]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/fork.c
UBUNTU: Ubuntu-5.3.0-29.31
[mirror_ubuntu-eoan-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 #ifdef CONFIG_USER_NS
110 extern int unprivileged_userns_clone;
111 #else
112 #define unprivileged_userns_clone 0
113 #endif
114
115 /*
116 * Minimum number of threads to boot the kernel
117 */
118 #define MIN_THREADS 20
119
120 /*
121 * Maximum number of threads
122 */
123 #define MAX_THREADS FUTEX_TID_MASK
124
125 /*
126 * Protected counters by write_lock_irq(&tasklist_lock)
127 */
128 unsigned long total_forks; /* Handle normal Linux uptimes. */
129 int nr_threads; /* The idle threads do not count.. */
130
131 static int max_threads; /* tunable limit on nr_threads */
132
133 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
134
135 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
136
137 #ifdef CONFIG_PROVE_RCU
138 int lockdep_tasklist_lock_is_held(void)
139 {
140 return lockdep_is_held(&tasklist_lock);
141 }
142 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
143 #endif /* #ifdef CONFIG_PROVE_RCU */
144
145 int nr_processes(void)
146 {
147 int cpu;
148 int total = 0;
149
150 for_each_possible_cpu(cpu)
151 total += per_cpu(process_counts, cpu);
152
153 return total;
154 }
155
156 void __weak arch_release_task_struct(struct task_struct *tsk)
157 {
158 }
159
160 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
161 static struct kmem_cache *task_struct_cachep;
162
163 static inline struct task_struct *alloc_task_struct_node(int node)
164 {
165 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
166 }
167
168 static inline void free_task_struct(struct task_struct *tsk)
169 {
170 kmem_cache_free(task_struct_cachep, tsk);
171 }
172 #endif
173
174 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
175
176 /*
177 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
178 * kmemcache based allocator.
179 */
180 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
181
182 #ifdef CONFIG_VMAP_STACK
183 /*
184 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
185 * flush. Try to minimize the number of calls by caching stacks.
186 */
187 #define NR_CACHED_STACKS 2
188 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
189
190 static int free_vm_stack_cache(unsigned int cpu)
191 {
192 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
193 int i;
194
195 for (i = 0; i < NR_CACHED_STACKS; i++) {
196 struct vm_struct *vm_stack = cached_vm_stacks[i];
197
198 if (!vm_stack)
199 continue;
200
201 vfree(vm_stack->addr);
202 cached_vm_stacks[i] = NULL;
203 }
204
205 return 0;
206 }
207 #endif
208
209 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
210 {
211 #ifdef CONFIG_VMAP_STACK
212 void *stack;
213 int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *s;
217
218 s = this_cpu_xchg(cached_stacks[i], NULL);
219
220 if (!s)
221 continue;
222
223 /* Clear stale pointers from reused stack. */
224 memset(s->addr, 0, THREAD_SIZE);
225
226 tsk->stack_vm_area = s;
227 tsk->stack = s->addr;
228 return s->addr;
229 }
230
231 /*
232 * Allocated stacks are cached and later reused by new threads,
233 * so memcg accounting is performed manually on assigning/releasing
234 * stacks to tasks. Drop __GFP_ACCOUNT.
235 */
236 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
237 VMALLOC_START, VMALLOC_END,
238 THREADINFO_GFP & ~__GFP_ACCOUNT,
239 PAGE_KERNEL,
240 0, node, __builtin_return_address(0));
241
242 /*
243 * We can't call find_vm_area() in interrupt context, and
244 * free_thread_stack() can be called in interrupt context,
245 * so cache the vm_struct.
246 */
247 if (stack) {
248 tsk->stack_vm_area = find_vm_area(stack);
249 tsk->stack = stack;
250 }
251 return stack;
252 #else
253 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
254 THREAD_SIZE_ORDER);
255
256 if (likely(page)) {
257 tsk->stack = page_address(page);
258 return tsk->stack;
259 }
260 return NULL;
261 #endif
262 }
263
264 static inline void free_thread_stack(struct task_struct *tsk)
265 {
266 #ifdef CONFIG_VMAP_STACK
267 struct vm_struct *vm = task_stack_vm_area(tsk);
268
269 if (vm) {
270 int i;
271
272 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
273 mod_memcg_page_state(vm->pages[i],
274 MEMCG_KERNEL_STACK_KB,
275 -(int)(PAGE_SIZE / 1024));
276
277 memcg_kmem_uncharge(vm->pages[i], 0);
278 }
279
280 for (i = 0; i < NR_CACHED_STACKS; i++) {
281 if (this_cpu_cmpxchg(cached_stacks[i],
282 NULL, tsk->stack_vm_area) != NULL)
283 continue;
284
285 return;
286 }
287
288 vfree_atomic(tsk->stack);
289 return;
290 }
291 #endif
292
293 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
294 }
295 # else
296 static struct kmem_cache *thread_stack_cache;
297
298 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
299 int node)
300 {
301 unsigned long *stack;
302 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
303 tsk->stack = stack;
304 return stack;
305 }
306
307 static void free_thread_stack(struct task_struct *tsk)
308 {
309 kmem_cache_free(thread_stack_cache, tsk->stack);
310 }
311
312 void thread_stack_cache_init(void)
313 {
314 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
315 THREAD_SIZE, THREAD_SIZE, 0, 0,
316 THREAD_SIZE, NULL);
317 BUG_ON(thread_stack_cache == NULL);
318 }
319 # endif
320 #endif
321
322 /* SLAB cache for signal_struct structures (tsk->signal) */
323 static struct kmem_cache *signal_cachep;
324
325 /* SLAB cache for sighand_struct structures (tsk->sighand) */
326 struct kmem_cache *sighand_cachep;
327
328 /* SLAB cache for files_struct structures (tsk->files) */
329 struct kmem_cache *files_cachep;
330
331 /* SLAB cache for fs_struct structures (tsk->fs) */
332 struct kmem_cache *fs_cachep;
333
334 /* SLAB cache for vm_area_struct structures */
335 static struct kmem_cache *vm_area_cachep;
336
337 /* SLAB cache for mm_struct structures (tsk->mm) */
338 static struct kmem_cache *mm_cachep;
339
340 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
341 {
342 struct vm_area_struct *vma;
343
344 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
345 if (vma)
346 vma_init(vma, mm);
347 return vma;
348 }
349
350 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
351 {
352 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
353
354 if (new) {
355 *new = *orig;
356 INIT_LIST_HEAD(&new->anon_vma_chain);
357 }
358 return new;
359 }
360
361 void vm_area_free(struct vm_area_struct *vma)
362 {
363 kmem_cache_free(vm_area_cachep, vma);
364 }
365
366 static void account_kernel_stack(struct task_struct *tsk, int account)
367 {
368 void *stack = task_stack_page(tsk);
369 struct vm_struct *vm = task_stack_vm_area(tsk);
370
371 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
372
373 if (vm) {
374 int i;
375
376 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
377
378 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
379 mod_zone_page_state(page_zone(vm->pages[i]),
380 NR_KERNEL_STACK_KB,
381 PAGE_SIZE / 1024 * account);
382 }
383 } else {
384 /*
385 * All stack pages are in the same zone and belong to the
386 * same memcg.
387 */
388 struct page *first_page = virt_to_page(stack);
389
390 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
391 THREAD_SIZE / 1024 * account);
392
393 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
394 account * (THREAD_SIZE / 1024));
395 }
396 }
397
398 static int memcg_charge_kernel_stack(struct task_struct *tsk)
399 {
400 #ifdef CONFIG_VMAP_STACK
401 struct vm_struct *vm = task_stack_vm_area(tsk);
402 int ret;
403
404 if (vm) {
405 int i;
406
407 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
408 /*
409 * If memcg_kmem_charge() fails, page->mem_cgroup
410 * pointer is NULL, and both memcg_kmem_uncharge()
411 * and mod_memcg_page_state() in free_thread_stack()
412 * will ignore this page. So it's safe.
413 */
414 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
415 if (ret)
416 return ret;
417
418 mod_memcg_page_state(vm->pages[i],
419 MEMCG_KERNEL_STACK_KB,
420 PAGE_SIZE / 1024);
421 }
422 }
423 #endif
424 return 0;
425 }
426
427 static void release_task_stack(struct task_struct *tsk)
428 {
429 if (WARN_ON(tsk->state != TASK_DEAD))
430 return; /* Better to leak the stack than to free prematurely */
431
432 account_kernel_stack(tsk, -1);
433 free_thread_stack(tsk);
434 tsk->stack = NULL;
435 #ifdef CONFIG_VMAP_STACK
436 tsk->stack_vm_area = NULL;
437 #endif
438 }
439
440 #ifdef CONFIG_THREAD_INFO_IN_TASK
441 void put_task_stack(struct task_struct *tsk)
442 {
443 if (refcount_dec_and_test(&tsk->stack_refcount))
444 release_task_stack(tsk);
445 }
446 #endif
447
448 void free_task(struct task_struct *tsk)
449 {
450 #ifndef CONFIG_THREAD_INFO_IN_TASK
451 /*
452 * The task is finally done with both the stack and thread_info,
453 * so free both.
454 */
455 release_task_stack(tsk);
456 #else
457 /*
458 * If the task had a separate stack allocation, it should be gone
459 * by now.
460 */
461 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
462 #endif
463 rt_mutex_debug_task_free(tsk);
464 ftrace_graph_exit_task(tsk);
465 put_seccomp_filter(tsk);
466 arch_release_task_struct(tsk);
467 if (tsk->flags & PF_KTHREAD)
468 free_kthread_struct(tsk);
469 free_task_struct(tsk);
470 }
471 EXPORT_SYMBOL(free_task);
472
473 #ifdef CONFIG_MMU
474 static __latent_entropy int dup_mmap(struct mm_struct *mm,
475 struct mm_struct *oldmm)
476 {
477 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
478 struct rb_node **rb_link, *rb_parent;
479 int retval;
480 unsigned long charge;
481 LIST_HEAD(uf);
482
483 uprobe_start_dup_mmap();
484 if (down_write_killable(&oldmm->mmap_sem)) {
485 retval = -EINTR;
486 goto fail_uprobe_end;
487 }
488 flush_cache_dup_mm(oldmm);
489 uprobe_dup_mmap(oldmm, mm);
490 /*
491 * Not linked in yet - no deadlock potential:
492 */
493 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
494
495 /* No ordering required: file already has been exposed. */
496 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
497
498 mm->total_vm = oldmm->total_vm;
499 mm->data_vm = oldmm->data_vm;
500 mm->exec_vm = oldmm->exec_vm;
501 mm->stack_vm = oldmm->stack_vm;
502
503 rb_link = &mm->mm_rb.rb_node;
504 rb_parent = NULL;
505 pprev = &mm->mmap;
506 retval = ksm_fork(mm, oldmm);
507 if (retval)
508 goto out;
509 retval = khugepaged_fork(mm, oldmm);
510 if (retval)
511 goto out;
512
513 prev = NULL;
514 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
515 struct file *file;
516
517 if (mpnt->vm_flags & VM_DONTCOPY) {
518 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
519 continue;
520 }
521 charge = 0;
522 /*
523 * Don't duplicate many vmas if we've been oom-killed (for
524 * example)
525 */
526 if (fatal_signal_pending(current)) {
527 retval = -EINTR;
528 goto out;
529 }
530 if (mpnt->vm_flags & VM_ACCOUNT) {
531 unsigned long len = vma_pages(mpnt);
532
533 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
534 goto fail_nomem;
535 charge = len;
536 }
537 tmp = vm_area_dup(mpnt);
538 if (!tmp)
539 goto fail_nomem;
540 retval = vma_dup_policy(mpnt, tmp);
541 if (retval)
542 goto fail_nomem_policy;
543 tmp->vm_mm = mm;
544 retval = dup_userfaultfd(tmp, &uf);
545 if (retval)
546 goto fail_nomem_anon_vma_fork;
547 if (tmp->vm_flags & VM_WIPEONFORK) {
548 /* VM_WIPEONFORK gets a clean slate in the child. */
549 tmp->anon_vma = NULL;
550 if (anon_vma_prepare(tmp))
551 goto fail_nomem_anon_vma_fork;
552 } else if (anon_vma_fork(tmp, mpnt))
553 goto fail_nomem_anon_vma_fork;
554 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
555 tmp->vm_next = tmp->vm_prev = NULL;
556 file = tmp->vm_file;
557 if (file) {
558 struct inode *inode = file_inode(file);
559 struct address_space *mapping = file->f_mapping;
560
561 vma_get_file(tmp);
562 if (tmp->vm_flags & VM_DENYWRITE)
563 atomic_dec(&inode->i_writecount);
564 i_mmap_lock_write(mapping);
565 if (tmp->vm_flags & VM_SHARED)
566 atomic_inc(&mapping->i_mmap_writable);
567 flush_dcache_mmap_lock(mapping);
568 /* insert tmp into the share list, just after mpnt */
569 vma_interval_tree_insert_after(tmp, mpnt,
570 &mapping->i_mmap);
571 flush_dcache_mmap_unlock(mapping);
572 i_mmap_unlock_write(mapping);
573 }
574
575 /*
576 * Clear hugetlb-related page reserves for children. This only
577 * affects MAP_PRIVATE mappings. Faults generated by the child
578 * are not guaranteed to succeed, even if read-only
579 */
580 if (is_vm_hugetlb_page(tmp))
581 reset_vma_resv_huge_pages(tmp);
582
583 /*
584 * Link in the new vma and copy the page table entries.
585 */
586 *pprev = tmp;
587 pprev = &tmp->vm_next;
588 tmp->vm_prev = prev;
589 prev = tmp;
590
591 __vma_link_rb(mm, tmp, rb_link, rb_parent);
592 rb_link = &tmp->vm_rb.rb_right;
593 rb_parent = &tmp->vm_rb;
594
595 mm->map_count++;
596 if (!(tmp->vm_flags & VM_WIPEONFORK))
597 retval = copy_page_range(mm, oldmm, mpnt);
598
599 if (tmp->vm_ops && tmp->vm_ops->open)
600 tmp->vm_ops->open(tmp);
601
602 if (retval)
603 goto out;
604 }
605 /* a new mm has just been created */
606 retval = arch_dup_mmap(oldmm, mm);
607 out:
608 up_write(&mm->mmap_sem);
609 flush_tlb_mm(oldmm);
610 up_write(&oldmm->mmap_sem);
611 dup_userfaultfd_complete(&uf);
612 fail_uprobe_end:
613 uprobe_end_dup_mmap();
614 return retval;
615 fail_nomem_anon_vma_fork:
616 mpol_put(vma_policy(tmp));
617 fail_nomem_policy:
618 vm_area_free(tmp);
619 fail_nomem:
620 retval = -ENOMEM;
621 vm_unacct_memory(charge);
622 goto out;
623 }
624
625 static inline int mm_alloc_pgd(struct mm_struct *mm)
626 {
627 mm->pgd = pgd_alloc(mm);
628 if (unlikely(!mm->pgd))
629 return -ENOMEM;
630 return 0;
631 }
632
633 static inline void mm_free_pgd(struct mm_struct *mm)
634 {
635 pgd_free(mm, mm->pgd);
636 }
637 #else
638 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
639 {
640 down_write(&oldmm->mmap_sem);
641 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
642 up_write(&oldmm->mmap_sem);
643 return 0;
644 }
645 #define mm_alloc_pgd(mm) (0)
646 #define mm_free_pgd(mm)
647 #endif /* CONFIG_MMU */
648
649 static void check_mm(struct mm_struct *mm)
650 {
651 int i;
652
653 for (i = 0; i < NR_MM_COUNTERS; i++) {
654 long x = atomic_long_read(&mm->rss_stat.count[i]);
655
656 if (unlikely(x))
657 printk(KERN_ALERT "BUG: Bad rss-counter state "
658 "mm:%p idx:%d val:%ld\n", mm, i, x);
659 }
660
661 if (mm_pgtables_bytes(mm))
662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
663 mm_pgtables_bytes(mm));
664
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667 #endif
668 }
669
670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
672
673 /*
674 * Called when the last reference to the mm
675 * is dropped: either by a lazy thread or by
676 * mmput. Free the page directory and the mm.
677 */
678 void __mmdrop(struct mm_struct *mm)
679 {
680 BUG_ON(mm == &init_mm);
681 WARN_ON_ONCE(mm == current->mm);
682 WARN_ON_ONCE(mm == current->active_mm);
683 mm_free_pgd(mm);
684 destroy_context(mm);
685 mmu_notifier_mm_destroy(mm);
686 check_mm(mm);
687 put_user_ns(mm->user_ns);
688 free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691
692 static void mmdrop_async_fn(struct work_struct *work)
693 {
694 struct mm_struct *mm;
695
696 mm = container_of(work, struct mm_struct, async_put_work);
697 __mmdrop(mm);
698 }
699
700 static void mmdrop_async(struct mm_struct *mm)
701 {
702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
704 schedule_work(&mm->async_put_work);
705 }
706 }
707
708 static inline void free_signal_struct(struct signal_struct *sig)
709 {
710 taskstats_tgid_free(sig);
711 sched_autogroup_exit(sig);
712 /*
713 * __mmdrop is not safe to call from softirq context on x86 due to
714 * pgd_dtor so postpone it to the async context
715 */
716 if (sig->oom_mm)
717 mmdrop_async(sig->oom_mm);
718 kmem_cache_free(signal_cachep, sig);
719 }
720
721 static inline void put_signal_struct(struct signal_struct *sig)
722 {
723 if (refcount_dec_and_test(&sig->sigcnt))
724 free_signal_struct(sig);
725 }
726
727 void __put_task_struct(struct task_struct *tsk)
728 {
729 WARN_ON(!tsk->exit_state);
730 WARN_ON(refcount_read(&tsk->usage));
731 WARN_ON(tsk == current);
732
733 cgroup_free(tsk);
734 task_numa_free(tsk, true);
735 security_task_free(tsk);
736 exit_creds(tsk);
737 delayacct_tsk_free(tsk);
738 put_signal_struct(tsk->signal);
739
740 if (!profile_handoff_task(tsk))
741 free_task(tsk);
742 }
743 EXPORT_SYMBOL_GPL(__put_task_struct);
744
745 void __init __weak arch_task_cache_init(void) { }
746
747 /*
748 * set_max_threads
749 */
750 static void set_max_threads(unsigned int max_threads_suggested)
751 {
752 u64 threads;
753 unsigned long nr_pages = totalram_pages();
754
755 /*
756 * The number of threads shall be limited such that the thread
757 * structures may only consume a small part of the available memory.
758 */
759 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
760 threads = MAX_THREADS;
761 else
762 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
763 (u64) THREAD_SIZE * 8UL);
764
765 if (threads > max_threads_suggested)
766 threads = max_threads_suggested;
767
768 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
769 }
770
771 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
772 /* Initialized by the architecture: */
773 int arch_task_struct_size __read_mostly;
774 #endif
775
776 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
777 {
778 /* Fetch thread_struct whitelist for the architecture. */
779 arch_thread_struct_whitelist(offset, size);
780
781 /*
782 * Handle zero-sized whitelist or empty thread_struct, otherwise
783 * adjust offset to position of thread_struct in task_struct.
784 */
785 if (unlikely(*size == 0))
786 *offset = 0;
787 else
788 *offset += offsetof(struct task_struct, thread);
789 }
790
791 void __init fork_init(void)
792 {
793 int i;
794 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
795 #ifndef ARCH_MIN_TASKALIGN
796 #define ARCH_MIN_TASKALIGN 0
797 #endif
798 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
799 unsigned long useroffset, usersize;
800
801 /* create a slab on which task_structs can be allocated */
802 task_struct_whitelist(&useroffset, &usersize);
803 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
804 arch_task_struct_size, align,
805 SLAB_PANIC|SLAB_ACCOUNT,
806 useroffset, usersize, NULL);
807 #endif
808
809 /* do the arch specific task caches init */
810 arch_task_cache_init();
811
812 set_max_threads(MAX_THREADS);
813
814 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
815 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
816 init_task.signal->rlim[RLIMIT_SIGPENDING] =
817 init_task.signal->rlim[RLIMIT_NPROC];
818
819 for (i = 0; i < UCOUNT_COUNTS; i++) {
820 init_user_ns.ucount_max[i] = max_threads/2;
821 }
822
823 #ifdef CONFIG_VMAP_STACK
824 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
825 NULL, free_vm_stack_cache);
826 #endif
827
828 lockdep_init_task(&init_task);
829 uprobes_init();
830 }
831
832 int __weak arch_dup_task_struct(struct task_struct *dst,
833 struct task_struct *src)
834 {
835 *dst = *src;
836 return 0;
837 }
838
839 void set_task_stack_end_magic(struct task_struct *tsk)
840 {
841 unsigned long *stackend;
842
843 stackend = end_of_stack(tsk);
844 *stackend = STACK_END_MAGIC; /* for overflow detection */
845 }
846
847 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
848 {
849 struct task_struct *tsk;
850 unsigned long *stack;
851 struct vm_struct *stack_vm_area __maybe_unused;
852 int err;
853
854 if (node == NUMA_NO_NODE)
855 node = tsk_fork_get_node(orig);
856 tsk = alloc_task_struct_node(node);
857 if (!tsk)
858 return NULL;
859
860 stack = alloc_thread_stack_node(tsk, node);
861 if (!stack)
862 goto free_tsk;
863
864 if (memcg_charge_kernel_stack(tsk))
865 goto free_stack;
866
867 stack_vm_area = task_stack_vm_area(tsk);
868
869 err = arch_dup_task_struct(tsk, orig);
870
871 /*
872 * arch_dup_task_struct() clobbers the stack-related fields. Make
873 * sure they're properly initialized before using any stack-related
874 * functions again.
875 */
876 tsk->stack = stack;
877 #ifdef CONFIG_VMAP_STACK
878 tsk->stack_vm_area = stack_vm_area;
879 #endif
880 #ifdef CONFIG_THREAD_INFO_IN_TASK
881 refcount_set(&tsk->stack_refcount, 1);
882 #endif
883
884 if (err)
885 goto free_stack;
886
887 #ifdef CONFIG_SECCOMP
888 /*
889 * We must handle setting up seccomp filters once we're under
890 * the sighand lock in case orig has changed between now and
891 * then. Until then, filter must be NULL to avoid messing up
892 * the usage counts on the error path calling free_task.
893 */
894 tsk->seccomp.filter = NULL;
895 #endif
896
897 setup_thread_stack(tsk, orig);
898 clear_user_return_notifier(tsk);
899 clear_tsk_need_resched(tsk);
900 set_task_stack_end_magic(tsk);
901
902 #ifdef CONFIG_STACKPROTECTOR
903 tsk->stack_canary = get_random_canary();
904 #endif
905 if (orig->cpus_ptr == &orig->cpus_mask)
906 tsk->cpus_ptr = &tsk->cpus_mask;
907
908 /*
909 * One for us, one for whoever does the "release_task()" (usually
910 * parent)
911 */
912 refcount_set(&tsk->usage, 2);
913 #ifdef CONFIG_BLK_DEV_IO_TRACE
914 tsk->btrace_seq = 0;
915 #endif
916 tsk->splice_pipe = NULL;
917 tsk->task_frag.page = NULL;
918 tsk->wake_q.next = NULL;
919
920 account_kernel_stack(tsk, 1);
921
922 kcov_task_init(tsk);
923
924 #ifdef CONFIG_FAULT_INJECTION
925 tsk->fail_nth = 0;
926 #endif
927
928 #ifdef CONFIG_BLK_CGROUP
929 tsk->throttle_queue = NULL;
930 tsk->use_memdelay = 0;
931 #endif
932
933 #ifdef CONFIG_MEMCG
934 tsk->active_memcg = NULL;
935 #endif
936 return tsk;
937
938 free_stack:
939 free_thread_stack(tsk);
940 free_tsk:
941 free_task_struct(tsk);
942 return NULL;
943 }
944
945 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
946
947 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
948
949 static int __init coredump_filter_setup(char *s)
950 {
951 default_dump_filter =
952 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
953 MMF_DUMP_FILTER_MASK;
954 return 1;
955 }
956
957 __setup("coredump_filter=", coredump_filter_setup);
958
959 #include <linux/init_task.h>
960
961 static void mm_init_aio(struct mm_struct *mm)
962 {
963 #ifdef CONFIG_AIO
964 spin_lock_init(&mm->ioctx_lock);
965 mm->ioctx_table = NULL;
966 #endif
967 }
968
969 static __always_inline void mm_clear_owner(struct mm_struct *mm,
970 struct task_struct *p)
971 {
972 #ifdef CONFIG_MEMCG
973 if (mm->owner == p)
974 WRITE_ONCE(mm->owner, NULL);
975 #endif
976 }
977
978 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
979 {
980 #ifdef CONFIG_MEMCG
981 mm->owner = p;
982 #endif
983 }
984
985 static void mm_init_uprobes_state(struct mm_struct *mm)
986 {
987 #ifdef CONFIG_UPROBES
988 mm->uprobes_state.xol_area = NULL;
989 #endif
990 }
991
992 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
993 struct user_namespace *user_ns)
994 {
995 mm->mmap = NULL;
996 mm->mm_rb = RB_ROOT;
997 mm->vmacache_seqnum = 0;
998 atomic_set(&mm->mm_users, 1);
999 atomic_set(&mm->mm_count, 1);
1000 init_rwsem(&mm->mmap_sem);
1001 INIT_LIST_HEAD(&mm->mmlist);
1002 mm->core_state = NULL;
1003 mm_pgtables_bytes_init(mm);
1004 mm->map_count = 0;
1005 mm->locked_vm = 0;
1006 atomic64_set(&mm->pinned_vm, 0);
1007 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1008 spin_lock_init(&mm->page_table_lock);
1009 spin_lock_init(&mm->arg_lock);
1010 mm_init_cpumask(mm);
1011 mm_init_aio(mm);
1012 mm_init_owner(mm, p);
1013 RCU_INIT_POINTER(mm->exe_file, NULL);
1014 mmu_notifier_mm_init(mm);
1015 hmm_mm_init(mm);
1016 init_tlb_flush_pending(mm);
1017 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1018 mm->pmd_huge_pte = NULL;
1019 #endif
1020 mm_init_uprobes_state(mm);
1021
1022 if (current->mm) {
1023 mm->flags = current->mm->flags & MMF_INIT_MASK;
1024 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1025 } else {
1026 mm->flags = default_dump_filter;
1027 mm->def_flags = 0;
1028 }
1029
1030 if (mm_alloc_pgd(mm))
1031 goto fail_nopgd;
1032
1033 if (init_new_context(p, mm))
1034 goto fail_nocontext;
1035
1036 mm->user_ns = get_user_ns(user_ns);
1037 return mm;
1038
1039 fail_nocontext:
1040 mm_free_pgd(mm);
1041 fail_nopgd:
1042 free_mm(mm);
1043 return NULL;
1044 }
1045
1046 /*
1047 * Allocate and initialize an mm_struct.
1048 */
1049 struct mm_struct *mm_alloc(void)
1050 {
1051 struct mm_struct *mm;
1052
1053 mm = allocate_mm();
1054 if (!mm)
1055 return NULL;
1056
1057 memset(mm, 0, sizeof(*mm));
1058 return mm_init(mm, current, current_user_ns());
1059 }
1060
1061 static inline void __mmput(struct mm_struct *mm)
1062 {
1063 VM_BUG_ON(atomic_read(&mm->mm_users));
1064
1065 uprobe_clear_state(mm);
1066 exit_aio(mm);
1067 ksm_exit(mm);
1068 khugepaged_exit(mm); /* must run before exit_mmap */
1069 exit_mmap(mm);
1070 mm_put_huge_zero_page(mm);
1071 set_mm_exe_file(mm, NULL);
1072 if (!list_empty(&mm->mmlist)) {
1073 spin_lock(&mmlist_lock);
1074 list_del(&mm->mmlist);
1075 spin_unlock(&mmlist_lock);
1076 }
1077 if (mm->binfmt)
1078 module_put(mm->binfmt->module);
1079 mmdrop(mm);
1080 }
1081
1082 /*
1083 * Decrement the use count and release all resources for an mm.
1084 */
1085 void mmput(struct mm_struct *mm)
1086 {
1087 might_sleep();
1088
1089 if (atomic_dec_and_test(&mm->mm_users))
1090 __mmput(mm);
1091 }
1092 EXPORT_SYMBOL_GPL(mmput);
1093
1094 #ifdef CONFIG_MMU
1095 static void mmput_async_fn(struct work_struct *work)
1096 {
1097 struct mm_struct *mm = container_of(work, struct mm_struct,
1098 async_put_work);
1099
1100 __mmput(mm);
1101 }
1102
1103 void mmput_async(struct mm_struct *mm)
1104 {
1105 if (atomic_dec_and_test(&mm->mm_users)) {
1106 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1107 schedule_work(&mm->async_put_work);
1108 }
1109 }
1110 EXPORT_SYMBOL(mmput_async);
1111 #endif
1112
1113 /**
1114 * set_mm_exe_file - change a reference to the mm's executable file
1115 *
1116 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1117 *
1118 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1119 * invocations: in mmput() nobody alive left, in execve task is single
1120 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1121 * mm->exe_file, but does so without using set_mm_exe_file() in order
1122 * to do avoid the need for any locks.
1123 */
1124 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1125 {
1126 struct file *old_exe_file;
1127
1128 /*
1129 * It is safe to dereference the exe_file without RCU as
1130 * this function is only called if nobody else can access
1131 * this mm -- see comment above for justification.
1132 */
1133 old_exe_file = rcu_dereference_raw(mm->exe_file);
1134
1135 if (new_exe_file)
1136 get_file(new_exe_file);
1137 rcu_assign_pointer(mm->exe_file, new_exe_file);
1138 if (old_exe_file)
1139 fput(old_exe_file);
1140 }
1141
1142 /**
1143 * get_mm_exe_file - acquire a reference to the mm's executable file
1144 *
1145 * Returns %NULL if mm has no associated executable file.
1146 * User must release file via fput().
1147 */
1148 struct file *get_mm_exe_file(struct mm_struct *mm)
1149 {
1150 struct file *exe_file;
1151
1152 rcu_read_lock();
1153 exe_file = rcu_dereference(mm->exe_file);
1154 if (exe_file && !get_file_rcu(exe_file))
1155 exe_file = NULL;
1156 rcu_read_unlock();
1157 return exe_file;
1158 }
1159 EXPORT_SYMBOL(get_mm_exe_file);
1160
1161 /**
1162 * get_task_exe_file - acquire a reference to the task's executable file
1163 *
1164 * Returns %NULL if task's mm (if any) has no associated executable file or
1165 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1166 * User must release file via fput().
1167 */
1168 struct file *get_task_exe_file(struct task_struct *task)
1169 {
1170 struct file *exe_file = NULL;
1171 struct mm_struct *mm;
1172
1173 task_lock(task);
1174 mm = task->mm;
1175 if (mm) {
1176 if (!(task->flags & PF_KTHREAD))
1177 exe_file = get_mm_exe_file(mm);
1178 }
1179 task_unlock(task);
1180 return exe_file;
1181 }
1182 EXPORT_SYMBOL(get_task_exe_file);
1183
1184 /**
1185 * get_task_mm - acquire a reference to the task's mm
1186 *
1187 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1188 * this kernel workthread has transiently adopted a user mm with use_mm,
1189 * to do its AIO) is not set and if so returns a reference to it, after
1190 * bumping up the use count. User must release the mm via mmput()
1191 * after use. Typically used by /proc and ptrace.
1192 */
1193 struct mm_struct *get_task_mm(struct task_struct *task)
1194 {
1195 struct mm_struct *mm;
1196
1197 task_lock(task);
1198 mm = task->mm;
1199 if (mm) {
1200 if (task->flags & PF_KTHREAD)
1201 mm = NULL;
1202 else
1203 mmget(mm);
1204 }
1205 task_unlock(task);
1206 return mm;
1207 }
1208 EXPORT_SYMBOL_GPL(get_task_mm);
1209
1210 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1211 {
1212 struct mm_struct *mm;
1213 int err;
1214
1215 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1216 if (err)
1217 return ERR_PTR(err);
1218
1219 mm = get_task_mm(task);
1220 if (mm && mm != current->mm &&
1221 !ptrace_may_access(task, mode)) {
1222 mmput(mm);
1223 mm = ERR_PTR(-EACCES);
1224 }
1225 mutex_unlock(&task->signal->cred_guard_mutex);
1226
1227 return mm;
1228 }
1229
1230 static void complete_vfork_done(struct task_struct *tsk)
1231 {
1232 struct completion *vfork;
1233
1234 task_lock(tsk);
1235 vfork = tsk->vfork_done;
1236 if (likely(vfork)) {
1237 tsk->vfork_done = NULL;
1238 complete(vfork);
1239 }
1240 task_unlock(tsk);
1241 }
1242
1243 static int wait_for_vfork_done(struct task_struct *child,
1244 struct completion *vfork)
1245 {
1246 int killed;
1247
1248 freezer_do_not_count();
1249 cgroup_enter_frozen();
1250 killed = wait_for_completion_killable(vfork);
1251 cgroup_leave_frozen(false);
1252 freezer_count();
1253
1254 if (killed) {
1255 task_lock(child);
1256 child->vfork_done = NULL;
1257 task_unlock(child);
1258 }
1259
1260 put_task_struct(child);
1261 return killed;
1262 }
1263
1264 /* Please note the differences between mmput and mm_release.
1265 * mmput is called whenever we stop holding onto a mm_struct,
1266 * error success whatever.
1267 *
1268 * mm_release is called after a mm_struct has been removed
1269 * from the current process.
1270 *
1271 * This difference is important for error handling, when we
1272 * only half set up a mm_struct for a new process and need to restore
1273 * the old one. Because we mmput the new mm_struct before
1274 * restoring the old one. . .
1275 * Eric Biederman 10 January 1998
1276 */
1277 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1278 {
1279 /* Get rid of any futexes when releasing the mm */
1280 #ifdef CONFIG_FUTEX
1281 if (unlikely(tsk->robust_list)) {
1282 exit_robust_list(tsk);
1283 tsk->robust_list = NULL;
1284 }
1285 #ifdef CONFIG_COMPAT
1286 if (unlikely(tsk->compat_robust_list)) {
1287 compat_exit_robust_list(tsk);
1288 tsk->compat_robust_list = NULL;
1289 }
1290 #endif
1291 if (unlikely(!list_empty(&tsk->pi_state_list)))
1292 exit_pi_state_list(tsk);
1293 #endif
1294
1295 uprobe_free_utask(tsk);
1296
1297 /* Get rid of any cached register state */
1298 deactivate_mm(tsk, mm);
1299
1300 /*
1301 * Signal userspace if we're not exiting with a core dump
1302 * because we want to leave the value intact for debugging
1303 * purposes.
1304 */
1305 if (tsk->clear_child_tid) {
1306 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1307 atomic_read(&mm->mm_users) > 1) {
1308 /*
1309 * We don't check the error code - if userspace has
1310 * not set up a proper pointer then tough luck.
1311 */
1312 put_user(0, tsk->clear_child_tid);
1313 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1314 1, NULL, NULL, 0, 0);
1315 }
1316 tsk->clear_child_tid = NULL;
1317 }
1318
1319 /*
1320 * All done, finally we can wake up parent and return this mm to him.
1321 * Also kthread_stop() uses this completion for synchronization.
1322 */
1323 if (tsk->vfork_done)
1324 complete_vfork_done(tsk);
1325 }
1326
1327 /**
1328 * dup_mm() - duplicates an existing mm structure
1329 * @tsk: the task_struct with which the new mm will be associated.
1330 * @oldmm: the mm to duplicate.
1331 *
1332 * Allocates a new mm structure and duplicates the provided @oldmm structure
1333 * content into it.
1334 *
1335 * Return: the duplicated mm or NULL on failure.
1336 */
1337 static struct mm_struct *dup_mm(struct task_struct *tsk,
1338 struct mm_struct *oldmm)
1339 {
1340 struct mm_struct *mm;
1341 int err;
1342
1343 mm = allocate_mm();
1344 if (!mm)
1345 goto fail_nomem;
1346
1347 memcpy(mm, oldmm, sizeof(*mm));
1348
1349 if (!mm_init(mm, tsk, mm->user_ns))
1350 goto fail_nomem;
1351
1352 err = dup_mmap(mm, oldmm);
1353 if (err)
1354 goto free_pt;
1355
1356 mm->hiwater_rss = get_mm_rss(mm);
1357 mm->hiwater_vm = mm->total_vm;
1358
1359 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1360 goto free_pt;
1361
1362 return mm;
1363
1364 free_pt:
1365 /* don't put binfmt in mmput, we haven't got module yet */
1366 mm->binfmt = NULL;
1367 mm_init_owner(mm, NULL);
1368 mmput(mm);
1369
1370 fail_nomem:
1371 return NULL;
1372 }
1373
1374 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1375 {
1376 struct mm_struct *mm, *oldmm;
1377 int retval;
1378
1379 tsk->min_flt = tsk->maj_flt = 0;
1380 tsk->nvcsw = tsk->nivcsw = 0;
1381 #ifdef CONFIG_DETECT_HUNG_TASK
1382 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1383 tsk->last_switch_time = 0;
1384 #endif
1385
1386 tsk->mm = NULL;
1387 tsk->active_mm = NULL;
1388
1389 /*
1390 * Are we cloning a kernel thread?
1391 *
1392 * We need to steal a active VM for that..
1393 */
1394 oldmm = current->mm;
1395 if (!oldmm)
1396 return 0;
1397
1398 /* initialize the new vmacache entries */
1399 vmacache_flush(tsk);
1400
1401 if (clone_flags & CLONE_VM) {
1402 mmget(oldmm);
1403 mm = oldmm;
1404 goto good_mm;
1405 }
1406
1407 retval = -ENOMEM;
1408 mm = dup_mm(tsk, current->mm);
1409 if (!mm)
1410 goto fail_nomem;
1411
1412 good_mm:
1413 tsk->mm = mm;
1414 tsk->active_mm = mm;
1415 return 0;
1416
1417 fail_nomem:
1418 return retval;
1419 }
1420
1421 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1422 {
1423 struct fs_struct *fs = current->fs;
1424 if (clone_flags & CLONE_FS) {
1425 /* tsk->fs is already what we want */
1426 spin_lock(&fs->lock);
1427 if (fs->in_exec) {
1428 spin_unlock(&fs->lock);
1429 return -EAGAIN;
1430 }
1431 fs->users++;
1432 spin_unlock(&fs->lock);
1433 return 0;
1434 }
1435 tsk->fs = copy_fs_struct(fs);
1436 if (!tsk->fs)
1437 return -ENOMEM;
1438 return 0;
1439 }
1440
1441 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1442 {
1443 struct files_struct *oldf, *newf;
1444 int error = 0;
1445
1446 /*
1447 * A background process may not have any files ...
1448 */
1449 oldf = current->files;
1450 if (!oldf)
1451 goto out;
1452
1453 if (clone_flags & CLONE_FILES) {
1454 atomic_inc(&oldf->count);
1455 goto out;
1456 }
1457
1458 newf = dup_fd(oldf, &error);
1459 if (!newf)
1460 goto out;
1461
1462 tsk->files = newf;
1463 error = 0;
1464 out:
1465 return error;
1466 }
1467
1468 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1469 {
1470 #ifdef CONFIG_BLOCK
1471 struct io_context *ioc = current->io_context;
1472 struct io_context *new_ioc;
1473
1474 if (!ioc)
1475 return 0;
1476 /*
1477 * Share io context with parent, if CLONE_IO is set
1478 */
1479 if (clone_flags & CLONE_IO) {
1480 ioc_task_link(ioc);
1481 tsk->io_context = ioc;
1482 } else if (ioprio_valid(ioc->ioprio)) {
1483 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1484 if (unlikely(!new_ioc))
1485 return -ENOMEM;
1486
1487 new_ioc->ioprio = ioc->ioprio;
1488 put_io_context(new_ioc);
1489 }
1490 #endif
1491 return 0;
1492 }
1493
1494 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1495 {
1496 struct sighand_struct *sig;
1497
1498 if (clone_flags & CLONE_SIGHAND) {
1499 refcount_inc(&current->sighand->count);
1500 return 0;
1501 }
1502 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1503 rcu_assign_pointer(tsk->sighand, sig);
1504 if (!sig)
1505 return -ENOMEM;
1506
1507 refcount_set(&sig->count, 1);
1508 spin_lock_irq(&current->sighand->siglock);
1509 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1510 spin_unlock_irq(&current->sighand->siglock);
1511 return 0;
1512 }
1513
1514 void __cleanup_sighand(struct sighand_struct *sighand)
1515 {
1516 if (refcount_dec_and_test(&sighand->count)) {
1517 signalfd_cleanup(sighand);
1518 /*
1519 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1520 * without an RCU grace period, see __lock_task_sighand().
1521 */
1522 kmem_cache_free(sighand_cachep, sighand);
1523 }
1524 }
1525
1526 #ifdef CONFIG_POSIX_TIMERS
1527 /*
1528 * Initialize POSIX timer handling for a thread group.
1529 */
1530 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1531 {
1532 unsigned long cpu_limit;
1533
1534 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1535 if (cpu_limit != RLIM_INFINITY) {
1536 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1537 sig->cputimer.running = true;
1538 }
1539
1540 /* The timer lists. */
1541 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1542 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1543 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1544 }
1545 #else
1546 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1547 #endif
1548
1549 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1550 {
1551 struct signal_struct *sig;
1552
1553 if (clone_flags & CLONE_THREAD)
1554 return 0;
1555
1556 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1557 tsk->signal = sig;
1558 if (!sig)
1559 return -ENOMEM;
1560
1561 sig->nr_threads = 1;
1562 atomic_set(&sig->live, 1);
1563 refcount_set(&sig->sigcnt, 1);
1564
1565 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1566 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1567 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1568
1569 init_waitqueue_head(&sig->wait_chldexit);
1570 sig->curr_target = tsk;
1571 init_sigpending(&sig->shared_pending);
1572 INIT_HLIST_HEAD(&sig->multiprocess);
1573 seqlock_init(&sig->stats_lock);
1574 prev_cputime_init(&sig->prev_cputime);
1575
1576 #ifdef CONFIG_POSIX_TIMERS
1577 INIT_LIST_HEAD(&sig->posix_timers);
1578 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1579 sig->real_timer.function = it_real_fn;
1580 #endif
1581
1582 task_lock(current->group_leader);
1583 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1584 task_unlock(current->group_leader);
1585
1586 posix_cpu_timers_init_group(sig);
1587
1588 tty_audit_fork(sig);
1589 sched_autogroup_fork(sig);
1590
1591 sig->oom_score_adj = current->signal->oom_score_adj;
1592 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1593
1594 mutex_init(&sig->cred_guard_mutex);
1595
1596 return 0;
1597 }
1598
1599 static void copy_seccomp(struct task_struct *p)
1600 {
1601 #ifdef CONFIG_SECCOMP
1602 /*
1603 * Must be called with sighand->lock held, which is common to
1604 * all threads in the group. Holding cred_guard_mutex is not
1605 * needed because this new task is not yet running and cannot
1606 * be racing exec.
1607 */
1608 assert_spin_locked(&current->sighand->siglock);
1609
1610 /* Ref-count the new filter user, and assign it. */
1611 get_seccomp_filter(current);
1612 p->seccomp = current->seccomp;
1613
1614 /*
1615 * Explicitly enable no_new_privs here in case it got set
1616 * between the task_struct being duplicated and holding the
1617 * sighand lock. The seccomp state and nnp must be in sync.
1618 */
1619 if (task_no_new_privs(current))
1620 task_set_no_new_privs(p);
1621
1622 /*
1623 * If the parent gained a seccomp mode after copying thread
1624 * flags and between before we held the sighand lock, we have
1625 * to manually enable the seccomp thread flag here.
1626 */
1627 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1628 set_tsk_thread_flag(p, TIF_SECCOMP);
1629 #endif
1630 }
1631
1632 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1633 {
1634 current->clear_child_tid = tidptr;
1635
1636 return task_pid_vnr(current);
1637 }
1638
1639 static void rt_mutex_init_task(struct task_struct *p)
1640 {
1641 raw_spin_lock_init(&p->pi_lock);
1642 #ifdef CONFIG_RT_MUTEXES
1643 p->pi_waiters = RB_ROOT_CACHED;
1644 p->pi_top_task = NULL;
1645 p->pi_blocked_on = NULL;
1646 #endif
1647 }
1648
1649 #ifdef CONFIG_POSIX_TIMERS
1650 /*
1651 * Initialize POSIX timer handling for a single task.
1652 */
1653 static void posix_cpu_timers_init(struct task_struct *tsk)
1654 {
1655 tsk->cputime_expires.prof_exp = 0;
1656 tsk->cputime_expires.virt_exp = 0;
1657 tsk->cputime_expires.sched_exp = 0;
1658 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1659 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1660 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1661 }
1662 #else
1663 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1664 #endif
1665
1666 static inline void init_task_pid_links(struct task_struct *task)
1667 {
1668 enum pid_type type;
1669
1670 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1671 INIT_HLIST_NODE(&task->pid_links[type]);
1672 }
1673 }
1674
1675 static inline void
1676 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1677 {
1678 if (type == PIDTYPE_PID)
1679 task->thread_pid = pid;
1680 else
1681 task->signal->pids[type] = pid;
1682 }
1683
1684 static inline void rcu_copy_process(struct task_struct *p)
1685 {
1686 #ifdef CONFIG_PREEMPT_RCU
1687 p->rcu_read_lock_nesting = 0;
1688 p->rcu_read_unlock_special.s = 0;
1689 p->rcu_blocked_node = NULL;
1690 INIT_LIST_HEAD(&p->rcu_node_entry);
1691 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1692 #ifdef CONFIG_TASKS_RCU
1693 p->rcu_tasks_holdout = false;
1694 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1695 p->rcu_tasks_idle_cpu = -1;
1696 #endif /* #ifdef CONFIG_TASKS_RCU */
1697 }
1698
1699 static int pidfd_release(struct inode *inode, struct file *file)
1700 {
1701 struct pid *pid = file->private_data;
1702
1703 file->private_data = NULL;
1704 put_pid(pid);
1705 return 0;
1706 }
1707
1708 #ifdef CONFIG_PROC_FS
1709 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1710 {
1711 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1712 struct pid *pid = f->private_data;
1713
1714 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1715 seq_putc(m, '\n');
1716 }
1717 #endif
1718
1719 /*
1720 * Poll support for process exit notification.
1721 */
1722 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1723 {
1724 struct task_struct *task;
1725 struct pid *pid = file->private_data;
1726 int poll_flags = 0;
1727
1728 poll_wait(file, &pid->wait_pidfd, pts);
1729
1730 rcu_read_lock();
1731 task = pid_task(pid, PIDTYPE_PID);
1732 /*
1733 * Inform pollers only when the whole thread group exits.
1734 * If the thread group leader exits before all other threads in the
1735 * group, then poll(2) should block, similar to the wait(2) family.
1736 */
1737 if (!task || (task->exit_state && thread_group_empty(task)))
1738 poll_flags = POLLIN | POLLRDNORM;
1739 rcu_read_unlock();
1740
1741 return poll_flags;
1742 }
1743
1744 const struct file_operations pidfd_fops = {
1745 .release = pidfd_release,
1746 .poll = pidfd_poll,
1747 #ifdef CONFIG_PROC_FS
1748 .show_fdinfo = pidfd_show_fdinfo,
1749 #endif
1750 };
1751
1752 static void __delayed_free_task(struct rcu_head *rhp)
1753 {
1754 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1755
1756 free_task(tsk);
1757 }
1758
1759 static __always_inline void delayed_free_task(struct task_struct *tsk)
1760 {
1761 if (IS_ENABLED(CONFIG_MEMCG))
1762 call_rcu(&tsk->rcu, __delayed_free_task);
1763 else
1764 free_task(tsk);
1765 }
1766
1767 /*
1768 * This creates a new process as a copy of the old one,
1769 * but does not actually start it yet.
1770 *
1771 * It copies the registers, and all the appropriate
1772 * parts of the process environment (as per the clone
1773 * flags). The actual kick-off is left to the caller.
1774 */
1775 static __latent_entropy struct task_struct *copy_process(
1776 struct pid *pid,
1777 int trace,
1778 int node,
1779 struct kernel_clone_args *args)
1780 {
1781 int pidfd = -1, retval;
1782 struct task_struct *p;
1783 struct multiprocess_signals delayed;
1784 struct file *pidfile = NULL;
1785 u64 clone_flags = args->flags;
1786
1787 /*
1788 * Don't allow sharing the root directory with processes in a different
1789 * namespace
1790 */
1791 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1792 return ERR_PTR(-EINVAL);
1793
1794 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1795 return ERR_PTR(-EINVAL);
1796
1797 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1798 if (!capable(CAP_SYS_ADMIN))
1799 return ERR_PTR(-EPERM);
1800
1801 /*
1802 * Thread groups must share signals as well, and detached threads
1803 * can only be started up within the thread group.
1804 */
1805 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1806 return ERR_PTR(-EINVAL);
1807
1808 /*
1809 * Shared signal handlers imply shared VM. By way of the above,
1810 * thread groups also imply shared VM. Blocking this case allows
1811 * for various simplifications in other code.
1812 */
1813 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1814 return ERR_PTR(-EINVAL);
1815
1816 /*
1817 * Siblings of global init remain as zombies on exit since they are
1818 * not reaped by their parent (swapper). To solve this and to avoid
1819 * multi-rooted process trees, prevent global and container-inits
1820 * from creating siblings.
1821 */
1822 if ((clone_flags & CLONE_PARENT) &&
1823 current->signal->flags & SIGNAL_UNKILLABLE)
1824 return ERR_PTR(-EINVAL);
1825
1826 /*
1827 * If the new process will be in a different pid or user namespace
1828 * do not allow it to share a thread group with the forking task.
1829 */
1830 if (clone_flags & CLONE_THREAD) {
1831 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1832 (task_active_pid_ns(current) !=
1833 current->nsproxy->pid_ns_for_children))
1834 return ERR_PTR(-EINVAL);
1835 }
1836
1837 if (clone_flags & CLONE_PIDFD) {
1838 /*
1839 * - CLONE_DETACHED is blocked so that we can potentially
1840 * reuse it later for CLONE_PIDFD.
1841 * - CLONE_THREAD is blocked until someone really needs it.
1842 */
1843 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1844 return ERR_PTR(-EINVAL);
1845 }
1846
1847 /*
1848 * Force any signals received before this point to be delivered
1849 * before the fork happens. Collect up signals sent to multiple
1850 * processes that happen during the fork and delay them so that
1851 * they appear to happen after the fork.
1852 */
1853 sigemptyset(&delayed.signal);
1854 INIT_HLIST_NODE(&delayed.node);
1855
1856 spin_lock_irq(&current->sighand->siglock);
1857 if (!(clone_flags & CLONE_THREAD))
1858 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1859 recalc_sigpending();
1860 spin_unlock_irq(&current->sighand->siglock);
1861 retval = -ERESTARTNOINTR;
1862 if (signal_pending(current))
1863 goto fork_out;
1864
1865 retval = -ENOMEM;
1866 p = dup_task_struct(current, node);
1867 if (!p)
1868 goto fork_out;
1869
1870 /*
1871 * This _must_ happen before we call free_task(), i.e. before we jump
1872 * to any of the bad_fork_* labels. This is to avoid freeing
1873 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1874 * kernel threads (PF_KTHREAD).
1875 */
1876 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1877 /*
1878 * Clear TID on mm_release()?
1879 */
1880 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1881
1882 ftrace_graph_init_task(p);
1883
1884 rt_mutex_init_task(p);
1885
1886 #ifdef CONFIG_PROVE_LOCKING
1887 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1888 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1889 #endif
1890 retval = -EAGAIN;
1891 if (atomic_read(&p->real_cred->user->processes) >=
1892 task_rlimit(p, RLIMIT_NPROC)) {
1893 if (p->real_cred->user != INIT_USER &&
1894 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1895 goto bad_fork_free;
1896 }
1897 current->flags &= ~PF_NPROC_EXCEEDED;
1898
1899 retval = copy_creds(p, clone_flags);
1900 if (retval < 0)
1901 goto bad_fork_free;
1902
1903 /*
1904 * If multiple threads are within copy_process(), then this check
1905 * triggers too late. This doesn't hurt, the check is only there
1906 * to stop root fork bombs.
1907 */
1908 retval = -EAGAIN;
1909 if (nr_threads >= max_threads)
1910 goto bad_fork_cleanup_count;
1911
1912 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1913 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1914 p->flags |= PF_FORKNOEXEC;
1915 INIT_LIST_HEAD(&p->children);
1916 INIT_LIST_HEAD(&p->sibling);
1917 rcu_copy_process(p);
1918 p->vfork_done = NULL;
1919 spin_lock_init(&p->alloc_lock);
1920
1921 init_sigpending(&p->pending);
1922
1923 p->utime = p->stime = p->gtime = 0;
1924 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1925 p->utimescaled = p->stimescaled = 0;
1926 #endif
1927 prev_cputime_init(&p->prev_cputime);
1928
1929 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1930 seqcount_init(&p->vtime.seqcount);
1931 p->vtime.starttime = 0;
1932 p->vtime.state = VTIME_INACTIVE;
1933 #endif
1934
1935 #if defined(SPLIT_RSS_COUNTING)
1936 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1937 #endif
1938
1939 p->default_timer_slack_ns = current->timer_slack_ns;
1940
1941 #ifdef CONFIG_PSI
1942 p->psi_flags = 0;
1943 #endif
1944
1945 task_io_accounting_init(&p->ioac);
1946 acct_clear_integrals(p);
1947
1948 posix_cpu_timers_init(p);
1949
1950 p->io_context = NULL;
1951 audit_set_context(p, NULL);
1952 cgroup_fork(p);
1953 #ifdef CONFIG_NUMA
1954 p->mempolicy = mpol_dup(p->mempolicy);
1955 if (IS_ERR(p->mempolicy)) {
1956 retval = PTR_ERR(p->mempolicy);
1957 p->mempolicy = NULL;
1958 goto bad_fork_cleanup_threadgroup_lock;
1959 }
1960 #endif
1961 #ifdef CONFIG_CPUSETS
1962 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1963 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1964 seqcount_init(&p->mems_allowed_seq);
1965 #endif
1966 #ifdef CONFIG_TRACE_IRQFLAGS
1967 p->irq_events = 0;
1968 p->hardirqs_enabled = 0;
1969 p->hardirq_enable_ip = 0;
1970 p->hardirq_enable_event = 0;
1971 p->hardirq_disable_ip = _THIS_IP_;
1972 p->hardirq_disable_event = 0;
1973 p->softirqs_enabled = 1;
1974 p->softirq_enable_ip = _THIS_IP_;
1975 p->softirq_enable_event = 0;
1976 p->softirq_disable_ip = 0;
1977 p->softirq_disable_event = 0;
1978 p->hardirq_context = 0;
1979 p->softirq_context = 0;
1980 #endif
1981
1982 p->pagefault_disabled = 0;
1983
1984 #ifdef CONFIG_LOCKDEP
1985 lockdep_init_task(p);
1986 #endif
1987
1988 #ifdef CONFIG_DEBUG_MUTEXES
1989 p->blocked_on = NULL; /* not blocked yet */
1990 #endif
1991 #ifdef CONFIG_BCACHE
1992 p->sequential_io = 0;
1993 p->sequential_io_avg = 0;
1994 #endif
1995
1996 /* Perform scheduler related setup. Assign this task to a CPU. */
1997 retval = sched_fork(clone_flags, p);
1998 if (retval)
1999 goto bad_fork_cleanup_policy;
2000
2001 retval = perf_event_init_task(p);
2002 if (retval)
2003 goto bad_fork_cleanup_policy;
2004 retval = audit_alloc(p);
2005 if (retval)
2006 goto bad_fork_cleanup_perf;
2007 /* copy all the process information */
2008 shm_init_task(p);
2009 retval = security_task_alloc(p, clone_flags);
2010 if (retval)
2011 goto bad_fork_cleanup_audit;
2012 retval = copy_semundo(clone_flags, p);
2013 if (retval)
2014 goto bad_fork_cleanup_security;
2015 retval = copy_files(clone_flags, p);
2016 if (retval)
2017 goto bad_fork_cleanup_semundo;
2018 retval = copy_fs(clone_flags, p);
2019 if (retval)
2020 goto bad_fork_cleanup_files;
2021 retval = copy_sighand(clone_flags, p);
2022 if (retval)
2023 goto bad_fork_cleanup_fs;
2024 retval = copy_signal(clone_flags, p);
2025 if (retval)
2026 goto bad_fork_cleanup_sighand;
2027 retval = copy_mm(clone_flags, p);
2028 if (retval)
2029 goto bad_fork_cleanup_signal;
2030 retval = copy_namespaces(clone_flags, p);
2031 if (retval)
2032 goto bad_fork_cleanup_mm;
2033 retval = copy_io(clone_flags, p);
2034 if (retval)
2035 goto bad_fork_cleanup_namespaces;
2036 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2037 args->tls);
2038 if (retval)
2039 goto bad_fork_cleanup_io;
2040
2041 stackleak_task_init(p);
2042
2043 if (pid != &init_struct_pid) {
2044 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2045 if (IS_ERR(pid)) {
2046 retval = PTR_ERR(pid);
2047 goto bad_fork_cleanup_thread;
2048 }
2049 }
2050
2051 /*
2052 * This has to happen after we've potentially unshared the file
2053 * descriptor table (so that the pidfd doesn't leak into the child
2054 * if the fd table isn't shared).
2055 */
2056 if (clone_flags & CLONE_PIDFD) {
2057 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2058 if (retval < 0)
2059 goto bad_fork_free_pid;
2060
2061 pidfd = retval;
2062
2063 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2064 O_RDWR | O_CLOEXEC);
2065 if (IS_ERR(pidfile)) {
2066 put_unused_fd(pidfd);
2067 retval = PTR_ERR(pidfile);
2068 goto bad_fork_free_pid;
2069 }
2070 get_pid(pid); /* held by pidfile now */
2071
2072 retval = put_user(pidfd, args->pidfd);
2073 if (retval)
2074 goto bad_fork_put_pidfd;
2075 }
2076
2077 #ifdef CONFIG_BLOCK
2078 p->plug = NULL;
2079 #endif
2080 #ifdef CONFIG_FUTEX
2081 p->robust_list = NULL;
2082 #ifdef CONFIG_COMPAT
2083 p->compat_robust_list = NULL;
2084 #endif
2085 INIT_LIST_HEAD(&p->pi_state_list);
2086 p->pi_state_cache = NULL;
2087 #endif
2088 /*
2089 * sigaltstack should be cleared when sharing the same VM
2090 */
2091 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2092 sas_ss_reset(p);
2093
2094 /*
2095 * Syscall tracing and stepping should be turned off in the
2096 * child regardless of CLONE_PTRACE.
2097 */
2098 user_disable_single_step(p);
2099 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2100 #ifdef TIF_SYSCALL_EMU
2101 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2102 #endif
2103 clear_tsk_latency_tracing(p);
2104
2105 /* ok, now we should be set up.. */
2106 p->pid = pid_nr(pid);
2107 if (clone_flags & CLONE_THREAD) {
2108 p->exit_signal = -1;
2109 p->group_leader = current->group_leader;
2110 p->tgid = current->tgid;
2111 } else {
2112 if (clone_flags & CLONE_PARENT)
2113 p->exit_signal = current->group_leader->exit_signal;
2114 else
2115 p->exit_signal = args->exit_signal;
2116 p->group_leader = p;
2117 p->tgid = p->pid;
2118 }
2119
2120 p->nr_dirtied = 0;
2121 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2122 p->dirty_paused_when = 0;
2123
2124 p->pdeath_signal = 0;
2125 INIT_LIST_HEAD(&p->thread_group);
2126 p->task_works = NULL;
2127
2128 cgroup_threadgroup_change_begin(current);
2129 /*
2130 * Ensure that the cgroup subsystem policies allow the new process to be
2131 * forked. It should be noted the the new process's css_set can be changed
2132 * between here and cgroup_post_fork() if an organisation operation is in
2133 * progress.
2134 */
2135 retval = cgroup_can_fork(p);
2136 if (retval)
2137 goto bad_fork_cgroup_threadgroup_change_end;
2138
2139 /*
2140 * From this point on we must avoid any synchronous user-space
2141 * communication until we take the tasklist-lock. In particular, we do
2142 * not want user-space to be able to predict the process start-time by
2143 * stalling fork(2) after we recorded the start_time but before it is
2144 * visible to the system.
2145 */
2146
2147 p->start_time = ktime_get_ns();
2148 p->real_start_time = ktime_get_boottime_ns();
2149
2150 /*
2151 * Make it visible to the rest of the system, but dont wake it up yet.
2152 * Need tasklist lock for parent etc handling!
2153 */
2154 write_lock_irq(&tasklist_lock);
2155
2156 /* CLONE_PARENT re-uses the old parent */
2157 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2158 p->real_parent = current->real_parent;
2159 p->parent_exec_id = current->parent_exec_id;
2160 } else {
2161 p->real_parent = current;
2162 p->parent_exec_id = current->self_exec_id;
2163 }
2164
2165 klp_copy_process(p);
2166
2167 spin_lock(&current->sighand->siglock);
2168
2169 /*
2170 * Copy seccomp details explicitly here, in case they were changed
2171 * before holding sighand lock.
2172 */
2173 copy_seccomp(p);
2174
2175 rseq_fork(p, clone_flags);
2176
2177 /* Don't start children in a dying pid namespace */
2178 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2179 retval = -ENOMEM;
2180 goto bad_fork_cancel_cgroup;
2181 }
2182
2183 /* Let kill terminate clone/fork in the middle */
2184 if (fatal_signal_pending(current)) {
2185 retval = -EINTR;
2186 goto bad_fork_cancel_cgroup;
2187 }
2188
2189 /* past the last point of failure */
2190 if (pidfile)
2191 fd_install(pidfd, pidfile);
2192
2193 init_task_pid_links(p);
2194 if (likely(p->pid)) {
2195 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2196
2197 init_task_pid(p, PIDTYPE_PID, pid);
2198 if (thread_group_leader(p)) {
2199 init_task_pid(p, PIDTYPE_TGID, pid);
2200 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2201 init_task_pid(p, PIDTYPE_SID, task_session(current));
2202
2203 if (is_child_reaper(pid)) {
2204 ns_of_pid(pid)->child_reaper = p;
2205 p->signal->flags |= SIGNAL_UNKILLABLE;
2206 }
2207 p->signal->shared_pending.signal = delayed.signal;
2208 p->signal->tty = tty_kref_get(current->signal->tty);
2209 /*
2210 * Inherit has_child_subreaper flag under the same
2211 * tasklist_lock with adding child to the process tree
2212 * for propagate_has_child_subreaper optimization.
2213 */
2214 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2215 p->real_parent->signal->is_child_subreaper;
2216 list_add_tail(&p->sibling, &p->real_parent->children);
2217 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2218 attach_pid(p, PIDTYPE_TGID);
2219 attach_pid(p, PIDTYPE_PGID);
2220 attach_pid(p, PIDTYPE_SID);
2221 __this_cpu_inc(process_counts);
2222 } else {
2223 current->signal->nr_threads++;
2224 atomic_inc(&current->signal->live);
2225 refcount_inc(&current->signal->sigcnt);
2226 task_join_group_stop(p);
2227 list_add_tail_rcu(&p->thread_group,
2228 &p->group_leader->thread_group);
2229 list_add_tail_rcu(&p->thread_node,
2230 &p->signal->thread_head);
2231 }
2232 attach_pid(p, PIDTYPE_PID);
2233 nr_threads++;
2234 }
2235 total_forks++;
2236 hlist_del_init(&delayed.node);
2237 spin_unlock(&current->sighand->siglock);
2238 syscall_tracepoint_update(p);
2239 write_unlock_irq(&tasklist_lock);
2240
2241 proc_fork_connector(p);
2242 cgroup_post_fork(p);
2243 cgroup_threadgroup_change_end(current);
2244 perf_event_fork(p);
2245
2246 trace_task_newtask(p, clone_flags);
2247 uprobe_copy_process(p, clone_flags);
2248
2249 return p;
2250
2251 bad_fork_cancel_cgroup:
2252 spin_unlock(&current->sighand->siglock);
2253 write_unlock_irq(&tasklist_lock);
2254 cgroup_cancel_fork(p);
2255 bad_fork_cgroup_threadgroup_change_end:
2256 cgroup_threadgroup_change_end(current);
2257 bad_fork_put_pidfd:
2258 if (clone_flags & CLONE_PIDFD) {
2259 fput(pidfile);
2260 put_unused_fd(pidfd);
2261 }
2262 bad_fork_free_pid:
2263 if (pid != &init_struct_pid)
2264 free_pid(pid);
2265 bad_fork_cleanup_thread:
2266 exit_thread(p);
2267 bad_fork_cleanup_io:
2268 if (p->io_context)
2269 exit_io_context(p);
2270 bad_fork_cleanup_namespaces:
2271 exit_task_namespaces(p);
2272 bad_fork_cleanup_mm:
2273 if (p->mm) {
2274 mm_clear_owner(p->mm, p);
2275 mmput(p->mm);
2276 }
2277 bad_fork_cleanup_signal:
2278 if (!(clone_flags & CLONE_THREAD))
2279 free_signal_struct(p->signal);
2280 bad_fork_cleanup_sighand:
2281 __cleanup_sighand(p->sighand);
2282 bad_fork_cleanup_fs:
2283 exit_fs(p); /* blocking */
2284 bad_fork_cleanup_files:
2285 exit_files(p); /* blocking */
2286 bad_fork_cleanup_semundo:
2287 exit_sem(p);
2288 bad_fork_cleanup_security:
2289 security_task_free(p);
2290 bad_fork_cleanup_audit:
2291 audit_free(p);
2292 bad_fork_cleanup_perf:
2293 perf_event_free_task(p);
2294 bad_fork_cleanup_policy:
2295 lockdep_free_task(p);
2296 #ifdef CONFIG_NUMA
2297 mpol_put(p->mempolicy);
2298 bad_fork_cleanup_threadgroup_lock:
2299 #endif
2300 delayacct_tsk_free(p);
2301 bad_fork_cleanup_count:
2302 atomic_dec(&p->cred->user->processes);
2303 exit_creds(p);
2304 bad_fork_free:
2305 p->state = TASK_DEAD;
2306 put_task_stack(p);
2307 delayed_free_task(p);
2308 fork_out:
2309 spin_lock_irq(&current->sighand->siglock);
2310 hlist_del_init(&delayed.node);
2311 spin_unlock_irq(&current->sighand->siglock);
2312 return ERR_PTR(retval);
2313 }
2314
2315 static inline void init_idle_pids(struct task_struct *idle)
2316 {
2317 enum pid_type type;
2318
2319 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2320 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2321 init_task_pid(idle, type, &init_struct_pid);
2322 }
2323 }
2324
2325 struct task_struct *fork_idle(int cpu)
2326 {
2327 struct task_struct *task;
2328 struct kernel_clone_args args = {
2329 .flags = CLONE_VM,
2330 };
2331
2332 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2333 if (!IS_ERR(task)) {
2334 init_idle_pids(task);
2335 init_idle(task, cpu);
2336 }
2337
2338 return task;
2339 }
2340
2341 struct mm_struct *copy_init_mm(void)
2342 {
2343 return dup_mm(NULL, &init_mm);
2344 }
2345
2346 /*
2347 * Ok, this is the main fork-routine.
2348 *
2349 * It copies the process, and if successful kick-starts
2350 * it and waits for it to finish using the VM if required.
2351 *
2352 * args->exit_signal is expected to be checked for sanity by the caller.
2353 */
2354 long _do_fork(struct kernel_clone_args *args)
2355 {
2356 u64 clone_flags = args->flags;
2357 struct completion vfork;
2358 struct pid *pid;
2359 struct task_struct *p;
2360 int trace = 0;
2361 long nr;
2362
2363 /*
2364 * Determine whether and which event to report to ptracer. When
2365 * called from kernel_thread or CLONE_UNTRACED is explicitly
2366 * requested, no event is reported; otherwise, report if the event
2367 * for the type of forking is enabled.
2368 */
2369 if (!(clone_flags & CLONE_UNTRACED)) {
2370 if (clone_flags & CLONE_VFORK)
2371 trace = PTRACE_EVENT_VFORK;
2372 else if (args->exit_signal != SIGCHLD)
2373 trace = PTRACE_EVENT_CLONE;
2374 else
2375 trace = PTRACE_EVENT_FORK;
2376
2377 if (likely(!ptrace_event_enabled(current, trace)))
2378 trace = 0;
2379 }
2380
2381 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2382 add_latent_entropy();
2383
2384 if (IS_ERR(p))
2385 return PTR_ERR(p);
2386
2387 /*
2388 * Do this prior waking up the new thread - the thread pointer
2389 * might get invalid after that point, if the thread exits quickly.
2390 */
2391 trace_sched_process_fork(current, p);
2392
2393 pid = get_task_pid(p, PIDTYPE_PID);
2394 nr = pid_vnr(pid);
2395
2396 if (clone_flags & CLONE_PARENT_SETTID)
2397 put_user(nr, args->parent_tid);
2398
2399 if (clone_flags & CLONE_VFORK) {
2400 p->vfork_done = &vfork;
2401 init_completion(&vfork);
2402 get_task_struct(p);
2403 }
2404
2405 wake_up_new_task(p);
2406
2407 /* forking complete and child started to run, tell ptracer */
2408 if (unlikely(trace))
2409 ptrace_event_pid(trace, pid);
2410
2411 if (clone_flags & CLONE_VFORK) {
2412 if (!wait_for_vfork_done(p, &vfork))
2413 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2414 }
2415
2416 put_pid(pid);
2417 return nr;
2418 }
2419
2420 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2421 {
2422 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2423 if ((kargs->flags & CLONE_PIDFD) &&
2424 (kargs->flags & CLONE_PARENT_SETTID))
2425 return false;
2426
2427 return true;
2428 }
2429
2430 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2431 /* For compatibility with architectures that call do_fork directly rather than
2432 * using the syscall entry points below. */
2433 long do_fork(unsigned long clone_flags,
2434 unsigned long stack_start,
2435 unsigned long stack_size,
2436 int __user *parent_tidptr,
2437 int __user *child_tidptr)
2438 {
2439 struct kernel_clone_args args = {
2440 .flags = (clone_flags & ~CSIGNAL),
2441 .pidfd = parent_tidptr,
2442 .child_tid = child_tidptr,
2443 .parent_tid = parent_tidptr,
2444 .exit_signal = (clone_flags & CSIGNAL),
2445 .stack = stack_start,
2446 .stack_size = stack_size,
2447 };
2448
2449 if (!legacy_clone_args_valid(&args))
2450 return -EINVAL;
2451
2452 return _do_fork(&args);
2453 }
2454 #endif
2455
2456 /*
2457 * Create a kernel thread.
2458 */
2459 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2460 {
2461 struct kernel_clone_args args = {
2462 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2463 .exit_signal = (flags & CSIGNAL),
2464 .stack = (unsigned long)fn,
2465 .stack_size = (unsigned long)arg,
2466 };
2467
2468 return _do_fork(&args);
2469 }
2470
2471 #ifdef __ARCH_WANT_SYS_FORK
2472 SYSCALL_DEFINE0(fork)
2473 {
2474 #ifdef CONFIG_MMU
2475 struct kernel_clone_args args = {
2476 .exit_signal = SIGCHLD,
2477 };
2478
2479 return _do_fork(&args);
2480 #else
2481 /* can not support in nommu mode */
2482 return -EINVAL;
2483 #endif
2484 }
2485 #endif
2486
2487 #ifdef __ARCH_WANT_SYS_VFORK
2488 SYSCALL_DEFINE0(vfork)
2489 {
2490 struct kernel_clone_args args = {
2491 .flags = CLONE_VFORK | CLONE_VM,
2492 .exit_signal = SIGCHLD,
2493 };
2494
2495 return _do_fork(&args);
2496 }
2497 #endif
2498
2499 #ifdef __ARCH_WANT_SYS_CLONE
2500 #ifdef CONFIG_CLONE_BACKWARDS
2501 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2502 int __user *, parent_tidptr,
2503 unsigned long, tls,
2504 int __user *, child_tidptr)
2505 #elif defined(CONFIG_CLONE_BACKWARDS2)
2506 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2507 int __user *, parent_tidptr,
2508 int __user *, child_tidptr,
2509 unsigned long, tls)
2510 #elif defined(CONFIG_CLONE_BACKWARDS3)
2511 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2512 int, stack_size,
2513 int __user *, parent_tidptr,
2514 int __user *, child_tidptr,
2515 unsigned long, tls)
2516 #else
2517 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2518 int __user *, parent_tidptr,
2519 int __user *, child_tidptr,
2520 unsigned long, tls)
2521 #endif
2522 {
2523 struct kernel_clone_args args = {
2524 .flags = (clone_flags & ~CSIGNAL),
2525 .pidfd = parent_tidptr,
2526 .child_tid = child_tidptr,
2527 .parent_tid = parent_tidptr,
2528 .exit_signal = (clone_flags & CSIGNAL),
2529 .stack = newsp,
2530 .tls = tls,
2531 };
2532
2533 if (!legacy_clone_args_valid(&args))
2534 return -EINVAL;
2535
2536 return _do_fork(&args);
2537 }
2538 #endif
2539
2540 #ifdef __ARCH_WANT_SYS_CLONE3
2541 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2542 struct clone_args __user *uargs,
2543 size_t size)
2544 {
2545 struct clone_args args;
2546
2547 if (unlikely(size > PAGE_SIZE))
2548 return -E2BIG;
2549
2550 if (unlikely(size < sizeof(struct clone_args)))
2551 return -EINVAL;
2552
2553 if (unlikely(!access_ok(uargs, size)))
2554 return -EFAULT;
2555
2556 if (size > sizeof(struct clone_args)) {
2557 unsigned char __user *addr;
2558 unsigned char __user *end;
2559 unsigned char val;
2560
2561 addr = (void __user *)uargs + sizeof(struct clone_args);
2562 end = (void __user *)uargs + size;
2563
2564 for (; addr < end; addr++) {
2565 if (get_user(val, addr))
2566 return -EFAULT;
2567 if (val)
2568 return -E2BIG;
2569 }
2570
2571 size = sizeof(struct clone_args);
2572 }
2573
2574 if (copy_from_user(&args, uargs, size))
2575 return -EFAULT;
2576
2577 /*
2578 * Verify that higher 32bits of exit_signal are unset and that
2579 * it is a valid signal
2580 */
2581 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2582 !valid_signal(args.exit_signal)))
2583 return -EINVAL;
2584
2585 *kargs = (struct kernel_clone_args){
2586 .flags = args.flags,
2587 .pidfd = u64_to_user_ptr(args.pidfd),
2588 .child_tid = u64_to_user_ptr(args.child_tid),
2589 .parent_tid = u64_to_user_ptr(args.parent_tid),
2590 .exit_signal = args.exit_signal,
2591 .stack = args.stack,
2592 .stack_size = args.stack_size,
2593 .tls = args.tls,
2594 };
2595
2596 return 0;
2597 }
2598
2599 /**
2600 * clone3_stack_valid - check and prepare stack
2601 * @kargs: kernel clone args
2602 *
2603 * Verify that the stack arguments userspace gave us are sane.
2604 * In addition, set the stack direction for userspace since it's easy for us to
2605 * determine.
2606 */
2607 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2608 {
2609 if (kargs->stack == 0) {
2610 if (kargs->stack_size > 0)
2611 return false;
2612 } else {
2613 if (kargs->stack_size == 0)
2614 return false;
2615
2616 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2617 return false;
2618
2619 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2620 kargs->stack += kargs->stack_size;
2621 #endif
2622 }
2623
2624 return true;
2625 }
2626
2627 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2628 {
2629 /*
2630 * All lower bits of the flag word are taken.
2631 * Verify that no other unknown flags are passed along.
2632 */
2633 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2634 return false;
2635
2636 /*
2637 * - make the CLONE_DETACHED bit reuseable for clone3
2638 * - make the CSIGNAL bits reuseable for clone3
2639 */
2640 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2641 return false;
2642
2643 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2644 kargs->exit_signal)
2645 return false;
2646
2647 if (!clone3_stack_valid(kargs))
2648 return false;
2649
2650 return true;
2651 }
2652
2653 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2654 {
2655 int err;
2656
2657 struct kernel_clone_args kargs;
2658
2659 err = copy_clone_args_from_user(&kargs, uargs, size);
2660 if (err)
2661 return err;
2662
2663 if (!clone3_args_valid(&kargs))
2664 return -EINVAL;
2665
2666 return _do_fork(&kargs);
2667 }
2668 #endif
2669
2670 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2671 {
2672 struct task_struct *leader, *parent, *child;
2673 int res;
2674
2675 read_lock(&tasklist_lock);
2676 leader = top = top->group_leader;
2677 down:
2678 for_each_thread(leader, parent) {
2679 list_for_each_entry(child, &parent->children, sibling) {
2680 res = visitor(child, data);
2681 if (res) {
2682 if (res < 0)
2683 goto out;
2684 leader = child;
2685 goto down;
2686 }
2687 up:
2688 ;
2689 }
2690 }
2691
2692 if (leader != top) {
2693 child = leader;
2694 parent = child->real_parent;
2695 leader = parent->group_leader;
2696 goto up;
2697 }
2698 out:
2699 read_unlock(&tasklist_lock);
2700 }
2701
2702 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2703 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2704 #endif
2705
2706 static void sighand_ctor(void *data)
2707 {
2708 struct sighand_struct *sighand = data;
2709
2710 spin_lock_init(&sighand->siglock);
2711 init_waitqueue_head(&sighand->signalfd_wqh);
2712 }
2713
2714 void __init proc_caches_init(void)
2715 {
2716 unsigned int mm_size;
2717
2718 sighand_cachep = kmem_cache_create("sighand_cache",
2719 sizeof(struct sighand_struct), 0,
2720 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2721 SLAB_ACCOUNT, sighand_ctor);
2722 signal_cachep = kmem_cache_create("signal_cache",
2723 sizeof(struct signal_struct), 0,
2724 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2725 NULL);
2726 files_cachep = kmem_cache_create("files_cache",
2727 sizeof(struct files_struct), 0,
2728 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2729 NULL);
2730 fs_cachep = kmem_cache_create("fs_cache",
2731 sizeof(struct fs_struct), 0,
2732 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2733 NULL);
2734
2735 /*
2736 * The mm_cpumask is located at the end of mm_struct, and is
2737 * dynamically sized based on the maximum CPU number this system
2738 * can have, taking hotplug into account (nr_cpu_ids).
2739 */
2740 mm_size = sizeof(struct mm_struct) + cpumask_size();
2741
2742 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2743 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2744 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2745 offsetof(struct mm_struct, saved_auxv),
2746 sizeof_field(struct mm_struct, saved_auxv),
2747 NULL);
2748 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2749 mmap_init();
2750 nsproxy_cache_init();
2751 }
2752
2753 /*
2754 * Check constraints on flags passed to the unshare system call.
2755 */
2756 static int check_unshare_flags(unsigned long unshare_flags)
2757 {
2758 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2759 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2760 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2761 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2762 return -EINVAL;
2763 /*
2764 * Not implemented, but pretend it works if there is nothing
2765 * to unshare. Note that unsharing the address space or the
2766 * signal handlers also need to unshare the signal queues (aka
2767 * CLONE_THREAD).
2768 */
2769 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2770 if (!thread_group_empty(current))
2771 return -EINVAL;
2772 }
2773 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2774 if (refcount_read(&current->sighand->count) > 1)
2775 return -EINVAL;
2776 }
2777 if (unshare_flags & CLONE_VM) {
2778 if (!current_is_single_threaded())
2779 return -EINVAL;
2780 }
2781
2782 return 0;
2783 }
2784
2785 /*
2786 * Unshare the filesystem structure if it is being shared
2787 */
2788 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2789 {
2790 struct fs_struct *fs = current->fs;
2791
2792 if (!(unshare_flags & CLONE_FS) || !fs)
2793 return 0;
2794
2795 /* don't need lock here; in the worst case we'll do useless copy */
2796 if (fs->users == 1)
2797 return 0;
2798
2799 *new_fsp = copy_fs_struct(fs);
2800 if (!*new_fsp)
2801 return -ENOMEM;
2802
2803 return 0;
2804 }
2805
2806 /*
2807 * Unshare file descriptor table if it is being shared
2808 */
2809 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2810 {
2811 struct files_struct *fd = current->files;
2812 int error = 0;
2813
2814 if ((unshare_flags & CLONE_FILES) &&
2815 (fd && atomic_read(&fd->count) > 1)) {
2816 *new_fdp = dup_fd(fd, &error);
2817 if (!*new_fdp)
2818 return error;
2819 }
2820
2821 return 0;
2822 }
2823
2824 /*
2825 * unshare allows a process to 'unshare' part of the process
2826 * context which was originally shared using clone. copy_*
2827 * functions used by do_fork() cannot be used here directly
2828 * because they modify an inactive task_struct that is being
2829 * constructed. Here we are modifying the current, active,
2830 * task_struct.
2831 */
2832 int ksys_unshare(unsigned long unshare_flags)
2833 {
2834 struct fs_struct *fs, *new_fs = NULL;
2835 struct files_struct *fd, *new_fd = NULL;
2836 struct cred *new_cred = NULL;
2837 struct nsproxy *new_nsproxy = NULL;
2838 int do_sysvsem = 0;
2839 int err;
2840
2841 /*
2842 * If unsharing a user namespace must also unshare the thread group
2843 * and unshare the filesystem root and working directories.
2844 */
2845 if (unshare_flags & CLONE_NEWUSER)
2846 unshare_flags |= CLONE_THREAD | CLONE_FS;
2847 /*
2848 * If unsharing vm, must also unshare signal handlers.
2849 */
2850 if (unshare_flags & CLONE_VM)
2851 unshare_flags |= CLONE_SIGHAND;
2852 /*
2853 * If unsharing a signal handlers, must also unshare the signal queues.
2854 */
2855 if (unshare_flags & CLONE_SIGHAND)
2856 unshare_flags |= CLONE_THREAD;
2857 /*
2858 * If unsharing namespace, must also unshare filesystem information.
2859 */
2860 if (unshare_flags & CLONE_NEWNS)
2861 unshare_flags |= CLONE_FS;
2862
2863 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2864 err = -EPERM;
2865 if (!capable(CAP_SYS_ADMIN))
2866 goto bad_unshare_out;
2867 }
2868
2869 err = check_unshare_flags(unshare_flags);
2870 if (err)
2871 goto bad_unshare_out;
2872 /*
2873 * CLONE_NEWIPC must also detach from the undolist: after switching
2874 * to a new ipc namespace, the semaphore arrays from the old
2875 * namespace are unreachable.
2876 */
2877 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2878 do_sysvsem = 1;
2879 err = unshare_fs(unshare_flags, &new_fs);
2880 if (err)
2881 goto bad_unshare_out;
2882 err = unshare_fd(unshare_flags, &new_fd);
2883 if (err)
2884 goto bad_unshare_cleanup_fs;
2885 err = unshare_userns(unshare_flags, &new_cred);
2886 if (err)
2887 goto bad_unshare_cleanup_fd;
2888 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2889 new_cred, new_fs);
2890 if (err)
2891 goto bad_unshare_cleanup_cred;
2892
2893 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2894 if (do_sysvsem) {
2895 /*
2896 * CLONE_SYSVSEM is equivalent to sys_exit().
2897 */
2898 exit_sem(current);
2899 }
2900 if (unshare_flags & CLONE_NEWIPC) {
2901 /* Orphan segments in old ns (see sem above). */
2902 exit_shm(current);
2903 shm_init_task(current);
2904 }
2905
2906 if (new_nsproxy)
2907 switch_task_namespaces(current, new_nsproxy);
2908
2909 task_lock(current);
2910
2911 if (new_fs) {
2912 fs = current->fs;
2913 spin_lock(&fs->lock);
2914 current->fs = new_fs;
2915 if (--fs->users)
2916 new_fs = NULL;
2917 else
2918 new_fs = fs;
2919 spin_unlock(&fs->lock);
2920 }
2921
2922 if (new_fd) {
2923 fd = current->files;
2924 current->files = new_fd;
2925 new_fd = fd;
2926 }
2927
2928 task_unlock(current);
2929
2930 if (new_cred) {
2931 /* Install the new user namespace */
2932 commit_creds(new_cred);
2933 new_cred = NULL;
2934 }
2935 }
2936
2937 perf_event_namespaces(current);
2938
2939 bad_unshare_cleanup_cred:
2940 if (new_cred)
2941 put_cred(new_cred);
2942 bad_unshare_cleanup_fd:
2943 if (new_fd)
2944 put_files_struct(new_fd);
2945
2946 bad_unshare_cleanup_fs:
2947 if (new_fs)
2948 free_fs_struct(new_fs);
2949
2950 bad_unshare_out:
2951 return err;
2952 }
2953
2954 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2955 {
2956 return ksys_unshare(unshare_flags);
2957 }
2958
2959 /*
2960 * Helper to unshare the files of the current task.
2961 * We don't want to expose copy_files internals to
2962 * the exec layer of the kernel.
2963 */
2964
2965 int unshare_files(struct files_struct **displaced)
2966 {
2967 struct task_struct *task = current;
2968 struct files_struct *copy = NULL;
2969 int error;
2970
2971 error = unshare_fd(CLONE_FILES, &copy);
2972 if (error || !copy) {
2973 *displaced = NULL;
2974 return error;
2975 }
2976 *displaced = task->files;
2977 task_lock(task);
2978 task->files = copy;
2979 task_unlock(task);
2980 return 0;
2981 }
2982
2983 int sysctl_max_threads(struct ctl_table *table, int write,
2984 void __user *buffer, size_t *lenp, loff_t *ppos)
2985 {
2986 struct ctl_table t;
2987 int ret;
2988 int threads = max_threads;
2989 int min = 1;
2990 int max = MAX_THREADS;
2991
2992 t = *table;
2993 t.data = &threads;
2994 t.extra1 = &min;
2995 t.extra2 = &max;
2996
2997 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2998 if (ret || !write)
2999 return ret;
3000
3001 max_threads = threads;
3002
3003 return 0;
3004 }