fork or both the parent and the child after the
1205 * fork. Restart if a signal comes in before we add the new process to
1206 * it's process group.
1207 * A fatal signal pending means that current will exit, so the new
1208 * thread can't slip out of an OOM kill (or normal SIGKILL).
1209 */
1210 recalc_sigpending();
1211 if (signal_pending(current)) {
1212 spin_unlock(&current->sighand->siglock);
1213 write_unlock_irq(&tasklist_lock);
1214 retval = -ERESTARTNOINTR;
1215 goto bad_fork_cleanup_namespaces;
1216 }
1217
1218 if (clone_flags & CLONE_THREAD) {
1219 p->group_leader = current->group_leader;
1220 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1221
1222 if (!cputime_eq(current->signal->it_virt_expires,
1223 cputime_zero) ||
1224 !cputime_eq(current->signal->it_prof_expires,
1225 cputime_zero) ||
1226 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1227 !list_empty(&current->signal->cpu_timers[0]) ||
1228 !list_empty(&current->signal->cpu_timers[1]) ||
1229 !list_empty(&current->signal->cpu_timers[2])) {
1230 /*
1231 * Have child wake up on its first tick to check
1232 * for process CPU timers.
1233 */
1234 p->it_prof_expires = jiffies_to_cputime(1);
1235 }
1236 }
1237
1238 if (likely(p->pid)) {
1239 add_parent(p);
1240 if (unlikely(p->ptrace & PT_PTRACED))
1241 __ptrace_link(p, current->parent);
1242
1243 if (thread_group_leader(p)) {
1244 p->signal->tty = current->signal->tty;
1245 p->signal->pgrp = process_group(current);
1246 p->signal->session = current->signal->session;
1247 attach_pid(p, PIDTYPE_PGID, process_group(p));
1248 attach_pid(p, PIDTYPE_SID, p->signal->session);
1249
1250 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1251 __get_cpu_var(process_counts)++;
1252 }
1253 attach_pid(p, PIDTYPE_PID, p->pid);
1254 nr_threads++;
1255 }
1256
1257 total_forks++;
1258 spin_unlock(&current->sighand->siglock);
1259 write_unlock_irq(&tasklist_lock);
1260 proc_fork_connector(p);
1261 return p;
1262
1263 bad_fork_cleanup_namespaces:
1264 exit_task_namespaces(p);
1265 bad_fork_cleanup_keys:
1266 exit_keys(p);
1267 bad_fork_cleanup_mm:
1268 if (p->mm)
1269 mmput(p->mm);
1270 bad_fork_cleanup_signal:
1271 cleanup_signal(p);
1272 bad_fork_cleanup_sighand:
1273 __cleanup_sighand(p->sighand);
1274 bad_fork_cleanup_fs:
1275 exit_fs(p); /* blocking */
1276 bad_fork_cleanup_files:
1277 exit_files(p); /* blocking */
1278 bad_fork_cleanup_semundo:
1279 exit_sem(p);
1280 bad_fork_cleanup_audit:
1281 audit_free(p);
1282 bad_fork_cleanup_security:
1283 security_task_free(p);
1284 bad_fork_cleanup_policy:
1285 #ifdef CONFIG_NUMA
1286 mpol_free(p->mempolicy);
1287 bad_fork_cleanup_cpuset:
1288 #endif
1289 cpuset_exit(p);
1290 bad_fork_cleanup_delays_binfmt:
1291 delayacct_tsk_free(p);
1292 if (p->binfmt)
1293 module_put(p->binfmt->module);
1294 bad_fork_cleanup_put_domain:
1295 module_put(task_thread_info(p)->exec_domain->module);
1296 bad_fork_cleanup_count:
1297 put_group_info(p->group_info);
1298 atomic_dec(&p->user->processes);
1299 free_uid(p->user);
1300 bad_fork_free:
1301 free_task(p);
1302 fork_out:
1303 return ERR_PTR(retval);
1304 }
1305
1306 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1307 {
1308 memset(regs, 0, sizeof(struct pt_regs));
1309 return regs;
1310 }
1311
1312 struct task_struct * __devinit fork_idle(int cpu)
1313 {
1314 struct task_struct *task;
1315 struct pt_regs regs;
1316
1317 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1318 if (!task)
1319 return ERR_PTR(-ENOMEM);
1320 init_idle(task, cpu);
1321
1322 return task;
1323 }
1324
1325 static inline int fork_traceflag (unsigned clone_flags)
1326 {
1327 if (clone_flags & CLONE_UNTRACED)
1328 return 0;
1329 else if (clone_flags & CLONE_VFORK) {
1330 if (current->ptrace & PT_TRACE_VFORK)
1331 return PTRACE_EVENT_VFORK;
1332 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1333 if (current->ptrace & PT_TRACE_CLONE)
1334 return PTRACE_EVENT_CLONE;
1335 } else if (current->ptrace & PT_TRACE_FORK)
1336 return PTRACE_EVENT_FORK;
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * Ok, this is the main fork-routine.
1343 *
1344 * It copies the process, and if successful kick-starts
1345 * it and waits for it to finish using the VM if required.
1346 */
1347 long do_fork(unsigned long clone_flags,
1348 unsigned long stack_start,
1349 struct pt_regs *regs,
1350 unsigned long stack_size,
1351 int __user *parent_tidptr,
1352 int __user *child_tidptr)
1353 {
1354 struct task_struct *p;
1355 int trace = 0;
1356 struct pid *pid = alloc_pid();
1357 long nr;
1358
1359 if (!pid)
1360 return -EAGAIN;
1361 nr = pid->nr;
1362 if (unlikely(current->ptrace)) {
1363 trace = fork_traceflag (clone_flags);
1364 if (trace)
1365 clone_flags |= CLONE_PTRACE;
1366 }
1367
1368 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1369 /*
1370 * Do this prior waking up the new thread - the thread pointer
1371 * might get invalid after that point, if the thread exits quickly.
1372 */
1373 if (!IS_ERR(p)) {
1374 struct completion vfork;
1375
1376 if (clone_flags & CLONE_VFORK) {
1377 p->vfork_done = &vfork;
1378 init_completion(&vfork);
1379 }
1380
1381 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1382 /*
1383 * We'll start up with an immediate SIGSTOP.
1384 */
1385 sigaddset(&p->pending.signal, SIGSTOP);
1386 set_tsk_thread_flag(p, TIF_SIGPENDING);
1387 }
1388
1389 if (!(clone_flags & CLONE_STOPPED))
1390 wake_up_new_task(p, clone_flags);
1391 else
1392 p->state = TASK_STOPPED;
1393
1394 if (unlikely (trace)) {
1395 current->ptrace_message = nr;
1396 ptrace_notify ((trace << 8) | SIGTRAP);
1397 }
1398
1399 if (clone_flags & CLONE_VFORK) {
1400 wait_for_completion(&vfork);
1401 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1402 current->ptrace_message = nr;
1403 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1404 }
1405 }
1406 } else {
1407 free_pid(pid);
1408 nr = PTR_ERR(p);
1409 }
1410 return nr;
1411 }
1412
1413 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1414 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1415 #endif
1416
1417 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1418 {
1419 struct sighand_struct *sighand = data;
1420
1421 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1422 SLAB_CTOR_CONSTRUCTOR)
1423 spin_lock_init(&sighand->siglock);
1424 }
1425
1426 void __init proc_caches_init(void)
1427 {
1428 sighand_cachep = kmem_cache_create("sighand_cache",
1429 sizeof(struct sighand_struct), 0,
1430 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1431 sighand_ctor, NULL);
1432 signal_cachep = kmem_cache_create("signal_cache",
1433 sizeof(struct signal_struct), 0,
1434 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1435 files_cachep = kmem_cache_create("files_cache",
1436 sizeof(struct files_struct), 0,
1437 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1438 fs_cachep = kmem_cache_create("fs_cache",
1439 sizeof(struct fs_struct), 0,
1440 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1441 vm_area_cachep = kmem_cache_create("vm_area_struct",
1442 sizeof(struct vm_area_struct), 0,
1443 SLAB_PANIC, NULL, NULL);
1444 mm_cachep = kmem_cache_create("mm_struct",
1445 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1446 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1447 }
1448
1449
1450 /*
1451 * Check constraints on flags passed to the unshare system call and
1452 * force unsharing of additional process context as appropriate.
1453 */
1454 static inline void check_unshare_flags(unsigned long *flags_ptr)
1455 {
1456 /*
1457 * If unsharing a thread from a thread group, must also
1458 * unshare vm.
1459 */
1460 if (*flags_ptr & CLONE_THREAD)
1461 *flags_ptr |= CLONE_VM;
1462
1463 /*
1464 * If unsharing vm, must also unshare signal handlers.
1465 */
1466 if (*flags_ptr & CLONE_VM)
1467 *flags_ptr |= CLONE_SIGHAND;
1468
1469 /*
1470 * If unsharing signal handlers and the task was created
1471 * using CLONE_THREAD, then must unshare the thread
1472 */
1473 if ((*flags_ptr & CLONE_SIGHAND) &&
1474 (atomic_read(&current->signal->count) > 1))
1475 *flags_ptr |= CLONE_THREAD;
1476
1477 /*
1478 * If unsharing namespace, must also unshare filesystem information.
1479 */
1480 if (*flags_ptr & CLONE_NEWNS)
1481 *flags_ptr |= CLONE_FS;
1482 }
1483
1484 /*
1485 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1486 */
1487 static int unshare_thread(unsigned long unshare_flags)
1488 {
1489 if (unshare_flags & CLONE_THREAD)
1490 return -EINVAL;
1491
1492 return 0;
1493 }
1494
1495 /*
1496 * Unshare the filesystem structure if it is being shared
1497 */
1498 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1499 {
1500 struct fs_struct *fs = current->fs;
1501
1502 if ((unshare_flags & CLONE_FS) &&
1503 (fs && atomic_read(&fs->count) > 1)) {
1504 *new_fsp = __copy_fs_struct(current->fs);
1505 if (!*new_fsp)
1506 return -ENOMEM;
1507 }
1508
1509 return 0;
1510 }
1511
1512 /*
1513 * Unshare the namespace structure if it is being shared
1514 */
1515 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1516 {
1517 struct namespace *ns = current->nsproxy->namespace;
1518
1519 if ((unshare_flags & CLONE_NEWNS) && ns) {
1520 if (!capable(CAP_SYS_ADMIN))
1521 return -EPERM;
1522
1523 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1524 if (!*new_nsp)
1525 return -ENOMEM;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1533 * supported yet
1534 */
1535 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1536 {
1537 struct sighand_struct *sigh = current->sighand;
1538
1539 if ((unshare_flags & CLONE_SIGHAND) &&
1540 (sigh && atomic_read(&sigh->count) > 1))
1541 return -EINVAL;
1542 else
1543 return 0;
1544 }
1545
1546 /*
1547 * Unshare vm if it is being shared
1548 */
1549 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1550 {
1551 struct mm_struct *mm = current->mm;
1552
1553 if ((unshare_flags & CLONE_VM) &&
1554 (mm && atomic_read(&mm->mm_users) > 1)) {
1555 return -EINVAL;
1556 }
1557
1558 return 0;
1559 }
1560
1561 /*
1562 * Unshare file descriptor table if it is being shared
1563 */
1564 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1565 {
1566 struct files_struct *fd = current->files;
1567 int error = 0;
1568
1569 if ((unshare_flags & CLONE_FILES) &&
1570 (fd && atomic_read(&fd->count) > 1)) {
1571 *new_fdp = dup_fd(fd, &error);
1572 if (!*new_fdp)
1573 return error;
1574 }
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1581 * supported yet
1582 */
1583 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1584 {
1585 if (unshare_flags & CLONE_SYSVSEM)
1586 return -EINVAL;
1587
1588 return 0;
1589 }
1590
1591 #ifndef CONFIG_IPC_NS
1592 static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
1593 {
1594 if (flags & CLONE_NEWIPC)
1595 return -EINVAL;
1596
1597 return 0;
1598 }
1599 #endif
1600
1601 /*
1602 * unshare allows a process to 'unshare' part of the process
1603 * context which was originally shared using clone. copy_*
1604 * functions used by do_fork() cannot be used here directly
1605 * because they modify an inactive task_struct that is being
1606 * constructed. Here we are modifying the current, active,
1607 * task_struct.
1608 */
1609 asmlinkage long sys_unshare(unsigned long unshare_flags)
1610 {
1611 int err = 0;
1612 struct fs_struct *fs, *new_fs = NULL;
1613 struct namespace *ns, *new_ns = NULL;
1614 struct sighand_struct *sigh, *new_sigh = NULL;
1615 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1616 struct files_struct *fd, *new_fd = NULL;
1617 struct sem_undo_list *new_ulist = NULL;
1618 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1619 struct uts_namespace *uts, *new_uts = NULL;
1620 struct ipc_namespace *ipc, *new_ipc = NULL;
1621
1622 check_unshare_flags(&unshare_flags);
1623
1624 /* Return -EINVAL for all unsupported flags */
1625 err = -EINVAL;
1626 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1627 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1628 CLONE_NEWUTS|CLONE_NEWIPC))
1629 goto bad_unshare_out;
1630
1631 if ((err = unshare_thread(unshare_flags)))
1632 goto bad_unshare_out;
1633 if ((err = unshare_fs(unshare_flags, &new_fs)))
1634 goto bad_unshare_cleanup_thread;
1635 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1636 goto bad_unshare_cleanup_fs;
1637 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1638 goto bad_unshare_cleanup_ns;
1639 if ((err = unshare_vm(unshare_flags, &new_mm)))
1640 goto bad_unshare_cleanup_sigh;
1641 if ((err = unshare_fd(unshare_flags, &new_fd)))
1642 goto bad_unshare_cleanup_vm;
1643 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1644 goto bad_unshare_cleanup_fd;
1645 if ((err = unshare_utsname(unshare_flags, &new_uts)))
1646 goto bad_unshare_cleanup_semundo;
1647 if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
1648 goto bad_unshare_cleanup_uts;
1649
1650 if (new_ns || new_uts || new_ipc) {
1651 old_nsproxy = current->nsproxy;
1652 new_nsproxy = dup_namespaces(old_nsproxy);
1653 if (!new_nsproxy) {
1654 err = -ENOMEM;
1655 goto bad_unshare_cleanup_ipc;
1656 }
1657 }
1658
1659 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist ||
1660 new_uts || new_ipc) {
1661
1662 task_lock(current);
1663
1664 if (new_nsproxy) {
1665 current->nsproxy = new_nsproxy;
1666 new_nsproxy = old_nsproxy;
1667 }
1668
1669 if (new_fs) {
1670 fs = current->fs;
1671 current->fs = new_fs;
1672 new_fs = fs;
1673 }
1674
1675 if (new_ns) {
1676 ns = current->nsproxy->namespace;
1677 current->nsproxy->namespace = new_ns;
1678 new_ns = ns;
1679 }
1680
1681 if (new_sigh) {
1682 sigh = current->sighand;
1683 rcu_assign_pointer(current->sighand, new_sigh);
1684 new_sigh = sigh;
1685 }
1686
1687 if (new_mm) {
1688 mm = current->mm;
1689 active_mm = current->active_mm;
1690 current->mm = new_mm;
1691 current->active_mm = new_mm;
1692 activate_mm(active_mm, new_mm);
1693 new_mm = mm;
1694 }
1695
1696 if (new_fd) {
1697 fd = current->files;
1698 current->files = new_fd;
1699 new_fd = fd;
1700 }
1701
1702 if (new_uts) {
1703 uts = current->nsproxy->uts_ns;
1704 current->nsproxy->uts_ns = new_uts;
1705 new_uts = uts;
1706 }
1707
1708 if (new_ipc) {
1709 ipc = current->nsproxy->ipc_ns;
1710 current->nsproxy->ipc_ns = new_ipc;
1711 new_ipc = ipc;
1712 }
1713
1714 task_unlock(current);
1715 }
1716
1717 if (new_nsproxy)
1718 put_nsproxy(new_nsproxy);
1719
1720 bad_unshare_cleanup_ipc:
1721 if (new_ipc)
1722 put_ipc_ns(new_ipc);
1723
1724 bad_unshare_cleanup_uts:
1725 if (new_uts)
1726 put_uts_ns(new_uts);
1727
1728 bad_unshare_cleanup_semundo:
1729 bad_unshare_cleanup_fd:
1730 if (new_fd)
1731 put_files_struct(new_fd);
1732
1733 bad_unshare_cleanup_vm:
1734 if (new_mm)
1735 mmput(new_mm);
1736
1737 bad_unshare_cleanup_sigh:
1738 if (new_sigh)
1739 if (atomic_dec_and_test(&new_sigh->count))
1740 kmem_cache_free(sighand_cachep, new_sigh);
1741
1742 bad_unshare_cleanup_ns:
1743 if (new_ns)
1744 put_namespace(new_ns);
1745
1746 bad_unshare_cleanup_fs:
1747 if (new_fs)
1748 put_fs_struct(new_fs);
1749
1750 bad_unshare_cleanup_thread:
1751 bad_unshare_out:
1752 return err;
1753 }