]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/fork.c
Merge tag 'for-v4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[mirror_ubuntu-jammy-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108 * Minimum number of threads to boot the kernel
109 */
110 #define MIN_THREADS 20
111
112 /*
113 * Maximum number of threads
114 */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118 * Protected counters by write_lock_irq(&tasklist_lock)
119 */
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
122
123 int max_threads; /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
137 int nr_processes(void)
138 {
139 int cpu;
140 int total = 0;
141
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
144
145 return total;
146 }
147
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171
172 /*
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
175 */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177
178 #ifdef CONFIG_VMAP_STACK
179 /*
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
182 */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
190
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194 if (!vm_stack)
195 continue;
196
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
199 }
200
201 return 0;
202 }
203 #endif
204
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 void *stack;
209 int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *s;
213
214 s = this_cpu_xchg(cached_stacks[i], NULL);
215
216 if (!s)
217 continue;
218
219 /* Clear stale pointers from reused stack. */
220 memset(s->addr, 0, THREAD_SIZE);
221
222 tsk->stack_vm_area = s;
223 return s->addr;
224 }
225
226 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 VMALLOC_START, VMALLOC_END,
228 THREADINFO_GFP,
229 PAGE_KERNEL,
230 0, node, __builtin_return_address(0));
231
232 /*
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
236 */
237 if (stack)
238 tsk->stack_vm_area = find_vm_area(stack);
239 return stack;
240 #else
241 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 THREAD_SIZE_ORDER);
243
244 return page ? page_address(page) : NULL;
245 #endif
246 }
247
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk)) {
252 int i;
253
254 for (i = 0; i < NR_CACHED_STACKS; i++) {
255 if (this_cpu_cmpxchg(cached_stacks[i],
256 NULL, tsk->stack_vm_area) != NULL)
257 continue;
258
259 return;
260 }
261
262 vfree_atomic(tsk->stack);
263 return;
264 }
265 #endif
266
267 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 int node)
274 {
275 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282
283 void thread_stack_cache_init(void)
284 {
285 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 THREAD_SIZE, THREAD_SIZE, 0, 0,
287 THREAD_SIZE, NULL);
288 BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304
305 /* SLAB cache for vm_area_struct structures */
306 struct kmem_cache *vm_area_cachep;
307
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310
311 static void account_kernel_stack(struct task_struct *tsk, int account)
312 {
313 void *stack = task_stack_page(tsk);
314 struct vm_struct *vm = task_stack_vm_area(tsk);
315
316 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
317
318 if (vm) {
319 int i;
320
321 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
322
323 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
324 mod_zone_page_state(page_zone(vm->pages[i]),
325 NR_KERNEL_STACK_KB,
326 PAGE_SIZE / 1024 * account);
327 }
328
329 /* All stack pages belong to the same memcg. */
330 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
331 account * (THREAD_SIZE / 1024));
332 } else {
333 /*
334 * All stack pages are in the same zone and belong to the
335 * same memcg.
336 */
337 struct page *first_page = virt_to_page(stack);
338
339 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
340 THREAD_SIZE / 1024 * account);
341
342 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
343 account * (THREAD_SIZE / 1024));
344 }
345 }
346
347 static void release_task_stack(struct task_struct *tsk)
348 {
349 if (WARN_ON(tsk->state != TASK_DEAD))
350 return; /* Better to leak the stack than to free prematurely */
351
352 account_kernel_stack(tsk, -1);
353 arch_release_thread_stack(tsk->stack);
354 free_thread_stack(tsk);
355 tsk->stack = NULL;
356 #ifdef CONFIG_VMAP_STACK
357 tsk->stack_vm_area = NULL;
358 #endif
359 }
360
361 #ifdef CONFIG_THREAD_INFO_IN_TASK
362 void put_task_stack(struct task_struct *tsk)
363 {
364 if (atomic_dec_and_test(&tsk->stack_refcount))
365 release_task_stack(tsk);
366 }
367 #endif
368
369 void free_task(struct task_struct *tsk)
370 {
371 #ifndef CONFIG_THREAD_INFO_IN_TASK
372 /*
373 * The task is finally done with both the stack and thread_info,
374 * so free both.
375 */
376 release_task_stack(tsk);
377 #else
378 /*
379 * If the task had a separate stack allocation, it should be gone
380 * by now.
381 */
382 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
383 #endif
384 rt_mutex_debug_task_free(tsk);
385 ftrace_graph_exit_task(tsk);
386 put_seccomp_filter(tsk);
387 arch_release_task_struct(tsk);
388 if (tsk->flags & PF_KTHREAD)
389 free_kthread_struct(tsk);
390 free_task_struct(tsk);
391 }
392 EXPORT_SYMBOL(free_task);
393
394 #ifdef CONFIG_MMU
395 static __latent_entropy int dup_mmap(struct mm_struct *mm,
396 struct mm_struct *oldmm)
397 {
398 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
399 struct rb_node **rb_link, *rb_parent;
400 int retval;
401 unsigned long charge;
402 LIST_HEAD(uf);
403
404 uprobe_start_dup_mmap();
405 if (down_write_killable(&oldmm->mmap_sem)) {
406 retval = -EINTR;
407 goto fail_uprobe_end;
408 }
409 flush_cache_dup_mm(oldmm);
410 uprobe_dup_mmap(oldmm, mm);
411 /*
412 * Not linked in yet - no deadlock potential:
413 */
414 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
415
416 /* No ordering required: file already has been exposed. */
417 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
418
419 mm->total_vm = oldmm->total_vm;
420 mm->data_vm = oldmm->data_vm;
421 mm->exec_vm = oldmm->exec_vm;
422 mm->stack_vm = oldmm->stack_vm;
423
424 rb_link = &mm->mm_rb.rb_node;
425 rb_parent = NULL;
426 pprev = &mm->mmap;
427 retval = ksm_fork(mm, oldmm);
428 if (retval)
429 goto out;
430 retval = khugepaged_fork(mm, oldmm);
431 if (retval)
432 goto out;
433
434 prev = NULL;
435 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
436 struct file *file;
437
438 if (mpnt->vm_flags & VM_DONTCOPY) {
439 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
440 continue;
441 }
442 charge = 0;
443 if (mpnt->vm_flags & VM_ACCOUNT) {
444 unsigned long len = vma_pages(mpnt);
445
446 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
447 goto fail_nomem;
448 charge = len;
449 }
450 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
451 if (!tmp)
452 goto fail_nomem;
453 *tmp = *mpnt;
454 INIT_LIST_HEAD(&tmp->anon_vma_chain);
455 retval = vma_dup_policy(mpnt, tmp);
456 if (retval)
457 goto fail_nomem_policy;
458 tmp->vm_mm = mm;
459 retval = dup_userfaultfd(tmp, &uf);
460 if (retval)
461 goto fail_nomem_anon_vma_fork;
462 if (tmp->vm_flags & VM_WIPEONFORK) {
463 /* VM_WIPEONFORK gets a clean slate in the child. */
464 tmp->anon_vma = NULL;
465 if (anon_vma_prepare(tmp))
466 goto fail_nomem_anon_vma_fork;
467 } else if (anon_vma_fork(tmp, mpnt))
468 goto fail_nomem_anon_vma_fork;
469 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
470 tmp->vm_next = tmp->vm_prev = NULL;
471 file = tmp->vm_file;
472 if (file) {
473 struct inode *inode = file_inode(file);
474 struct address_space *mapping = file->f_mapping;
475
476 get_file(file);
477 if (tmp->vm_flags & VM_DENYWRITE)
478 atomic_dec(&inode->i_writecount);
479 i_mmap_lock_write(mapping);
480 if (tmp->vm_flags & VM_SHARED)
481 atomic_inc(&mapping->i_mmap_writable);
482 flush_dcache_mmap_lock(mapping);
483 /* insert tmp into the share list, just after mpnt */
484 vma_interval_tree_insert_after(tmp, mpnt,
485 &mapping->i_mmap);
486 flush_dcache_mmap_unlock(mapping);
487 i_mmap_unlock_write(mapping);
488 }
489
490 /*
491 * Clear hugetlb-related page reserves for children. This only
492 * affects MAP_PRIVATE mappings. Faults generated by the child
493 * are not guaranteed to succeed, even if read-only
494 */
495 if (is_vm_hugetlb_page(tmp))
496 reset_vma_resv_huge_pages(tmp);
497
498 /*
499 * Link in the new vma and copy the page table entries.
500 */
501 *pprev = tmp;
502 pprev = &tmp->vm_next;
503 tmp->vm_prev = prev;
504 prev = tmp;
505
506 __vma_link_rb(mm, tmp, rb_link, rb_parent);
507 rb_link = &tmp->vm_rb.rb_right;
508 rb_parent = &tmp->vm_rb;
509
510 mm->map_count++;
511 if (!(tmp->vm_flags & VM_WIPEONFORK))
512 retval = copy_page_range(mm, oldmm, mpnt);
513
514 if (tmp->vm_ops && tmp->vm_ops->open)
515 tmp->vm_ops->open(tmp);
516
517 if (retval)
518 goto out;
519 }
520 /* a new mm has just been created */
521 arch_dup_mmap(oldmm, mm);
522 retval = 0;
523 out:
524 up_write(&mm->mmap_sem);
525 flush_tlb_mm(oldmm);
526 up_write(&oldmm->mmap_sem);
527 dup_userfaultfd_complete(&uf);
528 fail_uprobe_end:
529 uprobe_end_dup_mmap();
530 return retval;
531 fail_nomem_anon_vma_fork:
532 mpol_put(vma_policy(tmp));
533 fail_nomem_policy:
534 kmem_cache_free(vm_area_cachep, tmp);
535 fail_nomem:
536 retval = -ENOMEM;
537 vm_unacct_memory(charge);
538 goto out;
539 }
540
541 static inline int mm_alloc_pgd(struct mm_struct *mm)
542 {
543 mm->pgd = pgd_alloc(mm);
544 if (unlikely(!mm->pgd))
545 return -ENOMEM;
546 return 0;
547 }
548
549 static inline void mm_free_pgd(struct mm_struct *mm)
550 {
551 pgd_free(mm, mm->pgd);
552 }
553 #else
554 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
555 {
556 down_write(&oldmm->mmap_sem);
557 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
558 up_write(&oldmm->mmap_sem);
559 return 0;
560 }
561 #define mm_alloc_pgd(mm) (0)
562 #define mm_free_pgd(mm)
563 #endif /* CONFIG_MMU */
564
565 static void check_mm(struct mm_struct *mm)
566 {
567 int i;
568
569 for (i = 0; i < NR_MM_COUNTERS; i++) {
570 long x = atomic_long_read(&mm->rss_stat.count[i]);
571
572 if (unlikely(x))
573 printk(KERN_ALERT "BUG: Bad rss-counter state "
574 "mm:%p idx:%d val:%ld\n", mm, i, x);
575 }
576
577 if (mm_pgtables_bytes(mm))
578 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
579 mm_pgtables_bytes(mm));
580
581 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
582 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
583 #endif
584 }
585
586 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
587 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
588
589 /*
590 * Called when the last reference to the mm
591 * is dropped: either by a lazy thread or by
592 * mmput. Free the page directory and the mm.
593 */
594 void __mmdrop(struct mm_struct *mm)
595 {
596 BUG_ON(mm == &init_mm);
597 WARN_ON_ONCE(mm == current->mm);
598 WARN_ON_ONCE(mm == current->active_mm);
599 mm_free_pgd(mm);
600 destroy_context(mm);
601 hmm_mm_destroy(mm);
602 mmu_notifier_mm_destroy(mm);
603 check_mm(mm);
604 put_user_ns(mm->user_ns);
605 free_mm(mm);
606 }
607 EXPORT_SYMBOL_GPL(__mmdrop);
608
609 static void mmdrop_async_fn(struct work_struct *work)
610 {
611 struct mm_struct *mm;
612
613 mm = container_of(work, struct mm_struct, async_put_work);
614 __mmdrop(mm);
615 }
616
617 static void mmdrop_async(struct mm_struct *mm)
618 {
619 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
620 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
621 schedule_work(&mm->async_put_work);
622 }
623 }
624
625 static inline void free_signal_struct(struct signal_struct *sig)
626 {
627 taskstats_tgid_free(sig);
628 sched_autogroup_exit(sig);
629 /*
630 * __mmdrop is not safe to call from softirq context on x86 due to
631 * pgd_dtor so postpone it to the async context
632 */
633 if (sig->oom_mm)
634 mmdrop_async(sig->oom_mm);
635 kmem_cache_free(signal_cachep, sig);
636 }
637
638 static inline void put_signal_struct(struct signal_struct *sig)
639 {
640 if (atomic_dec_and_test(&sig->sigcnt))
641 free_signal_struct(sig);
642 }
643
644 void __put_task_struct(struct task_struct *tsk)
645 {
646 WARN_ON(!tsk->exit_state);
647 WARN_ON(atomic_read(&tsk->usage));
648 WARN_ON(tsk == current);
649
650 cgroup_free(tsk);
651 task_numa_free(tsk);
652 security_task_free(tsk);
653 exit_creds(tsk);
654 delayacct_tsk_free(tsk);
655 put_signal_struct(tsk->signal);
656
657 if (!profile_handoff_task(tsk))
658 free_task(tsk);
659 }
660 EXPORT_SYMBOL_GPL(__put_task_struct);
661
662 void __init __weak arch_task_cache_init(void) { }
663
664 /*
665 * set_max_threads
666 */
667 static void set_max_threads(unsigned int max_threads_suggested)
668 {
669 u64 threads;
670
671 /*
672 * The number of threads shall be limited such that the thread
673 * structures may only consume a small part of the available memory.
674 */
675 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
676 threads = MAX_THREADS;
677 else
678 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
679 (u64) THREAD_SIZE * 8UL);
680
681 if (threads > max_threads_suggested)
682 threads = max_threads_suggested;
683
684 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
685 }
686
687 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
688 /* Initialized by the architecture: */
689 int arch_task_struct_size __read_mostly;
690 #endif
691
692 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
693 {
694 /* Fetch thread_struct whitelist for the architecture. */
695 arch_thread_struct_whitelist(offset, size);
696
697 /*
698 * Handle zero-sized whitelist or empty thread_struct, otherwise
699 * adjust offset to position of thread_struct in task_struct.
700 */
701 if (unlikely(*size == 0))
702 *offset = 0;
703 else
704 *offset += offsetof(struct task_struct, thread);
705 }
706
707 void __init fork_init(void)
708 {
709 int i;
710 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
711 #ifndef ARCH_MIN_TASKALIGN
712 #define ARCH_MIN_TASKALIGN 0
713 #endif
714 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
715 unsigned long useroffset, usersize;
716
717 /* create a slab on which task_structs can be allocated */
718 task_struct_whitelist(&useroffset, &usersize);
719 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
720 arch_task_struct_size, align,
721 SLAB_PANIC|SLAB_ACCOUNT,
722 useroffset, usersize, NULL);
723 #endif
724
725 /* do the arch specific task caches init */
726 arch_task_cache_init();
727
728 set_max_threads(MAX_THREADS);
729
730 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
731 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
732 init_task.signal->rlim[RLIMIT_SIGPENDING] =
733 init_task.signal->rlim[RLIMIT_NPROC];
734
735 for (i = 0; i < UCOUNT_COUNTS; i++) {
736 init_user_ns.ucount_max[i] = max_threads/2;
737 }
738
739 #ifdef CONFIG_VMAP_STACK
740 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
741 NULL, free_vm_stack_cache);
742 #endif
743
744 lockdep_init_task(&init_task);
745 }
746
747 int __weak arch_dup_task_struct(struct task_struct *dst,
748 struct task_struct *src)
749 {
750 *dst = *src;
751 return 0;
752 }
753
754 void set_task_stack_end_magic(struct task_struct *tsk)
755 {
756 unsigned long *stackend;
757
758 stackend = end_of_stack(tsk);
759 *stackend = STACK_END_MAGIC; /* for overflow detection */
760 }
761
762 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
763 {
764 struct task_struct *tsk;
765 unsigned long *stack;
766 struct vm_struct *stack_vm_area;
767 int err;
768
769 if (node == NUMA_NO_NODE)
770 node = tsk_fork_get_node(orig);
771 tsk = alloc_task_struct_node(node);
772 if (!tsk)
773 return NULL;
774
775 stack = alloc_thread_stack_node(tsk, node);
776 if (!stack)
777 goto free_tsk;
778
779 stack_vm_area = task_stack_vm_area(tsk);
780
781 err = arch_dup_task_struct(tsk, orig);
782
783 /*
784 * arch_dup_task_struct() clobbers the stack-related fields. Make
785 * sure they're properly initialized before using any stack-related
786 * functions again.
787 */
788 tsk->stack = stack;
789 #ifdef CONFIG_VMAP_STACK
790 tsk->stack_vm_area = stack_vm_area;
791 #endif
792 #ifdef CONFIG_THREAD_INFO_IN_TASK
793 atomic_set(&tsk->stack_refcount, 1);
794 #endif
795
796 if (err)
797 goto free_stack;
798
799 #ifdef CONFIG_SECCOMP
800 /*
801 * We must handle setting up seccomp filters once we're under
802 * the sighand lock in case orig has changed between now and
803 * then. Until then, filter must be NULL to avoid messing up
804 * the usage counts on the error path calling free_task.
805 */
806 tsk->seccomp.filter = NULL;
807 #endif
808
809 setup_thread_stack(tsk, orig);
810 clear_user_return_notifier(tsk);
811 clear_tsk_need_resched(tsk);
812 set_task_stack_end_magic(tsk);
813
814 #ifdef CONFIG_CC_STACKPROTECTOR
815 tsk->stack_canary = get_random_canary();
816 #endif
817
818 /*
819 * One for us, one for whoever does the "release_task()" (usually
820 * parent)
821 */
822 atomic_set(&tsk->usage, 2);
823 #ifdef CONFIG_BLK_DEV_IO_TRACE
824 tsk->btrace_seq = 0;
825 #endif
826 tsk->splice_pipe = NULL;
827 tsk->task_frag.page = NULL;
828 tsk->wake_q.next = NULL;
829
830 account_kernel_stack(tsk, 1);
831
832 kcov_task_init(tsk);
833
834 #ifdef CONFIG_FAULT_INJECTION
835 tsk->fail_nth = 0;
836 #endif
837
838 return tsk;
839
840 free_stack:
841 free_thread_stack(tsk);
842 free_tsk:
843 free_task_struct(tsk);
844 return NULL;
845 }
846
847 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
848
849 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
850
851 static int __init coredump_filter_setup(char *s)
852 {
853 default_dump_filter =
854 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
855 MMF_DUMP_FILTER_MASK;
856 return 1;
857 }
858
859 __setup("coredump_filter=", coredump_filter_setup);
860
861 #include <linux/init_task.h>
862
863 static void mm_init_aio(struct mm_struct *mm)
864 {
865 #ifdef CONFIG_AIO
866 spin_lock_init(&mm->ioctx_lock);
867 mm->ioctx_table = NULL;
868 #endif
869 }
870
871 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
872 {
873 #ifdef CONFIG_MEMCG
874 mm->owner = p;
875 #endif
876 }
877
878 static void mm_init_uprobes_state(struct mm_struct *mm)
879 {
880 #ifdef CONFIG_UPROBES
881 mm->uprobes_state.xol_area = NULL;
882 #endif
883 }
884
885 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
886 struct user_namespace *user_ns)
887 {
888 mm->mmap = NULL;
889 mm->mm_rb = RB_ROOT;
890 mm->vmacache_seqnum = 0;
891 atomic_set(&mm->mm_users, 1);
892 atomic_set(&mm->mm_count, 1);
893 init_rwsem(&mm->mmap_sem);
894 INIT_LIST_HEAD(&mm->mmlist);
895 mm->core_state = NULL;
896 mm_pgtables_bytes_init(mm);
897 mm->map_count = 0;
898 mm->locked_vm = 0;
899 mm->pinned_vm = 0;
900 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
901 spin_lock_init(&mm->page_table_lock);
902 spin_lock_init(&mm->arg_lock);
903 mm_init_cpumask(mm);
904 mm_init_aio(mm);
905 mm_init_owner(mm, p);
906 RCU_INIT_POINTER(mm->exe_file, NULL);
907 mmu_notifier_mm_init(mm);
908 hmm_mm_init(mm);
909 init_tlb_flush_pending(mm);
910 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
911 mm->pmd_huge_pte = NULL;
912 #endif
913 mm_init_uprobes_state(mm);
914
915 if (current->mm) {
916 mm->flags = current->mm->flags & MMF_INIT_MASK;
917 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
918 } else {
919 mm->flags = default_dump_filter;
920 mm->def_flags = 0;
921 }
922
923 if (mm_alloc_pgd(mm))
924 goto fail_nopgd;
925
926 if (init_new_context(p, mm))
927 goto fail_nocontext;
928
929 mm->user_ns = get_user_ns(user_ns);
930 return mm;
931
932 fail_nocontext:
933 mm_free_pgd(mm);
934 fail_nopgd:
935 free_mm(mm);
936 return NULL;
937 }
938
939 /*
940 * Allocate and initialize an mm_struct.
941 */
942 struct mm_struct *mm_alloc(void)
943 {
944 struct mm_struct *mm;
945
946 mm = allocate_mm();
947 if (!mm)
948 return NULL;
949
950 memset(mm, 0, sizeof(*mm));
951 return mm_init(mm, current, current_user_ns());
952 }
953
954 static inline void __mmput(struct mm_struct *mm)
955 {
956 VM_BUG_ON(atomic_read(&mm->mm_users));
957
958 uprobe_clear_state(mm);
959 exit_aio(mm);
960 ksm_exit(mm);
961 khugepaged_exit(mm); /* must run before exit_mmap */
962 exit_mmap(mm);
963 mm_put_huge_zero_page(mm);
964 set_mm_exe_file(mm, NULL);
965 if (!list_empty(&mm->mmlist)) {
966 spin_lock(&mmlist_lock);
967 list_del(&mm->mmlist);
968 spin_unlock(&mmlist_lock);
969 }
970 if (mm->binfmt)
971 module_put(mm->binfmt->module);
972 mmdrop(mm);
973 }
974
975 /*
976 * Decrement the use count and release all resources for an mm.
977 */
978 void mmput(struct mm_struct *mm)
979 {
980 might_sleep();
981
982 if (atomic_dec_and_test(&mm->mm_users))
983 __mmput(mm);
984 }
985 EXPORT_SYMBOL_GPL(mmput);
986
987 #ifdef CONFIG_MMU
988 static void mmput_async_fn(struct work_struct *work)
989 {
990 struct mm_struct *mm = container_of(work, struct mm_struct,
991 async_put_work);
992
993 __mmput(mm);
994 }
995
996 void mmput_async(struct mm_struct *mm)
997 {
998 if (atomic_dec_and_test(&mm->mm_users)) {
999 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1000 schedule_work(&mm->async_put_work);
1001 }
1002 }
1003 #endif
1004
1005 /**
1006 * set_mm_exe_file - change a reference to the mm's executable file
1007 *
1008 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1009 *
1010 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1011 * invocations: in mmput() nobody alive left, in execve task is single
1012 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1013 * mm->exe_file, but does so without using set_mm_exe_file() in order
1014 * to do avoid the need for any locks.
1015 */
1016 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1017 {
1018 struct file *old_exe_file;
1019
1020 /*
1021 * It is safe to dereference the exe_file without RCU as
1022 * this function is only called if nobody else can access
1023 * this mm -- see comment above for justification.
1024 */
1025 old_exe_file = rcu_dereference_raw(mm->exe_file);
1026
1027 if (new_exe_file)
1028 get_file(new_exe_file);
1029 rcu_assign_pointer(mm->exe_file, new_exe_file);
1030 if (old_exe_file)
1031 fput(old_exe_file);
1032 }
1033
1034 /**
1035 * get_mm_exe_file - acquire a reference to the mm's executable file
1036 *
1037 * Returns %NULL if mm has no associated executable file.
1038 * User must release file via fput().
1039 */
1040 struct file *get_mm_exe_file(struct mm_struct *mm)
1041 {
1042 struct file *exe_file;
1043
1044 rcu_read_lock();
1045 exe_file = rcu_dereference(mm->exe_file);
1046 if (exe_file && !get_file_rcu(exe_file))
1047 exe_file = NULL;
1048 rcu_read_unlock();
1049 return exe_file;
1050 }
1051 EXPORT_SYMBOL(get_mm_exe_file);
1052
1053 /**
1054 * get_task_exe_file - acquire a reference to the task's executable file
1055 *
1056 * Returns %NULL if task's mm (if any) has no associated executable file or
1057 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1058 * User must release file via fput().
1059 */
1060 struct file *get_task_exe_file(struct task_struct *task)
1061 {
1062 struct file *exe_file = NULL;
1063 struct mm_struct *mm;
1064
1065 task_lock(task);
1066 mm = task->mm;
1067 if (mm) {
1068 if (!(task->flags & PF_KTHREAD))
1069 exe_file = get_mm_exe_file(mm);
1070 }
1071 task_unlock(task);
1072 return exe_file;
1073 }
1074 EXPORT_SYMBOL(get_task_exe_file);
1075
1076 /**
1077 * get_task_mm - acquire a reference to the task's mm
1078 *
1079 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1080 * this kernel workthread has transiently adopted a user mm with use_mm,
1081 * to do its AIO) is not set and if so returns a reference to it, after
1082 * bumping up the use count. User must release the mm via mmput()
1083 * after use. Typically used by /proc and ptrace.
1084 */
1085 struct mm_struct *get_task_mm(struct task_struct *task)
1086 {
1087 struct mm_struct *mm;
1088
1089 task_lock(task);
1090 mm = task->mm;
1091 if (mm) {
1092 if (task->flags & PF_KTHREAD)
1093 mm = NULL;
1094 else
1095 mmget(mm);
1096 }
1097 task_unlock(task);
1098 return mm;
1099 }
1100 EXPORT_SYMBOL_GPL(get_task_mm);
1101
1102 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1103 {
1104 struct mm_struct *mm;
1105 int err;
1106
1107 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1108 if (err)
1109 return ERR_PTR(err);
1110
1111 mm = get_task_mm(task);
1112 if (mm && mm != current->mm &&
1113 !ptrace_may_access(task, mode)) {
1114 mmput(mm);
1115 mm = ERR_PTR(-EACCES);
1116 }
1117 mutex_unlock(&task->signal->cred_guard_mutex);
1118
1119 return mm;
1120 }
1121
1122 static void complete_vfork_done(struct task_struct *tsk)
1123 {
1124 struct completion *vfork;
1125
1126 task_lock(tsk);
1127 vfork = tsk->vfork_done;
1128 if (likely(vfork)) {
1129 tsk->vfork_done = NULL;
1130 complete(vfork);
1131 }
1132 task_unlock(tsk);
1133 }
1134
1135 static int wait_for_vfork_done(struct task_struct *child,
1136 struct completion *vfork)
1137 {
1138 int killed;
1139
1140 freezer_do_not_count();
1141 killed = wait_for_completion_killable(vfork);
1142 freezer_count();
1143
1144 if (killed) {
1145 task_lock(child);
1146 child->vfork_done = NULL;
1147 task_unlock(child);
1148 }
1149
1150 put_task_struct(child);
1151 return killed;
1152 }
1153
1154 /* Please note the differences between mmput and mm_release.
1155 * mmput is called whenever we stop holding onto a mm_struct,
1156 * error success whatever.
1157 *
1158 * mm_release is called after a mm_struct has been removed
1159 * from the current process.
1160 *
1161 * This difference is important for error handling, when we
1162 * only half set up a mm_struct for a new process and need to restore
1163 * the old one. Because we mmput the new mm_struct before
1164 * restoring the old one. . .
1165 * Eric Biederman 10 January 1998
1166 */
1167 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1168 {
1169 /* Get rid of any futexes when releasing the mm */
1170 #ifdef CONFIG_FUTEX
1171 if (unlikely(tsk->robust_list)) {
1172 exit_robust_list(tsk);
1173 tsk->robust_list = NULL;
1174 }
1175 #ifdef CONFIG_COMPAT
1176 if (unlikely(tsk->compat_robust_list)) {
1177 compat_exit_robust_list(tsk);
1178 tsk->compat_robust_list = NULL;
1179 }
1180 #endif
1181 if (unlikely(!list_empty(&tsk->pi_state_list)))
1182 exit_pi_state_list(tsk);
1183 #endif
1184
1185 uprobe_free_utask(tsk);
1186
1187 /* Get rid of any cached register state */
1188 deactivate_mm(tsk, mm);
1189
1190 /*
1191 * Signal userspace if we're not exiting with a core dump
1192 * because we want to leave the value intact for debugging
1193 * purposes.
1194 */
1195 if (tsk->clear_child_tid) {
1196 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1197 atomic_read(&mm->mm_users) > 1) {
1198 /*
1199 * We don't check the error code - if userspace has
1200 * not set up a proper pointer then tough luck.
1201 */
1202 put_user(0, tsk->clear_child_tid);
1203 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1204 1, NULL, NULL, 0, 0);
1205 }
1206 tsk->clear_child_tid = NULL;
1207 }
1208
1209 /*
1210 * All done, finally we can wake up parent and return this mm to him.
1211 * Also kthread_stop() uses this completion for synchronization.
1212 */
1213 if (tsk->vfork_done)
1214 complete_vfork_done(tsk);
1215 }
1216
1217 /*
1218 * Allocate a new mm structure and copy contents from the
1219 * mm structure of the passed in task structure.
1220 */
1221 static struct mm_struct *dup_mm(struct task_struct *tsk)
1222 {
1223 struct mm_struct *mm, *oldmm = current->mm;
1224 int err;
1225
1226 mm = allocate_mm();
1227 if (!mm)
1228 goto fail_nomem;
1229
1230 memcpy(mm, oldmm, sizeof(*mm));
1231
1232 if (!mm_init(mm, tsk, mm->user_ns))
1233 goto fail_nomem;
1234
1235 err = dup_mmap(mm, oldmm);
1236 if (err)
1237 goto free_pt;
1238
1239 mm->hiwater_rss = get_mm_rss(mm);
1240 mm->hiwater_vm = mm->total_vm;
1241
1242 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1243 goto free_pt;
1244
1245 return mm;
1246
1247 free_pt:
1248 /* don't put binfmt in mmput, we haven't got module yet */
1249 mm->binfmt = NULL;
1250 mmput(mm);
1251
1252 fail_nomem:
1253 return NULL;
1254 }
1255
1256 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1257 {
1258 struct mm_struct *mm, *oldmm;
1259 int retval;
1260
1261 tsk->min_flt = tsk->maj_flt = 0;
1262 tsk->nvcsw = tsk->nivcsw = 0;
1263 #ifdef CONFIG_DETECT_HUNG_TASK
1264 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1265 #endif
1266
1267 tsk->mm = NULL;
1268 tsk->active_mm = NULL;
1269
1270 /*
1271 * Are we cloning a kernel thread?
1272 *
1273 * We need to steal a active VM for that..
1274 */
1275 oldmm = current->mm;
1276 if (!oldmm)
1277 return 0;
1278
1279 /* initialize the new vmacache entries */
1280 vmacache_flush(tsk);
1281
1282 if (clone_flags & CLONE_VM) {
1283 mmget(oldmm);
1284 mm = oldmm;
1285 goto good_mm;
1286 }
1287
1288 retval = -ENOMEM;
1289 mm = dup_mm(tsk);
1290 if (!mm)
1291 goto fail_nomem;
1292
1293 good_mm:
1294 tsk->mm = mm;
1295 tsk->active_mm = mm;
1296 return 0;
1297
1298 fail_nomem:
1299 return retval;
1300 }
1301
1302 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1303 {
1304 struct fs_struct *fs = current->fs;
1305 if (clone_flags & CLONE_FS) {
1306 /* tsk->fs is already what we want */
1307 spin_lock(&fs->lock);
1308 if (fs->in_exec) {
1309 spin_unlock(&fs->lock);
1310 return -EAGAIN;
1311 }
1312 fs->users++;
1313 spin_unlock(&fs->lock);
1314 return 0;
1315 }
1316 tsk->fs = copy_fs_struct(fs);
1317 if (!tsk->fs)
1318 return -ENOMEM;
1319 return 0;
1320 }
1321
1322 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1323 {
1324 struct files_struct *oldf, *newf;
1325 int error = 0;
1326
1327 /*
1328 * A background process may not have any files ...
1329 */
1330 oldf = current->files;
1331 if (!oldf)
1332 goto out;
1333
1334 if (clone_flags & CLONE_FILES) {
1335 atomic_inc(&oldf->count);
1336 goto out;
1337 }
1338
1339 newf = dup_fd(oldf, &error);
1340 if (!newf)
1341 goto out;
1342
1343 tsk->files = newf;
1344 error = 0;
1345 out:
1346 return error;
1347 }
1348
1349 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1350 {
1351 #ifdef CONFIG_BLOCK
1352 struct io_context *ioc = current->io_context;
1353 struct io_context *new_ioc;
1354
1355 if (!ioc)
1356 return 0;
1357 /*
1358 * Share io context with parent, if CLONE_IO is set
1359 */
1360 if (clone_flags & CLONE_IO) {
1361 ioc_task_link(ioc);
1362 tsk->io_context = ioc;
1363 } else if (ioprio_valid(ioc->ioprio)) {
1364 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1365 if (unlikely(!new_ioc))
1366 return -ENOMEM;
1367
1368 new_ioc->ioprio = ioc->ioprio;
1369 put_io_context(new_ioc);
1370 }
1371 #endif
1372 return 0;
1373 }
1374
1375 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1376 {
1377 struct sighand_struct *sig;
1378
1379 if (clone_flags & CLONE_SIGHAND) {
1380 atomic_inc(&current->sighand->count);
1381 return 0;
1382 }
1383 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1384 rcu_assign_pointer(tsk->sighand, sig);
1385 if (!sig)
1386 return -ENOMEM;
1387
1388 atomic_set(&sig->count, 1);
1389 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1390 return 0;
1391 }
1392
1393 void __cleanup_sighand(struct sighand_struct *sighand)
1394 {
1395 if (atomic_dec_and_test(&sighand->count)) {
1396 signalfd_cleanup(sighand);
1397 /*
1398 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1399 * without an RCU grace period, see __lock_task_sighand().
1400 */
1401 kmem_cache_free(sighand_cachep, sighand);
1402 }
1403 }
1404
1405 #ifdef CONFIG_POSIX_TIMERS
1406 /*
1407 * Initialize POSIX timer handling for a thread group.
1408 */
1409 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1410 {
1411 unsigned long cpu_limit;
1412
1413 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1414 if (cpu_limit != RLIM_INFINITY) {
1415 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1416 sig->cputimer.running = true;
1417 }
1418
1419 /* The timer lists. */
1420 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1421 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1422 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1423 }
1424 #else
1425 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1426 #endif
1427
1428 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1429 {
1430 struct signal_struct *sig;
1431
1432 if (clone_flags & CLONE_THREAD)
1433 return 0;
1434
1435 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1436 tsk->signal = sig;
1437 if (!sig)
1438 return -ENOMEM;
1439
1440 sig->nr_threads = 1;
1441 atomic_set(&sig->live, 1);
1442 atomic_set(&sig->sigcnt, 1);
1443
1444 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1445 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1446 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1447
1448 init_waitqueue_head(&sig->wait_chldexit);
1449 sig->curr_target = tsk;
1450 init_sigpending(&sig->shared_pending);
1451 seqlock_init(&sig->stats_lock);
1452 prev_cputime_init(&sig->prev_cputime);
1453
1454 #ifdef CONFIG_POSIX_TIMERS
1455 INIT_LIST_HEAD(&sig->posix_timers);
1456 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1457 sig->real_timer.function = it_real_fn;
1458 #endif
1459
1460 task_lock(current->group_leader);
1461 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1462 task_unlock(current->group_leader);
1463
1464 posix_cpu_timers_init_group(sig);
1465
1466 tty_audit_fork(sig);
1467 sched_autogroup_fork(sig);
1468
1469 sig->oom_score_adj = current->signal->oom_score_adj;
1470 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1471
1472 mutex_init(&sig->cred_guard_mutex);
1473
1474 return 0;
1475 }
1476
1477 static void copy_seccomp(struct task_struct *p)
1478 {
1479 #ifdef CONFIG_SECCOMP
1480 /*
1481 * Must be called with sighand->lock held, which is common to
1482 * all threads in the group. Holding cred_guard_mutex is not
1483 * needed because this new task is not yet running and cannot
1484 * be racing exec.
1485 */
1486 assert_spin_locked(&current->sighand->siglock);
1487
1488 /* Ref-count the new filter user, and assign it. */
1489 get_seccomp_filter(current);
1490 p->seccomp = current->seccomp;
1491
1492 /*
1493 * Explicitly enable no_new_privs here in case it got set
1494 * between the task_struct being duplicated and holding the
1495 * sighand lock. The seccomp state and nnp must be in sync.
1496 */
1497 if (task_no_new_privs(current))
1498 task_set_no_new_privs(p);
1499
1500 /*
1501 * If the parent gained a seccomp mode after copying thread
1502 * flags and between before we held the sighand lock, we have
1503 * to manually enable the seccomp thread flag here.
1504 */
1505 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1506 set_tsk_thread_flag(p, TIF_SECCOMP);
1507 #endif
1508 }
1509
1510 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1511 {
1512 current->clear_child_tid = tidptr;
1513
1514 return task_pid_vnr(current);
1515 }
1516
1517 static void rt_mutex_init_task(struct task_struct *p)
1518 {
1519 raw_spin_lock_init(&p->pi_lock);
1520 #ifdef CONFIG_RT_MUTEXES
1521 p->pi_waiters = RB_ROOT_CACHED;
1522 p->pi_top_task = NULL;
1523 p->pi_blocked_on = NULL;
1524 #endif
1525 }
1526
1527 #ifdef CONFIG_POSIX_TIMERS
1528 /*
1529 * Initialize POSIX timer handling for a single task.
1530 */
1531 static void posix_cpu_timers_init(struct task_struct *tsk)
1532 {
1533 tsk->cputime_expires.prof_exp = 0;
1534 tsk->cputime_expires.virt_exp = 0;
1535 tsk->cputime_expires.sched_exp = 0;
1536 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1537 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1538 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1539 }
1540 #else
1541 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1542 #endif
1543
1544 static inline void
1545 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1546 {
1547 task->pids[type].pid = pid;
1548 }
1549
1550 static inline void rcu_copy_process(struct task_struct *p)
1551 {
1552 #ifdef CONFIG_PREEMPT_RCU
1553 p->rcu_read_lock_nesting = 0;
1554 p->rcu_read_unlock_special.s = 0;
1555 p->rcu_blocked_node = NULL;
1556 INIT_LIST_HEAD(&p->rcu_node_entry);
1557 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1558 #ifdef CONFIG_TASKS_RCU
1559 p->rcu_tasks_holdout = false;
1560 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1561 p->rcu_tasks_idle_cpu = -1;
1562 #endif /* #ifdef CONFIG_TASKS_RCU */
1563 }
1564
1565 /*
1566 * This creates a new process as a copy of the old one,
1567 * but does not actually start it yet.
1568 *
1569 * It copies the registers, and all the appropriate
1570 * parts of the process environment (as per the clone
1571 * flags). The actual kick-off is left to the caller.
1572 */
1573 static __latent_entropy struct task_struct *copy_process(
1574 unsigned long clone_flags,
1575 unsigned long stack_start,
1576 unsigned long stack_size,
1577 int __user *child_tidptr,
1578 struct pid *pid,
1579 int trace,
1580 unsigned long tls,
1581 int node)
1582 {
1583 int retval;
1584 struct task_struct *p;
1585
1586 /*
1587 * Don't allow sharing the root directory with processes in a different
1588 * namespace
1589 */
1590 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1591 return ERR_PTR(-EINVAL);
1592
1593 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1594 return ERR_PTR(-EINVAL);
1595
1596 /*
1597 * Thread groups must share signals as well, and detached threads
1598 * can only be started up within the thread group.
1599 */
1600 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1601 return ERR_PTR(-EINVAL);
1602
1603 /*
1604 * Shared signal handlers imply shared VM. By way of the above,
1605 * thread groups also imply shared VM. Blocking this case allows
1606 * for various simplifications in other code.
1607 */
1608 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1609 return ERR_PTR(-EINVAL);
1610
1611 /*
1612 * Siblings of global init remain as zombies on exit since they are
1613 * not reaped by their parent (swapper). To solve this and to avoid
1614 * multi-rooted process trees, prevent global and container-inits
1615 * from creating siblings.
1616 */
1617 if ((clone_flags & CLONE_PARENT) &&
1618 current->signal->flags & SIGNAL_UNKILLABLE)
1619 return ERR_PTR(-EINVAL);
1620
1621 /*
1622 * If the new process will be in a different pid or user namespace
1623 * do not allow it to share a thread group with the forking task.
1624 */
1625 if (clone_flags & CLONE_THREAD) {
1626 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1627 (task_active_pid_ns(current) !=
1628 current->nsproxy->pid_ns_for_children))
1629 return ERR_PTR(-EINVAL);
1630 }
1631
1632 retval = -ENOMEM;
1633 p = dup_task_struct(current, node);
1634 if (!p)
1635 goto fork_out;
1636
1637 /*
1638 * This _must_ happen before we call free_task(), i.e. before we jump
1639 * to any of the bad_fork_* labels. This is to avoid freeing
1640 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1641 * kernel threads (PF_KTHREAD).
1642 */
1643 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1644 /*
1645 * Clear TID on mm_release()?
1646 */
1647 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1648
1649 ftrace_graph_init_task(p);
1650
1651 rt_mutex_init_task(p);
1652
1653 #ifdef CONFIG_PROVE_LOCKING
1654 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1655 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1656 #endif
1657 retval = -EAGAIN;
1658 if (atomic_read(&p->real_cred->user->processes) >=
1659 task_rlimit(p, RLIMIT_NPROC)) {
1660 if (p->real_cred->user != INIT_USER &&
1661 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1662 goto bad_fork_free;
1663 }
1664 current->flags &= ~PF_NPROC_EXCEEDED;
1665
1666 retval = copy_creds(p, clone_flags);
1667 if (retval < 0)
1668 goto bad_fork_free;
1669
1670 /*
1671 * If multiple threads are within copy_process(), then this check
1672 * triggers too late. This doesn't hurt, the check is only there
1673 * to stop root fork bombs.
1674 */
1675 retval = -EAGAIN;
1676 if (nr_threads >= max_threads)
1677 goto bad_fork_cleanup_count;
1678
1679 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1680 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1681 p->flags |= PF_FORKNOEXEC;
1682 INIT_LIST_HEAD(&p->children);
1683 INIT_LIST_HEAD(&p->sibling);
1684 rcu_copy_process(p);
1685 p->vfork_done = NULL;
1686 spin_lock_init(&p->alloc_lock);
1687
1688 init_sigpending(&p->pending);
1689
1690 p->utime = p->stime = p->gtime = 0;
1691 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1692 p->utimescaled = p->stimescaled = 0;
1693 #endif
1694 prev_cputime_init(&p->prev_cputime);
1695
1696 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1697 seqcount_init(&p->vtime.seqcount);
1698 p->vtime.starttime = 0;
1699 p->vtime.state = VTIME_INACTIVE;
1700 #endif
1701
1702 #if defined(SPLIT_RSS_COUNTING)
1703 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1704 #endif
1705
1706 p->default_timer_slack_ns = current->timer_slack_ns;
1707
1708 task_io_accounting_init(&p->ioac);
1709 acct_clear_integrals(p);
1710
1711 posix_cpu_timers_init(p);
1712
1713 p->start_time = ktime_get_ns();
1714 p->real_start_time = ktime_get_boot_ns();
1715 p->io_context = NULL;
1716 audit_set_context(p, NULL);
1717 cgroup_fork(p);
1718 #ifdef CONFIG_NUMA
1719 p->mempolicy = mpol_dup(p->mempolicy);
1720 if (IS_ERR(p->mempolicy)) {
1721 retval = PTR_ERR(p->mempolicy);
1722 p->mempolicy = NULL;
1723 goto bad_fork_cleanup_threadgroup_lock;
1724 }
1725 #endif
1726 #ifdef CONFIG_CPUSETS
1727 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1728 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1729 seqcount_init(&p->mems_allowed_seq);
1730 #endif
1731 #ifdef CONFIG_TRACE_IRQFLAGS
1732 p->irq_events = 0;
1733 p->hardirqs_enabled = 0;
1734 p->hardirq_enable_ip = 0;
1735 p->hardirq_enable_event = 0;
1736 p->hardirq_disable_ip = _THIS_IP_;
1737 p->hardirq_disable_event = 0;
1738 p->softirqs_enabled = 1;
1739 p->softirq_enable_ip = _THIS_IP_;
1740 p->softirq_enable_event = 0;
1741 p->softirq_disable_ip = 0;
1742 p->softirq_disable_event = 0;
1743 p->hardirq_context = 0;
1744 p->softirq_context = 0;
1745 #endif
1746
1747 p->pagefault_disabled = 0;
1748
1749 #ifdef CONFIG_LOCKDEP
1750 p->lockdep_depth = 0; /* no locks held yet */
1751 p->curr_chain_key = 0;
1752 p->lockdep_recursion = 0;
1753 lockdep_init_task(p);
1754 #endif
1755
1756 #ifdef CONFIG_DEBUG_MUTEXES
1757 p->blocked_on = NULL; /* not blocked yet */
1758 #endif
1759 #ifdef CONFIG_BCACHE
1760 p->sequential_io = 0;
1761 p->sequential_io_avg = 0;
1762 #endif
1763
1764 /* Perform scheduler related setup. Assign this task to a CPU. */
1765 retval = sched_fork(clone_flags, p);
1766 if (retval)
1767 goto bad_fork_cleanup_policy;
1768
1769 retval = perf_event_init_task(p);
1770 if (retval)
1771 goto bad_fork_cleanup_policy;
1772 retval = audit_alloc(p);
1773 if (retval)
1774 goto bad_fork_cleanup_perf;
1775 /* copy all the process information */
1776 shm_init_task(p);
1777 retval = security_task_alloc(p, clone_flags);
1778 if (retval)
1779 goto bad_fork_cleanup_audit;
1780 retval = copy_semundo(clone_flags, p);
1781 if (retval)
1782 goto bad_fork_cleanup_security;
1783 retval = copy_files(clone_flags, p);
1784 if (retval)
1785 goto bad_fork_cleanup_semundo;
1786 retval = copy_fs(clone_flags, p);
1787 if (retval)
1788 goto bad_fork_cleanup_files;
1789 retval = copy_sighand(clone_flags, p);
1790 if (retval)
1791 goto bad_fork_cleanup_fs;
1792 retval = copy_signal(clone_flags, p);
1793 if (retval)
1794 goto bad_fork_cleanup_sighand;
1795 retval = copy_mm(clone_flags, p);
1796 if (retval)
1797 goto bad_fork_cleanup_signal;
1798 retval = copy_namespaces(clone_flags, p);
1799 if (retval)
1800 goto bad_fork_cleanup_mm;
1801 retval = copy_io(clone_flags, p);
1802 if (retval)
1803 goto bad_fork_cleanup_namespaces;
1804 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1805 if (retval)
1806 goto bad_fork_cleanup_io;
1807
1808 if (pid != &init_struct_pid) {
1809 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1810 if (IS_ERR(pid)) {
1811 retval = PTR_ERR(pid);
1812 goto bad_fork_cleanup_thread;
1813 }
1814 }
1815
1816 #ifdef CONFIG_BLOCK
1817 p->plug = NULL;
1818 #endif
1819 #ifdef CONFIG_FUTEX
1820 p->robust_list = NULL;
1821 #ifdef CONFIG_COMPAT
1822 p->compat_robust_list = NULL;
1823 #endif
1824 INIT_LIST_HEAD(&p->pi_state_list);
1825 p->pi_state_cache = NULL;
1826 #endif
1827 /*
1828 * sigaltstack should be cleared when sharing the same VM
1829 */
1830 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1831 sas_ss_reset(p);
1832
1833 /*
1834 * Syscall tracing and stepping should be turned off in the
1835 * child regardless of CLONE_PTRACE.
1836 */
1837 user_disable_single_step(p);
1838 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1839 #ifdef TIF_SYSCALL_EMU
1840 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1841 #endif
1842 clear_all_latency_tracing(p);
1843
1844 /* ok, now we should be set up.. */
1845 p->pid = pid_nr(pid);
1846 if (clone_flags & CLONE_THREAD) {
1847 p->exit_signal = -1;
1848 p->group_leader = current->group_leader;
1849 p->tgid = current->tgid;
1850 } else {
1851 if (clone_flags & CLONE_PARENT)
1852 p->exit_signal = current->group_leader->exit_signal;
1853 else
1854 p->exit_signal = (clone_flags & CSIGNAL);
1855 p->group_leader = p;
1856 p->tgid = p->pid;
1857 }
1858
1859 p->nr_dirtied = 0;
1860 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1861 p->dirty_paused_when = 0;
1862
1863 p->pdeath_signal = 0;
1864 INIT_LIST_HEAD(&p->thread_group);
1865 p->task_works = NULL;
1866
1867 cgroup_threadgroup_change_begin(current);
1868 /*
1869 * Ensure that the cgroup subsystem policies allow the new process to be
1870 * forked. It should be noted the the new process's css_set can be changed
1871 * between here and cgroup_post_fork() if an organisation operation is in
1872 * progress.
1873 */
1874 retval = cgroup_can_fork(p);
1875 if (retval)
1876 goto bad_fork_free_pid;
1877
1878 /*
1879 * Make it visible to the rest of the system, but dont wake it up yet.
1880 * Need tasklist lock for parent etc handling!
1881 */
1882 write_lock_irq(&tasklist_lock);
1883
1884 /* CLONE_PARENT re-uses the old parent */
1885 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1886 p->real_parent = current->real_parent;
1887 p->parent_exec_id = current->parent_exec_id;
1888 } else {
1889 p->real_parent = current;
1890 p->parent_exec_id = current->self_exec_id;
1891 }
1892
1893 klp_copy_process(p);
1894
1895 spin_lock(&current->sighand->siglock);
1896
1897 /*
1898 * Copy seccomp details explicitly here, in case they were changed
1899 * before holding sighand lock.
1900 */
1901 copy_seccomp(p);
1902
1903 /*
1904 * Process group and session signals need to be delivered to just the
1905 * parent before the fork or both the parent and the child after the
1906 * fork. Restart if a signal comes in before we add the new process to
1907 * it's process group.
1908 * A fatal signal pending means that current will exit, so the new
1909 * thread can't slip out of an OOM kill (or normal SIGKILL).
1910 */
1911 recalc_sigpending();
1912 if (signal_pending(current)) {
1913 retval = -ERESTARTNOINTR;
1914 goto bad_fork_cancel_cgroup;
1915 }
1916 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1917 retval = -ENOMEM;
1918 goto bad_fork_cancel_cgroup;
1919 }
1920
1921 if (likely(p->pid)) {
1922 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1923
1924 init_task_pid(p, PIDTYPE_PID, pid);
1925 if (thread_group_leader(p)) {
1926 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1927 init_task_pid(p, PIDTYPE_SID, task_session(current));
1928
1929 if (is_child_reaper(pid)) {
1930 ns_of_pid(pid)->child_reaper = p;
1931 p->signal->flags |= SIGNAL_UNKILLABLE;
1932 }
1933
1934 p->signal->leader_pid = pid;
1935 p->signal->tty = tty_kref_get(current->signal->tty);
1936 /*
1937 * Inherit has_child_subreaper flag under the same
1938 * tasklist_lock with adding child to the process tree
1939 * for propagate_has_child_subreaper optimization.
1940 */
1941 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1942 p->real_parent->signal->is_child_subreaper;
1943 list_add_tail(&p->sibling, &p->real_parent->children);
1944 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1945 attach_pid(p, PIDTYPE_PGID);
1946 attach_pid(p, PIDTYPE_SID);
1947 __this_cpu_inc(process_counts);
1948 } else {
1949 current->signal->nr_threads++;
1950 atomic_inc(&current->signal->live);
1951 atomic_inc(&current->signal->sigcnt);
1952 list_add_tail_rcu(&p->thread_group,
1953 &p->group_leader->thread_group);
1954 list_add_tail_rcu(&p->thread_node,
1955 &p->signal->thread_head);
1956 }
1957 attach_pid(p, PIDTYPE_PID);
1958 nr_threads++;
1959 }
1960
1961 total_forks++;
1962 spin_unlock(&current->sighand->siglock);
1963 syscall_tracepoint_update(p);
1964 write_unlock_irq(&tasklist_lock);
1965
1966 proc_fork_connector(p);
1967 cgroup_post_fork(p);
1968 cgroup_threadgroup_change_end(current);
1969 perf_event_fork(p);
1970
1971 trace_task_newtask(p, clone_flags);
1972 uprobe_copy_process(p, clone_flags);
1973
1974 return p;
1975
1976 bad_fork_cancel_cgroup:
1977 spin_unlock(&current->sighand->siglock);
1978 write_unlock_irq(&tasklist_lock);
1979 cgroup_cancel_fork(p);
1980 bad_fork_free_pid:
1981 cgroup_threadgroup_change_end(current);
1982 if (pid != &init_struct_pid)
1983 free_pid(pid);
1984 bad_fork_cleanup_thread:
1985 exit_thread(p);
1986 bad_fork_cleanup_io:
1987 if (p->io_context)
1988 exit_io_context(p);
1989 bad_fork_cleanup_namespaces:
1990 exit_task_namespaces(p);
1991 bad_fork_cleanup_mm:
1992 if (p->mm)
1993 mmput(p->mm);
1994 bad_fork_cleanup_signal:
1995 if (!(clone_flags & CLONE_THREAD))
1996 free_signal_struct(p->signal);
1997 bad_fork_cleanup_sighand:
1998 __cleanup_sighand(p->sighand);
1999 bad_fork_cleanup_fs:
2000 exit_fs(p); /* blocking */
2001 bad_fork_cleanup_files:
2002 exit_files(p); /* blocking */
2003 bad_fork_cleanup_semundo:
2004 exit_sem(p);
2005 bad_fork_cleanup_security:
2006 security_task_free(p);
2007 bad_fork_cleanup_audit:
2008 audit_free(p);
2009 bad_fork_cleanup_perf:
2010 perf_event_free_task(p);
2011 bad_fork_cleanup_policy:
2012 lockdep_free_task(p);
2013 #ifdef CONFIG_NUMA
2014 mpol_put(p->mempolicy);
2015 bad_fork_cleanup_threadgroup_lock:
2016 #endif
2017 delayacct_tsk_free(p);
2018 bad_fork_cleanup_count:
2019 atomic_dec(&p->cred->user->processes);
2020 exit_creds(p);
2021 bad_fork_free:
2022 p->state = TASK_DEAD;
2023 put_task_stack(p);
2024 free_task(p);
2025 fork_out:
2026 return ERR_PTR(retval);
2027 }
2028
2029 static inline void init_idle_pids(struct pid_link *links)
2030 {
2031 enum pid_type type;
2032
2033 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2034 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2035 links[type].pid = &init_struct_pid;
2036 }
2037 }
2038
2039 struct task_struct *fork_idle(int cpu)
2040 {
2041 struct task_struct *task;
2042 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2043 cpu_to_node(cpu));
2044 if (!IS_ERR(task)) {
2045 init_idle_pids(task->pids);
2046 init_idle(task, cpu);
2047 }
2048
2049 return task;
2050 }
2051
2052 /*
2053 * Ok, this is the main fork-routine.
2054 *
2055 * It copies the process, and if successful kick-starts
2056 * it and waits for it to finish using the VM if required.
2057 */
2058 long _do_fork(unsigned long clone_flags,
2059 unsigned long stack_start,
2060 unsigned long stack_size,
2061 int __user *parent_tidptr,
2062 int __user *child_tidptr,
2063 unsigned long tls)
2064 {
2065 struct completion vfork;
2066 struct pid *pid;
2067 struct task_struct *p;
2068 int trace = 0;
2069 long nr;
2070
2071 /*
2072 * Determine whether and which event to report to ptracer. When
2073 * called from kernel_thread or CLONE_UNTRACED is explicitly
2074 * requested, no event is reported; otherwise, report if the event
2075 * for the type of forking is enabled.
2076 */
2077 if (!(clone_flags & CLONE_UNTRACED)) {
2078 if (clone_flags & CLONE_VFORK)
2079 trace = PTRACE_EVENT_VFORK;
2080 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2081 trace = PTRACE_EVENT_CLONE;
2082 else
2083 trace = PTRACE_EVENT_FORK;
2084
2085 if (likely(!ptrace_event_enabled(current, trace)))
2086 trace = 0;
2087 }
2088
2089 p = copy_process(clone_flags, stack_start, stack_size,
2090 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2091 add_latent_entropy();
2092
2093 if (IS_ERR(p))
2094 return PTR_ERR(p);
2095
2096 /*
2097 * Do this prior waking up the new thread - the thread pointer
2098 * might get invalid after that point, if the thread exits quickly.
2099 */
2100 trace_sched_process_fork(current, p);
2101
2102 pid = get_task_pid(p, PIDTYPE_PID);
2103 nr = pid_vnr(pid);
2104
2105 if (clone_flags & CLONE_PARENT_SETTID)
2106 put_user(nr, parent_tidptr);
2107
2108 if (clone_flags & CLONE_VFORK) {
2109 p->vfork_done = &vfork;
2110 init_completion(&vfork);
2111 get_task_struct(p);
2112 }
2113
2114 wake_up_new_task(p);
2115
2116 /* forking complete and child started to run, tell ptracer */
2117 if (unlikely(trace))
2118 ptrace_event_pid(trace, pid);
2119
2120 if (clone_flags & CLONE_VFORK) {
2121 if (!wait_for_vfork_done(p, &vfork))
2122 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2123 }
2124
2125 put_pid(pid);
2126 return nr;
2127 }
2128
2129 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2130 /* For compatibility with architectures that call do_fork directly rather than
2131 * using the syscall entry points below. */
2132 long do_fork(unsigned long clone_flags,
2133 unsigned long stack_start,
2134 unsigned long stack_size,
2135 int __user *parent_tidptr,
2136 int __user *child_tidptr)
2137 {
2138 return _do_fork(clone_flags, stack_start, stack_size,
2139 parent_tidptr, child_tidptr, 0);
2140 }
2141 #endif
2142
2143 /*
2144 * Create a kernel thread.
2145 */
2146 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2147 {
2148 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2149 (unsigned long)arg, NULL, NULL, 0);
2150 }
2151
2152 #ifdef __ARCH_WANT_SYS_FORK
2153 SYSCALL_DEFINE0(fork)
2154 {
2155 #ifdef CONFIG_MMU
2156 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2157 #else
2158 /* can not support in nommu mode */
2159 return -EINVAL;
2160 #endif
2161 }
2162 #endif
2163
2164 #ifdef __ARCH_WANT_SYS_VFORK
2165 SYSCALL_DEFINE0(vfork)
2166 {
2167 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2168 0, NULL, NULL, 0);
2169 }
2170 #endif
2171
2172 #ifdef __ARCH_WANT_SYS_CLONE
2173 #ifdef CONFIG_CLONE_BACKWARDS
2174 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2175 int __user *, parent_tidptr,
2176 unsigned long, tls,
2177 int __user *, child_tidptr)
2178 #elif defined(CONFIG_CLONE_BACKWARDS2)
2179 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2180 int __user *, parent_tidptr,
2181 int __user *, child_tidptr,
2182 unsigned long, tls)
2183 #elif defined(CONFIG_CLONE_BACKWARDS3)
2184 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2185 int, stack_size,
2186 int __user *, parent_tidptr,
2187 int __user *, child_tidptr,
2188 unsigned long, tls)
2189 #else
2190 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2191 int __user *, parent_tidptr,
2192 int __user *, child_tidptr,
2193 unsigned long, tls)
2194 #endif
2195 {
2196 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2197 }
2198 #endif
2199
2200 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2201 {
2202 struct task_struct *leader, *parent, *child;
2203 int res;
2204
2205 read_lock(&tasklist_lock);
2206 leader = top = top->group_leader;
2207 down:
2208 for_each_thread(leader, parent) {
2209 list_for_each_entry(child, &parent->children, sibling) {
2210 res = visitor(child, data);
2211 if (res) {
2212 if (res < 0)
2213 goto out;
2214 leader = child;
2215 goto down;
2216 }
2217 up:
2218 ;
2219 }
2220 }
2221
2222 if (leader != top) {
2223 child = leader;
2224 parent = child->real_parent;
2225 leader = parent->group_leader;
2226 goto up;
2227 }
2228 out:
2229 read_unlock(&tasklist_lock);
2230 }
2231
2232 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2233 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2234 #endif
2235
2236 static void sighand_ctor(void *data)
2237 {
2238 struct sighand_struct *sighand = data;
2239
2240 spin_lock_init(&sighand->siglock);
2241 init_waitqueue_head(&sighand->signalfd_wqh);
2242 }
2243
2244 void __init proc_caches_init(void)
2245 {
2246 sighand_cachep = kmem_cache_create("sighand_cache",
2247 sizeof(struct sighand_struct), 0,
2248 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2249 SLAB_ACCOUNT, sighand_ctor);
2250 signal_cachep = kmem_cache_create("signal_cache",
2251 sizeof(struct signal_struct), 0,
2252 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2253 NULL);
2254 files_cachep = kmem_cache_create("files_cache",
2255 sizeof(struct files_struct), 0,
2256 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2257 NULL);
2258 fs_cachep = kmem_cache_create("fs_cache",
2259 sizeof(struct fs_struct), 0,
2260 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2261 NULL);
2262 /*
2263 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2264 * whole struct cpumask for the OFFSTACK case. We could change
2265 * this to *only* allocate as much of it as required by the
2266 * maximum number of CPU's we can ever have. The cpumask_allocation
2267 * is at the end of the structure, exactly for that reason.
2268 */
2269 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2270 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2271 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2272 offsetof(struct mm_struct, saved_auxv),
2273 sizeof_field(struct mm_struct, saved_auxv),
2274 NULL);
2275 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2276 mmap_init();
2277 nsproxy_cache_init();
2278 }
2279
2280 /*
2281 * Check constraints on flags passed to the unshare system call.
2282 */
2283 static int check_unshare_flags(unsigned long unshare_flags)
2284 {
2285 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2286 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2287 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2288 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2289 return -EINVAL;
2290 /*
2291 * Not implemented, but pretend it works if there is nothing
2292 * to unshare. Note that unsharing the address space or the
2293 * signal handlers also need to unshare the signal queues (aka
2294 * CLONE_THREAD).
2295 */
2296 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2297 if (!thread_group_empty(current))
2298 return -EINVAL;
2299 }
2300 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2301 if (atomic_read(&current->sighand->count) > 1)
2302 return -EINVAL;
2303 }
2304 if (unshare_flags & CLONE_VM) {
2305 if (!current_is_single_threaded())
2306 return -EINVAL;
2307 }
2308
2309 return 0;
2310 }
2311
2312 /*
2313 * Unshare the filesystem structure if it is being shared
2314 */
2315 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2316 {
2317 struct fs_struct *fs = current->fs;
2318
2319 if (!(unshare_flags & CLONE_FS) || !fs)
2320 return 0;
2321
2322 /* don't need lock here; in the worst case we'll do useless copy */
2323 if (fs->users == 1)
2324 return 0;
2325
2326 *new_fsp = copy_fs_struct(fs);
2327 if (!*new_fsp)
2328 return -ENOMEM;
2329
2330 return 0;
2331 }
2332
2333 /*
2334 * Unshare file descriptor table if it is being shared
2335 */
2336 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2337 {
2338 struct files_struct *fd = current->files;
2339 int error = 0;
2340
2341 if ((unshare_flags & CLONE_FILES) &&
2342 (fd && atomic_read(&fd->count) > 1)) {
2343 *new_fdp = dup_fd(fd, &error);
2344 if (!*new_fdp)
2345 return error;
2346 }
2347
2348 return 0;
2349 }
2350
2351 /*
2352 * unshare allows a process to 'unshare' part of the process
2353 * context which was originally shared using clone. copy_*
2354 * functions used by do_fork() cannot be used here directly
2355 * because they modify an inactive task_struct that is being
2356 * constructed. Here we are modifying the current, active,
2357 * task_struct.
2358 */
2359 int ksys_unshare(unsigned long unshare_flags)
2360 {
2361 struct fs_struct *fs, *new_fs = NULL;
2362 struct files_struct *fd, *new_fd = NULL;
2363 struct cred *new_cred = NULL;
2364 struct nsproxy *new_nsproxy = NULL;
2365 int do_sysvsem = 0;
2366 int err;
2367
2368 /*
2369 * If unsharing a user namespace must also unshare the thread group
2370 * and unshare the filesystem root and working directories.
2371 */
2372 if (unshare_flags & CLONE_NEWUSER)
2373 unshare_flags |= CLONE_THREAD | CLONE_FS;
2374 /*
2375 * If unsharing vm, must also unshare signal handlers.
2376 */
2377 if (unshare_flags & CLONE_VM)
2378 unshare_flags |= CLONE_SIGHAND;
2379 /*
2380 * If unsharing a signal handlers, must also unshare the signal queues.
2381 */
2382 if (unshare_flags & CLONE_SIGHAND)
2383 unshare_flags |= CLONE_THREAD;
2384 /*
2385 * If unsharing namespace, must also unshare filesystem information.
2386 */
2387 if (unshare_flags & CLONE_NEWNS)
2388 unshare_flags |= CLONE_FS;
2389
2390 err = check_unshare_flags(unshare_flags);
2391 if (err)
2392 goto bad_unshare_out;
2393 /*
2394 * CLONE_NEWIPC must also detach from the undolist: after switching
2395 * to a new ipc namespace, the semaphore arrays from the old
2396 * namespace are unreachable.
2397 */
2398 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2399 do_sysvsem = 1;
2400 err = unshare_fs(unshare_flags, &new_fs);
2401 if (err)
2402 goto bad_unshare_out;
2403 err = unshare_fd(unshare_flags, &new_fd);
2404 if (err)
2405 goto bad_unshare_cleanup_fs;
2406 err = unshare_userns(unshare_flags, &new_cred);
2407 if (err)
2408 goto bad_unshare_cleanup_fd;
2409 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2410 new_cred, new_fs);
2411 if (err)
2412 goto bad_unshare_cleanup_cred;
2413
2414 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2415 if (do_sysvsem) {
2416 /*
2417 * CLONE_SYSVSEM is equivalent to sys_exit().
2418 */
2419 exit_sem(current);
2420 }
2421 if (unshare_flags & CLONE_NEWIPC) {
2422 /* Orphan segments in old ns (see sem above). */
2423 exit_shm(current);
2424 shm_init_task(current);
2425 }
2426
2427 if (new_nsproxy)
2428 switch_task_namespaces(current, new_nsproxy);
2429
2430 task_lock(current);
2431
2432 if (new_fs) {
2433 fs = current->fs;
2434 spin_lock(&fs->lock);
2435 current->fs = new_fs;
2436 if (--fs->users)
2437 new_fs = NULL;
2438 else
2439 new_fs = fs;
2440 spin_unlock(&fs->lock);
2441 }
2442
2443 if (new_fd) {
2444 fd = current->files;
2445 current->files = new_fd;
2446 new_fd = fd;
2447 }
2448
2449 task_unlock(current);
2450
2451 if (new_cred) {
2452 /* Install the new user namespace */
2453 commit_creds(new_cred);
2454 new_cred = NULL;
2455 }
2456 }
2457
2458 perf_event_namespaces(current);
2459
2460 bad_unshare_cleanup_cred:
2461 if (new_cred)
2462 put_cred(new_cred);
2463 bad_unshare_cleanup_fd:
2464 if (new_fd)
2465 put_files_struct(new_fd);
2466
2467 bad_unshare_cleanup_fs:
2468 if (new_fs)
2469 free_fs_struct(new_fs);
2470
2471 bad_unshare_out:
2472 return err;
2473 }
2474
2475 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2476 {
2477 return ksys_unshare(unshare_flags);
2478 }
2479
2480 /*
2481 * Helper to unshare the files of the current task.
2482 * We don't want to expose copy_files internals to
2483 * the exec layer of the kernel.
2484 */
2485
2486 int unshare_files(struct files_struct **displaced)
2487 {
2488 struct task_struct *task = current;
2489 struct files_struct *copy = NULL;
2490 int error;
2491
2492 error = unshare_fd(CLONE_FILES, &copy);
2493 if (error || !copy) {
2494 *displaced = NULL;
2495 return error;
2496 }
2497 *displaced = task->files;
2498 task_lock(task);
2499 task->files = copy;
2500 task_unlock(task);
2501 return 0;
2502 }
2503
2504 int sysctl_max_threads(struct ctl_table *table, int write,
2505 void __user *buffer, size_t *lenp, loff_t *ppos)
2506 {
2507 struct ctl_table t;
2508 int ret;
2509 int threads = max_threads;
2510 int min = MIN_THREADS;
2511 int max = MAX_THREADS;
2512
2513 t = *table;
2514 t.data = &threads;
2515 t.extra1 = &min;
2516 t.extra2 = &max;
2517
2518 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2519 if (ret || !write)
2520 return ret;
2521
2522 set_max_threads(threads);
2523
2524 return 0;
2525 }