]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/fork.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 static int max_threads; /* tunable limit on nr_threads */
127
128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148
149 int nr_processes(void)
150 {
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180 /*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187 /*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227 /* Clear the KASAN shadow of the stack. */
228 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
230 /* Clear stale pointers from reused stack. */
231 memset(s->addr, 0, THREAD_SIZE);
232
233 tsk->stack_vm_area = s;
234 tsk->stack = s->addr;
235 return s->addr;
236 }
237
238 /*
239 * Allocated stacks are cached and later reused by new threads,
240 * so memcg accounting is performed manually on assigning/releasing
241 * stacks to tasks. Drop __GFP_ACCOUNT.
242 */
243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 VMALLOC_START, VMALLOC_END,
245 THREADINFO_GFP & ~__GFP_ACCOUNT,
246 PAGE_KERNEL,
247 0, node, __builtin_return_address(0));
248
249 /*
250 * We can't call find_vm_area() in interrupt context, and
251 * free_thread_stack() can be called in interrupt context,
252 * so cache the vm_struct.
253 */
254 if (stack) {
255 tsk->stack_vm_area = find_vm_area(stack);
256 tsk->stack = stack;
257 }
258 return stack;
259 #else
260 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 THREAD_SIZE_ORDER);
262
263 if (likely(page)) {
264 tsk->stack = page_address(page);
265 return tsk->stack;
266 }
267 return NULL;
268 #endif
269 }
270
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 struct vm_struct *vm = task_stack_vm_area(tsk);
275
276 if (vm) {
277 int i;
278
279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 mod_memcg_page_state(vm->pages[i],
281 MEMCG_KERNEL_STACK_KB,
282 -(int)(PAGE_SIZE / 1024));
283
284 memcg_kmem_uncharge_page(vm->pages[i], 0);
285 }
286
287 for (i = 0; i < NR_CACHED_STACKS; i++) {
288 if (this_cpu_cmpxchg(cached_stacks[i],
289 NULL, tsk->stack_vm_area) != NULL)
290 continue;
291
292 return;
293 }
294
295 vfree_atomic(tsk->stack);
296 return;
297 }
298 #endif
299
300 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 int node)
307 {
308 unsigned long *stack;
309 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 tsk->stack = stack;
311 return stack;
312 }
313
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318
319 void thread_stack_cache_init(void)
320 {
321 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 THREAD_SIZE, THREAD_SIZE, 0, 0,
323 THREAD_SIZE, NULL);
324 BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 struct vm_area_struct *vma;
350
351 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 if (vma)
353 vma_init(vma, mm);
354 return vma;
355 }
356
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360
361 if (new) {
362 *new = *orig;
363 INIT_LIST_HEAD(&new->anon_vma_chain);
364 }
365 return new;
366 }
367
368 void vm_area_free(struct vm_area_struct *vma)
369 {
370 kmem_cache_free(vm_area_cachep, vma);
371 }
372
373 static void account_kernel_stack(struct task_struct *tsk, int account)
374 {
375 void *stack = task_stack_page(tsk);
376 struct vm_struct *vm = task_stack_vm_area(tsk);
377
378 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
379
380 if (vm) {
381 int i;
382
383 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
384
385 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
386 mod_zone_page_state(page_zone(vm->pages[i]),
387 NR_KERNEL_STACK_KB,
388 PAGE_SIZE / 1024 * account);
389 }
390 } else {
391 /*
392 * All stack pages are in the same zone and belong to the
393 * same memcg.
394 */
395 struct page *first_page = virt_to_page(stack);
396
397 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
398 THREAD_SIZE / 1024 * account);
399
400 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
401 account * (THREAD_SIZE / 1024));
402 }
403 }
404
405 static int memcg_charge_kernel_stack(struct task_struct *tsk)
406 {
407 #ifdef CONFIG_VMAP_STACK
408 struct vm_struct *vm = task_stack_vm_area(tsk);
409 int ret;
410
411 if (vm) {
412 int i;
413
414 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
415 /*
416 * If memcg_kmem_charge_page() fails, page->mem_cgroup
417 * pointer is NULL, and both memcg_kmem_uncharge_page()
418 * and mod_memcg_page_state() in free_thread_stack()
419 * will ignore this page. So it's safe.
420 */
421 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
422 0);
423 if (ret)
424 return ret;
425
426 mod_memcg_page_state(vm->pages[i],
427 MEMCG_KERNEL_STACK_KB,
428 PAGE_SIZE / 1024);
429 }
430 }
431 #endif
432 return 0;
433 }
434
435 static void release_task_stack(struct task_struct *tsk)
436 {
437 if (WARN_ON(tsk->state != TASK_DEAD))
438 return; /* Better to leak the stack than to free prematurely */
439
440 account_kernel_stack(tsk, -1);
441 free_thread_stack(tsk);
442 tsk->stack = NULL;
443 #ifdef CONFIG_VMAP_STACK
444 tsk->stack_vm_area = NULL;
445 #endif
446 }
447
448 #ifdef CONFIG_THREAD_INFO_IN_TASK
449 void put_task_stack(struct task_struct *tsk)
450 {
451 if (refcount_dec_and_test(&tsk->stack_refcount))
452 release_task_stack(tsk);
453 }
454 #endif
455
456 void free_task(struct task_struct *tsk)
457 {
458 #ifndef CONFIG_THREAD_INFO_IN_TASK
459 /*
460 * The task is finally done with both the stack and thread_info,
461 * so free both.
462 */
463 release_task_stack(tsk);
464 #else
465 /*
466 * If the task had a separate stack allocation, it should be gone
467 * by now.
468 */
469 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
470 #endif
471 rt_mutex_debug_task_free(tsk);
472 ftrace_graph_exit_task(tsk);
473 put_seccomp_filter(tsk);
474 arch_release_task_struct(tsk);
475 if (tsk->flags & PF_KTHREAD)
476 free_kthread_struct(tsk);
477 free_task_struct(tsk);
478 }
479 EXPORT_SYMBOL(free_task);
480
481 #ifdef CONFIG_MMU
482 static __latent_entropy int dup_mmap(struct mm_struct *mm,
483 struct mm_struct *oldmm)
484 {
485 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
486 struct rb_node **rb_link, *rb_parent;
487 int retval;
488 unsigned long charge;
489 LIST_HEAD(uf);
490
491 uprobe_start_dup_mmap();
492 if (down_write_killable(&oldmm->mmap_sem)) {
493 retval = -EINTR;
494 goto fail_uprobe_end;
495 }
496 flush_cache_dup_mm(oldmm);
497 uprobe_dup_mmap(oldmm, mm);
498 /*
499 * Not linked in yet - no deadlock potential:
500 */
501 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
502
503 /* No ordering required: file already has been exposed. */
504 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
505
506 mm->total_vm = oldmm->total_vm;
507 mm->data_vm = oldmm->data_vm;
508 mm->exec_vm = oldmm->exec_vm;
509 mm->stack_vm = oldmm->stack_vm;
510
511 rb_link = &mm->mm_rb.rb_node;
512 rb_parent = NULL;
513 pprev = &mm->mmap;
514 retval = ksm_fork(mm, oldmm);
515 if (retval)
516 goto out;
517 retval = khugepaged_fork(mm, oldmm);
518 if (retval)
519 goto out;
520
521 prev = NULL;
522 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
523 struct file *file;
524
525 if (mpnt->vm_flags & VM_DONTCOPY) {
526 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
527 continue;
528 }
529 charge = 0;
530 /*
531 * Don't duplicate many vmas if we've been oom-killed (for
532 * example)
533 */
534 if (fatal_signal_pending(current)) {
535 retval = -EINTR;
536 goto out;
537 }
538 if (mpnt->vm_flags & VM_ACCOUNT) {
539 unsigned long len = vma_pages(mpnt);
540
541 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
542 goto fail_nomem;
543 charge = len;
544 }
545 tmp = vm_area_dup(mpnt);
546 if (!tmp)
547 goto fail_nomem;
548 retval = vma_dup_policy(mpnt, tmp);
549 if (retval)
550 goto fail_nomem_policy;
551 tmp->vm_mm = mm;
552 retval = dup_userfaultfd(tmp, &uf);
553 if (retval)
554 goto fail_nomem_anon_vma_fork;
555 if (tmp->vm_flags & VM_WIPEONFORK) {
556 /* VM_WIPEONFORK gets a clean slate in the child. */
557 tmp->anon_vma = NULL;
558 if (anon_vma_prepare(tmp))
559 goto fail_nomem_anon_vma_fork;
560 } else if (anon_vma_fork(tmp, mpnt))
561 goto fail_nomem_anon_vma_fork;
562 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
563 tmp->vm_next = tmp->vm_prev = NULL;
564 file = tmp->vm_file;
565 if (file) {
566 struct inode *inode = file_inode(file);
567 struct address_space *mapping = file->f_mapping;
568
569 get_file(file);
570 if (tmp->vm_flags & VM_DENYWRITE)
571 atomic_dec(&inode->i_writecount);
572 i_mmap_lock_write(mapping);
573 if (tmp->vm_flags & VM_SHARED)
574 atomic_inc(&mapping->i_mmap_writable);
575 flush_dcache_mmap_lock(mapping);
576 /* insert tmp into the share list, just after mpnt */
577 vma_interval_tree_insert_after(tmp, mpnt,
578 &mapping->i_mmap);
579 flush_dcache_mmap_unlock(mapping);
580 i_mmap_unlock_write(mapping);
581 }
582
583 /*
584 * Clear hugetlb-related page reserves for children. This only
585 * affects MAP_PRIVATE mappings. Faults generated by the child
586 * are not guaranteed to succeed, even if read-only
587 */
588 if (is_vm_hugetlb_page(tmp))
589 reset_vma_resv_huge_pages(tmp);
590
591 /*
592 * Link in the new vma and copy the page table entries.
593 */
594 *pprev = tmp;
595 pprev = &tmp->vm_next;
596 tmp->vm_prev = prev;
597 prev = tmp;
598
599 __vma_link_rb(mm, tmp, rb_link, rb_parent);
600 rb_link = &tmp->vm_rb.rb_right;
601 rb_parent = &tmp->vm_rb;
602
603 mm->map_count++;
604 if (!(tmp->vm_flags & VM_WIPEONFORK))
605 retval = copy_page_range(mm, oldmm, mpnt);
606
607 if (tmp->vm_ops && tmp->vm_ops->open)
608 tmp->vm_ops->open(tmp);
609
610 if (retval)
611 goto out;
612 }
613 /* a new mm has just been created */
614 retval = arch_dup_mmap(oldmm, mm);
615 out:
616 up_write(&mm->mmap_sem);
617 flush_tlb_mm(oldmm);
618 up_write(&oldmm->mmap_sem);
619 dup_userfaultfd_complete(&uf);
620 fail_uprobe_end:
621 uprobe_end_dup_mmap();
622 return retval;
623 fail_nomem_anon_vma_fork:
624 mpol_put(vma_policy(tmp));
625 fail_nomem_policy:
626 vm_area_free(tmp);
627 fail_nomem:
628 retval = -ENOMEM;
629 vm_unacct_memory(charge);
630 goto out;
631 }
632
633 static inline int mm_alloc_pgd(struct mm_struct *mm)
634 {
635 mm->pgd = pgd_alloc(mm);
636 if (unlikely(!mm->pgd))
637 return -ENOMEM;
638 return 0;
639 }
640
641 static inline void mm_free_pgd(struct mm_struct *mm)
642 {
643 pgd_free(mm, mm->pgd);
644 }
645 #else
646 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
647 {
648 down_write(&oldmm->mmap_sem);
649 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
650 up_write(&oldmm->mmap_sem);
651 return 0;
652 }
653 #define mm_alloc_pgd(mm) (0)
654 #define mm_free_pgd(mm)
655 #endif /* CONFIG_MMU */
656
657 static void check_mm(struct mm_struct *mm)
658 {
659 int i;
660
661 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
662 "Please make sure 'struct resident_page_types[]' is updated as well");
663
664 for (i = 0; i < NR_MM_COUNTERS; i++) {
665 long x = atomic_long_read(&mm->rss_stat.count[i]);
666
667 if (unlikely(x))
668 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
669 mm, resident_page_types[i], x);
670 }
671
672 if (mm_pgtables_bytes(mm))
673 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
674 mm_pgtables_bytes(mm));
675
676 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
677 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
678 #endif
679 }
680
681 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
682 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
683
684 /*
685 * Called when the last reference to the mm
686 * is dropped: either by a lazy thread or by
687 * mmput. Free the page directory and the mm.
688 */
689 void __mmdrop(struct mm_struct *mm)
690 {
691 BUG_ON(mm == &init_mm);
692 WARN_ON_ONCE(mm == current->mm);
693 WARN_ON_ONCE(mm == current->active_mm);
694 mm_free_pgd(mm);
695 destroy_context(mm);
696 mmu_notifier_subscriptions_destroy(mm);
697 check_mm(mm);
698 put_user_ns(mm->user_ns);
699 free_mm(mm);
700 }
701 EXPORT_SYMBOL_GPL(__mmdrop);
702
703 static void mmdrop_async_fn(struct work_struct *work)
704 {
705 struct mm_struct *mm;
706
707 mm = container_of(work, struct mm_struct, async_put_work);
708 __mmdrop(mm);
709 }
710
711 static void mmdrop_async(struct mm_struct *mm)
712 {
713 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
714 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
715 schedule_work(&mm->async_put_work);
716 }
717 }
718
719 static inline void free_signal_struct(struct signal_struct *sig)
720 {
721 taskstats_tgid_free(sig);
722 sched_autogroup_exit(sig);
723 /*
724 * __mmdrop is not safe to call from softirq context on x86 due to
725 * pgd_dtor so postpone it to the async context
726 */
727 if (sig->oom_mm)
728 mmdrop_async(sig->oom_mm);
729 kmem_cache_free(signal_cachep, sig);
730 }
731
732 static inline void put_signal_struct(struct signal_struct *sig)
733 {
734 if (refcount_dec_and_test(&sig->sigcnt))
735 free_signal_struct(sig);
736 }
737
738 void __put_task_struct(struct task_struct *tsk)
739 {
740 WARN_ON(!tsk->exit_state);
741 WARN_ON(refcount_read(&tsk->usage));
742 WARN_ON(tsk == current);
743
744 cgroup_free(tsk);
745 task_numa_free(tsk, true);
746 security_task_free(tsk);
747 exit_creds(tsk);
748 delayacct_tsk_free(tsk);
749 put_signal_struct(tsk->signal);
750
751 if (!profile_handoff_task(tsk))
752 free_task(tsk);
753 }
754 EXPORT_SYMBOL_GPL(__put_task_struct);
755
756 void __init __weak arch_task_cache_init(void) { }
757
758 /*
759 * set_max_threads
760 */
761 static void set_max_threads(unsigned int max_threads_suggested)
762 {
763 u64 threads;
764 unsigned long nr_pages = totalram_pages();
765
766 /*
767 * The number of threads shall be limited such that the thread
768 * structures may only consume a small part of the available memory.
769 */
770 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
771 threads = MAX_THREADS;
772 else
773 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
774 (u64) THREAD_SIZE * 8UL);
775
776 if (threads > max_threads_suggested)
777 threads = max_threads_suggested;
778
779 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
780 }
781
782 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
783 /* Initialized by the architecture: */
784 int arch_task_struct_size __read_mostly;
785 #endif
786
787 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
788 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
789 {
790 /* Fetch thread_struct whitelist for the architecture. */
791 arch_thread_struct_whitelist(offset, size);
792
793 /*
794 * Handle zero-sized whitelist or empty thread_struct, otherwise
795 * adjust offset to position of thread_struct in task_struct.
796 */
797 if (unlikely(*size == 0))
798 *offset = 0;
799 else
800 *offset += offsetof(struct task_struct, thread);
801 }
802 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
803
804 void __init fork_init(void)
805 {
806 int i;
807 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
808 #ifndef ARCH_MIN_TASKALIGN
809 #define ARCH_MIN_TASKALIGN 0
810 #endif
811 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
812 unsigned long useroffset, usersize;
813
814 /* create a slab on which task_structs can be allocated */
815 task_struct_whitelist(&useroffset, &usersize);
816 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
817 arch_task_struct_size, align,
818 SLAB_PANIC|SLAB_ACCOUNT,
819 useroffset, usersize, NULL);
820 #endif
821
822 /* do the arch specific task caches init */
823 arch_task_cache_init();
824
825 set_max_threads(MAX_THREADS);
826
827 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
828 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
829 init_task.signal->rlim[RLIMIT_SIGPENDING] =
830 init_task.signal->rlim[RLIMIT_NPROC];
831
832 for (i = 0; i < UCOUNT_COUNTS; i++) {
833 init_user_ns.ucount_max[i] = max_threads/2;
834 }
835
836 #ifdef CONFIG_VMAP_STACK
837 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
838 NULL, free_vm_stack_cache);
839 #endif
840
841 lockdep_init_task(&init_task);
842 uprobes_init();
843 }
844
845 int __weak arch_dup_task_struct(struct task_struct *dst,
846 struct task_struct *src)
847 {
848 *dst = *src;
849 return 0;
850 }
851
852 void set_task_stack_end_magic(struct task_struct *tsk)
853 {
854 unsigned long *stackend;
855
856 stackend = end_of_stack(tsk);
857 *stackend = STACK_END_MAGIC; /* for overflow detection */
858 }
859
860 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
861 {
862 struct task_struct *tsk;
863 unsigned long *stack;
864 struct vm_struct *stack_vm_area __maybe_unused;
865 int err;
866
867 if (node == NUMA_NO_NODE)
868 node = tsk_fork_get_node(orig);
869 tsk = alloc_task_struct_node(node);
870 if (!tsk)
871 return NULL;
872
873 stack = alloc_thread_stack_node(tsk, node);
874 if (!stack)
875 goto free_tsk;
876
877 if (memcg_charge_kernel_stack(tsk))
878 goto free_stack;
879
880 stack_vm_area = task_stack_vm_area(tsk);
881
882 err = arch_dup_task_struct(tsk, orig);
883
884 /*
885 * arch_dup_task_struct() clobbers the stack-related fields. Make
886 * sure they're properly initialized before using any stack-related
887 * functions again.
888 */
889 tsk->stack = stack;
890 #ifdef CONFIG_VMAP_STACK
891 tsk->stack_vm_area = stack_vm_area;
892 #endif
893 #ifdef CONFIG_THREAD_INFO_IN_TASK
894 refcount_set(&tsk->stack_refcount, 1);
895 #endif
896
897 if (err)
898 goto free_stack;
899
900 #ifdef CONFIG_SECCOMP
901 /*
902 * We must handle setting up seccomp filters once we're under
903 * the sighand lock in case orig has changed between now and
904 * then. Until then, filter must be NULL to avoid messing up
905 * the usage counts on the error path calling free_task.
906 */
907 tsk->seccomp.filter = NULL;
908 #endif
909
910 setup_thread_stack(tsk, orig);
911 clear_user_return_notifier(tsk);
912 clear_tsk_need_resched(tsk);
913 set_task_stack_end_magic(tsk);
914
915 #ifdef CONFIG_STACKPROTECTOR
916 tsk->stack_canary = get_random_canary();
917 #endif
918 if (orig->cpus_ptr == &orig->cpus_mask)
919 tsk->cpus_ptr = &tsk->cpus_mask;
920
921 /*
922 * One for the user space visible state that goes away when reaped.
923 * One for the scheduler.
924 */
925 refcount_set(&tsk->rcu_users, 2);
926 /* One for the rcu users */
927 refcount_set(&tsk->usage, 1);
928 #ifdef CONFIG_BLK_DEV_IO_TRACE
929 tsk->btrace_seq = 0;
930 #endif
931 tsk->splice_pipe = NULL;
932 tsk->task_frag.page = NULL;
933 tsk->wake_q.next = NULL;
934
935 account_kernel_stack(tsk, 1);
936
937 kcov_task_init(tsk);
938
939 #ifdef CONFIG_FAULT_INJECTION
940 tsk->fail_nth = 0;
941 #endif
942
943 #ifdef CONFIG_BLK_CGROUP
944 tsk->throttle_queue = NULL;
945 tsk->use_memdelay = 0;
946 #endif
947
948 #ifdef CONFIG_MEMCG
949 tsk->active_memcg = NULL;
950 #endif
951 return tsk;
952
953 free_stack:
954 free_thread_stack(tsk);
955 free_tsk:
956 free_task_struct(tsk);
957 return NULL;
958 }
959
960 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
961
962 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
963
964 static int __init coredump_filter_setup(char *s)
965 {
966 default_dump_filter =
967 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
968 MMF_DUMP_FILTER_MASK;
969 return 1;
970 }
971
972 __setup("coredump_filter=", coredump_filter_setup);
973
974 #include <linux/init_task.h>
975
976 static void mm_init_aio(struct mm_struct *mm)
977 {
978 #ifdef CONFIG_AIO
979 spin_lock_init(&mm->ioctx_lock);
980 mm->ioctx_table = NULL;
981 #endif
982 }
983
984 static __always_inline void mm_clear_owner(struct mm_struct *mm,
985 struct task_struct *p)
986 {
987 #ifdef CONFIG_MEMCG
988 if (mm->owner == p)
989 WRITE_ONCE(mm->owner, NULL);
990 #endif
991 }
992
993 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
994 {
995 #ifdef CONFIG_MEMCG
996 mm->owner = p;
997 #endif
998 }
999
1000 static void mm_init_uprobes_state(struct mm_struct *mm)
1001 {
1002 #ifdef CONFIG_UPROBES
1003 mm->uprobes_state.xol_area = NULL;
1004 #endif
1005 }
1006
1007 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1008 struct user_namespace *user_ns)
1009 {
1010 mm->mmap = NULL;
1011 mm->mm_rb = RB_ROOT;
1012 mm->vmacache_seqnum = 0;
1013 atomic_set(&mm->mm_users, 1);
1014 atomic_set(&mm->mm_count, 1);
1015 init_rwsem(&mm->mmap_sem);
1016 INIT_LIST_HEAD(&mm->mmlist);
1017 mm->core_state = NULL;
1018 mm_pgtables_bytes_init(mm);
1019 mm->map_count = 0;
1020 mm->locked_vm = 0;
1021 atomic64_set(&mm->pinned_vm, 0);
1022 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1023 spin_lock_init(&mm->page_table_lock);
1024 spin_lock_init(&mm->arg_lock);
1025 mm_init_cpumask(mm);
1026 mm_init_aio(mm);
1027 mm_init_owner(mm, p);
1028 RCU_INIT_POINTER(mm->exe_file, NULL);
1029 mmu_notifier_subscriptions_init(mm);
1030 init_tlb_flush_pending(mm);
1031 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1032 mm->pmd_huge_pte = NULL;
1033 #endif
1034 mm_init_uprobes_state(mm);
1035
1036 if (current->mm) {
1037 mm->flags = current->mm->flags & MMF_INIT_MASK;
1038 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1039 } else {
1040 mm->flags = default_dump_filter;
1041 mm->def_flags = 0;
1042 }
1043
1044 if (mm_alloc_pgd(mm))
1045 goto fail_nopgd;
1046
1047 if (init_new_context(p, mm))
1048 goto fail_nocontext;
1049
1050 mm->user_ns = get_user_ns(user_ns);
1051 return mm;
1052
1053 fail_nocontext:
1054 mm_free_pgd(mm);
1055 fail_nopgd:
1056 free_mm(mm);
1057 return NULL;
1058 }
1059
1060 /*
1061 * Allocate and initialize an mm_struct.
1062 */
1063 struct mm_struct *mm_alloc(void)
1064 {
1065 struct mm_struct *mm;
1066
1067 mm = allocate_mm();
1068 if (!mm)
1069 return NULL;
1070
1071 memset(mm, 0, sizeof(*mm));
1072 return mm_init(mm, current, current_user_ns());
1073 }
1074
1075 static inline void __mmput(struct mm_struct *mm)
1076 {
1077 VM_BUG_ON(atomic_read(&mm->mm_users));
1078
1079 uprobe_clear_state(mm);
1080 exit_aio(mm);
1081 ksm_exit(mm);
1082 khugepaged_exit(mm); /* must run before exit_mmap */
1083 exit_mmap(mm);
1084 mm_put_huge_zero_page(mm);
1085 set_mm_exe_file(mm, NULL);
1086 if (!list_empty(&mm->mmlist)) {
1087 spin_lock(&mmlist_lock);
1088 list_del(&mm->mmlist);
1089 spin_unlock(&mmlist_lock);
1090 }
1091 if (mm->binfmt)
1092 module_put(mm->binfmt->module);
1093 mmdrop(mm);
1094 }
1095
1096 /*
1097 * Decrement the use count and release all resources for an mm.
1098 */
1099 void mmput(struct mm_struct *mm)
1100 {
1101 might_sleep();
1102
1103 if (atomic_dec_and_test(&mm->mm_users))
1104 __mmput(mm);
1105 }
1106 EXPORT_SYMBOL_GPL(mmput);
1107
1108 #ifdef CONFIG_MMU
1109 static void mmput_async_fn(struct work_struct *work)
1110 {
1111 struct mm_struct *mm = container_of(work, struct mm_struct,
1112 async_put_work);
1113
1114 __mmput(mm);
1115 }
1116
1117 void mmput_async(struct mm_struct *mm)
1118 {
1119 if (atomic_dec_and_test(&mm->mm_users)) {
1120 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1121 schedule_work(&mm->async_put_work);
1122 }
1123 }
1124 #endif
1125
1126 /**
1127 * set_mm_exe_file - change a reference to the mm's executable file
1128 *
1129 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1130 *
1131 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1132 * invocations: in mmput() nobody alive left, in execve task is single
1133 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1134 * mm->exe_file, but does so without using set_mm_exe_file() in order
1135 * to do avoid the need for any locks.
1136 */
1137 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1138 {
1139 struct file *old_exe_file;
1140
1141 /*
1142 * It is safe to dereference the exe_file without RCU as
1143 * this function is only called if nobody else can access
1144 * this mm -- see comment above for justification.
1145 */
1146 old_exe_file = rcu_dereference_raw(mm->exe_file);
1147
1148 if (new_exe_file)
1149 get_file(new_exe_file);
1150 rcu_assign_pointer(mm->exe_file, new_exe_file);
1151 if (old_exe_file)
1152 fput(old_exe_file);
1153 }
1154
1155 /**
1156 * get_mm_exe_file - acquire a reference to the mm's executable file
1157 *
1158 * Returns %NULL if mm has no associated executable file.
1159 * User must release file via fput().
1160 */
1161 struct file *get_mm_exe_file(struct mm_struct *mm)
1162 {
1163 struct file *exe_file;
1164
1165 rcu_read_lock();
1166 exe_file = rcu_dereference(mm->exe_file);
1167 if (exe_file && !get_file_rcu(exe_file))
1168 exe_file = NULL;
1169 rcu_read_unlock();
1170 return exe_file;
1171 }
1172 EXPORT_SYMBOL(get_mm_exe_file);
1173
1174 /**
1175 * get_task_exe_file - acquire a reference to the task's executable file
1176 *
1177 * Returns %NULL if task's mm (if any) has no associated executable file or
1178 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1179 * User must release file via fput().
1180 */
1181 struct file *get_task_exe_file(struct task_struct *task)
1182 {
1183 struct file *exe_file = NULL;
1184 struct mm_struct *mm;
1185
1186 task_lock(task);
1187 mm = task->mm;
1188 if (mm) {
1189 if (!(task->flags & PF_KTHREAD))
1190 exe_file = get_mm_exe_file(mm);
1191 }
1192 task_unlock(task);
1193 return exe_file;
1194 }
1195 EXPORT_SYMBOL(get_task_exe_file);
1196
1197 /**
1198 * get_task_mm - acquire a reference to the task's mm
1199 *
1200 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1201 * this kernel workthread has transiently adopted a user mm with use_mm,
1202 * to do its AIO) is not set and if so returns a reference to it, after
1203 * bumping up the use count. User must release the mm via mmput()
1204 * after use. Typically used by /proc and ptrace.
1205 */
1206 struct mm_struct *get_task_mm(struct task_struct *task)
1207 {
1208 struct mm_struct *mm;
1209
1210 task_lock(task);
1211 mm = task->mm;
1212 if (mm) {
1213 if (task->flags & PF_KTHREAD)
1214 mm = NULL;
1215 else
1216 mmget(mm);
1217 }
1218 task_unlock(task);
1219 return mm;
1220 }
1221 EXPORT_SYMBOL_GPL(get_task_mm);
1222
1223 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1224 {
1225 struct mm_struct *mm;
1226 int err;
1227
1228 err = mutex_lock_killable(&task->signal->exec_update_mutex);
1229 if (err)
1230 return ERR_PTR(err);
1231
1232 mm = get_task_mm(task);
1233 if (mm && mm != current->mm &&
1234 !ptrace_may_access(task, mode)) {
1235 mmput(mm);
1236 mm = ERR_PTR(-EACCES);
1237 }
1238 mutex_unlock(&task->signal->exec_update_mutex);
1239
1240 return mm;
1241 }
1242
1243 static void complete_vfork_done(struct task_struct *tsk)
1244 {
1245 struct completion *vfork;
1246
1247 task_lock(tsk);
1248 vfork = tsk->vfork_done;
1249 if (likely(vfork)) {
1250 tsk->vfork_done = NULL;
1251 complete(vfork);
1252 }
1253 task_unlock(tsk);
1254 }
1255
1256 static int wait_for_vfork_done(struct task_struct *child,
1257 struct completion *vfork)
1258 {
1259 int killed;
1260
1261 freezer_do_not_count();
1262 cgroup_enter_frozen();
1263 killed = wait_for_completion_killable(vfork);
1264 cgroup_leave_frozen(false);
1265 freezer_count();
1266
1267 if (killed) {
1268 task_lock(child);
1269 child->vfork_done = NULL;
1270 task_unlock(child);
1271 }
1272
1273 put_task_struct(child);
1274 return killed;
1275 }
1276
1277 /* Please note the differences between mmput and mm_release.
1278 * mmput is called whenever we stop holding onto a mm_struct,
1279 * error success whatever.
1280 *
1281 * mm_release is called after a mm_struct has been removed
1282 * from the current process.
1283 *
1284 * This difference is important for error handling, when we
1285 * only half set up a mm_struct for a new process and need to restore
1286 * the old one. Because we mmput the new mm_struct before
1287 * restoring the old one. . .
1288 * Eric Biederman 10 January 1998
1289 */
1290 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1291 {
1292 uprobe_free_utask(tsk);
1293
1294 /* Get rid of any cached register state */
1295 deactivate_mm(tsk, mm);
1296
1297 /*
1298 * Signal userspace if we're not exiting with a core dump
1299 * because we want to leave the value intact for debugging
1300 * purposes.
1301 */
1302 if (tsk->clear_child_tid) {
1303 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1304 atomic_read(&mm->mm_users) > 1) {
1305 /*
1306 * We don't check the error code - if userspace has
1307 * not set up a proper pointer then tough luck.
1308 */
1309 put_user(0, tsk->clear_child_tid);
1310 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1311 1, NULL, NULL, 0, 0);
1312 }
1313 tsk->clear_child_tid = NULL;
1314 }
1315
1316 /*
1317 * All done, finally we can wake up parent and return this mm to him.
1318 * Also kthread_stop() uses this completion for synchronization.
1319 */
1320 if (tsk->vfork_done)
1321 complete_vfork_done(tsk);
1322 }
1323
1324 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325 {
1326 futex_exit_release(tsk);
1327 mm_release(tsk, mm);
1328 }
1329
1330 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1331 {
1332 futex_exec_release(tsk);
1333 mm_release(tsk, mm);
1334 }
1335
1336 /**
1337 * dup_mm() - duplicates an existing mm structure
1338 * @tsk: the task_struct with which the new mm will be associated.
1339 * @oldmm: the mm to duplicate.
1340 *
1341 * Allocates a new mm structure and duplicates the provided @oldmm structure
1342 * content into it.
1343 *
1344 * Return: the duplicated mm or NULL on failure.
1345 */
1346 static struct mm_struct *dup_mm(struct task_struct *tsk,
1347 struct mm_struct *oldmm)
1348 {
1349 struct mm_struct *mm;
1350 int err;
1351
1352 mm = allocate_mm();
1353 if (!mm)
1354 goto fail_nomem;
1355
1356 memcpy(mm, oldmm, sizeof(*mm));
1357
1358 if (!mm_init(mm, tsk, mm->user_ns))
1359 goto fail_nomem;
1360
1361 err = dup_mmap(mm, oldmm);
1362 if (err)
1363 goto free_pt;
1364
1365 mm->hiwater_rss = get_mm_rss(mm);
1366 mm->hiwater_vm = mm->total_vm;
1367
1368 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1369 goto free_pt;
1370
1371 return mm;
1372
1373 free_pt:
1374 /* don't put binfmt in mmput, we haven't got module yet */
1375 mm->binfmt = NULL;
1376 mm_init_owner(mm, NULL);
1377 mmput(mm);
1378
1379 fail_nomem:
1380 return NULL;
1381 }
1382
1383 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1384 {
1385 struct mm_struct *mm, *oldmm;
1386 int retval;
1387
1388 tsk->min_flt = tsk->maj_flt = 0;
1389 tsk->nvcsw = tsk->nivcsw = 0;
1390 #ifdef CONFIG_DETECT_HUNG_TASK
1391 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1392 tsk->last_switch_time = 0;
1393 #endif
1394
1395 tsk->mm = NULL;
1396 tsk->active_mm = NULL;
1397
1398 /*
1399 * Are we cloning a kernel thread?
1400 *
1401 * We need to steal a active VM for that..
1402 */
1403 oldmm = current->mm;
1404 if (!oldmm)
1405 return 0;
1406
1407 /* initialize the new vmacache entries */
1408 vmacache_flush(tsk);
1409
1410 if (clone_flags & CLONE_VM) {
1411 mmget(oldmm);
1412 mm = oldmm;
1413 goto good_mm;
1414 }
1415
1416 retval = -ENOMEM;
1417 mm = dup_mm(tsk, current->mm);
1418 if (!mm)
1419 goto fail_nomem;
1420
1421 good_mm:
1422 tsk->mm = mm;
1423 tsk->active_mm = mm;
1424 return 0;
1425
1426 fail_nomem:
1427 return retval;
1428 }
1429
1430 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1431 {
1432 struct fs_struct *fs = current->fs;
1433 if (clone_flags & CLONE_FS) {
1434 /* tsk->fs is already what we want */
1435 spin_lock(&fs->lock);
1436 if (fs->in_exec) {
1437 spin_unlock(&fs->lock);
1438 return -EAGAIN;
1439 }
1440 fs->users++;
1441 spin_unlock(&fs->lock);
1442 return 0;
1443 }
1444 tsk->fs = copy_fs_struct(fs);
1445 if (!tsk->fs)
1446 return -ENOMEM;
1447 return 0;
1448 }
1449
1450 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1451 {
1452 struct files_struct *oldf, *newf;
1453 int error = 0;
1454
1455 /*
1456 * A background process may not have any files ...
1457 */
1458 oldf = current->files;
1459 if (!oldf)
1460 goto out;
1461
1462 if (clone_flags & CLONE_FILES) {
1463 atomic_inc(&oldf->count);
1464 goto out;
1465 }
1466
1467 newf = dup_fd(oldf, &error);
1468 if (!newf)
1469 goto out;
1470
1471 tsk->files = newf;
1472 error = 0;
1473 out:
1474 return error;
1475 }
1476
1477 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1478 {
1479 #ifdef CONFIG_BLOCK
1480 struct io_context *ioc = current->io_context;
1481 struct io_context *new_ioc;
1482
1483 if (!ioc)
1484 return 0;
1485 /*
1486 * Share io context with parent, if CLONE_IO is set
1487 */
1488 if (clone_flags & CLONE_IO) {
1489 ioc_task_link(ioc);
1490 tsk->io_context = ioc;
1491 } else if (ioprio_valid(ioc->ioprio)) {
1492 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1493 if (unlikely(!new_ioc))
1494 return -ENOMEM;
1495
1496 new_ioc->ioprio = ioc->ioprio;
1497 put_io_context(new_ioc);
1498 }
1499 #endif
1500 return 0;
1501 }
1502
1503 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1504 {
1505 struct sighand_struct *sig;
1506
1507 if (clone_flags & CLONE_SIGHAND) {
1508 refcount_inc(&current->sighand->count);
1509 return 0;
1510 }
1511 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1512 RCU_INIT_POINTER(tsk->sighand, sig);
1513 if (!sig)
1514 return -ENOMEM;
1515
1516 refcount_set(&sig->count, 1);
1517 spin_lock_irq(&current->sighand->siglock);
1518 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1519 spin_unlock_irq(&current->sighand->siglock);
1520
1521 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1522 if (clone_flags & CLONE_CLEAR_SIGHAND)
1523 flush_signal_handlers(tsk, 0);
1524
1525 return 0;
1526 }
1527
1528 void __cleanup_sighand(struct sighand_struct *sighand)
1529 {
1530 if (refcount_dec_and_test(&sighand->count)) {
1531 signalfd_cleanup(sighand);
1532 /*
1533 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1534 * without an RCU grace period, see __lock_task_sighand().
1535 */
1536 kmem_cache_free(sighand_cachep, sighand);
1537 }
1538 }
1539
1540 /*
1541 * Initialize POSIX timer handling for a thread group.
1542 */
1543 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1544 {
1545 struct posix_cputimers *pct = &sig->posix_cputimers;
1546 unsigned long cpu_limit;
1547
1548 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1549 posix_cputimers_group_init(pct, cpu_limit);
1550 }
1551
1552 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1553 {
1554 struct signal_struct *sig;
1555
1556 if (clone_flags & CLONE_THREAD)
1557 return 0;
1558
1559 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1560 tsk->signal = sig;
1561 if (!sig)
1562 return -ENOMEM;
1563
1564 sig->nr_threads = 1;
1565 atomic_set(&sig->live, 1);
1566 refcount_set(&sig->sigcnt, 1);
1567
1568 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1569 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1570 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1571
1572 init_waitqueue_head(&sig->wait_chldexit);
1573 sig->curr_target = tsk;
1574 init_sigpending(&sig->shared_pending);
1575 INIT_HLIST_HEAD(&sig->multiprocess);
1576 seqlock_init(&sig->stats_lock);
1577 prev_cputime_init(&sig->prev_cputime);
1578
1579 #ifdef CONFIG_POSIX_TIMERS
1580 INIT_LIST_HEAD(&sig->posix_timers);
1581 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1582 sig->real_timer.function = it_real_fn;
1583 #endif
1584
1585 task_lock(current->group_leader);
1586 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1587 task_unlock(current->group_leader);
1588
1589 posix_cpu_timers_init_group(sig);
1590
1591 tty_audit_fork(sig);
1592 sched_autogroup_fork(sig);
1593
1594 sig->oom_score_adj = current->signal->oom_score_adj;
1595 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1596
1597 mutex_init(&sig->cred_guard_mutex);
1598 mutex_init(&sig->exec_update_mutex);
1599
1600 return 0;
1601 }
1602
1603 static void copy_seccomp(struct task_struct *p)
1604 {
1605 #ifdef CONFIG_SECCOMP
1606 /*
1607 * Must be called with sighand->lock held, which is common to
1608 * all threads in the group. Holding cred_guard_mutex is not
1609 * needed because this new task is not yet running and cannot
1610 * be racing exec.
1611 */
1612 assert_spin_locked(&current->sighand->siglock);
1613
1614 /* Ref-count the new filter user, and assign it. */
1615 get_seccomp_filter(current);
1616 p->seccomp = current->seccomp;
1617
1618 /*
1619 * Explicitly enable no_new_privs here in case it got set
1620 * between the task_struct being duplicated and holding the
1621 * sighand lock. The seccomp state and nnp must be in sync.
1622 */
1623 if (task_no_new_privs(current))
1624 task_set_no_new_privs(p);
1625
1626 /*
1627 * If the parent gained a seccomp mode after copying thread
1628 * flags and between before we held the sighand lock, we have
1629 * to manually enable the seccomp thread flag here.
1630 */
1631 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1632 set_tsk_thread_flag(p, TIF_SECCOMP);
1633 #endif
1634 }
1635
1636 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1637 {
1638 current->clear_child_tid = tidptr;
1639
1640 return task_pid_vnr(current);
1641 }
1642
1643 static void rt_mutex_init_task(struct task_struct *p)
1644 {
1645 raw_spin_lock_init(&p->pi_lock);
1646 #ifdef CONFIG_RT_MUTEXES
1647 p->pi_waiters = RB_ROOT_CACHED;
1648 p->pi_top_task = NULL;
1649 p->pi_blocked_on = NULL;
1650 #endif
1651 }
1652
1653 static inline void init_task_pid_links(struct task_struct *task)
1654 {
1655 enum pid_type type;
1656
1657 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1658 INIT_HLIST_NODE(&task->pid_links[type]);
1659 }
1660 }
1661
1662 static inline void
1663 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1664 {
1665 if (type == PIDTYPE_PID)
1666 task->thread_pid = pid;
1667 else
1668 task->signal->pids[type] = pid;
1669 }
1670
1671 static inline void rcu_copy_process(struct task_struct *p)
1672 {
1673 #ifdef CONFIG_PREEMPT_RCU
1674 p->rcu_read_lock_nesting = 0;
1675 p->rcu_read_unlock_special.s = 0;
1676 p->rcu_blocked_node = NULL;
1677 INIT_LIST_HEAD(&p->rcu_node_entry);
1678 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1679 #ifdef CONFIG_TASKS_RCU
1680 p->rcu_tasks_holdout = false;
1681 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1682 p->rcu_tasks_idle_cpu = -1;
1683 #endif /* #ifdef CONFIG_TASKS_RCU */
1684 }
1685
1686 struct pid *pidfd_pid(const struct file *file)
1687 {
1688 if (file->f_op == &pidfd_fops)
1689 return file->private_data;
1690
1691 return ERR_PTR(-EBADF);
1692 }
1693
1694 static int pidfd_release(struct inode *inode, struct file *file)
1695 {
1696 struct pid *pid = file->private_data;
1697
1698 file->private_data = NULL;
1699 put_pid(pid);
1700 return 0;
1701 }
1702
1703 #ifdef CONFIG_PROC_FS
1704 /**
1705 * pidfd_show_fdinfo - print information about a pidfd
1706 * @m: proc fdinfo file
1707 * @f: file referencing a pidfd
1708 *
1709 * Pid:
1710 * This function will print the pid that a given pidfd refers to in the
1711 * pid namespace of the procfs instance.
1712 * If the pid namespace of the process is not a descendant of the pid
1713 * namespace of the procfs instance 0 will be shown as its pid. This is
1714 * similar to calling getppid() on a process whose parent is outside of
1715 * its pid namespace.
1716 *
1717 * NSpid:
1718 * If pid namespaces are supported then this function will also print
1719 * the pid of a given pidfd refers to for all descendant pid namespaces
1720 * starting from the current pid namespace of the instance, i.e. the
1721 * Pid field and the first entry in the NSpid field will be identical.
1722 * If the pid namespace of the process is not a descendant of the pid
1723 * namespace of the procfs instance 0 will be shown as its first NSpid
1724 * entry and no others will be shown.
1725 * Note that this differs from the Pid and NSpid fields in
1726 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1727 * the pid namespace of the procfs instance. The difference becomes
1728 * obvious when sending around a pidfd between pid namespaces from a
1729 * different branch of the tree, i.e. where no ancestoral relation is
1730 * present between the pid namespaces:
1731 * - create two new pid namespaces ns1 and ns2 in the initial pid
1732 * namespace (also take care to create new mount namespaces in the
1733 * new pid namespace and mount procfs)
1734 * - create a process with a pidfd in ns1
1735 * - send pidfd from ns1 to ns2
1736 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1737 * have exactly one entry, which is 0
1738 */
1739 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1740 {
1741 struct pid *pid = f->private_data;
1742 struct pid_namespace *ns;
1743 pid_t nr = -1;
1744
1745 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1746 ns = proc_pid_ns(file_inode(m->file));
1747 nr = pid_nr_ns(pid, ns);
1748 }
1749
1750 seq_put_decimal_ll(m, "Pid:\t", nr);
1751
1752 #ifdef CONFIG_PID_NS
1753 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1754 if (nr > 0) {
1755 int i;
1756
1757 /* If nr is non-zero it means that 'pid' is valid and that
1758 * ns, i.e. the pid namespace associated with the procfs
1759 * instance, is in the pid namespace hierarchy of pid.
1760 * Start at one below the already printed level.
1761 */
1762 for (i = ns->level + 1; i <= pid->level; i++)
1763 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1764 }
1765 #endif
1766 seq_putc(m, '\n');
1767 }
1768 #endif
1769
1770 /*
1771 * Poll support for process exit notification.
1772 */
1773 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1774 {
1775 struct task_struct *task;
1776 struct pid *pid = file->private_data;
1777 __poll_t poll_flags = 0;
1778
1779 poll_wait(file, &pid->wait_pidfd, pts);
1780
1781 rcu_read_lock();
1782 task = pid_task(pid, PIDTYPE_PID);
1783 /*
1784 * Inform pollers only when the whole thread group exits.
1785 * If the thread group leader exits before all other threads in the
1786 * group, then poll(2) should block, similar to the wait(2) family.
1787 */
1788 if (!task || (task->exit_state && thread_group_empty(task)))
1789 poll_flags = EPOLLIN | EPOLLRDNORM;
1790 rcu_read_unlock();
1791
1792 return poll_flags;
1793 }
1794
1795 const struct file_operations pidfd_fops = {
1796 .release = pidfd_release,
1797 .poll = pidfd_poll,
1798 #ifdef CONFIG_PROC_FS
1799 .show_fdinfo = pidfd_show_fdinfo,
1800 #endif
1801 };
1802
1803 static void __delayed_free_task(struct rcu_head *rhp)
1804 {
1805 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1806
1807 free_task(tsk);
1808 }
1809
1810 static __always_inline void delayed_free_task(struct task_struct *tsk)
1811 {
1812 if (IS_ENABLED(CONFIG_MEMCG))
1813 call_rcu(&tsk->rcu, __delayed_free_task);
1814 else
1815 free_task(tsk);
1816 }
1817
1818 /*
1819 * This creates a new process as a copy of the old one,
1820 * but does not actually start it yet.
1821 *
1822 * It copies the registers, and all the appropriate
1823 * parts of the process environment (as per the clone
1824 * flags). The actual kick-off is left to the caller.
1825 */
1826 static __latent_entropy struct task_struct *copy_process(
1827 struct pid *pid,
1828 int trace,
1829 int node,
1830 struct kernel_clone_args *args)
1831 {
1832 int pidfd = -1, retval;
1833 struct task_struct *p;
1834 struct multiprocess_signals delayed;
1835 struct file *pidfile = NULL;
1836 u64 clone_flags = args->flags;
1837 struct nsproxy *nsp = current->nsproxy;
1838
1839 /*
1840 * Don't allow sharing the root directory with processes in a different
1841 * namespace
1842 */
1843 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1844 return ERR_PTR(-EINVAL);
1845
1846 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1847 return ERR_PTR(-EINVAL);
1848
1849 /*
1850 * Thread groups must share signals as well, and detached threads
1851 * can only be started up within the thread group.
1852 */
1853 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1854 return ERR_PTR(-EINVAL);
1855
1856 /*
1857 * Shared signal handlers imply shared VM. By way of the above,
1858 * thread groups also imply shared VM. Blocking this case allows
1859 * for various simplifications in other code.
1860 */
1861 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1862 return ERR_PTR(-EINVAL);
1863
1864 /*
1865 * Siblings of global init remain as zombies on exit since they are
1866 * not reaped by their parent (swapper). To solve this and to avoid
1867 * multi-rooted process trees, prevent global and container-inits
1868 * from creating siblings.
1869 */
1870 if ((clone_flags & CLONE_PARENT) &&
1871 current->signal->flags & SIGNAL_UNKILLABLE)
1872 return ERR_PTR(-EINVAL);
1873
1874 /*
1875 * If the new process will be in a different pid or user namespace
1876 * do not allow it to share a thread group with the forking task.
1877 */
1878 if (clone_flags & CLONE_THREAD) {
1879 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1880 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1881 return ERR_PTR(-EINVAL);
1882 }
1883
1884 /*
1885 * If the new process will be in a different time namespace
1886 * do not allow it to share VM or a thread group with the forking task.
1887 */
1888 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1889 if (nsp->time_ns != nsp->time_ns_for_children)
1890 return ERR_PTR(-EINVAL);
1891 }
1892
1893 if (clone_flags & CLONE_PIDFD) {
1894 /*
1895 * - CLONE_DETACHED is blocked so that we can potentially
1896 * reuse it later for CLONE_PIDFD.
1897 * - CLONE_THREAD is blocked until someone really needs it.
1898 */
1899 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1900 return ERR_PTR(-EINVAL);
1901 }
1902
1903 /*
1904 * Force any signals received before this point to be delivered
1905 * before the fork happens. Collect up signals sent to multiple
1906 * processes that happen during the fork and delay them so that
1907 * they appear to happen after the fork.
1908 */
1909 sigemptyset(&delayed.signal);
1910 INIT_HLIST_NODE(&delayed.node);
1911
1912 spin_lock_irq(&current->sighand->siglock);
1913 if (!(clone_flags & CLONE_THREAD))
1914 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1915 recalc_sigpending();
1916 spin_unlock_irq(&current->sighand->siglock);
1917 retval = -ERESTARTNOINTR;
1918 if (signal_pending(current))
1919 goto fork_out;
1920
1921 retval = -ENOMEM;
1922 p = dup_task_struct(current, node);
1923 if (!p)
1924 goto fork_out;
1925
1926 /*
1927 * This _must_ happen before we call free_task(), i.e. before we jump
1928 * to any of the bad_fork_* labels. This is to avoid freeing
1929 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1930 * kernel threads (PF_KTHREAD).
1931 */
1932 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1933 /*
1934 * Clear TID on mm_release()?
1935 */
1936 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1937
1938 ftrace_graph_init_task(p);
1939
1940 rt_mutex_init_task(p);
1941
1942 #ifdef CONFIG_PROVE_LOCKING
1943 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1944 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1945 #endif
1946 retval = -EAGAIN;
1947 if (atomic_read(&p->real_cred->user->processes) >=
1948 task_rlimit(p, RLIMIT_NPROC)) {
1949 if (p->real_cred->user != INIT_USER &&
1950 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1951 goto bad_fork_free;
1952 }
1953 current->flags &= ~PF_NPROC_EXCEEDED;
1954
1955 retval = copy_creds(p, clone_flags);
1956 if (retval < 0)
1957 goto bad_fork_free;
1958
1959 /*
1960 * If multiple threads are within copy_process(), then this check
1961 * triggers too late. This doesn't hurt, the check is only there
1962 * to stop root fork bombs.
1963 */
1964 retval = -EAGAIN;
1965 if (nr_threads >= max_threads)
1966 goto bad_fork_cleanup_count;
1967
1968 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1969 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1970 p->flags |= PF_FORKNOEXEC;
1971 INIT_LIST_HEAD(&p->children);
1972 INIT_LIST_HEAD(&p->sibling);
1973 rcu_copy_process(p);
1974 p->vfork_done = NULL;
1975 spin_lock_init(&p->alloc_lock);
1976
1977 init_sigpending(&p->pending);
1978
1979 p->utime = p->stime = p->gtime = 0;
1980 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1981 p->utimescaled = p->stimescaled = 0;
1982 #endif
1983 prev_cputime_init(&p->prev_cputime);
1984
1985 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1986 seqcount_init(&p->vtime.seqcount);
1987 p->vtime.starttime = 0;
1988 p->vtime.state = VTIME_INACTIVE;
1989 #endif
1990
1991 #if defined(SPLIT_RSS_COUNTING)
1992 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1993 #endif
1994
1995 p->default_timer_slack_ns = current->timer_slack_ns;
1996
1997 #ifdef CONFIG_PSI
1998 p->psi_flags = 0;
1999 #endif
2000
2001 task_io_accounting_init(&p->ioac);
2002 acct_clear_integrals(p);
2003
2004 posix_cputimers_init(&p->posix_cputimers);
2005
2006 p->io_context = NULL;
2007 audit_set_context(p, NULL);
2008 cgroup_fork(p);
2009 #ifdef CONFIG_NUMA
2010 p->mempolicy = mpol_dup(p->mempolicy);
2011 if (IS_ERR(p->mempolicy)) {
2012 retval = PTR_ERR(p->mempolicy);
2013 p->mempolicy = NULL;
2014 goto bad_fork_cleanup_threadgroup_lock;
2015 }
2016 #endif
2017 #ifdef CONFIG_CPUSETS
2018 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2019 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2020 seqcount_init(&p->mems_allowed_seq);
2021 #endif
2022 #ifdef CONFIG_TRACE_IRQFLAGS
2023 p->irq_events = 0;
2024 p->hardirqs_enabled = 0;
2025 p->hardirq_enable_ip = 0;
2026 p->hardirq_enable_event = 0;
2027 p->hardirq_disable_ip = _THIS_IP_;
2028 p->hardirq_disable_event = 0;
2029 p->softirqs_enabled = 1;
2030 p->softirq_enable_ip = _THIS_IP_;
2031 p->softirq_enable_event = 0;
2032 p->softirq_disable_ip = 0;
2033 p->softirq_disable_event = 0;
2034 p->hardirq_context = 0;
2035 p->softirq_context = 0;
2036 #endif
2037
2038 p->pagefault_disabled = 0;
2039
2040 #ifdef CONFIG_LOCKDEP
2041 lockdep_init_task(p);
2042 #endif
2043
2044 #ifdef CONFIG_DEBUG_MUTEXES
2045 p->blocked_on = NULL; /* not blocked yet */
2046 #endif
2047 #ifdef CONFIG_BCACHE
2048 p->sequential_io = 0;
2049 p->sequential_io_avg = 0;
2050 #endif
2051
2052 /* Perform scheduler related setup. Assign this task to a CPU. */
2053 retval = sched_fork(clone_flags, p);
2054 if (retval)
2055 goto bad_fork_cleanup_policy;
2056
2057 retval = perf_event_init_task(p);
2058 if (retval)
2059 goto bad_fork_cleanup_policy;
2060 retval = audit_alloc(p);
2061 if (retval)
2062 goto bad_fork_cleanup_perf;
2063 /* copy all the process information */
2064 shm_init_task(p);
2065 retval = security_task_alloc(p, clone_flags);
2066 if (retval)
2067 goto bad_fork_cleanup_audit;
2068 retval = copy_semundo(clone_flags, p);
2069 if (retval)
2070 goto bad_fork_cleanup_security;
2071 retval = copy_files(clone_flags, p);
2072 if (retval)
2073 goto bad_fork_cleanup_semundo;
2074 retval = copy_fs(clone_flags, p);
2075 if (retval)
2076 goto bad_fork_cleanup_files;
2077 retval = copy_sighand(clone_flags, p);
2078 if (retval)
2079 goto bad_fork_cleanup_fs;
2080 retval = copy_signal(clone_flags, p);
2081 if (retval)
2082 goto bad_fork_cleanup_sighand;
2083 retval = copy_mm(clone_flags, p);
2084 if (retval)
2085 goto bad_fork_cleanup_signal;
2086 retval = copy_namespaces(clone_flags, p);
2087 if (retval)
2088 goto bad_fork_cleanup_mm;
2089 retval = copy_io(clone_flags, p);
2090 if (retval)
2091 goto bad_fork_cleanup_namespaces;
2092 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2093 args->tls);
2094 if (retval)
2095 goto bad_fork_cleanup_io;
2096
2097 stackleak_task_init(p);
2098
2099 if (pid != &init_struct_pid) {
2100 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2101 args->set_tid_size);
2102 if (IS_ERR(pid)) {
2103 retval = PTR_ERR(pid);
2104 goto bad_fork_cleanup_thread;
2105 }
2106 }
2107
2108 /*
2109 * This has to happen after we've potentially unshared the file
2110 * descriptor table (so that the pidfd doesn't leak into the child
2111 * if the fd table isn't shared).
2112 */
2113 if (clone_flags & CLONE_PIDFD) {
2114 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2115 if (retval < 0)
2116 goto bad_fork_free_pid;
2117
2118 pidfd = retval;
2119
2120 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2121 O_RDWR | O_CLOEXEC);
2122 if (IS_ERR(pidfile)) {
2123 put_unused_fd(pidfd);
2124 retval = PTR_ERR(pidfile);
2125 goto bad_fork_free_pid;
2126 }
2127 get_pid(pid); /* held by pidfile now */
2128
2129 retval = put_user(pidfd, args->pidfd);
2130 if (retval)
2131 goto bad_fork_put_pidfd;
2132 }
2133
2134 #ifdef CONFIG_BLOCK
2135 p->plug = NULL;
2136 #endif
2137 futex_init_task(p);
2138
2139 /*
2140 * sigaltstack should be cleared when sharing the same VM
2141 */
2142 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2143 sas_ss_reset(p);
2144
2145 /*
2146 * Syscall tracing and stepping should be turned off in the
2147 * child regardless of CLONE_PTRACE.
2148 */
2149 user_disable_single_step(p);
2150 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2151 #ifdef TIF_SYSCALL_EMU
2152 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2153 #endif
2154 clear_tsk_latency_tracing(p);
2155
2156 /* ok, now we should be set up.. */
2157 p->pid = pid_nr(pid);
2158 if (clone_flags & CLONE_THREAD) {
2159 p->exit_signal = -1;
2160 p->group_leader = current->group_leader;
2161 p->tgid = current->tgid;
2162 } else {
2163 if (clone_flags & CLONE_PARENT)
2164 p->exit_signal = current->group_leader->exit_signal;
2165 else
2166 p->exit_signal = args->exit_signal;
2167 p->group_leader = p;
2168 p->tgid = p->pid;
2169 }
2170
2171 p->nr_dirtied = 0;
2172 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2173 p->dirty_paused_when = 0;
2174
2175 p->pdeath_signal = 0;
2176 INIT_LIST_HEAD(&p->thread_group);
2177 p->task_works = NULL;
2178
2179 /*
2180 * Ensure that the cgroup subsystem policies allow the new process to be
2181 * forked. It should be noted the the new process's css_set can be changed
2182 * between here and cgroup_post_fork() if an organisation operation is in
2183 * progress.
2184 */
2185 retval = cgroup_can_fork(p, args);
2186 if (retval)
2187 goto bad_fork_put_pidfd;
2188
2189 /*
2190 * From this point on we must avoid any synchronous user-space
2191 * communication until we take the tasklist-lock. In particular, we do
2192 * not want user-space to be able to predict the process start-time by
2193 * stalling fork(2) after we recorded the start_time but before it is
2194 * visible to the system.
2195 */
2196
2197 p->start_time = ktime_get_ns();
2198 p->start_boottime = ktime_get_boottime_ns();
2199
2200 /*
2201 * Make it visible to the rest of the system, but dont wake it up yet.
2202 * Need tasklist lock for parent etc handling!
2203 */
2204 write_lock_irq(&tasklist_lock);
2205
2206 /* CLONE_PARENT re-uses the old parent */
2207 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2208 p->real_parent = current->real_parent;
2209 p->parent_exec_id = current->parent_exec_id;
2210 } else {
2211 p->real_parent = current;
2212 p->parent_exec_id = current->self_exec_id;
2213 }
2214
2215 klp_copy_process(p);
2216
2217 spin_lock(&current->sighand->siglock);
2218
2219 /*
2220 * Copy seccomp details explicitly here, in case they were changed
2221 * before holding sighand lock.
2222 */
2223 copy_seccomp(p);
2224
2225 rseq_fork(p, clone_flags);
2226
2227 /* Don't start children in a dying pid namespace */
2228 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2229 retval = -ENOMEM;
2230 goto bad_fork_cancel_cgroup;
2231 }
2232
2233 /* Let kill terminate clone/fork in the middle */
2234 if (fatal_signal_pending(current)) {
2235 retval = -EINTR;
2236 goto bad_fork_cancel_cgroup;
2237 }
2238
2239 /* past the last point of failure */
2240 if (pidfile)
2241 fd_install(pidfd, pidfile);
2242
2243 init_task_pid_links(p);
2244 if (likely(p->pid)) {
2245 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2246
2247 init_task_pid(p, PIDTYPE_PID, pid);
2248 if (thread_group_leader(p)) {
2249 init_task_pid(p, PIDTYPE_TGID, pid);
2250 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2251 init_task_pid(p, PIDTYPE_SID, task_session(current));
2252
2253 if (is_child_reaper(pid)) {
2254 ns_of_pid(pid)->child_reaper = p;
2255 p->signal->flags |= SIGNAL_UNKILLABLE;
2256 }
2257 p->signal->shared_pending.signal = delayed.signal;
2258 p->signal->tty = tty_kref_get(current->signal->tty);
2259 /*
2260 * Inherit has_child_subreaper flag under the same
2261 * tasklist_lock with adding child to the process tree
2262 * for propagate_has_child_subreaper optimization.
2263 */
2264 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2265 p->real_parent->signal->is_child_subreaper;
2266 list_add_tail(&p->sibling, &p->real_parent->children);
2267 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2268 attach_pid(p, PIDTYPE_TGID);
2269 attach_pid(p, PIDTYPE_PGID);
2270 attach_pid(p, PIDTYPE_SID);
2271 __this_cpu_inc(process_counts);
2272 } else {
2273 current->signal->nr_threads++;
2274 atomic_inc(&current->signal->live);
2275 refcount_inc(&current->signal->sigcnt);
2276 task_join_group_stop(p);
2277 list_add_tail_rcu(&p->thread_group,
2278 &p->group_leader->thread_group);
2279 list_add_tail_rcu(&p->thread_node,
2280 &p->signal->thread_head);
2281 }
2282 attach_pid(p, PIDTYPE_PID);
2283 nr_threads++;
2284 }
2285 total_forks++;
2286 hlist_del_init(&delayed.node);
2287 spin_unlock(&current->sighand->siglock);
2288 syscall_tracepoint_update(p);
2289 write_unlock_irq(&tasklist_lock);
2290
2291 proc_fork_connector(p);
2292 cgroup_post_fork(p, args);
2293 perf_event_fork(p);
2294
2295 trace_task_newtask(p, clone_flags);
2296 uprobe_copy_process(p, clone_flags);
2297
2298 return p;
2299
2300 bad_fork_cancel_cgroup:
2301 spin_unlock(&current->sighand->siglock);
2302 write_unlock_irq(&tasklist_lock);
2303 cgroup_cancel_fork(p, args);
2304 bad_fork_put_pidfd:
2305 if (clone_flags & CLONE_PIDFD) {
2306 fput(pidfile);
2307 put_unused_fd(pidfd);
2308 }
2309 bad_fork_free_pid:
2310 if (pid != &init_struct_pid)
2311 free_pid(pid);
2312 bad_fork_cleanup_thread:
2313 exit_thread(p);
2314 bad_fork_cleanup_io:
2315 if (p->io_context)
2316 exit_io_context(p);
2317 bad_fork_cleanup_namespaces:
2318 exit_task_namespaces(p);
2319 bad_fork_cleanup_mm:
2320 if (p->mm) {
2321 mm_clear_owner(p->mm, p);
2322 mmput(p->mm);
2323 }
2324 bad_fork_cleanup_signal:
2325 if (!(clone_flags & CLONE_THREAD))
2326 free_signal_struct(p->signal);
2327 bad_fork_cleanup_sighand:
2328 __cleanup_sighand(p->sighand);
2329 bad_fork_cleanup_fs:
2330 exit_fs(p); /* blocking */
2331 bad_fork_cleanup_files:
2332 exit_files(p); /* blocking */
2333 bad_fork_cleanup_semundo:
2334 exit_sem(p);
2335 bad_fork_cleanup_security:
2336 security_task_free(p);
2337 bad_fork_cleanup_audit:
2338 audit_free(p);
2339 bad_fork_cleanup_perf:
2340 perf_event_free_task(p);
2341 bad_fork_cleanup_policy:
2342 lockdep_free_task(p);
2343 #ifdef CONFIG_NUMA
2344 mpol_put(p->mempolicy);
2345 bad_fork_cleanup_threadgroup_lock:
2346 #endif
2347 delayacct_tsk_free(p);
2348 bad_fork_cleanup_count:
2349 atomic_dec(&p->cred->user->processes);
2350 exit_creds(p);
2351 bad_fork_free:
2352 p->state = TASK_DEAD;
2353 put_task_stack(p);
2354 delayed_free_task(p);
2355 fork_out:
2356 spin_lock_irq(&current->sighand->siglock);
2357 hlist_del_init(&delayed.node);
2358 spin_unlock_irq(&current->sighand->siglock);
2359 return ERR_PTR(retval);
2360 }
2361
2362 static inline void init_idle_pids(struct task_struct *idle)
2363 {
2364 enum pid_type type;
2365
2366 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2367 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2368 init_task_pid(idle, type, &init_struct_pid);
2369 }
2370 }
2371
2372 struct task_struct *fork_idle(int cpu)
2373 {
2374 struct task_struct *task;
2375 struct kernel_clone_args args = {
2376 .flags = CLONE_VM,
2377 };
2378
2379 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2380 if (!IS_ERR(task)) {
2381 init_idle_pids(task);
2382 init_idle(task, cpu);
2383 }
2384
2385 return task;
2386 }
2387
2388 struct mm_struct *copy_init_mm(void)
2389 {
2390 return dup_mm(NULL, &init_mm);
2391 }
2392
2393 /*
2394 * Ok, this is the main fork-routine.
2395 *
2396 * It copies the process, and if successful kick-starts
2397 * it and waits for it to finish using the VM if required.
2398 *
2399 * args->exit_signal is expected to be checked for sanity by the caller.
2400 */
2401 long _do_fork(struct kernel_clone_args *args)
2402 {
2403 u64 clone_flags = args->flags;
2404 struct completion vfork;
2405 struct pid *pid;
2406 struct task_struct *p;
2407 int trace = 0;
2408 long nr;
2409
2410 /*
2411 * Determine whether and which event to report to ptracer. When
2412 * called from kernel_thread or CLONE_UNTRACED is explicitly
2413 * requested, no event is reported; otherwise, report if the event
2414 * for the type of forking is enabled.
2415 */
2416 if (!(clone_flags & CLONE_UNTRACED)) {
2417 if (clone_flags & CLONE_VFORK)
2418 trace = PTRACE_EVENT_VFORK;
2419 else if (args->exit_signal != SIGCHLD)
2420 trace = PTRACE_EVENT_CLONE;
2421 else
2422 trace = PTRACE_EVENT_FORK;
2423
2424 if (likely(!ptrace_event_enabled(current, trace)))
2425 trace = 0;
2426 }
2427
2428 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2429 add_latent_entropy();
2430
2431 if (IS_ERR(p))
2432 return PTR_ERR(p);
2433
2434 /*
2435 * Do this prior waking up the new thread - the thread pointer
2436 * might get invalid after that point, if the thread exits quickly.
2437 */
2438 trace_sched_process_fork(current, p);
2439
2440 pid = get_task_pid(p, PIDTYPE_PID);
2441 nr = pid_vnr(pid);
2442
2443 if (clone_flags & CLONE_PARENT_SETTID)
2444 put_user(nr, args->parent_tid);
2445
2446 if (clone_flags & CLONE_VFORK) {
2447 p->vfork_done = &vfork;
2448 init_completion(&vfork);
2449 get_task_struct(p);
2450 }
2451
2452 wake_up_new_task(p);
2453
2454 /* forking complete and child started to run, tell ptracer */
2455 if (unlikely(trace))
2456 ptrace_event_pid(trace, pid);
2457
2458 if (clone_flags & CLONE_VFORK) {
2459 if (!wait_for_vfork_done(p, &vfork))
2460 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2461 }
2462
2463 put_pid(pid);
2464 return nr;
2465 }
2466
2467 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2468 {
2469 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2470 if ((kargs->flags & CLONE_PIDFD) &&
2471 (kargs->flags & CLONE_PARENT_SETTID))
2472 return false;
2473
2474 return true;
2475 }
2476
2477 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2478 /* For compatibility with architectures that call do_fork directly rather than
2479 * using the syscall entry points below. */
2480 long do_fork(unsigned long clone_flags,
2481 unsigned long stack_start,
2482 unsigned long stack_size,
2483 int __user *parent_tidptr,
2484 int __user *child_tidptr)
2485 {
2486 struct kernel_clone_args args = {
2487 .flags = (clone_flags & ~CSIGNAL),
2488 .pidfd = parent_tidptr,
2489 .child_tid = child_tidptr,
2490 .parent_tid = parent_tidptr,
2491 .exit_signal = (clone_flags & CSIGNAL),
2492 .stack = stack_start,
2493 .stack_size = stack_size,
2494 };
2495
2496 if (!legacy_clone_args_valid(&args))
2497 return -EINVAL;
2498
2499 return _do_fork(&args);
2500 }
2501 #endif
2502
2503 /*
2504 * Create a kernel thread.
2505 */
2506 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2507 {
2508 struct kernel_clone_args args = {
2509 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2510 .exit_signal = (flags & CSIGNAL),
2511 .stack = (unsigned long)fn,
2512 .stack_size = (unsigned long)arg,
2513 };
2514
2515 return _do_fork(&args);
2516 }
2517
2518 #ifdef __ARCH_WANT_SYS_FORK
2519 SYSCALL_DEFINE0(fork)
2520 {
2521 #ifdef CONFIG_MMU
2522 struct kernel_clone_args args = {
2523 .exit_signal = SIGCHLD,
2524 };
2525
2526 return _do_fork(&args);
2527 #else
2528 /* can not support in nommu mode */
2529 return -EINVAL;
2530 #endif
2531 }
2532 #endif
2533
2534 #ifdef __ARCH_WANT_SYS_VFORK
2535 SYSCALL_DEFINE0(vfork)
2536 {
2537 struct kernel_clone_args args = {
2538 .flags = CLONE_VFORK | CLONE_VM,
2539 .exit_signal = SIGCHLD,
2540 };
2541
2542 return _do_fork(&args);
2543 }
2544 #endif
2545
2546 #ifdef __ARCH_WANT_SYS_CLONE
2547 #ifdef CONFIG_CLONE_BACKWARDS
2548 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2549 int __user *, parent_tidptr,
2550 unsigned long, tls,
2551 int __user *, child_tidptr)
2552 #elif defined(CONFIG_CLONE_BACKWARDS2)
2553 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2554 int __user *, parent_tidptr,
2555 int __user *, child_tidptr,
2556 unsigned long, tls)
2557 #elif defined(CONFIG_CLONE_BACKWARDS3)
2558 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2559 int, stack_size,
2560 int __user *, parent_tidptr,
2561 int __user *, child_tidptr,
2562 unsigned long, tls)
2563 #else
2564 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2565 int __user *, parent_tidptr,
2566 int __user *, child_tidptr,
2567 unsigned long, tls)
2568 #endif
2569 {
2570 struct kernel_clone_args args = {
2571 .flags = (clone_flags & ~CSIGNAL),
2572 .pidfd = parent_tidptr,
2573 .child_tid = child_tidptr,
2574 .parent_tid = parent_tidptr,
2575 .exit_signal = (clone_flags & CSIGNAL),
2576 .stack = newsp,
2577 .tls = tls,
2578 };
2579
2580 if (!legacy_clone_args_valid(&args))
2581 return -EINVAL;
2582
2583 return _do_fork(&args);
2584 }
2585 #endif
2586
2587 #ifdef __ARCH_WANT_SYS_CLONE3
2588
2589 /*
2590 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2591 * the registers containing the syscall arguments for clone. This doesn't work
2592 * with clone3 since the TLS value is passed in clone_args instead.
2593 */
2594 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2595 #error clone3 requires copy_thread_tls support in arch
2596 #endif
2597
2598 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2599 struct clone_args __user *uargs,
2600 size_t usize)
2601 {
2602 int err;
2603 struct clone_args args;
2604 pid_t *kset_tid = kargs->set_tid;
2605
2606 if (unlikely(usize > PAGE_SIZE))
2607 return -E2BIG;
2608 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2609 return -EINVAL;
2610
2611 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2612 if (err)
2613 return err;
2614
2615 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2616 return -EINVAL;
2617
2618 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2619 return -EINVAL;
2620
2621 if (unlikely(args.set_tid && args.set_tid_size == 0))
2622 return -EINVAL;
2623
2624 /*
2625 * Verify that higher 32bits of exit_signal are unset and that
2626 * it is a valid signal
2627 */
2628 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2629 !valid_signal(args.exit_signal)))
2630 return -EINVAL;
2631
2632 if ((args.flags & CLONE_INTO_CGROUP) && args.cgroup < 0)
2633 return -EINVAL;
2634
2635 *kargs = (struct kernel_clone_args){
2636 .flags = args.flags,
2637 .pidfd = u64_to_user_ptr(args.pidfd),
2638 .child_tid = u64_to_user_ptr(args.child_tid),
2639 .parent_tid = u64_to_user_ptr(args.parent_tid),
2640 .exit_signal = args.exit_signal,
2641 .stack = args.stack,
2642 .stack_size = args.stack_size,
2643 .tls = args.tls,
2644 .set_tid_size = args.set_tid_size,
2645 .cgroup = args.cgroup,
2646 };
2647
2648 if (args.set_tid &&
2649 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2650 (kargs->set_tid_size * sizeof(pid_t))))
2651 return -EFAULT;
2652
2653 kargs->set_tid = kset_tid;
2654
2655 return 0;
2656 }
2657
2658 /**
2659 * clone3_stack_valid - check and prepare stack
2660 * @kargs: kernel clone args
2661 *
2662 * Verify that the stack arguments userspace gave us are sane.
2663 * In addition, set the stack direction for userspace since it's easy for us to
2664 * determine.
2665 */
2666 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2667 {
2668 if (kargs->stack == 0) {
2669 if (kargs->stack_size > 0)
2670 return false;
2671 } else {
2672 if (kargs->stack_size == 0)
2673 return false;
2674
2675 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2676 return false;
2677
2678 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2679 kargs->stack += kargs->stack_size;
2680 #endif
2681 }
2682
2683 return true;
2684 }
2685
2686 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2687 {
2688 /* Verify that no unknown flags are passed along. */
2689 if (kargs->flags &
2690 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2691 return false;
2692
2693 /*
2694 * - make the CLONE_DETACHED bit reuseable for clone3
2695 * - make the CSIGNAL bits reuseable for clone3
2696 */
2697 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2698 return false;
2699
2700 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2701 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2702 return false;
2703
2704 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2705 kargs->exit_signal)
2706 return false;
2707
2708 if (!clone3_stack_valid(kargs))
2709 return false;
2710
2711 return true;
2712 }
2713
2714 /**
2715 * clone3 - create a new process with specific properties
2716 * @uargs: argument structure
2717 * @size: size of @uargs
2718 *
2719 * clone3() is the extensible successor to clone()/clone2().
2720 * It takes a struct as argument that is versioned by its size.
2721 *
2722 * Return: On success, a positive PID for the child process.
2723 * On error, a negative errno number.
2724 */
2725 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2726 {
2727 int err;
2728
2729 struct kernel_clone_args kargs;
2730 pid_t set_tid[MAX_PID_NS_LEVEL];
2731
2732 kargs.set_tid = set_tid;
2733
2734 err = copy_clone_args_from_user(&kargs, uargs, size);
2735 if (err)
2736 return err;
2737
2738 if (!clone3_args_valid(&kargs))
2739 return -EINVAL;
2740
2741 return _do_fork(&kargs);
2742 }
2743 #endif
2744
2745 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2746 {
2747 struct task_struct *leader, *parent, *child;
2748 int res;
2749
2750 read_lock(&tasklist_lock);
2751 leader = top = top->group_leader;
2752 down:
2753 for_each_thread(leader, parent) {
2754 list_for_each_entry(child, &parent->children, sibling) {
2755 res = visitor(child, data);
2756 if (res) {
2757 if (res < 0)
2758 goto out;
2759 leader = child;
2760 goto down;
2761 }
2762 up:
2763 ;
2764 }
2765 }
2766
2767 if (leader != top) {
2768 child = leader;
2769 parent = child->real_parent;
2770 leader = parent->group_leader;
2771 goto up;
2772 }
2773 out:
2774 read_unlock(&tasklist_lock);
2775 }
2776
2777 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2778 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2779 #endif
2780
2781 static void sighand_ctor(void *data)
2782 {
2783 struct sighand_struct *sighand = data;
2784
2785 spin_lock_init(&sighand->siglock);
2786 init_waitqueue_head(&sighand->signalfd_wqh);
2787 }
2788
2789 void __init proc_caches_init(void)
2790 {
2791 unsigned int mm_size;
2792
2793 sighand_cachep = kmem_cache_create("sighand_cache",
2794 sizeof(struct sighand_struct), 0,
2795 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2796 SLAB_ACCOUNT, sighand_ctor);
2797 signal_cachep = kmem_cache_create("signal_cache",
2798 sizeof(struct signal_struct), 0,
2799 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2800 NULL);
2801 files_cachep = kmem_cache_create("files_cache",
2802 sizeof(struct files_struct), 0,
2803 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2804 NULL);
2805 fs_cachep = kmem_cache_create("fs_cache",
2806 sizeof(struct fs_struct), 0,
2807 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2808 NULL);
2809
2810 /*
2811 * The mm_cpumask is located at the end of mm_struct, and is
2812 * dynamically sized based on the maximum CPU number this system
2813 * can have, taking hotplug into account (nr_cpu_ids).
2814 */
2815 mm_size = sizeof(struct mm_struct) + cpumask_size();
2816
2817 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2818 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2819 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2820 offsetof(struct mm_struct, saved_auxv),
2821 sizeof_field(struct mm_struct, saved_auxv),
2822 NULL);
2823 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2824 mmap_init();
2825 nsproxy_cache_init();
2826 }
2827
2828 /*
2829 * Check constraints on flags passed to the unshare system call.
2830 */
2831 static int check_unshare_flags(unsigned long unshare_flags)
2832 {
2833 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2834 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2835 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2836 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2837 CLONE_NEWTIME))
2838 return -EINVAL;
2839 /*
2840 * Not implemented, but pretend it works if there is nothing
2841 * to unshare. Note that unsharing the address space or the
2842 * signal handlers also need to unshare the signal queues (aka
2843 * CLONE_THREAD).
2844 */
2845 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2846 if (!thread_group_empty(current))
2847 return -EINVAL;
2848 }
2849 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2850 if (refcount_read(&current->sighand->count) > 1)
2851 return -EINVAL;
2852 }
2853 if (unshare_flags & CLONE_VM) {
2854 if (!current_is_single_threaded())
2855 return -EINVAL;
2856 }
2857
2858 return 0;
2859 }
2860
2861 /*
2862 * Unshare the filesystem structure if it is being shared
2863 */
2864 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2865 {
2866 struct fs_struct *fs = current->fs;
2867
2868 if (!(unshare_flags & CLONE_FS) || !fs)
2869 return 0;
2870
2871 /* don't need lock here; in the worst case we'll do useless copy */
2872 if (fs->users == 1)
2873 return 0;
2874
2875 *new_fsp = copy_fs_struct(fs);
2876 if (!*new_fsp)
2877 return -ENOMEM;
2878
2879 return 0;
2880 }
2881
2882 /*
2883 * Unshare file descriptor table if it is being shared
2884 */
2885 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2886 {
2887 struct files_struct *fd = current->files;
2888 int error = 0;
2889
2890 if ((unshare_flags & CLONE_FILES) &&
2891 (fd && atomic_read(&fd->count) > 1)) {
2892 *new_fdp = dup_fd(fd, &error);
2893 if (!*new_fdp)
2894 return error;
2895 }
2896
2897 return 0;
2898 }
2899
2900 /*
2901 * unshare allows a process to 'unshare' part of the process
2902 * context which was originally shared using clone. copy_*
2903 * functions used by do_fork() cannot be used here directly
2904 * because they modify an inactive task_struct that is being
2905 * constructed. Here we are modifying the current, active,
2906 * task_struct.
2907 */
2908 int ksys_unshare(unsigned long unshare_flags)
2909 {
2910 struct fs_struct *fs, *new_fs = NULL;
2911 struct files_struct *fd, *new_fd = NULL;
2912 struct cred *new_cred = NULL;
2913 struct nsproxy *new_nsproxy = NULL;
2914 int do_sysvsem = 0;
2915 int err;
2916
2917 /*
2918 * If unsharing a user namespace must also unshare the thread group
2919 * and unshare the filesystem root and working directories.
2920 */
2921 if (unshare_flags & CLONE_NEWUSER)
2922 unshare_flags |= CLONE_THREAD | CLONE_FS;
2923 /*
2924 * If unsharing vm, must also unshare signal handlers.
2925 */
2926 if (unshare_flags & CLONE_VM)
2927 unshare_flags |= CLONE_SIGHAND;
2928 /*
2929 * If unsharing a signal handlers, must also unshare the signal queues.
2930 */
2931 if (unshare_flags & CLONE_SIGHAND)
2932 unshare_flags |= CLONE_THREAD;
2933 /*
2934 * If unsharing namespace, must also unshare filesystem information.
2935 */
2936 if (unshare_flags & CLONE_NEWNS)
2937 unshare_flags |= CLONE_FS;
2938
2939 err = check_unshare_flags(unshare_flags);
2940 if (err)
2941 goto bad_unshare_out;
2942 /*
2943 * CLONE_NEWIPC must also detach from the undolist: after switching
2944 * to a new ipc namespace, the semaphore arrays from the old
2945 * namespace are unreachable.
2946 */
2947 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2948 do_sysvsem = 1;
2949 err = unshare_fs(unshare_flags, &new_fs);
2950 if (err)
2951 goto bad_unshare_out;
2952 err = unshare_fd(unshare_flags, &new_fd);
2953 if (err)
2954 goto bad_unshare_cleanup_fs;
2955 err = unshare_userns(unshare_flags, &new_cred);
2956 if (err)
2957 goto bad_unshare_cleanup_fd;
2958 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2959 new_cred, new_fs);
2960 if (err)
2961 goto bad_unshare_cleanup_cred;
2962
2963 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2964 if (do_sysvsem) {
2965 /*
2966 * CLONE_SYSVSEM is equivalent to sys_exit().
2967 */
2968 exit_sem(current);
2969 }
2970 if (unshare_flags & CLONE_NEWIPC) {
2971 /* Orphan segments in old ns (see sem above). */
2972 exit_shm(current);
2973 shm_init_task(current);
2974 }
2975
2976 if (new_nsproxy)
2977 switch_task_namespaces(current, new_nsproxy);
2978
2979 task_lock(current);
2980
2981 if (new_fs) {
2982 fs = current->fs;
2983 spin_lock(&fs->lock);
2984 current->fs = new_fs;
2985 if (--fs->users)
2986 new_fs = NULL;
2987 else
2988 new_fs = fs;
2989 spin_unlock(&fs->lock);
2990 }
2991
2992 if (new_fd) {
2993 fd = current->files;
2994 current->files = new_fd;
2995 new_fd = fd;
2996 }
2997
2998 task_unlock(current);
2999
3000 if (new_cred) {
3001 /* Install the new user namespace */
3002 commit_creds(new_cred);
3003 new_cred = NULL;
3004 }
3005 }
3006
3007 perf_event_namespaces(current);
3008
3009 bad_unshare_cleanup_cred:
3010 if (new_cred)
3011 put_cred(new_cred);
3012 bad_unshare_cleanup_fd:
3013 if (new_fd)
3014 put_files_struct(new_fd);
3015
3016 bad_unshare_cleanup_fs:
3017 if (new_fs)
3018 free_fs_struct(new_fs);
3019
3020 bad_unshare_out:
3021 return err;
3022 }
3023
3024 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3025 {
3026 return ksys_unshare(unshare_flags);
3027 }
3028
3029 /*
3030 * Helper to unshare the files of the current task.
3031 * We don't want to expose copy_files internals to
3032 * the exec layer of the kernel.
3033 */
3034
3035 int unshare_files(struct files_struct **displaced)
3036 {
3037 struct task_struct *task = current;
3038 struct files_struct *copy = NULL;
3039 int error;
3040
3041 error = unshare_fd(CLONE_FILES, &copy);
3042 if (error || !copy) {
3043 *displaced = NULL;
3044 return error;
3045 }
3046 *displaced = task->files;
3047 task_lock(task);
3048 task->files = copy;
3049 task_unlock(task);
3050 return 0;
3051 }
3052
3053 int sysctl_max_threads(struct ctl_table *table, int write,
3054 void __user *buffer, size_t *lenp, loff_t *ppos)
3055 {
3056 struct ctl_table t;
3057 int ret;
3058 int threads = max_threads;
3059 int min = 1;
3060 int max = MAX_THREADS;
3061
3062 t = *table;
3063 t.data = &threads;
3064 t.extra1 = &min;
3065 t.extra2 = &max;
3066
3067 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3068 if (ret || !write)
3069 return ret;
3070
3071 max_threads = threads;
3072
3073 return 0;
3074 }