]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/fork.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 #ifdef CONFIG_USER_NS
110 extern int unprivileged_userns_clone;
111 #else
112 #define unprivileged_userns_clone 0
113 #endif
114
115 /*
116 * Minimum number of threads to boot the kernel
117 */
118 #define MIN_THREADS 20
119
120 /*
121 * Maximum number of threads
122 */
123 #define MAX_THREADS FUTEX_TID_MASK
124
125 /*
126 * Protected counters by write_lock_irq(&tasklist_lock)
127 */
128 unsigned long total_forks; /* Handle normal Linux uptimes. */
129 int nr_threads; /* The idle threads do not count.. */
130
131 static int max_threads; /* tunable limit on nr_threads */
132
133 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
134
135 static const char * const resident_page_types[] = {
136 NAMED_ARRAY_INDEX(MM_FILEPAGES),
137 NAMED_ARRAY_INDEX(MM_ANONPAGES),
138 NAMED_ARRAY_INDEX(MM_SWAPENTS),
139 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 };
141
142 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
143
144 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
145
146 #ifdef CONFIG_PROVE_RCU
147 int lockdep_tasklist_lock_is_held(void)
148 {
149 return lockdep_is_held(&tasklist_lock);
150 }
151 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
152 #endif /* #ifdef CONFIG_PROVE_RCU */
153
154 int nr_processes(void)
155 {
156 int cpu;
157 int total = 0;
158
159 for_each_possible_cpu(cpu)
160 total += per_cpu(process_counts, cpu);
161
162 return total;
163 }
164
165 void __weak arch_release_task_struct(struct task_struct *tsk)
166 {
167 }
168
169 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
170 static struct kmem_cache *task_struct_cachep;
171
172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176
177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 kmem_cache_free(task_struct_cachep, tsk);
180 }
181 #endif
182
183 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184
185 /*
186 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
187 * kmemcache based allocator.
188 */
189 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
190
191 #ifdef CONFIG_VMAP_STACK
192 /*
193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
194 * flush. Try to minimize the number of calls by caching stacks.
195 */
196 #define NR_CACHED_STACKS 2
197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
198
199 static int free_vm_stack_cache(unsigned int cpu)
200 {
201 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
202 int i;
203
204 for (i = 0; i < NR_CACHED_STACKS; i++) {
205 struct vm_struct *vm_stack = cached_vm_stacks[i];
206
207 if (!vm_stack)
208 continue;
209
210 vfree(vm_stack->addr);
211 cached_vm_stacks[i] = NULL;
212 }
213
214 return 0;
215 }
216 #endif
217
218 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
219 {
220 #ifdef CONFIG_VMAP_STACK
221 void *stack;
222 int i;
223
224 for (i = 0; i < NR_CACHED_STACKS; i++) {
225 struct vm_struct *s;
226
227 s = this_cpu_xchg(cached_stacks[i], NULL);
228
229 if (!s)
230 continue;
231
232 /* Clear stale pointers from reused stack. */
233 memset(s->addr, 0, THREAD_SIZE);
234
235 tsk->stack_vm_area = s;
236 tsk->stack = s->addr;
237 return s->addr;
238 }
239
240 /*
241 * Allocated stacks are cached and later reused by new threads,
242 * so memcg accounting is performed manually on assigning/releasing
243 * stacks to tasks. Drop __GFP_ACCOUNT.
244 */
245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 VMALLOC_START, VMALLOC_END,
247 THREADINFO_GFP & ~__GFP_ACCOUNT,
248 PAGE_KERNEL,
249 0, node, __builtin_return_address(0));
250
251 /*
252 * We can't call find_vm_area() in interrupt context, and
253 * free_thread_stack() can be called in interrupt context,
254 * so cache the vm_struct.
255 */
256 if (stack) {
257 tsk->stack_vm_area = find_vm_area(stack);
258 tsk->stack = stack;
259 }
260 return stack;
261 #else
262 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 THREAD_SIZE_ORDER);
264
265 if (likely(page)) {
266 tsk->stack = page_address(page);
267 return tsk->stack;
268 }
269 return NULL;
270 #endif
271 }
272
273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 struct vm_struct *vm = task_stack_vm_area(tsk);
277
278 if (vm) {
279 int i;
280
281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
282 mod_memcg_page_state(vm->pages[i],
283 MEMCG_KERNEL_STACK_KB,
284 -(int)(PAGE_SIZE / 1024));
285
286 memcg_kmem_uncharge(vm->pages[i], 0);
287 }
288
289 for (i = 0; i < NR_CACHED_STACKS; i++) {
290 if (this_cpu_cmpxchg(cached_stacks[i],
291 NULL, tsk->stack_vm_area) != NULL)
292 continue;
293
294 return;
295 }
296
297 vfree_atomic(tsk->stack);
298 return;
299 }
300 #endif
301
302 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306
307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 int node)
309 {
310 unsigned long *stack;
311 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 tsk->stack = stack;
313 return stack;
314 }
315
316 static void free_thread_stack(struct task_struct *tsk)
317 {
318 kmem_cache_free(thread_stack_cache, tsk->stack);
319 }
320
321 void thread_stack_cache_init(void)
322 {
323 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
324 THREAD_SIZE, THREAD_SIZE, 0, 0,
325 THREAD_SIZE, NULL);
326 BUG_ON(thread_stack_cache == NULL);
327 }
328 # endif
329 #endif
330
331 /* SLAB cache for signal_struct structures (tsk->signal) */
332 static struct kmem_cache *signal_cachep;
333
334 /* SLAB cache for sighand_struct structures (tsk->sighand) */
335 struct kmem_cache *sighand_cachep;
336
337 /* SLAB cache for files_struct structures (tsk->files) */
338 struct kmem_cache *files_cachep;
339
340 /* SLAB cache for fs_struct structures (tsk->fs) */
341 struct kmem_cache *fs_cachep;
342
343 /* SLAB cache for vm_area_struct structures */
344 static struct kmem_cache *vm_area_cachep;
345
346 /* SLAB cache for mm_struct structures (tsk->mm) */
347 static struct kmem_cache *mm_cachep;
348
349 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
350 {
351 struct vm_area_struct *vma;
352
353 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
354 if (vma)
355 vma_init(vma, mm);
356 return vma;
357 }
358
359 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
360 {
361 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362
363 if (new) {
364 *new = *orig;
365 INIT_LIST_HEAD(&new->anon_vma_chain);
366 }
367 return new;
368 }
369
370 void vm_area_free(struct vm_area_struct *vma)
371 {
372 kmem_cache_free(vm_area_cachep, vma);
373 }
374
375 static void account_kernel_stack(struct task_struct *tsk, int account)
376 {
377 void *stack = task_stack_page(tsk);
378 struct vm_struct *vm = task_stack_vm_area(tsk);
379
380 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
381
382 if (vm) {
383 int i;
384
385 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
386
387 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
388 mod_zone_page_state(page_zone(vm->pages[i]),
389 NR_KERNEL_STACK_KB,
390 PAGE_SIZE / 1024 * account);
391 }
392 } else {
393 /*
394 * All stack pages are in the same zone and belong to the
395 * same memcg.
396 */
397 struct page *first_page = virt_to_page(stack);
398
399 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
400 THREAD_SIZE / 1024 * account);
401
402 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
403 account * (THREAD_SIZE / 1024));
404 }
405 }
406
407 static int memcg_charge_kernel_stack(struct task_struct *tsk)
408 {
409 #ifdef CONFIG_VMAP_STACK
410 struct vm_struct *vm = task_stack_vm_area(tsk);
411 int ret;
412
413 if (vm) {
414 int i;
415
416 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
417 /*
418 * If memcg_kmem_charge() fails, page->mem_cgroup
419 * pointer is NULL, and both memcg_kmem_uncharge()
420 * and mod_memcg_page_state() in free_thread_stack()
421 * will ignore this page. So it's safe.
422 */
423 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
424 if (ret)
425 return ret;
426
427 mod_memcg_page_state(vm->pages[i],
428 MEMCG_KERNEL_STACK_KB,
429 PAGE_SIZE / 1024);
430 }
431 }
432 #endif
433 return 0;
434 }
435
436 static void release_task_stack(struct task_struct *tsk)
437 {
438 if (WARN_ON(tsk->state != TASK_DEAD))
439 return; /* Better to leak the stack than to free prematurely */
440
441 account_kernel_stack(tsk, -1);
442 free_thread_stack(tsk);
443 tsk->stack = NULL;
444 #ifdef CONFIG_VMAP_STACK
445 tsk->stack_vm_area = NULL;
446 #endif
447 }
448
449 #ifdef CONFIG_THREAD_INFO_IN_TASK
450 void put_task_stack(struct task_struct *tsk)
451 {
452 if (refcount_dec_and_test(&tsk->stack_refcount))
453 release_task_stack(tsk);
454 }
455 #endif
456
457 void free_task(struct task_struct *tsk)
458 {
459 #ifndef CONFIG_THREAD_INFO_IN_TASK
460 /*
461 * The task is finally done with both the stack and thread_info,
462 * so free both.
463 */
464 release_task_stack(tsk);
465 #else
466 /*
467 * If the task had a separate stack allocation, it should be gone
468 * by now.
469 */
470 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
471 #endif
472 rt_mutex_debug_task_free(tsk);
473 ftrace_graph_exit_task(tsk);
474 put_seccomp_filter(tsk);
475 arch_release_task_struct(tsk);
476 if (tsk->flags & PF_KTHREAD)
477 free_kthread_struct(tsk);
478 free_task_struct(tsk);
479 }
480 EXPORT_SYMBOL(free_task);
481
482 #ifdef CONFIG_MMU
483 static __latent_entropy int dup_mmap(struct mm_struct *mm,
484 struct mm_struct *oldmm)
485 {
486 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
487 struct rb_node **rb_link, *rb_parent;
488 int retval;
489 unsigned long charge;
490 LIST_HEAD(uf);
491
492 uprobe_start_dup_mmap();
493 if (down_write_killable(&oldmm->mmap_sem)) {
494 retval = -EINTR;
495 goto fail_uprobe_end;
496 }
497 flush_cache_dup_mm(oldmm);
498 uprobe_dup_mmap(oldmm, mm);
499 /*
500 * Not linked in yet - no deadlock potential:
501 */
502 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
503
504 /* No ordering required: file already has been exposed. */
505 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
506
507 mm->total_vm = oldmm->total_vm;
508 mm->data_vm = oldmm->data_vm;
509 mm->exec_vm = oldmm->exec_vm;
510 mm->stack_vm = oldmm->stack_vm;
511
512 rb_link = &mm->mm_rb.rb_node;
513 rb_parent = NULL;
514 pprev = &mm->mmap;
515 retval = ksm_fork(mm, oldmm);
516 if (retval)
517 goto out;
518 retval = khugepaged_fork(mm, oldmm);
519 if (retval)
520 goto out;
521
522 prev = NULL;
523 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
524 struct file *file;
525
526 if (mpnt->vm_flags & VM_DONTCOPY) {
527 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
528 continue;
529 }
530 charge = 0;
531 /*
532 * Don't duplicate many vmas if we've been oom-killed (for
533 * example)
534 */
535 if (fatal_signal_pending(current)) {
536 retval = -EINTR;
537 goto out;
538 }
539 if (mpnt->vm_flags & VM_ACCOUNT) {
540 unsigned long len = vma_pages(mpnt);
541
542 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
543 goto fail_nomem;
544 charge = len;
545 }
546 tmp = vm_area_dup(mpnt);
547 if (!tmp)
548 goto fail_nomem;
549 retval = vma_dup_policy(mpnt, tmp);
550 if (retval)
551 goto fail_nomem_policy;
552 tmp->vm_mm = mm;
553 retval = dup_userfaultfd(tmp, &uf);
554 if (retval)
555 goto fail_nomem_anon_vma_fork;
556 if (tmp->vm_flags & VM_WIPEONFORK) {
557 /* VM_WIPEONFORK gets a clean slate in the child. */
558 tmp->anon_vma = NULL;
559 if (anon_vma_prepare(tmp))
560 goto fail_nomem_anon_vma_fork;
561 } else if (anon_vma_fork(tmp, mpnt))
562 goto fail_nomem_anon_vma_fork;
563 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
564 tmp->vm_next = tmp->vm_prev = NULL;
565 file = tmp->vm_file;
566 if (file) {
567 struct inode *inode = file_inode(file);
568 struct address_space *mapping = file->f_mapping;
569
570 vma_get_file(tmp);
571 if (tmp->vm_flags & VM_DENYWRITE)
572 atomic_dec(&inode->i_writecount);
573 i_mmap_lock_write(mapping);
574 if (tmp->vm_flags & VM_SHARED)
575 atomic_inc(&mapping->i_mmap_writable);
576 flush_dcache_mmap_lock(mapping);
577 /* insert tmp into the share list, just after mpnt */
578 vma_interval_tree_insert_after(tmp, mpnt,
579 &mapping->i_mmap);
580 flush_dcache_mmap_unlock(mapping);
581 i_mmap_unlock_write(mapping);
582 }
583
584 /*
585 * Clear hugetlb-related page reserves for children. This only
586 * affects MAP_PRIVATE mappings. Faults generated by the child
587 * are not guaranteed to succeed, even if read-only
588 */
589 if (is_vm_hugetlb_page(tmp))
590 reset_vma_resv_huge_pages(tmp);
591
592 /*
593 * Link in the new vma and copy the page table entries.
594 */
595 *pprev = tmp;
596 pprev = &tmp->vm_next;
597 tmp->vm_prev = prev;
598 prev = tmp;
599
600 __vma_link_rb(mm, tmp, rb_link, rb_parent);
601 rb_link = &tmp->vm_rb.rb_right;
602 rb_parent = &tmp->vm_rb;
603
604 mm->map_count++;
605 if (!(tmp->vm_flags & VM_WIPEONFORK))
606 retval = copy_page_range(mm, oldmm, mpnt);
607
608 if (tmp->vm_ops && tmp->vm_ops->open)
609 tmp->vm_ops->open(tmp);
610
611 if (retval)
612 goto out;
613 }
614 /* a new mm has just been created */
615 retval = arch_dup_mmap(oldmm, mm);
616 out:
617 up_write(&mm->mmap_sem);
618 flush_tlb_mm(oldmm);
619 up_write(&oldmm->mmap_sem);
620 dup_userfaultfd_complete(&uf);
621 fail_uprobe_end:
622 uprobe_end_dup_mmap();
623 return retval;
624 fail_nomem_anon_vma_fork:
625 mpol_put(vma_policy(tmp));
626 fail_nomem_policy:
627 vm_area_free(tmp);
628 fail_nomem:
629 retval = -ENOMEM;
630 vm_unacct_memory(charge);
631 goto out;
632 }
633
634 static inline int mm_alloc_pgd(struct mm_struct *mm)
635 {
636 mm->pgd = pgd_alloc(mm);
637 if (unlikely(!mm->pgd))
638 return -ENOMEM;
639 return 0;
640 }
641
642 static inline void mm_free_pgd(struct mm_struct *mm)
643 {
644 pgd_free(mm, mm->pgd);
645 }
646 #else
647 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
648 {
649 down_write(&oldmm->mmap_sem);
650 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
651 up_write(&oldmm->mmap_sem);
652 return 0;
653 }
654 #define mm_alloc_pgd(mm) (0)
655 #define mm_free_pgd(mm)
656 #endif /* CONFIG_MMU */
657
658 static void check_mm(struct mm_struct *mm)
659 {
660 int i;
661
662 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
663 "Please make sure 'struct resident_page_types[]' is updated as well");
664
665 for (i = 0; i < NR_MM_COUNTERS; i++) {
666 long x = atomic_long_read(&mm->rss_stat.count[i]);
667
668 if (unlikely(x))
669 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
670 mm, resident_page_types[i], x);
671 }
672
673 if (mm_pgtables_bytes(mm))
674 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
675 mm_pgtables_bytes(mm));
676
677 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
678 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
679 #endif
680 }
681
682 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
683 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
684
685 /*
686 * Called when the last reference to the mm
687 * is dropped: either by a lazy thread or by
688 * mmput. Free the page directory and the mm.
689 */
690 void __mmdrop(struct mm_struct *mm)
691 {
692 BUG_ON(mm == &init_mm);
693 WARN_ON_ONCE(mm == current->mm);
694 WARN_ON_ONCE(mm == current->active_mm);
695 mm_free_pgd(mm);
696 destroy_context(mm);
697 mmu_notifier_mm_destroy(mm);
698 check_mm(mm);
699 put_user_ns(mm->user_ns);
700 free_mm(mm);
701 }
702 EXPORT_SYMBOL_GPL(__mmdrop);
703
704 static void mmdrop_async_fn(struct work_struct *work)
705 {
706 struct mm_struct *mm;
707
708 mm = container_of(work, struct mm_struct, async_put_work);
709 __mmdrop(mm);
710 }
711
712 static void mmdrop_async(struct mm_struct *mm)
713 {
714 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
715 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
716 schedule_work(&mm->async_put_work);
717 }
718 }
719
720 static inline void free_signal_struct(struct signal_struct *sig)
721 {
722 taskstats_tgid_free(sig);
723 sched_autogroup_exit(sig);
724 /*
725 * __mmdrop is not safe to call from softirq context on x86 due to
726 * pgd_dtor so postpone it to the async context
727 */
728 if (sig->oom_mm)
729 mmdrop_async(sig->oom_mm);
730 kmem_cache_free(signal_cachep, sig);
731 }
732
733 static inline void put_signal_struct(struct signal_struct *sig)
734 {
735 if (refcount_dec_and_test(&sig->sigcnt))
736 free_signal_struct(sig);
737 }
738
739 void __put_task_struct(struct task_struct *tsk)
740 {
741 WARN_ON(!tsk->exit_state);
742 WARN_ON(refcount_read(&tsk->usage));
743 WARN_ON(tsk == current);
744
745 cgroup_free(tsk);
746 task_numa_free(tsk, true);
747 security_task_free(tsk);
748 exit_creds(tsk);
749 delayacct_tsk_free(tsk);
750 put_signal_struct(tsk->signal);
751
752 if (!profile_handoff_task(tsk))
753 free_task(tsk);
754 }
755 EXPORT_SYMBOL_GPL(__put_task_struct);
756
757 void __init __weak arch_task_cache_init(void) { }
758
759 /*
760 * set_max_threads
761 */
762 static void set_max_threads(unsigned int max_threads_suggested)
763 {
764 u64 threads;
765 unsigned long nr_pages = totalram_pages();
766
767 /*
768 * The number of threads shall be limited such that the thread
769 * structures may only consume a small part of the available memory.
770 */
771 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
772 threads = MAX_THREADS;
773 else
774 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
775 (u64) THREAD_SIZE * 8UL);
776
777 if (threads > max_threads_suggested)
778 threads = max_threads_suggested;
779
780 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
781 }
782
783 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
784 /* Initialized by the architecture: */
785 int arch_task_struct_size __read_mostly;
786 #endif
787
788 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
789 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
790 {
791 /* Fetch thread_struct whitelist for the architecture. */
792 arch_thread_struct_whitelist(offset, size);
793
794 /*
795 * Handle zero-sized whitelist or empty thread_struct, otherwise
796 * adjust offset to position of thread_struct in task_struct.
797 */
798 if (unlikely(*size == 0))
799 *offset = 0;
800 else
801 *offset += offsetof(struct task_struct, thread);
802 }
803 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
804
805 void __init fork_init(void)
806 {
807 int i;
808 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
809 #ifndef ARCH_MIN_TASKALIGN
810 #define ARCH_MIN_TASKALIGN 0
811 #endif
812 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
813 unsigned long useroffset, usersize;
814
815 /* create a slab on which task_structs can be allocated */
816 task_struct_whitelist(&useroffset, &usersize);
817 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
818 arch_task_struct_size, align,
819 SLAB_PANIC|SLAB_ACCOUNT,
820 useroffset, usersize, NULL);
821 #endif
822
823 /* do the arch specific task caches init */
824 arch_task_cache_init();
825
826 set_max_threads(MAX_THREADS);
827
828 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
829 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
830 init_task.signal->rlim[RLIMIT_SIGPENDING] =
831 init_task.signal->rlim[RLIMIT_NPROC];
832
833 for (i = 0; i < UCOUNT_COUNTS; i++) {
834 init_user_ns.ucount_max[i] = max_threads/2;
835 }
836
837 #ifdef CONFIG_VMAP_STACK
838 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
839 NULL, free_vm_stack_cache);
840 #endif
841
842 lockdep_init_task(&init_task);
843 uprobes_init();
844 }
845
846 int __weak arch_dup_task_struct(struct task_struct *dst,
847 struct task_struct *src)
848 {
849 *dst = *src;
850 return 0;
851 }
852
853 void set_task_stack_end_magic(struct task_struct *tsk)
854 {
855 unsigned long *stackend;
856
857 stackend = end_of_stack(tsk);
858 *stackend = STACK_END_MAGIC; /* for overflow detection */
859 }
860
861 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
862 {
863 struct task_struct *tsk;
864 unsigned long *stack;
865 struct vm_struct *stack_vm_area __maybe_unused;
866 int err;
867
868 if (node == NUMA_NO_NODE)
869 node = tsk_fork_get_node(orig);
870 tsk = alloc_task_struct_node(node);
871 if (!tsk)
872 return NULL;
873
874 stack = alloc_thread_stack_node(tsk, node);
875 if (!stack)
876 goto free_tsk;
877
878 if (memcg_charge_kernel_stack(tsk))
879 goto free_stack;
880
881 stack_vm_area = task_stack_vm_area(tsk);
882
883 err = arch_dup_task_struct(tsk, orig);
884
885 /*
886 * arch_dup_task_struct() clobbers the stack-related fields. Make
887 * sure they're properly initialized before using any stack-related
888 * functions again.
889 */
890 tsk->stack = stack;
891 #ifdef CONFIG_VMAP_STACK
892 tsk->stack_vm_area = stack_vm_area;
893 #endif
894 #ifdef CONFIG_THREAD_INFO_IN_TASK
895 refcount_set(&tsk->stack_refcount, 1);
896 #endif
897
898 if (err)
899 goto free_stack;
900
901 #ifdef CONFIG_SECCOMP
902 /*
903 * We must handle setting up seccomp filters once we're under
904 * the sighand lock in case orig has changed between now and
905 * then. Until then, filter must be NULL to avoid messing up
906 * the usage counts on the error path calling free_task.
907 */
908 tsk->seccomp.filter = NULL;
909 #endif
910
911 setup_thread_stack(tsk, orig);
912 clear_user_return_notifier(tsk);
913 clear_tsk_need_resched(tsk);
914 set_task_stack_end_magic(tsk);
915
916 #ifdef CONFIG_STACKPROTECTOR
917 tsk->stack_canary = get_random_canary();
918 #endif
919 if (orig->cpus_ptr == &orig->cpus_mask)
920 tsk->cpus_ptr = &tsk->cpus_mask;
921
922 /*
923 * One for the user space visible state that goes away when reaped.
924 * One for the scheduler.
925 */
926 refcount_set(&tsk->rcu_users, 2);
927 /* One for the rcu users */
928 refcount_set(&tsk->usage, 1);
929 #ifdef CONFIG_BLK_DEV_IO_TRACE
930 tsk->btrace_seq = 0;
931 #endif
932 tsk->splice_pipe = NULL;
933 tsk->task_frag.page = NULL;
934 tsk->wake_q.next = NULL;
935
936 account_kernel_stack(tsk, 1);
937
938 kcov_task_init(tsk);
939
940 #ifdef CONFIG_FAULT_INJECTION
941 tsk->fail_nth = 0;
942 #endif
943
944 #ifdef CONFIG_BLK_CGROUP
945 tsk->throttle_queue = NULL;
946 tsk->use_memdelay = 0;
947 #endif
948
949 #ifdef CONFIG_MEMCG
950 tsk->active_memcg = NULL;
951 #endif
952 return tsk;
953
954 free_stack:
955 free_thread_stack(tsk);
956 free_tsk:
957 free_task_struct(tsk);
958 return NULL;
959 }
960
961 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
962
963 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
964
965 static int __init coredump_filter_setup(char *s)
966 {
967 default_dump_filter =
968 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
969 MMF_DUMP_FILTER_MASK;
970 return 1;
971 }
972
973 __setup("coredump_filter=", coredump_filter_setup);
974
975 #include <linux/init_task.h>
976
977 static void mm_init_aio(struct mm_struct *mm)
978 {
979 #ifdef CONFIG_AIO
980 spin_lock_init(&mm->ioctx_lock);
981 mm->ioctx_table = NULL;
982 #endif
983 }
984
985 static __always_inline void mm_clear_owner(struct mm_struct *mm,
986 struct task_struct *p)
987 {
988 #ifdef CONFIG_MEMCG
989 if (mm->owner == p)
990 WRITE_ONCE(mm->owner, NULL);
991 #endif
992 }
993
994 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
995 {
996 #ifdef CONFIG_MEMCG
997 mm->owner = p;
998 #endif
999 }
1000
1001 static void mm_init_uprobes_state(struct mm_struct *mm)
1002 {
1003 #ifdef CONFIG_UPROBES
1004 mm->uprobes_state.xol_area = NULL;
1005 #endif
1006 }
1007
1008 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1009 struct user_namespace *user_ns)
1010 {
1011 mm->mmap = NULL;
1012 mm->mm_rb = RB_ROOT;
1013 mm->vmacache_seqnum = 0;
1014 atomic_set(&mm->mm_users, 1);
1015 atomic_set(&mm->mm_count, 1);
1016 init_rwsem(&mm->mmap_sem);
1017 INIT_LIST_HEAD(&mm->mmlist);
1018 mm->core_state = NULL;
1019 mm_pgtables_bytes_init(mm);
1020 mm->map_count = 0;
1021 mm->locked_vm = 0;
1022 atomic64_set(&mm->pinned_vm, 0);
1023 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1024 spin_lock_init(&mm->page_table_lock);
1025 spin_lock_init(&mm->arg_lock);
1026 mm_init_cpumask(mm);
1027 mm_init_aio(mm);
1028 mm_init_owner(mm, p);
1029 RCU_INIT_POINTER(mm->exe_file, NULL);
1030 mmu_notifier_mm_init(mm);
1031 init_tlb_flush_pending(mm);
1032 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1033 mm->pmd_huge_pte = NULL;
1034 #endif
1035 mm_init_uprobes_state(mm);
1036 hugetlb_count_init(mm);
1037
1038 if (current->mm) {
1039 mm->flags = current->mm->flags & MMF_INIT_MASK;
1040 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1041 } else {
1042 mm->flags = default_dump_filter;
1043 mm->def_flags = 0;
1044 }
1045
1046 if (mm_alloc_pgd(mm))
1047 goto fail_nopgd;
1048
1049 if (init_new_context(p, mm))
1050 goto fail_nocontext;
1051
1052 mm->user_ns = get_user_ns(user_ns);
1053 return mm;
1054
1055 fail_nocontext:
1056 mm_free_pgd(mm);
1057 fail_nopgd:
1058 free_mm(mm);
1059 return NULL;
1060 }
1061
1062 /*
1063 * Allocate and initialize an mm_struct.
1064 */
1065 struct mm_struct *mm_alloc(void)
1066 {
1067 struct mm_struct *mm;
1068
1069 mm = allocate_mm();
1070 if (!mm)
1071 return NULL;
1072
1073 memset(mm, 0, sizeof(*mm));
1074 return mm_init(mm, current, current_user_ns());
1075 }
1076
1077 static inline void __mmput(struct mm_struct *mm)
1078 {
1079 VM_BUG_ON(atomic_read(&mm->mm_users));
1080
1081 uprobe_clear_state(mm);
1082 exit_aio(mm);
1083 ksm_exit(mm);
1084 khugepaged_exit(mm); /* must run before exit_mmap */
1085 exit_mmap(mm);
1086 mm_put_huge_zero_page(mm);
1087 set_mm_exe_file(mm, NULL);
1088 if (!list_empty(&mm->mmlist)) {
1089 spin_lock(&mmlist_lock);
1090 list_del(&mm->mmlist);
1091 spin_unlock(&mmlist_lock);
1092 }
1093 if (mm->binfmt)
1094 module_put(mm->binfmt->module);
1095 mmdrop(mm);
1096 }
1097
1098 /*
1099 * Decrement the use count and release all resources for an mm.
1100 */
1101 void mmput(struct mm_struct *mm)
1102 {
1103 might_sleep();
1104
1105 if (atomic_dec_and_test(&mm->mm_users))
1106 __mmput(mm);
1107 }
1108 EXPORT_SYMBOL_GPL(mmput);
1109
1110 #ifdef CONFIG_MMU
1111 static void mmput_async_fn(struct work_struct *work)
1112 {
1113 struct mm_struct *mm = container_of(work, struct mm_struct,
1114 async_put_work);
1115
1116 __mmput(mm);
1117 }
1118
1119 void mmput_async(struct mm_struct *mm)
1120 {
1121 if (atomic_dec_and_test(&mm->mm_users)) {
1122 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1123 schedule_work(&mm->async_put_work);
1124 }
1125 }
1126 EXPORT_SYMBOL(mmput_async);
1127 #endif
1128
1129 /**
1130 * set_mm_exe_file - change a reference to the mm's executable file
1131 *
1132 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1133 *
1134 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1135 * invocations: in mmput() nobody alive left, in execve task is single
1136 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1137 * mm->exe_file, but does so without using set_mm_exe_file() in order
1138 * to do avoid the need for any locks.
1139 */
1140 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1141 {
1142 struct file *old_exe_file;
1143
1144 /*
1145 * It is safe to dereference the exe_file without RCU as
1146 * this function is only called if nobody else can access
1147 * this mm -- see comment above for justification.
1148 */
1149 old_exe_file = rcu_dereference_raw(mm->exe_file);
1150
1151 if (new_exe_file)
1152 get_file(new_exe_file);
1153 rcu_assign_pointer(mm->exe_file, new_exe_file);
1154 if (old_exe_file)
1155 fput(old_exe_file);
1156 }
1157
1158 /**
1159 * get_mm_exe_file - acquire a reference to the mm's executable file
1160 *
1161 * Returns %NULL if mm has no associated executable file.
1162 * User must release file via fput().
1163 */
1164 struct file *get_mm_exe_file(struct mm_struct *mm)
1165 {
1166 struct file *exe_file;
1167
1168 rcu_read_lock();
1169 exe_file = rcu_dereference(mm->exe_file);
1170 if (exe_file && !get_file_rcu(exe_file))
1171 exe_file = NULL;
1172 rcu_read_unlock();
1173 return exe_file;
1174 }
1175 EXPORT_SYMBOL(get_mm_exe_file);
1176
1177 /**
1178 * get_task_exe_file - acquire a reference to the task's executable file
1179 *
1180 * Returns %NULL if task's mm (if any) has no associated executable file or
1181 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1182 * User must release file via fput().
1183 */
1184 struct file *get_task_exe_file(struct task_struct *task)
1185 {
1186 struct file *exe_file = NULL;
1187 struct mm_struct *mm;
1188
1189 task_lock(task);
1190 mm = task->mm;
1191 if (mm) {
1192 if (!(task->flags & PF_KTHREAD))
1193 exe_file = get_mm_exe_file(mm);
1194 }
1195 task_unlock(task);
1196 return exe_file;
1197 }
1198 EXPORT_SYMBOL(get_task_exe_file);
1199
1200 /**
1201 * get_task_mm - acquire a reference to the task's mm
1202 *
1203 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1204 * this kernel workthread has transiently adopted a user mm with use_mm,
1205 * to do its AIO) is not set and if so returns a reference to it, after
1206 * bumping up the use count. User must release the mm via mmput()
1207 * after use. Typically used by /proc and ptrace.
1208 */
1209 struct mm_struct *get_task_mm(struct task_struct *task)
1210 {
1211 struct mm_struct *mm;
1212
1213 task_lock(task);
1214 mm = task->mm;
1215 if (mm) {
1216 if (task->flags & PF_KTHREAD)
1217 mm = NULL;
1218 else
1219 mmget(mm);
1220 }
1221 task_unlock(task);
1222 return mm;
1223 }
1224 EXPORT_SYMBOL_GPL(get_task_mm);
1225
1226 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1227 {
1228 struct mm_struct *mm;
1229 int err;
1230
1231 err = down_read_killable(&task->signal->exec_update_lock);
1232 if (err)
1233 return ERR_PTR(err);
1234
1235 mm = get_task_mm(task);
1236 if (mm && mm != current->mm &&
1237 !ptrace_may_access(task, mode)) {
1238 mmput(mm);
1239 mm = ERR_PTR(-EACCES);
1240 }
1241 up_read(&task->signal->exec_update_lock);
1242
1243 return mm;
1244 }
1245
1246 static void complete_vfork_done(struct task_struct *tsk)
1247 {
1248 struct completion *vfork;
1249
1250 task_lock(tsk);
1251 vfork = tsk->vfork_done;
1252 if (likely(vfork)) {
1253 tsk->vfork_done = NULL;
1254 complete(vfork);
1255 }
1256 task_unlock(tsk);
1257 }
1258
1259 static int wait_for_vfork_done(struct task_struct *child,
1260 struct completion *vfork)
1261 {
1262 int killed;
1263
1264 freezer_do_not_count();
1265 cgroup_enter_frozen();
1266 killed = wait_for_completion_killable(vfork);
1267 cgroup_leave_frozen(false);
1268 freezer_count();
1269
1270 if (killed) {
1271 task_lock(child);
1272 child->vfork_done = NULL;
1273 task_unlock(child);
1274 }
1275
1276 put_task_struct(child);
1277 return killed;
1278 }
1279
1280 /* Please note the differences between mmput and mm_release.
1281 * mmput is called whenever we stop holding onto a mm_struct,
1282 * error success whatever.
1283 *
1284 * mm_release is called after a mm_struct has been removed
1285 * from the current process.
1286 *
1287 * This difference is important for error handling, when we
1288 * only half set up a mm_struct for a new process and need to restore
1289 * the old one. Because we mmput the new mm_struct before
1290 * restoring the old one. . .
1291 * Eric Biederman 10 January 1998
1292 */
1293 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1294 {
1295 uprobe_free_utask(tsk);
1296
1297 /* Get rid of any cached register state */
1298 deactivate_mm(tsk, mm);
1299
1300 /*
1301 * Signal userspace if we're not exiting with a core dump
1302 * because we want to leave the value intact for debugging
1303 * purposes.
1304 */
1305 if (tsk->clear_child_tid) {
1306 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1307 atomic_read(&mm->mm_users) > 1) {
1308 /*
1309 * We don't check the error code - if userspace has
1310 * not set up a proper pointer then tough luck.
1311 */
1312 put_user(0, tsk->clear_child_tid);
1313 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1314 1, NULL, NULL, 0, 0);
1315 }
1316 tsk->clear_child_tid = NULL;
1317 }
1318
1319 /*
1320 * All done, finally we can wake up parent and return this mm to him.
1321 * Also kthread_stop() uses this completion for synchronization.
1322 */
1323 if (tsk->vfork_done)
1324 complete_vfork_done(tsk);
1325 }
1326
1327 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1328 {
1329 futex_exit_release(tsk);
1330 mm_release(tsk, mm);
1331 }
1332
1333 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1334 {
1335 futex_exec_release(tsk);
1336 mm_release(tsk, mm);
1337 }
1338
1339 /**
1340 * dup_mm() - duplicates an existing mm structure
1341 * @tsk: the task_struct with which the new mm will be associated.
1342 * @oldmm: the mm to duplicate.
1343 *
1344 * Allocates a new mm structure and duplicates the provided @oldmm structure
1345 * content into it.
1346 *
1347 * Return: the duplicated mm or NULL on failure.
1348 */
1349 static struct mm_struct *dup_mm(struct task_struct *tsk,
1350 struct mm_struct *oldmm)
1351 {
1352 struct mm_struct *mm;
1353 int err;
1354
1355 mm = allocate_mm();
1356 if (!mm)
1357 goto fail_nomem;
1358
1359 memcpy(mm, oldmm, sizeof(*mm));
1360
1361 if (!mm_init(mm, tsk, mm->user_ns))
1362 goto fail_nomem;
1363
1364 err = dup_mmap(mm, oldmm);
1365 if (err)
1366 goto free_pt;
1367
1368 mm->hiwater_rss = get_mm_rss(mm);
1369 mm->hiwater_vm = mm->total_vm;
1370
1371 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1372 goto free_pt;
1373
1374 return mm;
1375
1376 free_pt:
1377 /* don't put binfmt in mmput, we haven't got module yet */
1378 mm->binfmt = NULL;
1379 mm_init_owner(mm, NULL);
1380 mmput(mm);
1381
1382 fail_nomem:
1383 return NULL;
1384 }
1385
1386 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1387 {
1388 struct mm_struct *mm, *oldmm;
1389 int retval;
1390
1391 tsk->min_flt = tsk->maj_flt = 0;
1392 tsk->nvcsw = tsk->nivcsw = 0;
1393 #ifdef CONFIG_DETECT_HUNG_TASK
1394 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1395 tsk->last_switch_time = 0;
1396 #endif
1397
1398 tsk->mm = NULL;
1399 tsk->active_mm = NULL;
1400
1401 /*
1402 * Are we cloning a kernel thread?
1403 *
1404 * We need to steal a active VM for that..
1405 */
1406 oldmm = current->mm;
1407 if (!oldmm)
1408 return 0;
1409
1410 /* initialize the new vmacache entries */
1411 vmacache_flush(tsk);
1412
1413 if (clone_flags & CLONE_VM) {
1414 mmget(oldmm);
1415 mm = oldmm;
1416 goto good_mm;
1417 }
1418
1419 retval = -ENOMEM;
1420 mm = dup_mm(tsk, current->mm);
1421 if (!mm)
1422 goto fail_nomem;
1423
1424 good_mm:
1425 tsk->mm = mm;
1426 tsk->active_mm = mm;
1427 return 0;
1428
1429 fail_nomem:
1430 return retval;
1431 }
1432
1433 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1434 {
1435 struct fs_struct *fs = current->fs;
1436 if (clone_flags & CLONE_FS) {
1437 /* tsk->fs is already what we want */
1438 spin_lock(&fs->lock);
1439 if (fs->in_exec) {
1440 spin_unlock(&fs->lock);
1441 return -EAGAIN;
1442 }
1443 fs->users++;
1444 spin_unlock(&fs->lock);
1445 return 0;
1446 }
1447 tsk->fs = copy_fs_struct(fs);
1448 if (!tsk->fs)
1449 return -ENOMEM;
1450 return 0;
1451 }
1452
1453 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1454 {
1455 struct files_struct *oldf, *newf;
1456 int error = 0;
1457
1458 /*
1459 * A background process may not have any files ...
1460 */
1461 oldf = current->files;
1462 if (!oldf)
1463 goto out;
1464
1465 if (clone_flags & CLONE_FILES) {
1466 atomic_inc(&oldf->count);
1467 goto out;
1468 }
1469
1470 newf = dup_fd(oldf, &error);
1471 if (!newf)
1472 goto out;
1473
1474 tsk->files = newf;
1475 error = 0;
1476 out:
1477 return error;
1478 }
1479
1480 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1481 {
1482 #ifdef CONFIG_BLOCK
1483 struct io_context *ioc = current->io_context;
1484 struct io_context *new_ioc;
1485
1486 if (!ioc)
1487 return 0;
1488 /*
1489 * Share io context with parent, if CLONE_IO is set
1490 */
1491 if (clone_flags & CLONE_IO) {
1492 ioc_task_link(ioc);
1493 tsk->io_context = ioc;
1494 } else if (ioprio_valid(ioc->ioprio)) {
1495 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1496 if (unlikely(!new_ioc))
1497 return -ENOMEM;
1498
1499 new_ioc->ioprio = ioc->ioprio;
1500 put_io_context(new_ioc);
1501 }
1502 #endif
1503 return 0;
1504 }
1505
1506 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1507 {
1508 struct sighand_struct *sig;
1509
1510 if (clone_flags & CLONE_SIGHAND) {
1511 refcount_inc(&current->sighand->count);
1512 return 0;
1513 }
1514 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1515 rcu_assign_pointer(tsk->sighand, sig);
1516 if (!sig)
1517 return -ENOMEM;
1518
1519 refcount_set(&sig->count, 1);
1520 spin_lock_irq(&current->sighand->siglock);
1521 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1522 spin_unlock_irq(&current->sighand->siglock);
1523 return 0;
1524 }
1525
1526 void __cleanup_sighand(struct sighand_struct *sighand)
1527 {
1528 if (refcount_dec_and_test(&sighand->count)) {
1529 signalfd_cleanup(sighand);
1530 /*
1531 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1532 * without an RCU grace period, see __lock_task_sighand().
1533 */
1534 kmem_cache_free(sighand_cachep, sighand);
1535 }
1536 }
1537
1538 /*
1539 * Initialize POSIX timer handling for a thread group.
1540 */
1541 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1542 {
1543 struct posix_cputimers *pct = &sig->posix_cputimers;
1544 unsigned long cpu_limit;
1545
1546 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1547 posix_cputimers_group_init(pct, cpu_limit);
1548 }
1549
1550 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1551 {
1552 struct signal_struct *sig;
1553
1554 if (clone_flags & CLONE_THREAD)
1555 return 0;
1556
1557 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1558 tsk->signal = sig;
1559 if (!sig)
1560 return -ENOMEM;
1561
1562 sig->nr_threads = 1;
1563 atomic_set(&sig->live, 1);
1564 refcount_set(&sig->sigcnt, 1);
1565
1566 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1567 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1568 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1569
1570 init_waitqueue_head(&sig->wait_chldexit);
1571 sig->curr_target = tsk;
1572 init_sigpending(&sig->shared_pending);
1573 INIT_HLIST_HEAD(&sig->multiprocess);
1574 seqlock_init(&sig->stats_lock);
1575 prev_cputime_init(&sig->prev_cputime);
1576
1577 #ifdef CONFIG_POSIX_TIMERS
1578 INIT_LIST_HEAD(&sig->posix_timers);
1579 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1580 sig->real_timer.function = it_real_fn;
1581 #endif
1582
1583 task_lock(current->group_leader);
1584 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1585 task_unlock(current->group_leader);
1586
1587 posix_cpu_timers_init_group(sig);
1588
1589 tty_audit_fork(sig);
1590 sched_autogroup_fork(sig);
1591
1592 sig->oom_score_adj = current->signal->oom_score_adj;
1593 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1594
1595 mutex_init(&sig->cred_guard_mutex);
1596 init_rwsem(&sig->exec_update_lock);
1597
1598 return 0;
1599 }
1600
1601 static void copy_seccomp(struct task_struct *p)
1602 {
1603 #ifdef CONFIG_SECCOMP
1604 /*
1605 * Must be called with sighand->lock held, which is common to
1606 * all threads in the group. Holding cred_guard_mutex is not
1607 * needed because this new task is not yet running and cannot
1608 * be racing exec.
1609 */
1610 assert_spin_locked(&current->sighand->siglock);
1611
1612 /* Ref-count the new filter user, and assign it. */
1613 get_seccomp_filter(current);
1614 p->seccomp = current->seccomp;
1615
1616 /*
1617 * Explicitly enable no_new_privs here in case it got set
1618 * between the task_struct being duplicated and holding the
1619 * sighand lock. The seccomp state and nnp must be in sync.
1620 */
1621 if (task_no_new_privs(current))
1622 task_set_no_new_privs(p);
1623
1624 /*
1625 * If the parent gained a seccomp mode after copying thread
1626 * flags and between before we held the sighand lock, we have
1627 * to manually enable the seccomp thread flag here.
1628 */
1629 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1630 set_tsk_thread_flag(p, TIF_SECCOMP);
1631 #endif
1632 }
1633
1634 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1635 {
1636 current->clear_child_tid = tidptr;
1637
1638 return task_pid_vnr(current);
1639 }
1640
1641 static void rt_mutex_init_task(struct task_struct *p)
1642 {
1643 raw_spin_lock_init(&p->pi_lock);
1644 #ifdef CONFIG_RT_MUTEXES
1645 p->pi_waiters = RB_ROOT_CACHED;
1646 p->pi_top_task = NULL;
1647 p->pi_blocked_on = NULL;
1648 #endif
1649 }
1650
1651 static inline void init_task_pid_links(struct task_struct *task)
1652 {
1653 enum pid_type type;
1654
1655 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1656 INIT_HLIST_NODE(&task->pid_links[type]);
1657 }
1658 }
1659
1660 static inline void
1661 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1662 {
1663 if (type == PIDTYPE_PID)
1664 task->thread_pid = pid;
1665 else
1666 task->signal->pids[type] = pid;
1667 }
1668
1669 static inline void rcu_copy_process(struct task_struct *p)
1670 {
1671 #ifdef CONFIG_PREEMPT_RCU
1672 p->rcu_read_lock_nesting = 0;
1673 p->rcu_read_unlock_special.s = 0;
1674 p->rcu_blocked_node = NULL;
1675 INIT_LIST_HEAD(&p->rcu_node_entry);
1676 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1677 #ifdef CONFIG_TASKS_RCU
1678 p->rcu_tasks_holdout = false;
1679 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1680 p->rcu_tasks_idle_cpu = -1;
1681 #endif /* #ifdef CONFIG_TASKS_RCU */
1682 }
1683
1684 struct pid *pidfd_pid(const struct file *file)
1685 {
1686 if (file->f_op == &pidfd_fops)
1687 return file->private_data;
1688
1689 return ERR_PTR(-EBADF);
1690 }
1691
1692 static int pidfd_release(struct inode *inode, struct file *file)
1693 {
1694 struct pid *pid = file->private_data;
1695
1696 file->private_data = NULL;
1697 put_pid(pid);
1698 return 0;
1699 }
1700
1701 #ifdef CONFIG_PROC_FS
1702 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1703 {
1704 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1705 struct pid *pid = f->private_data;
1706
1707 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1708 seq_putc(m, '\n');
1709 }
1710 #endif
1711
1712 /*
1713 * Poll support for process exit notification.
1714 */
1715 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1716 {
1717 struct task_struct *task;
1718 struct pid *pid = file->private_data;
1719 __poll_t poll_flags = 0;
1720
1721 poll_wait(file, &pid->wait_pidfd, pts);
1722
1723 rcu_read_lock();
1724 task = pid_task(pid, PIDTYPE_PID);
1725 /*
1726 * Inform pollers only when the whole thread group exits.
1727 * If the thread group leader exits before all other threads in the
1728 * group, then poll(2) should block, similar to the wait(2) family.
1729 */
1730 if (!task || (task->exit_state && thread_group_empty(task)))
1731 poll_flags = EPOLLIN | EPOLLRDNORM;
1732 rcu_read_unlock();
1733
1734 return poll_flags;
1735 }
1736
1737 const struct file_operations pidfd_fops = {
1738 .release = pidfd_release,
1739 .poll = pidfd_poll,
1740 #ifdef CONFIG_PROC_FS
1741 .show_fdinfo = pidfd_show_fdinfo,
1742 #endif
1743 };
1744
1745 static void __delayed_free_task(struct rcu_head *rhp)
1746 {
1747 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1748
1749 free_task(tsk);
1750 }
1751
1752 static __always_inline void delayed_free_task(struct task_struct *tsk)
1753 {
1754 if (IS_ENABLED(CONFIG_MEMCG))
1755 call_rcu(&tsk->rcu, __delayed_free_task);
1756 else
1757 free_task(tsk);
1758 }
1759
1760 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1761 {
1762 /* Skip if kernel thread */
1763 if (!tsk->mm)
1764 return;
1765
1766 /* Skip if spawning a thread or using vfork */
1767 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1768 return;
1769
1770 /* We need to synchronize with __set_oom_adj */
1771 mutex_lock(&oom_adj_mutex);
1772 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1773 /* Update the values in case they were changed after copy_signal */
1774 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1775 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1776 mutex_unlock(&oom_adj_mutex);
1777 }
1778
1779 /*
1780 * This creates a new process as a copy of the old one,
1781 * but does not actually start it yet.
1782 *
1783 * It copies the registers, and all the appropriate
1784 * parts of the process environment (as per the clone
1785 * flags). The actual kick-off is left to the caller.
1786 */
1787 static __latent_entropy struct task_struct *copy_process(
1788 struct pid *pid,
1789 int trace,
1790 int node,
1791 struct kernel_clone_args *args)
1792 {
1793 int pidfd = -1, retval;
1794 struct task_struct *p;
1795 struct multiprocess_signals delayed;
1796 struct file *pidfile = NULL;
1797 u64 clone_flags = args->flags;
1798
1799 /*
1800 * Don't allow sharing the root directory with processes in a different
1801 * namespace
1802 */
1803 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1804 return ERR_PTR(-EINVAL);
1805
1806 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1807 return ERR_PTR(-EINVAL);
1808
1809 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1810 if (!capable(CAP_SYS_ADMIN))
1811 return ERR_PTR(-EPERM);
1812
1813 /*
1814 * Thread groups must share signals as well, and detached threads
1815 * can only be started up within the thread group.
1816 */
1817 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1818 return ERR_PTR(-EINVAL);
1819
1820 /*
1821 * Shared signal handlers imply shared VM. By way of the above,
1822 * thread groups also imply shared VM. Blocking this case allows
1823 * for various simplifications in other code.
1824 */
1825 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1826 return ERR_PTR(-EINVAL);
1827
1828 /*
1829 * Siblings of global init remain as zombies on exit since they are
1830 * not reaped by their parent (swapper). To solve this and to avoid
1831 * multi-rooted process trees, prevent global and container-inits
1832 * from creating siblings.
1833 */
1834 if ((clone_flags & CLONE_PARENT) &&
1835 current->signal->flags & SIGNAL_UNKILLABLE)
1836 return ERR_PTR(-EINVAL);
1837
1838 /*
1839 * If the new process will be in a different pid or user namespace
1840 * do not allow it to share a thread group with the forking task.
1841 */
1842 if (clone_flags & CLONE_THREAD) {
1843 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1844 (task_active_pid_ns(current) !=
1845 current->nsproxy->pid_ns_for_children))
1846 return ERR_PTR(-EINVAL);
1847 }
1848
1849 if (clone_flags & CLONE_PIDFD) {
1850 /*
1851 * - CLONE_DETACHED is blocked so that we can potentially
1852 * reuse it later for CLONE_PIDFD.
1853 * - CLONE_THREAD is blocked until someone really needs it.
1854 */
1855 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1856 return ERR_PTR(-EINVAL);
1857 }
1858
1859 /*
1860 * Force any signals received before this point to be delivered
1861 * before the fork happens. Collect up signals sent to multiple
1862 * processes that happen during the fork and delay them so that
1863 * they appear to happen after the fork.
1864 */
1865 sigemptyset(&delayed.signal);
1866 INIT_HLIST_NODE(&delayed.node);
1867
1868 spin_lock_irq(&current->sighand->siglock);
1869 if (!(clone_flags & CLONE_THREAD))
1870 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1871 recalc_sigpending();
1872 spin_unlock_irq(&current->sighand->siglock);
1873 retval = -ERESTARTNOINTR;
1874 if (signal_pending(current))
1875 goto fork_out;
1876
1877 retval = -ENOMEM;
1878 p = dup_task_struct(current, node);
1879 if (!p)
1880 goto fork_out;
1881
1882 /*
1883 * This _must_ happen before we call free_task(), i.e. before we jump
1884 * to any of the bad_fork_* labels. This is to avoid freeing
1885 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1886 * kernel threads (PF_KTHREAD).
1887 */
1888 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1889 /*
1890 * Clear TID on mm_release()?
1891 */
1892 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1893
1894 ftrace_graph_init_task(p);
1895
1896 rt_mutex_init_task(p);
1897
1898 #ifdef CONFIG_PROVE_LOCKING
1899 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1900 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1901 #endif
1902 retval = -EAGAIN;
1903 if (atomic_read(&p->real_cred->user->processes) >=
1904 task_rlimit(p, RLIMIT_NPROC)) {
1905 if (p->real_cred->user != INIT_USER &&
1906 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1907 goto bad_fork_free;
1908 }
1909 current->flags &= ~PF_NPROC_EXCEEDED;
1910
1911 retval = copy_creds(p, clone_flags);
1912 if (retval < 0)
1913 goto bad_fork_free;
1914
1915 /*
1916 * If multiple threads are within copy_process(), then this check
1917 * triggers too late. This doesn't hurt, the check is only there
1918 * to stop root fork bombs.
1919 */
1920 retval = -EAGAIN;
1921 if (nr_threads >= max_threads)
1922 goto bad_fork_cleanup_count;
1923
1924 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1925 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1926 p->flags |= PF_FORKNOEXEC;
1927 INIT_LIST_HEAD(&p->children);
1928 INIT_LIST_HEAD(&p->sibling);
1929 rcu_copy_process(p);
1930 p->vfork_done = NULL;
1931 spin_lock_init(&p->alloc_lock);
1932
1933 init_sigpending(&p->pending);
1934
1935 p->utime = p->stime = p->gtime = 0;
1936 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1937 p->utimescaled = p->stimescaled = 0;
1938 #endif
1939 prev_cputime_init(&p->prev_cputime);
1940
1941 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1942 seqcount_init(&p->vtime.seqcount);
1943 p->vtime.starttime = 0;
1944 p->vtime.state = VTIME_INACTIVE;
1945 #endif
1946
1947 #if defined(SPLIT_RSS_COUNTING)
1948 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1949 #endif
1950
1951 p->default_timer_slack_ns = current->timer_slack_ns;
1952
1953 #ifdef CONFIG_PSI
1954 p->psi_flags = 0;
1955 #endif
1956
1957 task_io_accounting_init(&p->ioac);
1958 acct_clear_integrals(p);
1959
1960 posix_cputimers_init(&p->posix_cputimers);
1961
1962 p->io_context = NULL;
1963 audit_set_context(p, NULL);
1964 cgroup_fork(p);
1965 #ifdef CONFIG_NUMA
1966 p->mempolicy = mpol_dup(p->mempolicy);
1967 if (IS_ERR(p->mempolicy)) {
1968 retval = PTR_ERR(p->mempolicy);
1969 p->mempolicy = NULL;
1970 goto bad_fork_cleanup_threadgroup_lock;
1971 }
1972 #endif
1973 #ifdef CONFIG_CPUSETS
1974 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1975 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1976 seqcount_init(&p->mems_allowed_seq);
1977 #endif
1978 #ifdef CONFIG_TRACE_IRQFLAGS
1979 p->irq_events = 0;
1980 p->hardirqs_enabled = 0;
1981 p->hardirq_enable_ip = 0;
1982 p->hardirq_enable_event = 0;
1983 p->hardirq_disable_ip = _THIS_IP_;
1984 p->hardirq_disable_event = 0;
1985 p->softirqs_enabled = 1;
1986 p->softirq_enable_ip = _THIS_IP_;
1987 p->softirq_enable_event = 0;
1988 p->softirq_disable_ip = 0;
1989 p->softirq_disable_event = 0;
1990 p->hardirq_context = 0;
1991 p->softirq_context = 0;
1992 #endif
1993
1994 p->pagefault_disabled = 0;
1995
1996 #ifdef CONFIG_LOCKDEP
1997 lockdep_init_task(p);
1998 #endif
1999
2000 #ifdef CONFIG_DEBUG_MUTEXES
2001 p->blocked_on = NULL; /* not blocked yet */
2002 #endif
2003 #ifdef CONFIG_BCACHE
2004 p->sequential_io = 0;
2005 p->sequential_io_avg = 0;
2006 #endif
2007
2008 /* Perform scheduler related setup. Assign this task to a CPU. */
2009 retval = sched_fork(clone_flags, p);
2010 if (retval)
2011 goto bad_fork_cleanup_policy;
2012
2013 retval = perf_event_init_task(p);
2014 if (retval)
2015 goto bad_fork_cleanup_policy;
2016 retval = audit_alloc(p);
2017 if (retval)
2018 goto bad_fork_cleanup_perf;
2019 /* copy all the process information */
2020 shm_init_task(p);
2021 retval = security_task_alloc(p, clone_flags);
2022 if (retval)
2023 goto bad_fork_cleanup_audit;
2024 retval = copy_semundo(clone_flags, p);
2025 if (retval)
2026 goto bad_fork_cleanup_security;
2027 retval = copy_files(clone_flags, p);
2028 if (retval)
2029 goto bad_fork_cleanup_semundo;
2030 retval = copy_fs(clone_flags, p);
2031 if (retval)
2032 goto bad_fork_cleanup_files;
2033 retval = copy_sighand(clone_flags, p);
2034 if (retval)
2035 goto bad_fork_cleanup_fs;
2036 retval = copy_signal(clone_flags, p);
2037 if (retval)
2038 goto bad_fork_cleanup_sighand;
2039 retval = copy_mm(clone_flags, p);
2040 if (retval)
2041 goto bad_fork_cleanup_signal;
2042 retval = copy_namespaces(clone_flags, p);
2043 if (retval)
2044 goto bad_fork_cleanup_mm;
2045 retval = copy_io(clone_flags, p);
2046 if (retval)
2047 goto bad_fork_cleanup_namespaces;
2048 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2049 args->tls);
2050 if (retval)
2051 goto bad_fork_cleanup_io;
2052
2053 stackleak_task_init(p);
2054
2055 if (pid != &init_struct_pid) {
2056 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2057 if (IS_ERR(pid)) {
2058 retval = PTR_ERR(pid);
2059 goto bad_fork_cleanup_thread;
2060 }
2061 }
2062
2063 /*
2064 * This has to happen after we've potentially unshared the file
2065 * descriptor table (so that the pidfd doesn't leak into the child
2066 * if the fd table isn't shared).
2067 */
2068 if (clone_flags & CLONE_PIDFD) {
2069 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2070 if (retval < 0)
2071 goto bad_fork_free_pid;
2072
2073 pidfd = retval;
2074
2075 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2076 O_RDWR | O_CLOEXEC);
2077 if (IS_ERR(pidfile)) {
2078 put_unused_fd(pidfd);
2079 retval = PTR_ERR(pidfile);
2080 goto bad_fork_free_pid;
2081 }
2082 get_pid(pid); /* held by pidfile now */
2083
2084 retval = put_user(pidfd, args->pidfd);
2085 if (retval)
2086 goto bad_fork_put_pidfd;
2087 }
2088
2089 #ifdef CONFIG_BLOCK
2090 p->plug = NULL;
2091 #endif
2092 futex_init_task(p);
2093
2094 /*
2095 * sigaltstack should be cleared when sharing the same VM
2096 */
2097 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2098 sas_ss_reset(p);
2099
2100 /*
2101 * Syscall tracing and stepping should be turned off in the
2102 * child regardless of CLONE_PTRACE.
2103 */
2104 user_disable_single_step(p);
2105 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2106 #ifdef TIF_SYSCALL_EMU
2107 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2108 #endif
2109 clear_tsk_latency_tracing(p);
2110
2111 /* ok, now we should be set up.. */
2112 p->pid = pid_nr(pid);
2113 if (clone_flags & CLONE_THREAD) {
2114 p->group_leader = current->group_leader;
2115 p->tgid = current->tgid;
2116 } else {
2117 p->group_leader = p;
2118 p->tgid = p->pid;
2119 }
2120
2121 p->nr_dirtied = 0;
2122 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2123 p->dirty_paused_when = 0;
2124
2125 p->pdeath_signal = 0;
2126 INIT_LIST_HEAD(&p->thread_group);
2127 p->task_works = NULL;
2128
2129 cgroup_threadgroup_change_begin(current);
2130 /*
2131 * Ensure that the cgroup subsystem policies allow the new process to be
2132 * forked. It should be noted the the new process's css_set can be changed
2133 * between here and cgroup_post_fork() if an organisation operation is in
2134 * progress.
2135 */
2136 retval = cgroup_can_fork(p);
2137 if (retval)
2138 goto bad_fork_cgroup_threadgroup_change_end;
2139
2140 /*
2141 * From this point on we must avoid any synchronous user-space
2142 * communication until we take the tasklist-lock. In particular, we do
2143 * not want user-space to be able to predict the process start-time by
2144 * stalling fork(2) after we recorded the start_time but before it is
2145 * visible to the system.
2146 */
2147
2148 p->start_time = ktime_get_ns();
2149 p->real_start_time = ktime_get_boottime_ns();
2150
2151 /*
2152 * Make it visible to the rest of the system, but dont wake it up yet.
2153 * Need tasklist lock for parent etc handling!
2154 */
2155 write_lock_irq(&tasklist_lock);
2156
2157 /* CLONE_PARENT re-uses the old parent */
2158 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2159 p->real_parent = current->real_parent;
2160 p->parent_exec_id = current->parent_exec_id;
2161 if (clone_flags & CLONE_THREAD)
2162 p->exit_signal = -1;
2163 else
2164 p->exit_signal = current->group_leader->exit_signal;
2165 } else {
2166 p->real_parent = current;
2167 p->parent_exec_id = current->self_exec_id;
2168 p->exit_signal = args->exit_signal;
2169 }
2170
2171 klp_copy_process(p);
2172
2173 spin_lock(&current->sighand->siglock);
2174
2175 /*
2176 * Copy seccomp details explicitly here, in case they were changed
2177 * before holding sighand lock.
2178 */
2179 copy_seccomp(p);
2180
2181 rseq_fork(p, clone_flags);
2182
2183 /* Don't start children in a dying pid namespace */
2184 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2185 retval = -ENOMEM;
2186 goto bad_fork_cancel_cgroup;
2187 }
2188
2189 /* Let kill terminate clone/fork in the middle */
2190 if (fatal_signal_pending(current)) {
2191 retval = -EINTR;
2192 goto bad_fork_cancel_cgroup;
2193 }
2194
2195 init_task_pid_links(p);
2196 if (likely(p->pid)) {
2197 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2198
2199 init_task_pid(p, PIDTYPE_PID, pid);
2200 if (thread_group_leader(p)) {
2201 init_task_pid(p, PIDTYPE_TGID, pid);
2202 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2203 init_task_pid(p, PIDTYPE_SID, task_session(current));
2204
2205 if (is_child_reaper(pid)) {
2206 ns_of_pid(pid)->child_reaper = p;
2207 p->signal->flags |= SIGNAL_UNKILLABLE;
2208 }
2209 p->signal->shared_pending.signal = delayed.signal;
2210 p->signal->tty = tty_kref_get(current->signal->tty);
2211 /*
2212 * Inherit has_child_subreaper flag under the same
2213 * tasklist_lock with adding child to the process tree
2214 * for propagate_has_child_subreaper optimization.
2215 */
2216 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2217 p->real_parent->signal->is_child_subreaper;
2218 list_add_tail(&p->sibling, &p->real_parent->children);
2219 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2220 attach_pid(p, PIDTYPE_TGID);
2221 attach_pid(p, PIDTYPE_PGID);
2222 attach_pid(p, PIDTYPE_SID);
2223 __this_cpu_inc(process_counts);
2224 } else {
2225 current->signal->nr_threads++;
2226 atomic_inc(&current->signal->live);
2227 refcount_inc(&current->signal->sigcnt);
2228 task_join_group_stop(p);
2229 list_add_tail_rcu(&p->thread_group,
2230 &p->group_leader->thread_group);
2231 list_add_tail_rcu(&p->thread_node,
2232 &p->signal->thread_head);
2233 }
2234 attach_pid(p, PIDTYPE_PID);
2235 nr_threads++;
2236 }
2237 total_forks++;
2238 hlist_del_init(&delayed.node);
2239 spin_unlock(&current->sighand->siglock);
2240 syscall_tracepoint_update(p);
2241 write_unlock_irq(&tasklist_lock);
2242
2243 if (pidfile)
2244 fd_install(pidfd, pidfile);
2245
2246 proc_fork_connector(p);
2247 cgroup_post_fork(p);
2248 cgroup_threadgroup_change_end(current);
2249 perf_event_fork(p);
2250
2251 trace_task_newtask(p, clone_flags);
2252 uprobe_copy_process(p, clone_flags);
2253
2254 copy_oom_score_adj(clone_flags, p);
2255
2256 return p;
2257
2258 bad_fork_cancel_cgroup:
2259 spin_unlock(&current->sighand->siglock);
2260 write_unlock_irq(&tasklist_lock);
2261 cgroup_cancel_fork(p);
2262 bad_fork_cgroup_threadgroup_change_end:
2263 cgroup_threadgroup_change_end(current);
2264 bad_fork_put_pidfd:
2265 if (clone_flags & CLONE_PIDFD) {
2266 fput(pidfile);
2267 put_unused_fd(pidfd);
2268 }
2269 bad_fork_free_pid:
2270 if (pid != &init_struct_pid)
2271 free_pid(pid);
2272 bad_fork_cleanup_thread:
2273 exit_thread(p);
2274 bad_fork_cleanup_io:
2275 if (p->io_context)
2276 exit_io_context(p);
2277 bad_fork_cleanup_namespaces:
2278 exit_task_namespaces(p);
2279 bad_fork_cleanup_mm:
2280 if (p->mm) {
2281 mm_clear_owner(p->mm, p);
2282 mmput(p->mm);
2283 }
2284 bad_fork_cleanup_signal:
2285 if (!(clone_flags & CLONE_THREAD))
2286 free_signal_struct(p->signal);
2287 bad_fork_cleanup_sighand:
2288 __cleanup_sighand(p->sighand);
2289 bad_fork_cleanup_fs:
2290 exit_fs(p); /* blocking */
2291 bad_fork_cleanup_files:
2292 exit_files(p); /* blocking */
2293 bad_fork_cleanup_semundo:
2294 exit_sem(p);
2295 bad_fork_cleanup_security:
2296 security_task_free(p);
2297 bad_fork_cleanup_audit:
2298 audit_free(p);
2299 bad_fork_cleanup_perf:
2300 perf_event_free_task(p);
2301 bad_fork_cleanup_policy:
2302 lockdep_free_task(p);
2303 #ifdef CONFIG_NUMA
2304 mpol_put(p->mempolicy);
2305 bad_fork_cleanup_threadgroup_lock:
2306 #endif
2307 delayacct_tsk_free(p);
2308 bad_fork_cleanup_count:
2309 atomic_dec(&p->cred->user->processes);
2310 exit_creds(p);
2311 bad_fork_free:
2312 p->state = TASK_DEAD;
2313 put_task_stack(p);
2314 delayed_free_task(p);
2315 fork_out:
2316 spin_lock_irq(&current->sighand->siglock);
2317 hlist_del_init(&delayed.node);
2318 spin_unlock_irq(&current->sighand->siglock);
2319 return ERR_PTR(retval);
2320 }
2321
2322 static inline void init_idle_pids(struct task_struct *idle)
2323 {
2324 enum pid_type type;
2325
2326 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2327 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2328 init_task_pid(idle, type, &init_struct_pid);
2329 }
2330 }
2331
2332 struct task_struct *fork_idle(int cpu)
2333 {
2334 struct task_struct *task;
2335 struct kernel_clone_args args = {
2336 .flags = CLONE_VM,
2337 };
2338
2339 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2340 if (!IS_ERR(task)) {
2341 init_idle_pids(task);
2342 init_idle(task, cpu);
2343 }
2344
2345 return task;
2346 }
2347
2348 struct mm_struct *copy_init_mm(void)
2349 {
2350 return dup_mm(NULL, &init_mm);
2351 }
2352
2353 /*
2354 * Ok, this is the main fork-routine.
2355 *
2356 * It copies the process, and if successful kick-starts
2357 * it and waits for it to finish using the VM if required.
2358 *
2359 * args->exit_signal is expected to be checked for sanity by the caller.
2360 */
2361 long _do_fork(struct kernel_clone_args *args)
2362 {
2363 u64 clone_flags = args->flags;
2364 struct completion vfork;
2365 struct pid *pid;
2366 struct task_struct *p;
2367 int trace = 0;
2368 long nr;
2369
2370 /*
2371 * Determine whether and which event to report to ptracer. When
2372 * called from kernel_thread or CLONE_UNTRACED is explicitly
2373 * requested, no event is reported; otherwise, report if the event
2374 * for the type of forking is enabled.
2375 */
2376 if (!(clone_flags & CLONE_UNTRACED)) {
2377 if (clone_flags & CLONE_VFORK)
2378 trace = PTRACE_EVENT_VFORK;
2379 else if (args->exit_signal != SIGCHLD)
2380 trace = PTRACE_EVENT_CLONE;
2381 else
2382 trace = PTRACE_EVENT_FORK;
2383
2384 if (likely(!ptrace_event_enabled(current, trace)))
2385 trace = 0;
2386 }
2387
2388 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2389 add_latent_entropy();
2390
2391 if (IS_ERR(p))
2392 return PTR_ERR(p);
2393
2394 /*
2395 * Do this prior waking up the new thread - the thread pointer
2396 * might get invalid after that point, if the thread exits quickly.
2397 */
2398 trace_sched_process_fork(current, p);
2399
2400 pid = get_task_pid(p, PIDTYPE_PID);
2401 nr = pid_vnr(pid);
2402
2403 if (clone_flags & CLONE_PARENT_SETTID)
2404 put_user(nr, args->parent_tid);
2405
2406 if (clone_flags & CLONE_VFORK) {
2407 p->vfork_done = &vfork;
2408 init_completion(&vfork);
2409 get_task_struct(p);
2410 }
2411
2412 wake_up_new_task(p);
2413
2414 /* forking complete and child started to run, tell ptracer */
2415 if (unlikely(trace))
2416 ptrace_event_pid(trace, pid);
2417
2418 if (clone_flags & CLONE_VFORK) {
2419 if (!wait_for_vfork_done(p, &vfork))
2420 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2421 }
2422
2423 put_pid(pid);
2424 return nr;
2425 }
2426
2427 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2428 {
2429 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2430 if ((kargs->flags & CLONE_PIDFD) &&
2431 (kargs->flags & CLONE_PARENT_SETTID))
2432 return false;
2433
2434 return true;
2435 }
2436
2437 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2438 /* For compatibility with architectures that call do_fork directly rather than
2439 * using the syscall entry points below. */
2440 long do_fork(unsigned long clone_flags,
2441 unsigned long stack_start,
2442 unsigned long stack_size,
2443 int __user *parent_tidptr,
2444 int __user *child_tidptr)
2445 {
2446 struct kernel_clone_args args = {
2447 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2448 .pidfd = parent_tidptr,
2449 .child_tid = child_tidptr,
2450 .parent_tid = parent_tidptr,
2451 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2452 .stack = stack_start,
2453 .stack_size = stack_size,
2454 };
2455
2456 if (!legacy_clone_args_valid(&args))
2457 return -EINVAL;
2458
2459 return _do_fork(&args);
2460 }
2461 #endif
2462
2463 /*
2464 * Create a kernel thread.
2465 */
2466 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2467 {
2468 struct kernel_clone_args args = {
2469 .flags = ((lower_32_bits(flags) | CLONE_VM |
2470 CLONE_UNTRACED) & ~CSIGNAL),
2471 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2472 .stack = (unsigned long)fn,
2473 .stack_size = (unsigned long)arg,
2474 };
2475
2476 return _do_fork(&args);
2477 }
2478
2479 #ifdef __ARCH_WANT_SYS_FORK
2480 SYSCALL_DEFINE0(fork)
2481 {
2482 #ifdef CONFIG_MMU
2483 struct kernel_clone_args args = {
2484 .exit_signal = SIGCHLD,
2485 };
2486
2487 return _do_fork(&args);
2488 #else
2489 /* can not support in nommu mode */
2490 return -EINVAL;
2491 #endif
2492 }
2493 #endif
2494
2495 #ifdef __ARCH_WANT_SYS_VFORK
2496 SYSCALL_DEFINE0(vfork)
2497 {
2498 struct kernel_clone_args args = {
2499 .flags = CLONE_VFORK | CLONE_VM,
2500 .exit_signal = SIGCHLD,
2501 };
2502
2503 return _do_fork(&args);
2504 }
2505 #endif
2506
2507 #ifdef __ARCH_WANT_SYS_CLONE
2508 #ifdef CONFIG_CLONE_BACKWARDS
2509 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2510 int __user *, parent_tidptr,
2511 unsigned long, tls,
2512 int __user *, child_tidptr)
2513 #elif defined(CONFIG_CLONE_BACKWARDS2)
2514 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2515 int __user *, parent_tidptr,
2516 int __user *, child_tidptr,
2517 unsigned long, tls)
2518 #elif defined(CONFIG_CLONE_BACKWARDS3)
2519 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2520 int, stack_size,
2521 int __user *, parent_tidptr,
2522 int __user *, child_tidptr,
2523 unsigned long, tls)
2524 #else
2525 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2526 int __user *, parent_tidptr,
2527 int __user *, child_tidptr,
2528 unsigned long, tls)
2529 #endif
2530 {
2531 struct kernel_clone_args args = {
2532 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2533 .pidfd = parent_tidptr,
2534 .child_tid = child_tidptr,
2535 .parent_tid = parent_tidptr,
2536 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2537 .stack = newsp,
2538 .tls = tls,
2539 };
2540
2541 if (!legacy_clone_args_valid(&args))
2542 return -EINVAL;
2543
2544 return _do_fork(&args);
2545 }
2546 #endif
2547
2548 #ifdef __ARCH_WANT_SYS_CLONE3
2549
2550 /*
2551 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2552 * the registers containing the syscall arguments for clone. This doesn't work
2553 * with clone3 since the TLS value is passed in clone_args instead.
2554 */
2555 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2556 #error clone3 requires copy_thread_tls support in arch
2557 #endif
2558
2559 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2560 struct clone_args __user *uargs,
2561 size_t usize)
2562 {
2563 int err;
2564 struct clone_args args;
2565
2566 if (unlikely(usize > PAGE_SIZE))
2567 return -E2BIG;
2568 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2569 return -EINVAL;
2570
2571 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2572 if (err)
2573 return err;
2574
2575 /*
2576 * Verify that higher 32bits of exit_signal are unset and that
2577 * it is a valid signal
2578 */
2579 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2580 !valid_signal(args.exit_signal)))
2581 return -EINVAL;
2582
2583 *kargs = (struct kernel_clone_args){
2584 .flags = args.flags,
2585 .pidfd = u64_to_user_ptr(args.pidfd),
2586 .child_tid = u64_to_user_ptr(args.child_tid),
2587 .parent_tid = u64_to_user_ptr(args.parent_tid),
2588 .exit_signal = args.exit_signal,
2589 .stack = args.stack,
2590 .stack_size = args.stack_size,
2591 .tls = args.tls,
2592 };
2593
2594 return 0;
2595 }
2596
2597 /**
2598 * clone3_stack_valid - check and prepare stack
2599 * @kargs: kernel clone args
2600 *
2601 * Verify that the stack arguments userspace gave us are sane.
2602 * In addition, set the stack direction for userspace since it's easy for us to
2603 * determine.
2604 */
2605 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2606 {
2607 if (kargs->stack == 0) {
2608 if (kargs->stack_size > 0)
2609 return false;
2610 } else {
2611 if (kargs->stack_size == 0)
2612 return false;
2613
2614 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2615 return false;
2616
2617 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2618 kargs->stack += kargs->stack_size;
2619 #endif
2620 }
2621
2622 return true;
2623 }
2624
2625 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2626 {
2627 /*
2628 * All lower bits of the flag word are taken.
2629 * Verify that no other unknown flags are passed along.
2630 */
2631 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2632 return false;
2633
2634 /*
2635 * - make the CLONE_DETACHED bit reuseable for clone3
2636 * - make the CSIGNAL bits reuseable for clone3
2637 */
2638 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2639 return false;
2640
2641 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2642 kargs->exit_signal)
2643 return false;
2644
2645 if (!clone3_stack_valid(kargs))
2646 return false;
2647
2648 return true;
2649 }
2650
2651 /**
2652 * clone3 - create a new process with specific properties
2653 * @uargs: argument structure
2654 * @size: size of @uargs
2655 *
2656 * clone3() is the extensible successor to clone()/clone2().
2657 * It takes a struct as argument that is versioned by its size.
2658 *
2659 * Return: On success, a positive PID for the child process.
2660 * On error, a negative errno number.
2661 */
2662 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2663 {
2664 int err;
2665
2666 struct kernel_clone_args kargs;
2667
2668 err = copy_clone_args_from_user(&kargs, uargs, size);
2669 if (err)
2670 return err;
2671
2672 if (!clone3_args_valid(&kargs))
2673 return -EINVAL;
2674
2675 return _do_fork(&kargs);
2676 }
2677 #endif
2678
2679 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2680 {
2681 struct task_struct *leader, *parent, *child;
2682 int res;
2683
2684 read_lock(&tasklist_lock);
2685 leader = top = top->group_leader;
2686 down:
2687 for_each_thread(leader, parent) {
2688 list_for_each_entry(child, &parent->children, sibling) {
2689 res = visitor(child, data);
2690 if (res) {
2691 if (res < 0)
2692 goto out;
2693 leader = child;
2694 goto down;
2695 }
2696 up:
2697 ;
2698 }
2699 }
2700
2701 if (leader != top) {
2702 child = leader;
2703 parent = child->real_parent;
2704 leader = parent->group_leader;
2705 goto up;
2706 }
2707 out:
2708 read_unlock(&tasklist_lock);
2709 }
2710
2711 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2712 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2713 #endif
2714
2715 static void sighand_ctor(void *data)
2716 {
2717 struct sighand_struct *sighand = data;
2718
2719 spin_lock_init(&sighand->siglock);
2720 init_waitqueue_head(&sighand->signalfd_wqh);
2721 }
2722
2723 void __init proc_caches_init(void)
2724 {
2725 unsigned int mm_size;
2726
2727 sighand_cachep = kmem_cache_create("sighand_cache",
2728 sizeof(struct sighand_struct), 0,
2729 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2730 SLAB_ACCOUNT, sighand_ctor);
2731 signal_cachep = kmem_cache_create("signal_cache",
2732 sizeof(struct signal_struct), 0,
2733 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2734 NULL);
2735 files_cachep = kmem_cache_create("files_cache",
2736 sizeof(struct files_struct), 0,
2737 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2738 NULL);
2739 fs_cachep = kmem_cache_create("fs_cache",
2740 sizeof(struct fs_struct), 0,
2741 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2742 NULL);
2743
2744 /*
2745 * The mm_cpumask is located at the end of mm_struct, and is
2746 * dynamically sized based on the maximum CPU number this system
2747 * can have, taking hotplug into account (nr_cpu_ids).
2748 */
2749 mm_size = sizeof(struct mm_struct) + cpumask_size();
2750
2751 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2752 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2753 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2754 offsetof(struct mm_struct, saved_auxv),
2755 sizeof_field(struct mm_struct, saved_auxv),
2756 NULL);
2757 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2758 mmap_init();
2759 nsproxy_cache_init();
2760 }
2761
2762 /*
2763 * Check constraints on flags passed to the unshare system call.
2764 */
2765 static int check_unshare_flags(unsigned long unshare_flags)
2766 {
2767 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2768 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2769 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2770 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2771 return -EINVAL;
2772 /*
2773 * Not implemented, but pretend it works if there is nothing
2774 * to unshare. Note that unsharing the address space or the
2775 * signal handlers also need to unshare the signal queues (aka
2776 * CLONE_THREAD).
2777 */
2778 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2779 if (!thread_group_empty(current))
2780 return -EINVAL;
2781 }
2782 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2783 if (refcount_read(&current->sighand->count) > 1)
2784 return -EINVAL;
2785 }
2786 if (unshare_flags & CLONE_VM) {
2787 if (!current_is_single_threaded())
2788 return -EINVAL;
2789 }
2790
2791 return 0;
2792 }
2793
2794 /*
2795 * Unshare the filesystem structure if it is being shared
2796 */
2797 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2798 {
2799 struct fs_struct *fs = current->fs;
2800
2801 if (!(unshare_flags & CLONE_FS) || !fs)
2802 return 0;
2803
2804 /* don't need lock here; in the worst case we'll do useless copy */
2805 if (fs->users == 1)
2806 return 0;
2807
2808 *new_fsp = copy_fs_struct(fs);
2809 if (!*new_fsp)
2810 return -ENOMEM;
2811
2812 return 0;
2813 }
2814
2815 /*
2816 * Unshare file descriptor table if it is being shared
2817 */
2818 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2819 {
2820 struct files_struct *fd = current->files;
2821 int error = 0;
2822
2823 if ((unshare_flags & CLONE_FILES) &&
2824 (fd && atomic_read(&fd->count) > 1)) {
2825 *new_fdp = dup_fd(fd, &error);
2826 if (!*new_fdp)
2827 return error;
2828 }
2829
2830 return 0;
2831 }
2832
2833 /*
2834 * unshare allows a process to 'unshare' part of the process
2835 * context which was originally shared using clone. copy_*
2836 * functions used by do_fork() cannot be used here directly
2837 * because they modify an inactive task_struct that is being
2838 * constructed. Here we are modifying the current, active,
2839 * task_struct.
2840 */
2841 int ksys_unshare(unsigned long unshare_flags)
2842 {
2843 struct fs_struct *fs, *new_fs = NULL;
2844 struct files_struct *fd, *new_fd = NULL;
2845 struct cred *new_cred = NULL;
2846 struct nsproxy *new_nsproxy = NULL;
2847 int do_sysvsem = 0;
2848 int err;
2849
2850 /*
2851 * If unsharing a user namespace must also unshare the thread group
2852 * and unshare the filesystem root and working directories.
2853 */
2854 if (unshare_flags & CLONE_NEWUSER)
2855 unshare_flags |= CLONE_THREAD | CLONE_FS;
2856 /*
2857 * If unsharing vm, must also unshare signal handlers.
2858 */
2859 if (unshare_flags & CLONE_VM)
2860 unshare_flags |= CLONE_SIGHAND;
2861 /*
2862 * If unsharing a signal handlers, must also unshare the signal queues.
2863 */
2864 if (unshare_flags & CLONE_SIGHAND)
2865 unshare_flags |= CLONE_THREAD;
2866 /*
2867 * If unsharing namespace, must also unshare filesystem information.
2868 */
2869 if (unshare_flags & CLONE_NEWNS)
2870 unshare_flags |= CLONE_FS;
2871
2872 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2873 err = -EPERM;
2874 if (!capable(CAP_SYS_ADMIN))
2875 goto bad_unshare_out;
2876 }
2877
2878 err = check_unshare_flags(unshare_flags);
2879 if (err)
2880 goto bad_unshare_out;
2881 /*
2882 * CLONE_NEWIPC must also detach from the undolist: after switching
2883 * to a new ipc namespace, the semaphore arrays from the old
2884 * namespace are unreachable.
2885 */
2886 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2887 do_sysvsem = 1;
2888 err = unshare_fs(unshare_flags, &new_fs);
2889 if (err)
2890 goto bad_unshare_out;
2891 err = unshare_fd(unshare_flags, &new_fd);
2892 if (err)
2893 goto bad_unshare_cleanup_fs;
2894 err = unshare_userns(unshare_flags, &new_cred);
2895 if (err)
2896 goto bad_unshare_cleanup_fd;
2897 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2898 new_cred, new_fs);
2899 if (err)
2900 goto bad_unshare_cleanup_cred;
2901
2902 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2903 if (do_sysvsem) {
2904 /*
2905 * CLONE_SYSVSEM is equivalent to sys_exit().
2906 */
2907 exit_sem(current);
2908 }
2909 if (unshare_flags & CLONE_NEWIPC) {
2910 /* Orphan segments in old ns (see sem above). */
2911 exit_shm(current);
2912 shm_init_task(current);
2913 }
2914
2915 if (new_nsproxy)
2916 switch_task_namespaces(current, new_nsproxy);
2917
2918 task_lock(current);
2919
2920 if (new_fs) {
2921 fs = current->fs;
2922 spin_lock(&fs->lock);
2923 current->fs = new_fs;
2924 if (--fs->users)
2925 new_fs = NULL;
2926 else
2927 new_fs = fs;
2928 spin_unlock(&fs->lock);
2929 }
2930
2931 if (new_fd) {
2932 fd = current->files;
2933 current->files = new_fd;
2934 new_fd = fd;
2935 }
2936
2937 task_unlock(current);
2938
2939 if (new_cred) {
2940 /* Install the new user namespace */
2941 commit_creds(new_cred);
2942 new_cred = NULL;
2943 }
2944 }
2945
2946 perf_event_namespaces(current);
2947
2948 bad_unshare_cleanup_cred:
2949 if (new_cred)
2950 put_cred(new_cred);
2951 bad_unshare_cleanup_fd:
2952 if (new_fd)
2953 put_files_struct(new_fd);
2954
2955 bad_unshare_cleanup_fs:
2956 if (new_fs)
2957 free_fs_struct(new_fs);
2958
2959 bad_unshare_out:
2960 return err;
2961 }
2962
2963 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2964 {
2965 return ksys_unshare(unshare_flags);
2966 }
2967
2968 /*
2969 * Helper to unshare the files of the current task.
2970 * We don't want to expose copy_files internals to
2971 * the exec layer of the kernel.
2972 */
2973
2974 int unshare_files(struct files_struct **displaced)
2975 {
2976 struct task_struct *task = current;
2977 struct files_struct *copy = NULL;
2978 int error;
2979
2980 error = unshare_fd(CLONE_FILES, &copy);
2981 if (error || !copy) {
2982 *displaced = NULL;
2983 return error;
2984 }
2985 *displaced = task->files;
2986 task_lock(task);
2987 task->files = copy;
2988 task_unlock(task);
2989 return 0;
2990 }
2991
2992 int sysctl_max_threads(struct ctl_table *table, int write,
2993 void __user *buffer, size_t *lenp, loff_t *ppos)
2994 {
2995 struct ctl_table t;
2996 int ret;
2997 int threads = max_threads;
2998 int min = 1;
2999 int max = MAX_THREADS;
3000
3001 t = *table;
3002 t.data = &threads;
3003 t.extra1 = &min;
3004 t.extra2 = &max;
3005
3006 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3007 if (ret || !write)
3008 return ret;
3009
3010 max_threads = threads;
3011
3012 return 0;
3013 }